
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Support Scrub Meetings in Distributed
Teams by Detecting Duplicates of Software

Defect Reports in Issue Management
Systems

Maximilian Flis

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Support Scrub Meetings in Distributed
Teams by Detecting Duplicates of Software

Defect Reports in Issue Management
Systems

Unterstützung von Scrubmeetings
Verteilter Teams durch Erkennung von
Doppelten Softwarefehlerberichten in

Fehlerverwaltungssystemen

Author: Maximilian Flis
Supervisor: Prof. Dr. Florian Matthes
Advisor: Christof Tinnes
Submission Date: May 15th, 2020

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, May 15th, 2020 Maximilian Flis

Acknowledgments

I would first like to thank my colleagues at Sky for making this work possible and
for aiding me with their expertise in defect management. Their continuous support
during this work was greatly appreciated. Especially, I want to thank my advisors
Bertwin Wolf (Sky) and Christof Tinnes (TUM). I am grateful for the weekly syncs
with Christof throughout this work where he provided me with guidance and many
insightful comments and feedback. He always showed me a way to proceed when I
encountered obstacles or struggled with certain topics. Additionally, I want to express
my gratitude to my supervisor Prof. Dr. Florian Matthes. Furthermore, I want to thank
all my friends and family for their tremendous support while I was focused on the
research for this work. And finally, a huge shout out to Markus Hoppe for his awesome
brewing skills resulting in the best beer in the world.

Abstract

Developing software is a complex task that is prone to errors which cause faulty
behaviour of a piece of software. In technical terms, these errors are referred to as
software defects or bugs and need to be tracked to reflect the software’s state of
quality.

It is state of the art to use issue tracking systems like JIRA to submit and track reports
based on bugs. At Sky who is our industry partner, JIRA is used to track bugs.
Defect reports have to be reviewed before faulty software can be fixed. The process of
reviewing and assigning defect reports to developers is generally called defect triage or
defect scrub at Sky and happens usually multiple times a week. Nonetheless, no system
is perfect. Tools like JIRA do not prevent defect reports focusing on the same problem
only differing in the words used to describe the defect. Duplicate defect reports waste
valuable time of reporters, triagers and fixers which could be invested in tasks like fixing
high priority bugs, for instance.

With Defejavu, we introduce a recommender system leveraging word embeddings and
NLD, a novel way of expressing document vector similarities, paired with RankNet,
a learning-to-rank algorithm aiding to rank similarity vectors obtained from textual,
categorical and time-based features of bug reports (BRs), to retrieve a list of top-k
similar BRs for a query BR q.

Additionally, we show that expert triagers in closed source environments maintain a
throughput-optimized defect management process where similar BR recommenders
add the most value at the time of BR creation.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Contributions . 2
1.3 Research Questions . 2

2 Software Development Process 7
2.1 Overview . 7
2.2 Defect Management at Sky . 11

3 Related Work 13
3.1 Similar Bug Report Detection Systems by the Scientific Sector 13
3.2 Commercial Solutions . 18

4 Methodology 19
4.1 Extracting Defect Reports from the Issue Tracking System 19
4.2 Preparing Defect Reports for Ranking . 21
4.3 Ranking Defect Reports by Similarity . 35
4.4 Publishing the Ranking Result . 38
4.5 Comparision to Existing Approaches . 39

5 Implementation of the Recommender System Defejavu 42

6 Results 45
6.1 General Insights . 48
6.2 Introduction of Defejavu to the Defect Management Process at Sky . . . 56
6.3 Manual vs. Tool Supported Defect Triage 60
6.4 Generalizability of Defejavu . 69

v

Contents

6.5 Domain Knowledge as Underappreciated Asset 74
6.6 Threats to Validity . 76

7 Conclusion and Future Work 78

List of Abbreviations 80

List of Figures 82

List of Tables 83

Bibliography 84

vi

1 Introduction

1.1 Context and Motivation

In bug management or more specifically bug triage which is a part of a software
development life cycle (SDLC) there are usually two types of duplicate bug reports
(BRs) as Sun et al. [1, p. 46] stated where "[o]ne describes the same failure [TYPE I],
and the other depicts two different failures both originated from the same root cause
[TYPE II]". In 2005, Anvik et al. [2, p. 38–39] mentioned, “everyday, almost 300 bugs
appear that need triaging. This is far too much for only the Mozilla programmers to
handle”. At Sky, there are roughly 1000 updates to tickets daily. Unfortunately, in spite
of advances in terms of automating bug triage, there is still room for improvement
with respect to bug management. As Anvik et al. [2, p. 35] further stated, ”humans
must read the bugs and decide upon whether they are duplicates, and to whom they
should be assigned”. Similarly to the focus of Sun et al. [1], we target TYPE I but
we do not classify query bug reports into duplicate or non-duplicate. We seek to
support the triage process without introducing additional restrictions by automatically
filtering duplicates or patronizing the experts with comprehensive domain knowledge.
Therefore, it is crucial to understand what bug triagers are actually looking for in order
to simplify their bug triaging processes.

Open bug repositories render themselves as a target for increased duplicate bug report
rates [3, p. 53] as opposed to closed ones like the one at Sky with highly optimised BR
management backed by an advanced bug scrub process and reporters with tremendous
domain-knowledge. Nonetheless, memorizing details of large amounts of BRs is far
from justifiable. Therefore, duplicate BRs are reported far more frequently than desired.
Here is where we see potential for improvement.

1

1 Introduction

1.2 Contributions

Because of the identified potential for improving bug triage, there are mainly two goals
we want to contribute to:

1. In the past, researches applied common information retrieval (IR) techniques like
TF-IDF and similarity measures like cosine similarity [4]. In chapter 3, we refer to
a non-exclusive set of these contributions. However, due to more recent advances
in this domain, we want to experiment with word embeddings and Word2vec
models and a novel similarity measure based on the idea of a non-linear space
in which the document vectors are situated as opposed to the common cosine
similarity in a linear space.

2. We closely work with Sky, our industry partner, to learn about defect management
in closed source environments tracking bugs in closed bug repositories leveraging
Atlassian Jira1 (JIRA), an issue tracking system (ITS). Especially the impact of tool
assisted duplicate detection with respect to the scrub process at Sky are of interest
to us.

1.3 Research Questions

This section is dedicated to emphasize the research areas of this work. We compiled a
total of six research questions. The motivation and methodology are described in each
research question section within this chapter. All the results are covered in chapter 6.

RQ1 Do duplicate defect reports pose problems in a software development
life cycle?

Motivation. This question forms the base of the research conducted and presented
in this work. Since we cooperated with Sky before we started this research, we
had the opportunity to participate in projects there. We learned that ITSs are very
useful for a SDLC but with the state-of-the-art ITSs, best to our knowledge, there is
no native functionality to prevent duplicate BRs. Furthermore, we experienced an

1https://www.atlassian.com/software/jira (verified 2020-02-04)

2

https://www.atlassian.com/software/jira

1 Introduction

increased amount of duplicate BRs during phases of projects where the ITS was heavily
frequented. Therefore, we wanted to learn if duplicate BRs pose problems in a SDLC.

Methodology. There are several ways to elaborate on the topic of duplicate defect
detection. In the past (chapter 3), the focus was mainly on looking into data sets of
open bug repositories. We believe that personal communication is key to determine
problems of duplicates in bug repositories. Hence, we directly consulted five expert
triagers at Sky in individual qualitative interviews to get first hand impressions of daily
reoccurring bug triage. The group of experts consisted of three System Integration
Engineers (SIEs), one Scrum Master (SM) and one Defect Manager (DM) who can be
considered as the interface between raised bug reports and the triage team. See Table 1.1
for more information about the experts.

Table 1.1: Group of expert triagers and their experience.

Expert Role Defect Management (years) JIRA (years)

SIE1 System Integration Engineer 19 6
SIE2 System Integration Engineer 10 10
SIE3 System Integration Engineer 8 5
SM Scrum Master 4.5 4.5
DM Defect Manager 20 8.5

Insights into the problems of duplicate defect reports were obtained by discussing the
topic Duplicate Reports in the interviews. Additionally, we reviewed previous work to
reason about RQ1.

RQ2 What are the reasons for not incorporating tools aiming at detecting
duplicate reports?

Motivation. In chapter 3, previous work regarding bug triage supported by tool-
based approaches is outlined. However, no automated way of similar issue detection is
implemented at Sky. We try to find the reasons for the lack of automation supporting
the bug triage tasks.

3

1 Introduction

Methodology. Similarly to the methodology of obtaining results for RQ1, we dedi-
cated questions within our qualitative interviews to find an answer for this research
question. The questions were chosen to obtain sentiments about these topics:

• Lack of Native Similar Issue Detection (JIRA)

• Preventive Measures against Duplicate Reports

• Tool Assisted Similar Issue Detection

RQ3 Does tool assisted detection help in highlighting duplicates before
the scrub meeting?

Motivation. One of the tasks in the defect management workflow at Sky (section 2.2)
is preparation of the triage meeting. Our goal is to support this heavily on human
memory relying task by automating the detection of similar issues.

Methodology. To help better understanding the process of the scrub meeting at Sky,
we attended 15 sessions over the course of 2 months and tracked the discussion time of
each ticket in the list of pending tickets for each day (section 2.2). Furthermore, some
questions of the interview were dedicated to answer this research question. Since this
research question is targeting the preparation of the triage meeting, the DM’s answers
are considered to be most valuable (see Table 1.1 and RQ1 for more methodology
details). These questions covered the following topics:

• Triage Preparation

• Triaging Challenges

• In-depth Issue Discussion

• Linking Policy

• Tool Assisted Similar Issue Detection

Regarding In-depth Issue Discussion one can imagine the triage meeting at Sky to move
very quickly. Hence, in this meeting, defects usually are assigned to an appropriate
development team without a profound analysis. From time to time, triagers take a
closer look at the discussed ticket. For this reason, it seemed interesting to ask the scrub
participants about the causes for the longer discussion especially when considering the

4

1 Introduction

relation between profound analysis of the BR and it being resolved as duplicate at the
end of the discussion.

Additionally to the questions asked in the interview, our approach (chapter 4) was
evaluated shortly. However, due to a misconfiguration of our tool causing too much
noise it had to be disabled (section 6.2).

RQ4 Does tool assisted detection affect finding duplicate defect reports
during the scrub meeting?

Motivation. Apart from the preparation task, new defects have to be triaged, i.e.,
ideally assigned to the correct development team which is in charge for further analysis
and eventually delivering a fix.

Triaging is a hard task. There are several challenges that can cause trouble to the triage
team like poor quality of the BR’s description, duplication or incorrect assignment.

We aim to find similar issues with our approach to help reduce duplication not only
while preparing the triage meeting but also during the meeting itself.

Methodology. To answer this research question, we use the same methods as for
finding the answer to RQ3. However, this time the answers from the experts other
than the DM are considered to be more valuable (see Table 1.1 and RQ1 for more
methodology details).

RQ5 How generalizable is the proposed duplicate detection tool to support
bug triage processes in other domains?

Motivation. The goal of this research question is to assess the tool’s extensive opera-
tional capability. We do not aim for creating a perfect fit just for one specific domain at
one specific business. Bug triage is a task performed within closed source and open
source projects. Considering previous work (chapter 3), there has to be high demand
for automated workflows to cope with the high amount of BRs filed daily.

5

1 Introduction

Methodology. Because of the importance of a general approach to the problem of
duplicate bug report detection, we allocated more time in the interviews to get an im-
pression of the inner workings of a closed bug repository triage process and compared
it with processes from open bug repositories. This portion of the interviews covered
the following categories:

• Triage Process Description

• Triage Process Classification

• Perks of the Triage Process

• Triaging Improvements

• Rapid Topic Understanding

• Tool Assisted Similar Issue Detection

RQ6 Are there any measures in place to cope with a total loss of domain
knowledge of the defect scrub team?

Motivation. While participating in the scrub meetings, we observed rather short
discussion durations for each pending BR (see section 6.1). Based on our assumptions,
this is due to broad domain knowledge provided by the scrub participants. We wanted
to learn about the measures in place to avoid a reduced throughput in or even complete
halt of the scrub meeting.

Additionally, while conducting the research for this work, we stumbled upon the
MicroPython2 project on Github where domain knowledge is densely bundled because
of a single person contributing the most changes as it seems.

Methodology. With this in mind, we forwarded this research question directly to the
experts in our interviews.

2https://github.com/micropython/micropython (verified 2020-02-21)

6

https://github.com/micropython/micropython

2 Software Development Process

This chapter will provide a short overview of the SDLC (ISO/IEC/IEEE 12207:2017 [5])
and models describing its concepts in a software development process. Afterwards, an
insight into defect management at Sky will be given to highlight the challenging tasks
of BR assignment by defect triagers in software projects.

2.1 Overview

Software Development Life Cycle

According to MacKay [6] and SDLC - Overview [7], there are six stages in the SDLC. We
consolidated deployment and maintenance into one stage.

1. Planning and Requirement Analysis

2. Defining Requirements

3. Designing the Product Architecture

4. Building or Developing the Product

5. Testing the Product

6. Deployment in the Market and Maintenance

Software development is not just a matter of writing several lines of code to obtain
a working product. A software project should be planned appropriately to avoid
surprising results or even failure. It involves a sophisticated process which is split up
into the aforementioned stages. Each stage is associated with planned tasks producing
a result that will be used in another stage, i.e., writing code is done in the software
development stage which is then verified in the testing stage. Without the code, testing
cannot be completed.

7

2 Software Development Process

Over the past couple decades major models have evolved from the SDLC organizing its
stages in different orders including all sequential and even parallel arrangements of
distinct stages. Common models used in the industry are the waterfall model and the
agile model.

Software Development Life Cycle Models

Waterfall Model

As Ruparelia [8] claimed, the foundation of all SDLC models is the waterfall model.
Initially presented by Benington [9] and revised by Royce [10], the waterfall model
arranges the SDLC stages in this sequential order [8, p. 9]:

1. Evaluation

2. Requirements

3. Analysis

4. Design

5. Development

6. Validation

7. Deployment

This model stands out through its simplicity because of the sequential order of the
SDLC stages. Each stage has to be completed before the next stage can commence. For
specific stages, certainly, this is reasonable.

To seize the idea of the previous example, one cannot start testing software without
development which seems to be meaningful at first glance, but can be considered to be
too simple for software projects. Thinking about it, reveals the possibility of starting to
test certain features of a software product before everything is in place.

Additionally, requirements are bound to change more often than the waterfall model
allows to [11], i.e., after the requirements stage, they are fixed and cannot be changed
anymore. Because of this, the model is often criticized of being too strict and too simple
for the purpose of software development [12, 13].

8

2 Software Development Process

Agile Model

Due to the limitations of the waterfall model, software development practitioners aimed
for more flexible models or even get rid of a life cycle altogether [12]. The agile model
is well suited for frequently changing requirements [14] considering the nature of the
arrangement of the SDLC stages [15].

At the beginning, i.e., the initial exploration, the initial set of requirements needs
to be identified [16]. When this is in place, the actual agile SDLC can begin. It is
a concatenation of iterations, each of which consisting of most of the SDLC stages
typically lasting for two weeks [16]. Each iteration is kicked off by the planning
stage. Requirements should be fixed for the upcoming iteration at this point in
time, however, while this iteration is in progress, the requirements for the following
iteration are gathered, refined and fixed so that the next iteration can progress without
impediments [16].

After the planning is complete, the developers start to implement the planned scope
of work for the given iteration. In general, the iteration’s scope is divided into small,
testable and usually independent packages that are verified before being marked as
complete, i.e., the development stage and testing stage are tightly coupled and also
happen in parallel considering the independent work packages [16].

At the end of each iteration, the resulting piece of software extended by the iteration’s
increment should be deployable, i.e., the software is working without flaws detected
while testing [16, 17]. The advantage of this approach is a fast and continuous delivery
which in turn provides the possibility of quick feedback from the targetted user base of
the software [16, 18].

The agile model allows for stakeholders to control the project’s direction to get the best
business value out of the delivered software while minimizing cost [16].

V-Model

The V-Model is similar to the waterfall model due to its sequential nature, however,
verification and validation are heavily focused in this SDLC. Its name is derived from
the arrangement of the stages (see SDLC - V-Model [19]). Each stage is contrasted
by a corresponding verification and validation stage. Only if the validation of the
current stage was successful, transitioning to the next stage is granted. The order is

9

2 Software Development Process

from abstract (requirements analysis) to concrete (development) tasks regarding the
implementation of the software [8, 18, 19].

The benefit of this model compared to the waterfall model lies in the early testing stages
instead of relying on testing at the very end of the waterfall. However, this is also its
pitfall if time is a constraint. Reviewing each outcome of every single stage is very time
consuming. Therefore, the V-Model is not very flexible considering the nature of the
strict verification and validation stages. If changes occur, not only the requirements
documentation but also the testing documentation have to be updated [18].

Defect Management

All of the SDLC models mentioned before have one of the key tasks in common:
defect management, also known as bug management which is part of the maintenance
stage. Unfortunately, software cannot be developed without faults because software
is developed by humans and as stated very long ago, “errare humanum est” [20]. As
long as this is the case, faults will be part of any software created by human kind. Since
it is impossible to prevent defects in software, there has to be a way to keep track of
these faults. In the past, several bug or more general ITSs have emerged to facilitate
recording the details of the faulty behaviour in a software product. Such a record is
called bug report (BR) or defect report (DR). The terms defect and bug will be used
interchangeably in the following chapters.

Nowadays, one of the popular ITSs is JIRA. It provides several useful features such as
quick access to issue reporting and filtering along with customizability simplifying the
tracking of a BR’s life cycle.

However, a tool only is not enough for effective software maintenance. It requires an
efficient workflow managing the reported defects to be able to cope with the amount of
new defects raised daily, especially in larger software projects. Therefore, it is crucial to
optimize the bug workflow as far as possible.

report triage
unconfirmed assigned

fix
resolved

release
closed

Figure 2.1: A simplified life cycle of a BR in case there is no reason for rejecting the BR.

In general, bug management consists of four distinct steps (see Figure 2.1):

1. Report

10

2 Software Development Process

2. Triage

3. Fix

4. Release

According to Ohira et al. [21], the bug management steps can mapped to four bug
management patterns in open source projects with respect to the roles reporter, triager
and fixer:

1. reporter = triager = fixer

2. reporter = triager 6= fixer

3. reporter 6= triager = fixer

4. reporter 6= triager 6= fixer

Depending on the project structure and the available resources one of the patterns
above is used to ensure a fault in software is handled adequately so that the quality of
the product is maintained or even increased.

2.2 Defect Management at Sky

Considering the bug management patterns described above, Sky best fits into pattern
#4 even though BRs are tracked in a closed bug repository and the software is closed
source as well. The roles are split across human resources at Sky where reporters, triagers
and fixers are generally represented by different persons.

The overall life cycle of a BR is very close to the one outlined in Figure 2.1. However,
at the beginning, it is split into two different branches where it is checked if the BR
targets a released or unreleased software version, i.e., whether end users are faced with
the problem or not. In this work, we base our research on the branch handling BRs
targeting unreleased software.

After this initial check is completed, a BR traverses all stages as seen in Figure 2.1.
Additionally, there are situations where a BR can be rejected, i.e., because it is a
duplicate, or redirected to a previous stage, for instance, if the BR is not yet ready for
triage because of missing or inconsistent information.

11

2 Software Development Process

Defect triage is performed in a so called scrub meeting which is scheduled daily as a
remote call to cope with the high amount of BRs raised daily and to ensure BRs are
progressed accordingly. In this short lived meeting, the participants discuss BRs which
are selected by the DM beforehand. He ensures that BRs meet a certain level of quality
to be able to perform analysis within the meeting and he also acts as a moderator of
the meeting who announces each BR at the beginning of its discussion.

When an issue has been discussed, it is not directly assigned to a developer. Sky
employs teams of developers who consume issues assigned by a respective component
matching the team instead of using the field assignee. Similarly, Anvik et al. [2] mention
the generic use of the field assignee which does not always point to a single developer.

In the case of uncertainty within the scrub team, the issue is put on hold to retrieve more
details about the given problem from the reporter. When the requested information is
provided, the ticket will be discussed in a future scrub meeting.

Reporters of bugs are advised to search for existing BRs before raising a new one but
this measure cannot entirely prevent the creation of duplicate BRs. If a duplicate is
identified, the BR is resolved as such and linked to the original BR. Contrary to Hiew
[22], at Sky a bug report can be marked as duplicate even though chronologically it
should be the original one. During the review of potential BRs for the scrub meeting
and if the DM is certain that a given BR is a duplicate, it will be resolved as such as
well and will not be included in the pool of BRs waiting for discussion in the scrub
meeting.

BRs that get assigned to a development team follow the flow from Figure 2.1 if the
team accepted the BR, i.e., confirmed the assignment of the triagers, or reappear in the
scrub because the wrong team was assigned.

12

3 Related Work

This chapter will provide a non-exclusive overview of existing solutions for tackling
the problem with duplicate defect reports in issue management systems.
First, we will take a closer look at deduplication tools presented by the scientific
sector.

Second, two plugins [23, p. 9–10] for the software development tool JIRA will be
presented.

Last, we will briefly present an insight into related tools which do not particularly aim
for resolving the problem of duplicate defect reports.

Since the inception of JIRA in 2002 it merely took a year until users of the tool requested
native support for detecting similar issues. For this reason, Dawson [24] created a
feature request for JIRA in 2003. In 2015, more than ten years later, the authors of JIRA
updated the issue with the information to not include the feature on their roadmap due
to available plugins in the JIRA Marketplace [23, p. 11] two of which we will briefly
present later but first, we will examine some of the solutions provided by previous
research.

3.1 Similar Bug Report Detection Systems by the Scientific
Sector

Coping with an open bug repository (2005)

Anvik et al. [2] expanded on the initial investigations into automatic bug triaging
by Murphy and Cubranic [25]. Their research focused on two main tasks of bug triaging
in two open bug repository projects, namely Eclipse and Firefox: ticket assignment
and duplicate detection. They applied machine learning techniques to train a Support
Vector Machine [26] classifier on historical data of defect reports by creating a model

13

3 Related Work

that is incrementally expanded over time as new defects arrive to automatically identify
the appropriate developer capable of fixing the issue.

For automatic duplicate detection, Anvik et al. [2] built a statistical model using machine
learning methods based on existing bug reports again with incremental updates on
arrival of new reports. To classify these, cosine similarity [4] was applied. When a
duplicate BR is identified, the top three most similar existing BRs are associated with
this BR. They recommend first detecting duplicates before automatically providing
names of suitable developers to fix the bug.

Assisted detection of duplicate bug reports (2006)

Hiew [22] examined detection of duplicate bug reports on Firefox’s open bug repository.
By combining similar defect reports into respective groups, they were able to provide
top-n recommendations of potentially similar bug reports. These groups represent a
model of reports that associates similar ones into so called centroids [27]. Similarly to
Anvik et al. [2], the model is improved incrementally.

To create an increment, they first create a document vector [4] representation of each
bug report. The document vector is built by textual features from the report. These
features are preprocessed by stemming each word [28] and removing stop words [29]
including domain specific phrases like “steps to reproduce” [22] followed by conversion
into a document vector using TF-IDF [4].

Second, they compare the new document vector to each existing centroid represented
as TF-IDF vector using normalized cosine similarity [4] and if a certain threshold is
exceeded, the bug report is identified as duplicate including top-n recommendations
with one report from each matching centroid.

Last, the new report is either optionally added to an existing centroid (original bug id
exists in any of the centroids) or represented in a new one (original bug id was not
found in any of the centroids).

Automated duplicate detection for bug tracking systems (2008)

Jalbert and Weimer [3] claimed manually identifying duplicate bug reports is time-
consuming. Therefore, they have proposed an approach for automated duplicate
detection backed by a classifier trained on reports from the Mozilla project that relies

14

3 Related Work

on surface features [30], textual semantics [31] and graph clustering [32]. Their main
focus is on detecting unknown duplicates as opposed to Hiew [22] where grouping
similar reports is of primary importance.

From a high level perspective, their predictions are the result of a linear regression
classifier where a threshold marks the boundary between duplicate and non-duplicate
bug report. Jalbert and Weimer [3] do not opt for an incrementally updated model.
Instead, they suggest periodical updates claiming that with more bug reports historical
data becomes progressively irrelevant.

However, preprocessing is similar to the approach of Hiew [22] using the Porter
stemming algorithm [28] and removing stopwords. Interestingly, one of their claims [3,
p. 57] criticises the usage of inverse document frequency [4] for detecting duplicates,
instead, they obtain their document vector by applying a custom weighting function [3,
p. 56]. For calculating the distance between two document vectors, again cosine
similarity is used.

As far as graph clustering is concerned, a social network clustering algorithm intro-
duced by Mishra et al. [32] is applied to circumvent the problem of unknown amount
of clusters [3, p. 56] with the benefit of highlighting the cluster with most neigh-
bours within itself. Textual features and clustering results act as input for their linear
regression model.

Finally, they seem to be very confident about their approach because of filtering out all
reports identified as duplicate but one from the triage process [3, p. 54].

A discriminative model approach for accurate duplicate bug report retrieval
(2010)

Once again the choice of open bug repositories fell to Firefox and Eclipse. Additionally,
Sun et al. [1] opted for including OpenOffice into the evaluation. Instead of filtering
duplicate reports as Jalbert and Weimer [3] did, Sun et al. [1] provide a list of top-k most
similar reports (sorted from highest to lowest relevance) due to their claim "one report
usually does not carry enough information for developers to dig into the reported
defect" [1] backed by Bettenburg et al. [33]. Their approach relies on a discriminative
model which is able to express the relevance as a probability between two bug reports.

15

3 Related Work

In general, bug reports are preprocessed the same way others [3, 22] performed
preprocessing in the past. Sun et al. [1] do not explain this stage more thoroughly, i.e.,
they did not mention tools or algorithms used.

In contrast to the previous approaches [2, 3, 22], textual similarity is expressed by the
sum of inverse document frequencies of two bags of words, one from the query report
and one from the other report, and two bags of bigrams. In total, they extracted 54
similarity features as a base for their model.

For building their discriminative model, they trained a Support Vector Machine [26]
classifier. The dataset is split into buckets consisting of a master bug report and all
its duplicate reports. A master bug report is defined as the oldest report in a master-
duplicates bucket. Positive samples, i.e., a pair of a master and one of its duplicates,
together with negative samples, i.e. a pair of unique reports, are fed into the training
algorithm to fit the model.

Towards more accurate retrieval of duplicate bug reports (2011)

Sun et al. [34] focused on improving the accuracy of existing tools including their own
approach based on a discriminative model [1].

Their main focus lied in extending the BM25F ranking function, a modified version of
Okapi BM25 [35], by supporting lengthy queries like bug reports as opposed to short
queries for which BM25F originally is suited best [34]. Instead of solely relying on
textual information like bug summary and description, they have considered categorical
features like component and version in their contribution.

Preprocessing the textual features was performed the same way as before [1] and their
similarity measure was retrieved by their retrieval function REP using their BM25F
extension [34].

In order to optimize their similarity function, Sun et al. [34] relied on the work of Taylor
et al. [36] who introduced RNC, a simplified RankNet [37] cost function.

16

3 Related Work

A contextual approach towards more accurate duplicate bug report
detection (2013)

Alipour et al. [38] have adopted the approach of Sun et al. [34] where the original bug
report (master) and all its duplicates are grouped into buckets.

In general, their approach matches the previous work: Preprocess the new bug report,
extract similarity measures and finally retrieve a top-k list of most similar defect reports
to the query report. However, they combine a set of metrics retrieved from textual,
categorical and contextual features, for instance the non functional requirements context,
by obtaining the cosine similarity [4], the Euclidean distance and a more complex logistic
regression based metric to generate the top list.

Combining Word Embedding with Information Retrieval to Recommend
Similar Bug Reports (2016)

Yang et al. [39] use word embeddings to further improve the recall rate@k (see section 6.1)
of similar bug report detection tools (SBRDTs).

They resort to Gensim Python library1 (GENSIM), a python framework combining sev-
eral functions for leveraging information retrieval tasks. However, because of claiming
that traditional information retrieval techniques complement word embeddings, they
used not only word embedding vectors but also TF-IDF document vectors to compute
and combine the resulting similarity scores [39, p. 129].

In addition to the bug reports, Yang et al. [39] incorporate commit messages linked to
individual reports by bug id from source code control stored at Github to reason about
similarity in terms of mutual source code files and to build the ground truth for the
similar report detection task.

The final similarity score is a combination of three similarity metrics retrieved from
comparing the query report and all other reports. First, they calculate the cosine
similarity of the TF-IDF vectors, second they retrieve the word embedding vector
similarity by calculating the cosine similarity and the last score consists of the similarity
of categorical features such as product and component.

1https://radimrehurek.com/gensim/ (verified 2020-03-10)

17

https://radimrehurek.com/gensim/

3 Related Work

3.2 Commercial Solutions

Find Duplicates

Find Duplicates is a plugin for JIRA. It claims to find duplicate BRs while a BR is being
created and existing BRs are associated with a list of potential duplicates.

From our personal communication with the developers of Find Duplicates, we learned
that it relies on Apache Lucene2 (LUCENE) which provides indexing and search
features.

Unfortunately, no more details about the techniques used were shared with us.

Similar Issues Finder

Similar Issues Finder is another plugin for JIRA and provides a similar set of features
as Find Duplicates.

According to our personal communication with the developers, it is based on JIRA
Query Language3 (JQL) similarity search leveraged by LUCENE which is also used in
stemming the user queries. JQL provides the “~” operator for searching occurrences of
free text. Therefore, they create queries similar to “BR summary ~ keyword” and return
the top result as similar BRs. In addition, they apply some unspecified techniques to
improve the relevance of the result. Depending on the configuration of the plugin,
other BR features are incorporated to retrieve the list of similar BRs.

2https://lucene.apache.org/ (verified 2020-04-05)
3https://www.atlassian.com/blog/jira-software/jql-the-most-flexible-way-to-search-jira-
14 (verified 2020-04-02)

18

https://lucene.apache.org/
https://www.atlassian.com/blog/jira-software/jql-the-most-flexible-way-to-search-jira-14
https://www.atlassian.com/blog/jira-software/jql-the-most-flexible-way-to-search-jira-14

4 Methodology

In this chapter, we describe our methodology to retrieve a list of top-k recommendations
of most similar BRs for a given query BR q. Figure 4.1 shows an overview of our
workflow for finding such a list. This workflow is split into two phases, ramp-up and
running.

In the ramp-up phase (indicated by the dotted arrows in Figure 4.1), there are two
stages where first, existing BRs are extracted from the source data storage system
in an extract, transform, load (ETL) process (section 4.1) and then preprocessed in a
preprocessing (PREP) process (section 4.2) to be finally stored in a database as vectorized
bug reports (VBRs). We will provide more details about VBRs including the usage of
machine learning methods in section 4.2. The ETL process is required because we were
not allowed to directly access the database where all JIRA tickets are stored including
the BRs we were interested in.

After the ramp-up is completed, we move to the running phase. The first two stages are
the same as in the ramp-up phase. Additionally, in the third stage we obtain predictions,
i.e., potential top-k similar BRs, for each new VBR q′ by querying it against existing
VBRs in a two-pass prediction (PRED) process (section 4.3). Subsequently, in the last
stage these predictions are published in a publish (PUB) process (section 4.4).

4.1 Extracting Defect Reports from the Issue Tracking System

As mentioned before, we had to extract the BRs from the JIRA project. Apart from the
permission to work on life data, we would need to go through the process of deploying
our approach to a test system first and then target the production system (JIRA). Since
we are mostly interested in the defect management process at Sky, the scrub workflow in
particular, choosing this direction would go beyond the scope of this research. Instead,
we opted for extracting the BRs into our own database and work with the data from
there.

19

4 Methodology

extract, trans-
form, load

ETL
section 4.1

preprocessing
PREP

section 4.2

prediction
PRED

section 4.3

publish
PUB

section 4.4

New BR q Existing BRs di

New VBR q′

VBRs di
′

querystore

store

top-k Recommendations

Figure 4.1: High level workflow overview of our approach.

We also targeted a system which could be deployed and used after the research for this
work is complete. Therefore, keeping the extracted data in sync with the source was
key in the decision making process. Our pick for the ETL process was the software
platform SyncPipes1 (SYNCPIPES) by Koch [40]. Unfortunately, at the time of creation
of our ETL process SYNCPIPES did not support proper syncing from a JIRA project, i.e.,
it was possible to extract the data as is, but to our best knowledge incremental updates,
i.e., actually syncing the data, were not implemented. Consequently, we extended

1https://wwwmatthes.in.tum.de/pages/2gh0u9d1afap/SyncPipes (verified 2020-03-08)

20

https://wwwmatthes.in.tum.de/pages/2gh0u9d1afap/SyncPipes

4 Methodology

SYNCPIPES with this functionality for JIRA projects to enable incremental syncing and
to keep the data on our end up to date. Apart from that, we stuck to the examples by
Koch [40] to configure our ETL process with the help of a SYNCPIPES pipeline.

SYNCPIPES does not support scheduled pipeline runs. For that reason, we made sure
that syncing is performed periodically to keep the data up to date and additionally to
avoid to much stress on the infrastructure hosting the JIRA project with the data of
our interest, i.e., BRs. Because of the pipeline run scheduling, updates to BRs or new
BRs are fetched in batches. Accordingly, recommendations of similar BRs cannot be
presented in real time.

Initially, we wanted to provide these recommendations while a new BR is being created
to reduce duplication of BRs. This requires to be as close as possible to the source data,
i.e., be able to directly access it. The proper way to achieve this with JIRA is to create a
JIRA plugin.

However, due to the mentioned limitations, we had to resort to a ETL process with the
drawback of periodic pipeline runs as well as the advantage of being more generalizable
(section 6.4), because a JIRA plugin cannot run standalone.

With a very heavily frequented JIRA project like the one at Sky, updates to tickets are
very common. Therefore, we selected a cool down period of five minutes between
pipeline runs reducing the load on the server while still having fairly current data.

4.2 Preparing Defect Reports for Ranking

To be able to find similarities between two BRs, they have to be transformed into a
numerical representation. We call this process vectorizing. In previous work, vectorizing
involves converting the BR’s description and sometimes its summary into a vector by
applying the vector space model [41]. Typically, this is done by calculating the TF-IDF,
a modification or partial appliance of it, i.e., only TF or IDF [1, 22, 34, 38, 39].

TF-IDF is a very well spread statistical measure [42] consisting of two parts targeted at
indicating the importance of a word in a document. For instance, one could refer to
a document as the BR’s description. TF is the frequency of a word in a document d.
IDF is the inverse frequency of the documents where the word appears in. TF-IDF is
defined as follows:

t f id f (t, d, D) = t f (t, d) ∗ id f (t, D) d ∈ D (4.1)

21

4 Methodology

where: t : the word of which the score should be calculated
d : the document, i.e., a BR’s description

D : the set of available documents.
t f : the raw count of t in d (other weights are also possible [43, p.128]).

id f :

id f (t, D) =
|D|

|{d ∈ D : t ∈ d}| (4.2)

Word embeddings. Since TF-IDF is very common among recommender systems [42],
we decided to try a less frequent way of representing BR descriptions in a numerical
form. We opted for word embeddings obtained from Word2vec [44] models because
it allows for catching synonyms in text as opposed to TF-IDF which is a discrete
representation of words [45]. Word embeddings can be seen as transforming each word
in a document into an n-dimensional vector where n is defined by the vector space
which is the output of a neural network model trained on a large corpus of text [39, 46].
In order to have the best context for creating word embeddings, we would have to create
our own neural network model based on the BRs from the JIRA project at Sky. Since
the corpus of text has to be large to retrieve reasonable vector space representations of
documents, this task has proven itself to be hard, because the JIRA project does not
provide the volume of words needed to produce acceptable results [45]. Therefore,
we resorted to two general purpose models, one trained on the large corpus of Stack
Overflow articles (Stack Overflow 200 (SO200), n = 200) [47] and the other one trained
on Google News articles (Google News 300 (GN300), n = 300) [45].

However, contextual Word2vec models targeted at specific domains, for instance,
broadcast media at Sky, can outperform general purpose models [48], but it requires
proper optimization of hyperparameters [49] due to the low volume of the input corpus.
This optimization is beyond the scope of this research and therefore, we put only the
general purpose models into consideration for our approach after heaving tried to train
a contextual Word2vec model.

Stemming and removal of stop words. Similarly to classic IR approaches relying
on TF-IDF, we preprocess the BR descriptions by removing stop words and applying
stemming before retrieving the word embedding for a particular word, i.e., words
such as “the”, “a”, “an”, “in” are removed and forms of words such as “crashed” or
“flickering” are reduced to their infinitive form “crash” and “flicker” in order to prevent
distortion in the resulting word embeddings.

22

4 Methodology

Static rank features (SRFs). Instead of only focusing on the descriptions of BRs, we
took several other textual, categorical and time-based features into account (see Ta-
bles 4.1, 4.2 and 4.3) which turned out to improve recall rate@k (see section 6.1). Addi-
tionally, in section 4.3, we will introduce dynamic rank features which are calculated
on the fly for a set of two BRs before retrieving the predictions.

Table 4.1: Textual Static Rank Features.

feature encoding description

components.SO200
components.GN300

word embedding
A list of predefined components asso-
ciated with the BR q. The list was con-
verted into a space seperated string.

customer_impact.SO200
customer_impact.GN300

A custom textual field similar to a
short summary regarding the cus-
tomer impact of the BR.

description.SO200
description.GN300

A BR’s description.

issuelabels.SO200
issuelabels.GN300

A list of custom labels associated
with the BR q. The list was converted
into a space seperated string.

summary.SO200
summary.GN300

A BR’s summary.

Features with a SO200 suffix were encoded with WEM = SO200
Features with a GN300 suffix were encoded with WEM = GN300 (see Equations 4.3 and 4.4)

Tables 4.1, 4.2 and 4.3 consolidate all features providing its names, descriptions and
encoding. Converting raw values of features, i.e., the priority of a BR, is referred to
as encoding with respect to machine learning. A fairly common type of encoding
involves one hot encoding [50] where raw values are converted into a list of bits with
a single high bit and the rest of low bits. A true value indicates the existence of the
category, a false value indicates otherwise. Multi category encoding is very close to
one hot encoding with the difference in the amount of high bits. For each matching
category a high bit is registered. For instance, if a bug was reproduced in two out
of three countries (Germany and Austria), the reporter would associate the BR with
these two countries. Then, during encoding of this feature a high bit for Germany and
Austria respectively would be registered.

23

4 Methodology

Table 4.2: Categorical Static Rank Features.

feature encoding description

priority one hot The priority of a BR.
Possible values: low, medium, high and very high.

intermittence
The intermittence of a bug.
Possible values: not intermittent, intermittent and
highly intermittent.

severity The severity of a bug.
Possible values: minor, major and showstopper.

country multi category A list of territories or countries where the bug was
reproduced.

platform A list of platforms (i.e. hardware devices) where
the bug was reproduced.

reporter raw The reporter of the BR.

The features priority, intermittence and severity were one hot encoded but are actually treated as
ordinal features with the order being decoupled from the encoding in our approach.
The feature reporter was used as is while converting the BR to a VBR because this form was

sufficient for creating a dynamic rank feature (see Table 4.4).

Table 4.3: DateTime Static Rank Features.

feature encoding description

created raw A BR’s date of creation

24

4 Methodology

Features with no encoding (raw) are passed through without change and end up in a
VBR as is. We decided to not encode these features in this stage because we do not
need them pre-encoded for later when creating dynamic rank features (section 4.3).

Before we can encode the features of a BR, all categories of all categorical features have
to be queried from all existing BRs so that it is possible to retrieve the proper one hot
or multi category vector (list of bits consisting of high and low bits). Apart from that
we need to take care of the textual features for which we retrieve word embeddings
because we are not interested in embeddings for single words only but in the vector
representation of a feature, i.e., description.SO200. Inspired by Mikolov et al. [51], we
retrieve a word vector for each word, sum the word vectors of the feature and divide it
by the word count of the feature to get a feature vector (feature embedding):

vw,WEM = Word2vec(WEM, w) (4.3)

vr fWEM =
1

W

W

∑
w

vw,WEM (4.4)

where: WEM : a word embedding model, i.e., SO200
r fWEM : a feature from Table 4.1

w : a word from the feature r fWEM (w ∈ r fWEM)
Word2vec : Word2vec implementation from the Gensim Python library

vw,WEM : the word embedding for the word w and word embedding model
WEM

W : the word count in feature r f
vr fWEM : the feature embedding for the feature r fWEM.

Non linear distance (NLD). Most of the previous solutions transform documents into
document vectors using TF-IDF and calculate the cosine distance (CD)2. In the recent
years, Mikolov et al. [44] proposed a novel way of converting documents into vectors
called word embeddings which we described earlier. Therefore, we experimented with
Word2vec and a non linear distance based on a neural network to find out if it can
outperform CD.

While CD is widely spread [2, 3, 22, 38, 39] and according to our results (see section 6.1)
performs better than NLD for small k (top-k-Recommendations), we believe that the

2Cosine similarity is the more familiar term

25

4 Methodology

mathematical space of distances between document vectors is not a linear space. It
seems natural to think of an Euclidean linear space because it is simpler to imagine and
therefore, it is reasonable to apply the CD measure to express the distances between
words or documents.

However, best to our knowledge, it remains to be proven to be a linear space. A
logical conclusion is to think of non linearity, specifically of a manifold which is a
topological space locally akin to the Euclidean space near each point (locality property
of manifolds), yet globally this rule no longer applies. A good way of imagining a
practical example of this theory is by thinking of the Earth. Locally, it seems to be
planar (we neglect the topography at this point), but globally it is a sphere. With this
in mind, we experimented with a neural network based non linear distance measure.
Our preliminary algorithm for retrieving NLD between the descriptions of two BRs
involves the steps outlined in Figure 4.2.

1. From all BRs select all pairs consisting of an original BR and its duplicate BR
(ori-dup).

2. Apply Equation 4.4 to retrieve a vectorized form of all descriptions in the set of
ori-dup pairs (positive samples).

3. Create an equal amount of negative samples (ori-nondup pairs) by pairing the
vectorized descriptions of the original BRs with descriptions of non-matching
duplicate BRs, i.e., a pair of two descriptions can only exist in either the set of
positive samples or the set of negative samples.

4. Label the positive samples with “1” and the negative samples with “0”.

5. Calculate the difference vectors of all pairs respectively by subtracting the ori
vector from the dup vector in case of a positive sample and by subtracting the ori
vector from the nondup vector in case of a negative sample.

6. Feed the difference vectors and the corresponding labels into a neural network
with non linear activation functions (see Figure 4.3).

7. Obtain the NLD by subtracting the output of the neural network from 1 (Equa-
tion 4.5).

Figure 4.2: Algorithm for retrieving NLD between a feature of two BRs.

26

4 Methodology

NLD(q′, d′, r fWEM) = 1− NLDNN(vr fWEM ,q′ − vr fWEM ,d′) (4.5)

where: q′ : the dup or nondup VBR in the ramp-up phase or the new VBR in the
running phase.

d′ : the ori VBR in the ramp-up phase or the exiting VBR in the running phase.
r fWEM : a feature from Table 4.1, i.e. “description.WEM” in the ramp-up phase or

a textual feature name (matching the given WEM) in the running phase.
vr fWEM ,q′ : the feature embedding for feature r fWEM of VBR q′ (see Equation 4.4)
vr fWEM ,d′ : the feature embedding for feature r fWEM of VBR d′ (see Equation 4.4)

NLDNN : see Figure 4.3

Input

Hidden 1:

Hidden 2:

Output:

Activation: ReLu

Dropout

Dropout

Activation: Tanh

Activation: Sigmoid

Dense

Dense

Dense

Figure 4.3: The architecture of the NLD neural network (NLDNN).

This algorithm is preliminary due to experimental results of this approach without
proper evaluation. For instance, we tried to feed the absolute value of the difference
vector (Equation 4.5), i.e., |vr fWEM ,q′ − vr fWEM ,d′ |, into the NLD neural network (NLDNN),
but the results turned out to be worse. Another experiment could involve flipping the
difference vector, but in the end it just means a flip of the result’s sign. We expect a
neural network to be able to figure out such a characteristic of the input on its own
with a sufficient amount of positive and negative samples. To be able to move on with
our research, we decided to rely just on the difference vector as input, because from
our limited set of experiments it yielded the best results.

Figure 4.3 shows the neural network’s architecture. It consists of an input layer, two

27

4 Methodology

hidden layers and one output layer all of which are fully connected, i.e., dense. Because
we believe that the distances between two text documents are located in a non linear
space, we chose only non linear activation functions for the neurons within each dense
layer. We expect our neural network to approximate the cost function fairly well due to
the universal approximation theorem [52] which is based on the Kolmogorov–Arnold
representation theorem [53, 54]. Additionally, Leshno et al. [55] have shown that simple
neural networks can be understood as an universal approximator in the case of only non
polynomial activation functions, especially when these networks consist of a growing
number of layers limited in width according to Hornik [56].

Despite of using the descriptions of the BRs for training NLDNN, we used the same
neural network for all the other textual features of a BR to calculate the NLD as long as
the feature name’s suffix matched the general purpose model (see Table 4.1). Since we
relied on two general purpose models, we had to fit two distinct instances of NLDNN,
i.e., NLDNNSO200 and NLDNNGN300. Training had to be performed only once, thus it
is part of the ramp-up phase. We did not opt for updating the neural network models
as time passed and leave this task for future work.

Dynamic rank features (DRFs). NLD alone returns reasonable results (see section 6.1
and Figures 6.2 and 6.4), but a BR provides far more features than the description only.
Even though the description is the feature containing the most information in a BR,
it was shown that combining other features with textual features can improve recall
rate@k [3, 34, 39]. In Tables 4.1, 4.2 and 4.3, we already introduced several SRFs which
can also be considered as base features for our ranking approach. When working with
a single, textual feature, i.e., description.SO200, the simplest form of ranking is sorting
the list of NLDs between the query BR q and all BRs di in ascending order. It works
simply because in NLDNN (Figure 4.3) the output layer’s activation function is the
sigmoid function or more specifically the logistic function as shown in Equation 4.6
with a range of output values between 0 and 1.

f : R→ (0, 1)

x 7→ 1
1 + e−x x ∈ R.

(4.6)

Since we labeled positive samples with 1 and negative samples with 0 (see Figure 4.2),
the closer the output of NLDNN is to 0 the higher NLD will be, but we are interested
in small distances, thus we have to sort the resulting list in ascending order to get top-k
recommendations for similar BRs.

28

4 Methodology

However, we did not rank only by the NLD of BR descriptions, but also by DRFs. We
call them dynamic because contrarily to SRFs which are grouped to a VBR and stored
in a database (see Figure 4.1) they are calculated dynamically at runtime when a new
VBR q′ arrives at the PRED stage (section 4.3). With NLD, we already introduced a
DRF partially, but we need to convert it back to a similiarty measure which we do in
Equation 4.7. Table 4.4 shows an overview of all DRFs used for ranking the similarity
relevance between a VBR q′ and the list of VBRs di

′ retrieved during the PRED stage.
The Equations 4.7 to 4.15 show how the individual DRFs are calculated to obtain an
overall relevance score.

textsim(q′, d′, r fi) = 1− NLD(q′, d′, r fi) + CD(q′, d′, r fi)

2
(4.7)

catsim(q′, d′, Pr fi) = 1−
|pq′ − pd′ |
|Pr fi |

pq′ , pd′ ∈ Pr fi (4.8)

multicatsim(q′, d′, r fi) =

∣∣Mq′,r fi ∩Md′,r fi

∣∣∣∣Mq′,r fi ∪Md′,r fi

∣∣ (4.9)

∆t = |td′ − tq′ | t ∈ T (4.10)

cossim∆t(∆t, a, b) =

{
1
2 cos(π

b ∆t) + 1
2 if a < ∆t < b

0 otherwise
(4.11)

squaresim∆t(∆t, a, b) =

{
1− 1

b2 ∆t2 if a < ∆t < b

0 otherwise
(4.12)

sqrtsim∆t(∆t, a, b) =

1−
√

1
b ∆t if a < ∆t < b

0 otherwise
(4.13)

invcatsim(q′, d′, r fi) =

{
1 if jq′ 6= jd′

0 otherwise
jq′ , jd′ ∈ Jr fi (4.14)

meansim(S) =
1
|S|

|S|

∑
s

s s ∈ S (4.15)

where: r fi : a dynamic rank feature (see Table 4.4).
CD : the cosine distance of the two VBRs q′ and d′ with respect to feature r fi.
Pr fi : a set of priority weights for the given DRF r fi.

The set is best imagined as an ordinal encoding of categories. However,

29

4 Methodology

we used one hot encoding for these categories instead of ordinal encoding
(see Table 4.2). The advantage of this approach lies in the decoupling of
the encoding itself from the actual order of categories where the order
can be changed on demand without the requirement of re-encoding all
BRs. This order is actually important for calculating the distance between
a set of two categories, i.e., high and very high are closer to each other
than low and very high with respect to the priority (r f11) of a BR.

pq′ : the encoded category feature of the VBR q′ weighted with the according
priority weight from Pr fi

pd′ : same as pq′ but for the VBR d′

Mq′,r fi : a set of categories associated with the VBR q′ for feature r fi

Md′,r fi : same as Mq′,r fi but for the VBR d′

T : a set of time-based features (see Table 4.3)
t : a time-based feature, i.e., created

tq′ : the time-based feature t associated with VBR q′

td′ : the time-based feature t associated with VBR d′

∆t : the time delta between two dates (usually timestamps)
a : the lower bound of the interval within which ∆t typically falls.

This value usually is 0 but can be any other positive number as long as it
is smaller than b. The closer ∆t is to a, the more similar the VBRs q′ and
d′ are in terms of feature t.

b : the upper bound of the aforementioned interval,
b can be any positive number as long as it is greater than a. The closer ∆t
is to b, the more the VBRs q′ and d′ differ in terms of feature t,
b should be selected so that irrelevant outliers are smoothed out, i.e., in
terms of duplicate detection, we believe that a set of BRs should receive a
lower similarity score if their dates of creation are far apart.

Jr fi : the set of categories for feature r fi, i.e. all bug reporters (see Table 4.2).
S : the set of similarity measures (see previous equations) for which a com-

bined mean similarity has to be calculated.

With textsim(q′, d′, r fi) (Equation 4.7) we define the similarity of a textual feature of
two VBRs. This similarity measure consists of NLD (Equation 4.5) combined with CD.
Combining these two distance measures turned out to perform better than NLD or CD
on their own (see section 6.1).

Categorical similarity between two VBRs with respect to a categorical feature is ex-
pressed by catsim(q′, d′, Pr fi) (Equation 4.8). Instead of matching the category exactly,

30

4 Methodology

Table 4.4: Dynamic rank features

feature short name similarity equation

components.SO200 r f1 textsim(q′, d′, r f1) 4.7
components.GN300 r f2 textsim(q′, d′, r f2) “
customer_impact.SO200 r f3 textsim(q′, d′, r f3) “
customer_impact.GN300 r f4 textsim(q′, d′, r f4) “
description.SO200 r f5 textsim(q′, d′, r f5) “
description.GN300 r f6 textsim(q′, d′, r f6) “
issuelabels.SO200 r f7 textsim(q′, d′, r f7) “
issuelabels.GN300 r f8 textsim(q′, d′, r f8) “
summary.SO200 r f9 textsim(q′, d′, r f9) “
summary.GN300 r f10 textsim(q′, d′, r f10) “

priority r f11 catsim(q′, d′, Pr f11) 4.8
intermittence r f12 catsim(q′, d′, Pr f12) “
severity r f16 catsim(q′, d′, Pr f16) “
country r f13 multicatsim(q′, d′, r f13) 4.9
platform r f14 multicatsim(q′, d′, r f14) “
reporter r f15 invcatsim(q′, d′, r f15) 4.14

diff.created.cosine r f17 cossim∆t(∆t, a, b) 4.11
diff.created.squared r f18 squaresim∆t(∆t, a, b) 4.12
diff.created.sqrt r f19 sqrtsim∆t(∆t, a, b) 4.13

description.all r f20 meansim({r f5, r f6}) 4.15
summary.all r f21 meansim({r f9, r f10}) “
customer_impact.all r f22 meansim({r f3, r f4}) “
issuelabels.all r f23 meansim({r f7, r f8}) “
components.all r f24 meansim({r f1, r f2}) “

The equations mentioned in the “equation” column define how each of the DRFs is calculated.

31

4 Methodology

we focus on the relation between categories of a particular feature. This approach
allows for a more granular representation of categorical similarity as opposed to binary
values where exact matches evaluate to similar (= 1) or non-matches to not similar
(= 0).

Features that allow for associations to multiple categories are encoded as DRF with
multicatsim(q′, d′, r fi) (Equation 4.9). We make use of the Jaccard Index [57] for repre-
senting the similarity of multi categorical features.

Equations 4.10, 4.11, 4.12 and 4.13 define the similarity calculation of time-based
features. We took only a single time-based feature from BRs into account, i.e., the
date when a BR was filed. Based on our assumption, two BRs are more similar the
closer the date of their creation is. It is also an important DRF because it expresses
the relation between time and similarity. Although it is possible that BRs which are
years apart are very similar or even duplicates, BRs which are closer to each other
tend to have more in common. This is especially true when considering the version of
a software because current BRs usually target the same or close versions. Instead of
constraining the similarity detection by version, we opted for date of creation which
is in indirect relation to the software version. Since we believe that this feature is
important, we introduced three time-based similarity measures: cossim∆t, squaresim∆t

and sqrtsim∆t. Figure 4.4 shows the plots of these time-based similarity measures with

0 20 40 60

0

0.2

0.4

0.6

0.8

1

∆t

si
m
(∆

t)

a = 0
b = 64

cossim∆t

squaresim∆t

sqrtsim∆t

Figure 4.4: Example of time delta similarity measures with a = 0 and b = 64.

a and b adjusted to the dateset retrieved from the JIRA project at Sky. With b = 64, for

32

4 Methodology

a pair of BRs, we considered the features r f17, r f18 and r f19 (see Table 4.4) not to be
similar (sim(∆t) = 0, see Equations 4.11, 4.12 and 4.13) if the creation dates of the BRs
in that pair were more than 64 days apart. Looking at the plots in Figure 4.4, we have
two similarity measures with cossim∆t and squaresim∆t which are not very sensitive to
small ∆t. This allows for BRs which are a few days apart still being classified as rather
similar with a steeper decline, i.e., greater distance, the closer the difference in days of
the creation dates gets to the upper bound b. The third time-based similarity measure
sqrtsim∆t penalizes each day added to the difference in days for small ∆t. Due to the
nature of square root functions, we get values from this similarity measure that favour
very small ∆t which should help detecting duplicate BRs that were reported on the
same day.

We spent quite some time on how the similarity of a pair of BRs in terms of their
respective reporters could be expressed. After looking at the dataset regarding duplicate
BR rates of reporters, we identified some that are more prone to duplicating a BR than
others. While using the duplicate rate could be viable with a fixed set of reporters, it
would not represent the real world. New reporters can appear every single day due to
the nature of modern ways of acquiring resources, i.e., contractors who only work for a
company for a limited period of time. This requires keeping the set of reporters and
their duplicate rates up to date, especially for the new ones where the duplicate rate
will fluctuate heavily in the beginning before settling around a certain value (principle
of mathematical expectation [58]). However, with invcatsim(q′, d′, r fi) we resorted to a
far more simple approach than incorporating the individual duplicate rate as weight
leaving the use of more complex encodings for future work. This similarity measure
basically represents a pair of BRs to be close to each other if the reporters of these BRs
are distinct and vice versa.

Finally, we introduce meansim(S). This similarity measure is another simple one where
previously calculated similarity values are grouped into a set of similarities to retrieve
the mean of the the provided set. By considering Table 4.4, it is apparent that we
applied meansim(S) only for textual features and only for DRFs that are based on the
same raw feature of a BR, i.e., in the case of the description of a pair of BRs, we first
caclulate textsim(q′, d′, description.SO200) and textsim(q′, d′, description.GN300) and
then provide the results as set of similarities (S) to obtain the mean similarity for
description.all by calculating meansim(S). Hence, each raw textual feature is encoded
in three ways resulting in three DRFs for each raw textual feature.

33

4 Methodology

Learning to rank. Now we have 24 DRFs (see Table 4.4) grouped into what we call a
similarity vector (SV) sv expressing the similarity between two BRs as vector but we do
not know how each of the DRFs contributes to the overall similarity, i.e., we want to
retrieve a more sophisticated measure instead of the average of the elements (DRFs) in
sv.

To help figure out this problem, we applied RankNet [37]. It is a pairwise approach
trying to predict the relevance of a pair of documents based on a query. The output
of RankNet is a number in the range from −∞ to ∞. The higher the number, the
more relevant a pair of BRs is to each other. Projected onto the problem of detecting
duplicates we are faced with in defect management at Sky, it means that we want to
find out if the given query BR is similar to or duplicate of another existing BR. It is
pairwise because during training a relevant similarity vector svrel and an irrelevant
similarity vector svirr are paired and fed into RankNet with the corresponding label,
i.e., the relative rank between the two SVs which is a number between 0 and 1 [37].

Since we designed the training routine based on the RankNet proposal by Alcorn [59]
and Egg [60] in the way that the “left” SV, i.e., the first one, is always the relevant one,
i.e., a SV resembling high similarity between a pair of BRs, the labels (relative ranks)
are all “1”. Hence, samples for training are retrieved like follows:

sample(ori-dup, U) = (svrel , svirr, 1) (4.16)

where: ori-dup : a pair of BRs where one BR is the original report (ori) and another one
(dup) is a known duplicate of this report (linked with type “Duplicate”
in JIRA)

U : the set of BRs without any issue links in JIRA
svrel : the relevant SV calculated from the ori-dup pair
svirr : the irrelevant SV calculated from a nondup-dup pair where dup is the

same BR as in the ori-dup pair
1 : the label, i.e., relative rank.

We decided to use RankNet because it is simple to create many irrelevant SVs given
a relevant SV without a predefined order due to the learning-to-rank problem being
approximated by a binary classification problem.

In our case, during the training phase of RankNet which is part of the PREP stage,
a relevant SV is calculated from an ori-dup pair. Consequently, an irrelevant SV is
calculated from a nondup-dup pair. We know which pairs of BRs are eligible for creating
relevant SVs due to the issue link type “Duplicate” in JIRA. As far as irrelevant SVs

34

4 Methodology

are concerned, we picked the dup BR from each ori-dup pair and randomly selected
a BR (nondup) from all BRs without any links. With this approach, it is possible to
create many irrelevant SVs for one relevant SV and therefore creating many samples by
simply replacing svirr only and reusing svrel in Equation 4.16 for each ori-dup pair.

4.3 Ranking Defect Reports by Similarity

In section 4.2, we have shown what we need to prepare to be able to retrieve a list of
top-k recommendations of similar BRs with respect to a query BR. Ideally, we would
create a SV for each existing BR paired with the query BR and sort the resulting list
in descending order. However, retrieving a lot of SVs is a time consuming task which
does not scale well because of the ever growing amount of BRs. Jalbert and Weimer [3]
even claimed that BRs become irrelevant over time and therefore, they limited the pool
of candidate BRs.

In order to satisfy the requirement of current recommendations, it is crucial to provide
these close to or at the time of change or creation of the BR (see Table 6.13). Therefore,
a mechanism of picking the best candidates for ranking with RankNet needs to be set
in place.

Figure 4.5 shows the flow of providing top-k recommendations for a query BR which
incorporates such a mechanism. During vectorizing textual features are encoded with the
word embedder and for other SRFs we use the vec encoder. Ranking is performed in a two-
pass approach where first a list of top-n potential candidates is selected for comparision
with the query BR and then in the second pass, a list of top-k recommendations is
created which is associated (see section 4.4) with the query BR (k < n).

Whenever a BR is created or updated, it has to be transformed into a VBR before it can
be paired with the existing VBRs to obtain a SV for each candidate pair (see Figure 4.1).
This helps to reduce the amount of “BR→ VBR” transformations because each update
triggers only one such transformation. Afterwards the VBR can be used for retrieving a
list of recommendations of similar BRs, i.e., continuing the flow shown in Figure 4.5,
or it can be reused as input for creating a candidate pair when another query BR
needs to obtain recommendations of similar BRs. The VBR stays untouched until its
corresponding BR is updated which triggers a “BR→ VBR” transformation to update
the VBR.

35

4 Methodology

BR

Word Embedder Vec Encoder

VBR

Word2vec

onehot, multicat, raw

VBRsstore

NLDNN

Vectorizing

Ranking

CD

query

Pass #2

Pass #1

top-n candidate VBRs

query

RankNet
Score

DRF
Generator

top-k Recommendations

Figure 4.5: Similar bug report retrieval for a given query BR. No formal notation was used to
show the flow from query to result but we use elements from flow chart notation.

36

4 Methodology

A candidate pair consists of the freshly transformed VBR (obtained from the query
BR) and one of the best candidates from all VBRs. The best candidates are selected
by calculating the DRF description.SO200 for each existing VBR paired with the query
VBR. From the resulting list the top-n highest similarity scores are selected. At this
point, we calculate the remaining DRFs for each pair consisting of the query VBR and
one of the top-n candidates giving us a list of n SVs. These are then fed into RankNet
which is the second pass of ranking.

SV_rel: InputLayer

scorer: Sequential

SV_irr: InputLayer

score_diff: Subtract

pred_relative_rank: Activation

(a) RankNet: Siamese-based network [37]

InputLayer
input:
output:

(None, 24)
(None, 24)

Dense
input:

output:
(None, 24)
(None, 128)

Dense
input:

output:
(None, 128)
(None, 64)

Dense
input:

output:
(None, 64)
(None, 32)

Dense
input:

output:
(None, 32)
(None, 1)

(b) RankNet: Scoring Function

Figure 4.6: RankNet: Neural network architectures of the siamese-based network and its neural
network based scoring function. Figure 4.6b shows the expanded graph of the scorer:
Sequential layer in Figure 4.6a.

In our approach, RankNet is designed as a siamese-based neural network [37] where
the scoring function is implemented as another neural network (see Figure 4.6).

At training time, two SVs svrel and svirr are fed into the neural network (shown in
Figure 4.6a). The goal is to minimize the amount of inversions in ranking, i.e., the
output of the siamese-based neural network should not drop below 0.5 considering all
labels are 1 in our case. If the output drops below 0.5 it means that svirr was ranked
higher than svrel which is not what we want.

37

4 Methodology

At prediction time, we only resort to the scoring function which is a neural network
outlined in Figure 4.6b where the input layer’s dimension matches the amount of DRFs
(i.e. dim = 24). Here is where we retrieve a similarity score (relevance score) as scalar
value for each pair of query VBR and top-n candidate VBRs. The resulting list of
scalar similarity scores is then sorted in descending order where we select the top-k
recommendations of potentially similar BRs. They are potentially similar because we
get similarity scores in any case, even though in reality, they are not similar to the query
BR. However, if they are not similar, the scores will be lower.

Due to how the activation functions in the scoring net (see Figure 4.6b) work, the scores
are not probabilistic and can take any value in R. Nonetheless, we observed potential
upper and lower bounds during training, so that it would be possible to convert these
scores into the range between 0 and 1 to express them as reasonable percentage scores
which should be easier to grasp for users of such a recommender system, but we leave
this task for the future.

4.4 Publishing the Ranking Result

Table 4.5: Example list of top-k Recommendations for query BR DEV-805.

Related Bug Score Summary

1 DEV-693 61.22 Mismatch between the series and episode numbers . . .
2 DEV-673 59.95 Record Series action button is displayed instead . . .
3 DEV-245 57.42 The hero zone of an episode level show page is . . .

4 DEV-810 57.02
Intermittently, ‘Remove series link’ and ‘Other showings’
. . .

5 DEV-717 55.86 Blank space seen in the action menu when entering . . .
6 DEV-748 55.33 If a show page is open at the time that an unrelated . . .
7 DEV-483 54.80 Duplicate buttons seen to add a series link for a . . .

Summary of DEV-805: “Both, ‘Record Series’ and ‘Remove series link’ . . . intermittently”.
BR summary texts were truncated because this list just serves as an example.

As demonstrated in Figure 4.5, the result of the retrieval process is a list of top-k
recommendations. The step before retrieving these recommendations is where the
actuall ranking score is calculated. This is the raw ranking information shown in
Table 4.5 (third column, “Score”). Along with the ranking or relevance score, we

38

4 Methodology

present the rank (first column), the bug id of the similar BR (second column) and
the full summary of the BR (fourth column) (summary was truncated). This list is
associated as comment to the corresponding JIRA ticket for each eligible query BR
which is user-configurable and is based on the JIRA-internal filter functionality.

Instead of returning just the rank along with bug id and summary, we decided to
provide the score as well. We believe that users should determine a threshold for the
relevance score depending on the results they see over time because each domain is
different and since we do not convert the ranking scores into probabilities it is even
more important to let the users decide which treshold to use. If the threshold is not
exceeded, the query BR will not receive a list of recommendations even though it was
eligible. However, at Sky it was not possible for the users to learn what threshold
to use because of our tool creating to much noise in terms of email notifications (see
section 6.2).

4.5 Comparision to Existing Approaches

In chapter 3 we presented a non-exclusive set of approaches for targeting the problem
of detecting duplicates where we briefly outlined each of 7 major research contribu-
tions published from 2005 to 2016. In this section, we provide an overview of these
approaches in Table 4.6 and how it compares to our approach. Apart from research
contributions, we briefly examined existing commercial solutions for JIRA. Due to
unavailability of the commercial solutions for standalone use (outside of the JIRA
ecosystem) and application of the research approaches on the bug repository at Sky
being beyond the scope of this work, we only studied the similarities and differences of
the design of the techniques as far as possible.

We accessed Sky’s closed bug repository and the Jenkins CI3 (JENKINS) open bug
repository to evaluate the recall rate@k of Defejavu, i.e., our proposed solution in this
work (see section 6.1 for more details on the results).

Considering Table 4.6, our solution is closest to Sun et al. [34] regarding the ranking of
SVs. Both approaches resort to RankNet introduced by Burges et al. [37] in order to
provide ordered lists of top-k recommendations for similar BRs. However, they differ
in the way how textual features are vectorized. We use word embeddings obtained
with the help of general purpose models whereas Sun et al. [34] rely on IDF-based

3https://issues.jenkins-ci.org/projects/JENKINS (verified 2020-02-24)

39

https://issues.jenkins-ci.org/projects/JENKINS

4 Methodology

Table 4.6: Overview of duplicate detection approaches.

Author
Textual
Vectorizing

Similarity
Method

Features Model

Anvik et al. [2] unknown
cosine
similarity

textual
statistical [2,
p. 39]

Hiew [22] TF-IDF
cosine
similarity &
clustering

textual threshold

Jalbert and
Weimer [3]

custom [3,
p. 56]

cosine
similarity &
clustering

textual &
categorical

Linear
Regression &
threshold

Sun et al. [1] IDF
sum of IDFs of
two Bags of
Words

textual
(combinations
of BoWs)

SVM

Sun et al. [34] IDF [1]

REP
(including the
extension of
BM25F) [34]

textual [1] &
categorical

RNC [36, 37]

Alipour et al.
[38]

IDF [1]

textual &
categorical:
REP [34],
contextual:
software word
lists, combined:
cosine
similarity

textual,
categorical &
contextual

several
(evaluation)

Yang et al. [39]
TF-IDF &
word
embeddings

cosine
similarity

textual,
categorical &
commit
messages

non-negative
score
(combined)

this work
word
embeddings
(Word2vec)

NLD, CD &
RankNet score
(Equation 4.7 &
Figure 4.6b)

textual,
categorical &
datetime
(Table 4.4)

NLDNN &
RankNet
(Figures 4.3 and 4.6)

40

4 Methodology

features. Here is where the approach of Yang et al. [39] is the closest to ours because
they vectorize textual features with the help of word embeddings as we do.

The main difference to all approaches outlined in this work and also to all other
approaches best to our knowledge lies in the usage of a non-linear similarity measure
(Figure 4.3). With NLD (Equation 4.5) we introduced a novel way of expressing the
similarity of vectors because as mentioned before, we do not believe that the space is
an Euclidean space but rather a manifold.

41

5 Implementation of the Recommender
System Defejavu

In previous chapters we already mentioned the ITS in use is JIRA. For the purpose of
similar BR detection, it is required to access the underlying data in a certain way. There
are mainly two possibilities how this is possible with respect to JIRA. Implementing a
plugin represents the first way and is generally preferred because of the proximity to
the data. This is how the solutions presented in section 3.2 were implemented.

Unfortunately, for the approach in this work it was not possible to create a JIRA plugin
because the data we accessed is handled by third parties and therefore, it would require
to get permissions of these third parties. Even if we got the permissions, it would still
be difficult because deploying an untested plugin on a production system is not what
organisations look after. For that reason, we opted for the second way, i.e., the JIRA
representational state transfer (REST) application programming interface (API) which
is sufficient to extract and feedback data for our purpose.

Language. Python 3.71 (PY) was the language of choice for implementing the com-
ponents described in sections 4.2, 4.3 and 4.4 primarily due to useful libraries like
pandas2 (PD), numpy3 (NP), GENSIM and keras4 (KERAS).

Environment. In order to isolate the runtime from other processes, we use Docker5

(DOCKER) to spin up all components in respective containers. Reproducible orchestra-
tion of the environment is achieved by using Red Hat Ansible6 (ANSIBLE).

1https://www.python.org/ (verified 2020-04-05)
2https://pandas.pydata.org/ (verified 2020-04-05)
3https://numpy.org/ (verified 2020-04-05)
4https://keras.io/ (verified 2020-04-05)
5https://www.docker.com/ (verified 2020-04-05)
6https://www.ansible.com/ (verified 2020-04-05)

42

https://www.python.org/
https://pandas.pydata.org/
https://numpy.org/
https://keras.io/
https://www.docker.com/
https://www.ansible.com/

5 Implementation of the Recommender System Defejavu

ETL. We deployed the latest version of SYNCPIPES that was available during our
research. Unfortunately, SYNCPIPES was lacking the feature of incrementally extracting
issues from JIRA. Each time we launched a pipeline, all tickets were re-extracted.
Therefore, we implemented a service to incrementally extracted tickets based on the
updated time stamp of JIRA issues. Since SYNCPIPES is implemented in TypeScript7

(TS), we also used TS instead of PY to implement this service.

Database. SYNCPIPES leverages mongoDB8 (mongoDB) for storing its configuration.
We wanted to prevent introducing another technology. Therefore, we use the same
database instance as SYNCPIPES does.

Inter process communication. Unfortunately, we missed the oportunity to soleley
rely on RabbitMQ9 (RMQ) which is what SYNCPIPES uses for communication between
task workers and its REST API server.

In our components, we have a mix of PY‘s multiprocessing module and RMQ. The queues
managed by RMQ are used for inter component communication and multiprocessing
queues are used for process communication within a component, i.e., within a DOCKER
container.

As soon as a component is done with the current batch of tickets, it posts a message
to its corresponding queue in RMQ. The next component awaits messages from the
previous queue and starts working on the new batch (see Figures 4.1 and 4.5). The
only exception is the transition from the ETL stage to the PREP stage where polling is
applied in order to check if new tickets need to be vectorized.

Configuration. Apart from SYNCPIPES which stores its configuration in mongoDB,
Defejavu‘s configuration is file based and stored within a single JavaScript Object
Notation10 (JSON) file. However, our configuration mapper is also able to load the
configuration from mongoDB. To prevent multiple downloads of the same file, we
cache the downloaded file in the temporary directory of each DOCKER container, i.e.,
each of the containers still needs to download the configuration into local storage but

7https://www.typescriptlang.org/ (verified 2020-04-05)
8https://www.mongodb.com/ (verified 2020-04-05)
9https://www.rabbitmq.com/ (verified 2020-04-05)

10https://www.json.org/json-en.html (verified 2020-04-05)

43

https://www.typescriptlang.org/
https://www.mongodb.com/
https://www.rabbitmq.com/
https://www.json.org/json-en.html

5 Implementation of the Recommender System Defejavu

all processes started within the container will have access to this configuration file. This
approach helps to keep the configuration separate from the code.

44

6 Results

In this chapter, we present the results of the interviews and the evaluation of our
approach measured by the metric recall rate@k.

We conducted five interviews with expert triagers at Sky. Table 1.1 shows each expert’s
role and experience in years. In Table 6.1, we extend this information by the weights
used for calculating the score of a notion in each topic. The topics covered in the
interviews are explained in section 1.3. For each topic, we compiled a set of notions
each of which contributing to the topic sentiment score. Before we can explain this score,

Table 6.1: Group of expert triagers and their scoring weights.

Expert Defect Management (wD) JIRA (wJ) Mean (w̃) Mean (norm.) (w)

SIE1 0.95 0.60 0.78 0.24
SIE2 0.50 1.00 0.75 0.23
SIE3 0.40 0.50 0.45 0.14
SM 0.23 0.45 0.34 0.10
DM 1.00 0.85 0.93 0.29

Total 3.25

we need to describe the following mathematical items. First, we define the subsequent
sets to reason about the values from Table 6.1:

E = {SIE1, SIE2, SIE3, SM, DM} (6.1)

D = {19, 10, 8, 4.5, 20} (6.2)

J = {6, 10, 5, 4.5, 8.5} (6.3)

W = {wD, wJ} (6.4)

45

6 Results

In Equation 6.5 the expert’s experience in defect management is expressed as scoring
weight. We define this item as follows:

wD,e =
de

max(D)
e ∈ E d ∈ D (6.5)

where: E : the set of experts defined in Equation 6.1
d : the expert’s experience in defect management (years) (see Table 1.1)

D : the set defined in Equation 6.2
wD,e : the expert’s experience in defect management (weight) (see Table 6.1).

The expert’s experience with JIRA is another scoring weight and is defined similarly to
wD,e:

wJ,e =
je

max(J)
e ∈ E j ∈ J (6.6)

where: j : the expert’s experience with JIRA (years) (see Table 1.1)
J : the set defined in Equation 6.3

wJ,e : the expert’s experience with JIRA (weight) (see Table 6.1).

With the weights from Equations 6.5 and 6.6, we get a combined weight:

w̃e =
1
m ∑

i
wi,e i ∈ {D, J} e ∈ E (6.7)

where: m : |W| (see Equation 6.4)
wi,e : an expert’s scoring weight (see Equations 6.5 and 6.6)
w̃e : the mean of the expert’s scoring weights wi,e.

Now we defined all items required for the actual scoring weight used in calculating the
topic sentiment score to evaluate a topic:

we =
w̃e

∑i w̃i
i ∈ E e ∈ E (6.8)

where: w̃i : an average scoring weight (see Table 6.1 and Equation 6.7)
w̃e : same as w̃i but fixed to Expert e
we : the normalized average scoring weight used for calculating the topic

sentiment score of a topic.

46

6 Results

Based on the answers given by the experts and the notions we extracted from these
answers for each topic we linked a pair of a notion c and an expert e with one of the
following values (opinions):

oc,e =

1

0.5

0

e ∈ E (6.9)

where: c : a notion (see the answers to the research questions from section 1.3 in
this chapter for all the notions, i.e., in Table 6.6)

oc,e : 1, if the expert agreed to the notion within a topic
0.5, if the notion was not mentioned by the expert
0, if the expert disagreed with the notion.

Combining Equations 6.8 and 6.9 the notion score nst,c is defined like this:

nst,c = ∑
e

weoc,e e ∈ E c ∈ Ct t ∈ T (6.10)

where: T : the set of topics discussed in the interviews
Ct : the set of notions extracted for a topic t

nst,c : the notion score for a notion c in a topic t.

Finally, the topic sentiment score (ts) is defined as follows:

tst =
1
|Ct|∑c

nst,c c ∈ Ct t ∈ T (6.11)

where: tst : a score indicating the amount of agreement towards all notions within
a topic t, the closer the score is to 1, the more the experts agree to the
notions, i.e., a higher score means a more coherent sentiment across all
experts regarding the topic t.

Table 6.2 shows a generic example of how the evaluation matrices look like generated
from the notions which we extracted from the experts’ answers. It should serve as a
template indicating where the items defined in the equations from this chapter can be
located within an evaluation matrix of a topic.

The next sections aim to answer the research questions presented in section 1.3. Addi-
tionally, observations and other insights are provided which are not covered by any of
the research questions in particular.

47

6 Results

Table 6.2: Sentiments of the topic SampleTopic.

Notion (c) e1 e2 . . . em Score (ns)

c1 oc1,e1 oc1,e2 . . . oc1,em nsSampleTopic,c1

c2 oc2,e1 oc2,e2 . . . oc2,em nsSampleTopic,c2
...

...
...

. . .
...

...
cn ocn,e1 ocn,e2 . . . ocn,em nsSampleTopic,cn

topic sentiment score tsSampleTopic

6.1 General Insights

The results presented in this section were calculated using the dev machine outlined in
Table 6.3.

Table 6.3: Development Machine Stats.

Model MacBook Pro (15-inch, 2017)
Processor 2,8 GHz Quad-Core Intel Core i7
Memory 16 GB 2133 MHz LPDDR3

First, we want to focus on only using BR descriptions for retrieving a list of most
similar BRs. As explained in sections 4.2 and 4.5, before the similarity can be calculated
applying the vector space model is a common approach, i.e., using TF-IDF (see Table 4.6).
In our approach, we resorted to word embeddings obtained from using Word2vec.

Figure 6.1 shows the results, i.e., recall rate@k, for the JIRA projects Sky and JENKINS.
For both projects, we extracted more than 3000 ori-dup pairs. In total, we trained four
NLDNNs: two for each project based on word embeddings obtained from using the
general purpose models SO200 and GN300. Figures 6.1a and 6.1b, both show seven
curves each. Each of the curves represents the recall rate@k (y axis) for a given k (x axis).
The data for each curve is obtained by aggregating the amount of hits at a given k. A
hit is recorded if the list of top-k recommendations contains the ori BR with respect to
an ori-dup pair where each dup BR represents a query BR. In other words, we consider
all the dup BRs from the aforementioned ori-dup pairs to be query BRs to evaluate our
approach and if the obtained list of similar BRs contains the ori BR, we record a hit.
Hits are accumulated, i.e., if the list of similar BRs contained the ori BR with a list size

48

6 Results

(a) Sky

500 1000 1500 2000 2500 30001
k

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll
ra

te
@

k

jenkins - recall rate@k
simple
SO200_neural_network
SO200_combined
GN300_neural_network
GN300_combined
neural_network_combined
combined_combined

(b) JENKINS

Figure 6.1: recall rate@k (all).

of k = 1, for instance, the ori BR will be contained in any other list of recommendations
with k > 1 for the same query BR (dup).

Table 6.4: Similarity Methods for Hit Aggregation.

Curve Similarity Method Top List

simple CD top-k
SO200_neural_network NLDNNSO200 top-k
SO200_combined NLDNNSO200+ CD top-k
GN300_neural_network NLDNNGN300 top-k
GN300_combined NLDNNGN300+ CD top-k
neural_network_combined NLDNNSO200+ NLDNNGN300 top-k
combined_combined NLDNNSO200+ NLDNNGN300+ CD top-k
ranked@f14n1000 NLDNNSO200+ CD + RankNet top-n & top-k

“ranked” curve initially appears in Figure 6.3

The curves mainly differ in how the underlying similarity is calculated. Table 6.4 shows
the corresponding methods we relied on when collecting the data points. The simple
plot is obtained by calculating CD of the descriptions of two BRs and is considered
to be the reference plot for all other curves in Figures 6.1, 6.2, 6.3, 6.4 and 6.5. For
both projects (see Figure 6.1) the improved performance of NLDNN in contrast to
CD is clearly visible. This is important for later when we refer to the results of the
ranked@f14n1000 curve in Figures 6.3, 6.4 and 6.5.

49

6 Results

(a) Sky

5 10 15 20 25 30 35 401
k

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll
ra

te
@

k

jenkins - recall rate@k 1 - 40
simple
SO200_neural_network
SO200_combined
GN300_neural_network
GN300_combined
neural_network_combined
combined_combined

(b) JENKINS

Figure 6.2: recall rate@k (top 40).

Figure 6.2 shows the results up to k = 40 of the plots from Figure 6.1. We highlight this
portion of the curves because the higher k gets, the less useful the list of recommenda-
tions becomes. This is because of the amount of results the user has to consider. It is
best compared to a search engine where the task is to provide the most relevant results
within the first few results. For the short period of Defejavu’s uptime, we picked k = 7
but the experts in the interviews preferred a shorter list of recommendations, i.e., k = 4,
especially when considering the effort to check each of the individual recommendations
within such a list. Even if the best similarity method (combined_combined) is used, lists
with only four results offer a recall rate@4 of 25% (Sky) and 38% (JENKINS).

Second, when we introduced a second pass of ranking, i.e., not only using the descrip-
tion of a BR but also other features (Table 4.4), by incorporating a learning-to-rank
algorithm like RankNet (Figure 4.5), we experienced a high increase in the recall rate@k.
However, for improved comparability between Sky and JENKINS, we stripped down
the set of DRFs because not all fields were available on both JIRA projects. Therefore,
we resorted to the features a BR offers by default in both projects:

r fi i ∈ {1, 2, 5, 6, 9, 10, 11, 15, 17, 18, 19, 20, 21, 24} (see Table 4.4)

Figure 6.3 is basically the same like Figure 6.2 with the exception of including the
ranked@f14n1000 curve where the name contains the amount of features and the value

50

6 Results

(a) Sky

5 10 15 20 25 30 35 401
k

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll
ra

te
@

k

jenkins - recall rate@k 1 - 40
simple
SO200_neural_network
SO200_combined
GN300_neural_network
GN300_combined
neural_network_combined
combined_combined
ranked@f14n1000

(b) JENKINS

Figure 6.3: recall rate@k with ranking (top 40).

(a) Sky

5 10 15 20 25 30 35 401
k

-30%

-20%

-10%

0%

10%

20%

30%

40%

pe
rc

en
ta

ge
 c

ha
ng

e@
k

jenkins - percentage change@k 1 - 40

simple
SO200_neural_network
SO200_combined
GN300_neural_network
GN300_combined
neural_network_combined
combined_combined
ranked@f14n1000

(b) JENKINS

Figure 6.4: Comparision of percentage change (top 40).

51

6 Results

of n. With k = 4, we observed a percentage change of +67% (Sky) and +29% (JENK-
INS) compared to the simple curve increasing the recall rate@4 to 34% (Sky) and 43%
(JENKINS) compared to the previous best method combined_combined.

For obtaining the top-n list, a look at Figure 6.1 is required. We set n = 1000 and
resorted to the similarity method SO200_combined, simply because we started our
research with the general purpose model SO200. We leave the comparision of other
similarity methods for aggregating the top-n list for the future. The recall rate@1000 is
picked so that both the results in the top-n list and the time consumed for computing are
reasonable. It still takes several seconds on the dev machine (Table 6.3) to calculate DRFs
for 1000 pairs which is a shortcoming of Defejavu. With n = 1000 the recall rate@1000
is at 91% (Sky) and 95% (JENKINS). Obviously, there is room for improvement but in
most cases the most relevant BRs are contained in the top-n list. If we were to resort to
CD, we would see these BRs only 77% and 85%, respectively, of the time. By increasing
n we would see improved recall rates but at the cost of extended computation time.

Interestingly, GN300 performs better than SO200 for the Sky dataset. The opposite
is the case for the JENKINS dataset where SO200 returns better results. This is best
observed when looking at the percentage change curves in Figure 6.4. It seems that this
dataset is more specific to software development than the data we extracted from Sky
where GN300 is better suited because of its broad range of topics covered.

We conclude and we also believe that training a custom Word2vec model instead of
relying on general purpose models can further improve the curves from Figure 6.1
leading to a better performance during the second ranking pass (see Figure 4.5) but
this is left for the future.

At the end of this section, we want to include the results for ranking presented in this
section when all DRFs from Table 4.4 were used. Unfortunately, we only have results
based on the Sky dataset.

Considering recall rate@4, in Figure 6.5 one can see that adding more features is far
more effective (+4%, ranked@f24n1000) than just increasing n which results in a change
of only +1.5% (ranked@f24n2500) but more than doubles the cost of time consumed
when calculating the top-n list. For us, the most important takeaway from looking at
the curves in this section is the importance of multiple features and not necessarily
focusing only on textual features.

52

6 Results

(a) recall rate@k (b) percentage change@k

Figure 6.5: Performance on the Sky dataset: 24 DRFs.

Observations of the scrub meeting

We tracked the time taken for each defect discussed in the 15 sessions where we were
invited to participate as guests of the scrub meeting. In these sessions, 167 BRs were
discussed in an average time of 14 minutes 29 seconds and roughly 11 BRs per session.
The total time taken for all 15 sessions was 3 hours 34 minutes and 49 seconds. A
ticket was fully discussed and updated after a median time of 59 seconds. Interestingly,
roughly 20 seconds of the discussion time per ticket were attributed to updating the
BR, i.e., changing the component, etc.

The following sections will outline our observations in more detail also by referring to
the research questions presented in section 1.3 but Table 6.5 already provides a quick
overview of what the experts would like to see improved and one of the notions is
Duplication Detection which is what motivated us to conduct this research.

We were surprised that the next ticket was always announced by voice by the DM. Only
in the last session, screen sharing was used to aid identifying the currently discussed
BR. Therefore, it is natural that at least one of the experts suggested Screensharing as an
improvement for the scrub meeting.

For the other insights, we begin with the answer to the first research question.

53

6 Results

Table 6.5: Sentiments of the topic Triaging Improvements.

Notion (c) SIE1 SIE2 SIE3 SM DM Score (ns)

Increased Strictness + + + + 0.88
Screensharing + 0.57
Extended Ticket Discussion + 0.57
Increased Team Representation + 0.62
Reduced Ticket Inspection + 0.62
Reduced Custom Fields + 0.62
Duplication Detection + + 0.76
Better Prioritization + + + 0.74

tsTriaging Improvements 0.67

A plus (+) indicates approval or acceptance (oc,e = 1) of the notion
A minus (–) indicates disapproval or rejection (oc,e = 0) of the notion
A blank space () indicates no mention (oc,e = 0.5) of the notion

RQ1 Do duplicate defect reports pose problems in a software development
life cycle?

Results. When considering the initial feature request for JIRA to support flagging
similar or duplicate issues natively [24], the answer to this research question is clearly
yes.

As already mentioned, JIRA has been around for nearly two decades. The lack of
this feature motivated several researchers in the past to investigate the problem with
duplicate defect reports with each contribution improving the existing state of the
art approach in a certain way, either by automatically assigning reports to proper
developers or development teams [2, 3], flagging similar issues by providing a list of
top-k most similar recommendations [1, 2, 22, 34, 38, 39] or even automatically hiding
duplicates from triagers and developers [3]. The creators of JIRA even claim [24] due to
existing JIRA plugins [23, p. 9–10] to not prioritize the native implementation of this
feature.

Clearly, one can see that duplicate bug reports remain an issue as of writing this
thesis. This is backed by the sentiments regarding Duplicate Reports we obtained
through the interviews with the triage experts at Sky. We identified eight notions

54

6 Results

(
∣∣CDuplicate Reports

∣∣ = 8) in the answers given by the experts which are depicted in Table 6.6.

Table 6.6: Sentiments of the topic Duplicate Reports.

Notion (c) SIE1 SIE2 SIE3 SM DM Score (ns)

Encounter + + + + + 1.00
Problematic + + + + 0.93
Variable Duplicate Rate + 0.62
Time Wasted on Triaged Duplicates + + + + + 1.00
Increased Stress + + + + + 1.00
Hard to Identify + + 0.69
Time Wasted while Triaging – + – + + 0.62
Time Wasted while Reporting + + 0.67

tsDuplicate Reports 0.82

A plus (+) indicates approval or acceptance (oc,e = 1) of the notion
A minus (–) indicates disapproval or rejection (oc,e = 0) of the notion
A blank space () indicates no mention (oc,e = 0.5) of the notion

All of them already have been faced with duplicate defect reports and most consider
these to be problematic.

They all agree on the notion Time Wasted because of duplicate reports especially when
considering the stage of a bug as soon as it has been triaged and is awaiting a fix,
i.e., the development team or one of the team’s members started to analyse the defect.
This increases the stress on the developers because of the higher workload due to
redundant work where effort could be targeted at proper bug reports instead of already
well-known and maybe even fixed ones. Time is also wasted for the reporter who raised
the defect in the ITS according to some of the experts. There is a split opinion on the
notion Time Wasted while Triaging and by that we mean the time spent to prepare and
perform the triage meeting. A few experts do not believe that time is wasted discussing
duplicate reports because it prevents wasted effort on the development side of things
while the other experts confirm that time is also wasted on the triage of duplicate
reports. Interestingly, the experts farther away from writing source code (SM and
DM) mentioned duplicates to be hard to identify as such. One of the expert triagers
emphasized the problem of duplicates is rather easy to cope with when a project is not

55

6 Results

too busy. Contrarily, in times where the project is under a lot of pressure, the duplicate
rate rises and these reports slip through the triage process more easily.

Summary. With tsDuplicate Reports = 0.82, duplicate reports still pose problems in a
software development life cycle nowadays.

6.2 Introduction of Defejavu to the Defect Management
Process at Sky

Before we address the results of RQ2, we have to point out that unfortunately it was
not possible to properly launch the evaluation of Defejavu. It is designed to rank all
new or updated BRs, however, it also provides the feature of selecting which rankings
should be published (see section 4.4). This is achieved by applying a given set of
filters. Since the ITS in use was JIRA, we resorted to JIRA’s builtin filtering functionality
instead of creating our own. We had to implement an abstraction and include it into
Defejavu to be able to interact with JIRA filters through the REST API. Then, the
JQL filter was configured within JIRA. Here is where we made a mistake. Instead of
filtering for relatively new BRs where “relatively new” means “created within the last
30 minutes” based on the start of the pipeline run for a set of query BRs (see section 4.1
and Figure 4.1), we also mistakenly included BRs that have been updated within the
same time span.

Due to being able to update almost any BR, Defejavu provided top-k lists for BRs which
can be of any age. The older a BR is, the more users had the opportunity to relate
themselves with this BR by posting a comment or updating the description, for instance.
In any case which leads to an “update” of a BR in JIRA, the user who provides the
update is added to the list of watchers of the BR.

Consequently, when an update to a BR is issued, all watchers are notified by email.
Since the JIRA project at Sky is frequented very often during a day causing many
updates to BRs, we caused a lot of noise with Defejavu in the watchers’ email inboxes.
Because of this we had to take Defejavu offline.

While the fix was blatantly easy where only the JQL filter had to be updated, by
producing a great portion of noise in the inboxes, we established an incisive amount of
distrust towards Defejavu which is hard to recover from.

56

6 Results

RQ2 What are the reasons for not incorporating tools aiming at detecting
duplicate reports?

Results. The age of the feature request to introduce similar issue detection [24] in JIRA
is nearly close to the age of the tool itself. Yet nothing close to an automated approach
for detecting similar issues is implemented at Sky. Considering the age of the feature
request [24] this is rather unexpected especially when there are plugins available able
to provide this feature. We did not anticipate to receive useful feedback to answer this
research question when asked directly. In fact, some of the experts mentioned without
being asked that they do not know the reasons for Sky not introducing a SBRDT on
their own. They pointed vaguely at busy projects and shortage of resources engaged
with improving the detection of such reports. Instead, we grouped a few topics to
collect a set of sentiments from the experts to be able to reason about the outcome.

Table 6.7: Sentiments of the topic Lack of Native Similar Issue Detection.

Notion (c) SIE1 SIE2 SIE3 SM DM Score (ns)

Versatile Descriptions + – + 0.65
Hard Task for NLP + + + + 0.86
Lack of Information – + 0.50
Irrelevant Feature + 0.55

tsLack of Native Similar Issue Detection 0.64

A plus (+) indicates approval or acceptance (oc,e = 1) of the notion
A minus (–) indicates disapproval or rejection (oc,e = 0) of the notion
A blank space () indicates no mention (oc,e = 0.5) of the notion

First, we discussed the Lack of Native Similar Issue Detection in JIRA. From the answers
given, we identified four major notions (

∣∣CLack of Native Similar Issue Detection
∣∣ = 4) which can

be seen in Table 6.7. It can be assumed that all of the experts suppose detecting
duplicate or similar bug reports to be a Hard Task for NLP even though the DM did
not mention this notion directly. However, according to the DM, bug reporters are all
unique and thus create reports in a unique way which leads to Versatile Descriptions but
can be also considered challenging for natural language processing (NLP) (Hard Task
for NLP).

The notion Versatile Descriptions seems to be controversial, similarly to the whole topic
with tsLack of Native Similar Issue Detection = 0.64 which is the most neutral topic sentiment score

57

6 Results

among all topics discussed in the interviews. The closer the score is to oc,e = 0.5
the more unique notions were extracted from the answers. Even more, one expert
claimed the lack of versatile bug report descriptions (Lack of Information) to be the cause
for the lack of native automated similar issue detection in JIRA. In their view, the
descriptions of bug reports often do not provide enough detail to be useful for fixing
the fault or even for triage and thus it is also hard to implement an automated solution
to highlight similarities between reports. Interestingly, another expert indicated a
potentially low value of native similar issue detection incorporated in JIRA (Irrelevant
Feature). According to the SM, the people behind JIRA probably do not consider
implementing the feature to be beneficial for the product (JIRA) and this idea matches
the update by Atlassian to the feature request [24].

Second, the topic Preventive Measures against Duplicate Reports was discussed which
yielded five notions (

∣∣CPreventive Measures against Duplicate Reports
∣∣ = 5) as listed in Table 6.8.

Since the experts believe that automating similar issue detection is hard (Hard Task for

Table 6.8: Sentiments of the topic Preventive Measures against Duplicate Reports.

Notion (c) SIE1 SIE2 SIE3 SM DM Score (ns)

Accuracy of Automation + + 0.69
Hard Task for Automation + + 0.74
Implementation of Measures + + – + 0.78
Manual Search Before Submission + – + 0.66
Hard Task for People + + 0.69

tsPreventive Measures against Duplicate Reports 0.71

A plus (+) indicates approval or acceptance (oc,e = 1) of the notion
A minus (–) indicates disapproval or rejection (oc,e = 0) of the notion
A blank space () indicates no mention (oc,e = 0.5) of the notion

NLP) it is not surprising that some of them mentioned the Accuracy of Automation. A
tool that provides recommendations for similar bug reports has to be accurate and
reliable. As long as that is not the case, it cannot be incorporated into the defect
management process. This is exactly what happened to Defejavu as described at the
beginning of section 6.2. With that said, it is also not surprising that the experts believe
automating the flagging of similar issues to be hard (Hard Task for Automation) which is
very similar to the notion Hard Task for NLP from the topic Lack of Native Similar Issue
Detection. Another view and a probable cause for not introducing automated tools into

58

6 Results

the triaging process to flag duplicates is the practice of preventive measures already set
in place (Implementation of Measures):

• Search for existing bug reports before raising a new report (Manual Search Before
Submission, see Table 6.8)

• Triage output is shared with external bug reporters

• Bug report description scraper (proof of concept tool using NLP) (discontinued).

However, not all experts share the same opinion and especially the SM seems to be
convinced of the opposite, but he states that preventing duplicate defect reports is a
Hard Task for People (bug reporters). We suppose that this is probably the reason for not
agreeing on the notion Manual Search Before Submission.

Last, we obtained a notion from the same expert who pointed out the Lack of Information
in bug report descriptions that tool assisted approaches not necessarily struggle because
of the notions used to answer RQ2 but because of a process problem (External Problem,
see Table 6.13) causing low quality bug reports. In the expert’s mind, any tool targeted
at finding similar issues would struggle if bug reports did not meet a certain level of
quality.

Summary. We believe that especially the notions Versatile Descriptions and Hard Task
for NLP from the topic Lack of Native Similar Issue Detection are most influential for
not introducing automated tools to detect similar bug reports. The topic Preventive
Measures against Duplicate Reports mostly contributes to the the reasons (RQ2) because
of the notions Hard Task for Automation and Implementation of Measures. A process
problem (External Problem) paired with the notions Lack of Information and Irrelevant
Feature could also hinder automation in this regard but requires more investigation.
However, we can only suppose what the reasons are because the scores (topic sentiment
score) for both topics are rather neutral with tsLack of Native Similar Issue Detection = 0.64 and
tsPreventive Measures against Duplicate Reports = 0.71.

59

6 Results

6.3 Manual vs. Tool Supported Defect Triage

RQ3 Does tool assisted detection help in highlighting duplicates before
the scrub meeting?

Results. From our research we learned that triaging is split into two stages at Sky
(see section 2.2). In the answer to this research question we mainly focus on the first
stage where the scrub meeting is prepared by the DM. However, many of the insights
can be mapped to the answer to RQ4. Since we covered several topics (see Tables 6.9,
6.10, 6.11, 6.12 and 6.13) to collect the notions most useful to answer other research
questions as well, we want to emphasize the notions that are essential to the results
relevant for RQ3.

Table 6.9: Sentiments of the topic Triage Preparation.

Notion (c) SIE1 SIE2 SIE3 SM DM Score (ns)

Low Frequency + + + + 0.86
Post Work + + + 0.81
Brief Ticket Inspection + + + + – 0.71

tsTriage Preparation 0.80

A plus (+) indicates approval or acceptance (oc,e = 1) of the notion
A minus (–) indicates disapproval or rejection (oc,e = 0) of the notion
A blank space () indicates no mention (oc,e = 0.5) of the notion

First, we take a look at Triage Preparation (see Table 6.9) and all the corresponding
notions (

∣∣CTriage Preparation
∣∣ = 3). The experts admitted to rarely preparing (Low Frequency)

for the triage meeting except for the DM who actively manages the list of bug reports
open for triage. This task involves pre-analysing the pending reports which can include
new but also existing ones that need triaging. From personal communication with
the DM outside the interviews we learned that this task is also heavily relying on
memory of existing bug reports that are duplicated by the pending ones, i.e., it is
common for duplicates to slip through this pre-triage stage into the triage meeting itself.
Actually, when we reached out to the DM initially, it was very quickly apparent that
his attitude is very positive towards an automated approach primarily to reduce the
reliance on memory and to improve the linkage of bug reports. Since the other experts
do not really prepare for the triage meeting and resort to post meeting work where

60

6 Results

reports might be inspected to strengthen the understanding of the ticket, i.e., to assign
the report to the proper development team in case the report reappears on the triage
meeting, we do not have anymore valuable results from the topic Triage Preparation for
this research question other than the assumption of recommendations of similar tickets
improving the understanding of the overall issue if information about a bug is spread
over multiple tickets [61] (Spread of Information, see Table 6.12).

Table 6.10: Sentiments of the topic Triaging Challenges.

Notion (c) SIE1 SIE2 SIE3 SM DM Score (ns)

Correct Assignment + + + 0.74
Duplication + + 0.69
Lack of Information + + 0.76
Understanding the Ticket + + + + 0.88
Big Picture (Software Stack) + 0.55
Understand the Priority + + 0.69
Prevention of Waste of Time + 0.64

tsTriaging Challenges 0.71

A plus (+) indicates approval or acceptance (oc,e = 1) of the notion
A minus (–) indicates disapproval or rejection (oc,e = 0) of the notion
A blank space () indicates no mention (oc,e = 0.5) of the notion

The second topic was Triaging Challenges (
∣∣CTriaging Challenges

∣∣ = 7). To answer RQ3, we
picked all but the notion Correct Assignment. Our approach is not meant to assign
a bug report to a capable developer. However, there are approaches that support
automatically assigning a suitable developer or development team [2, 3].

The main challenge in triaging according to the interviewed experts is Understanding
the Ticket. It ties in with the notion Lack of Information already mentioned by some of the
experts previously in Lack of Native Similar Issue Detection and brought up again while
discussing the current topic. Because of many individual reporters creating reports in
their own way (Versatile Descriptions, see Table 6.7) it is the primary cause for the expert
triagers to struggle when handling pending bug reports. According to the DM, defects
can be raised in a non-native (non-english) language because of distributed teams in
different territories which in turn makes it very hard for the triagers to understand
what the report is about. Unfortunately, we missed the opportunity to question the lack
of inclusion of non-english speaking triagers at this point, so we do not have any results

61

6 Results

on this notion, but we believe that similar issue detection could help Understanding the
Ticket, i.e., if one report is information rich and the other is not, yet the tool was able to
highlight the relevance between the two tickets.

Another challenge lies in Duplication itself. Although not all mentioned it directly as
challenge when discussing this topic, the triagers left the feeling behind of struggling
with too much duplication which is backed by our results of RQ1. Clearly, this is the
main task of automated deduplication or similarity flagging tools to improve upon.
Understand the Priority of a bug report is key for release management and is considered
to be tough by the experts. They even ask for support from colleagues in release
management to improve triaging and Prevention of Waste of Time.

The rare notion Big Picture (Software Stack) is an interesting take on triaging which we
did not anticipate in the first place. It should be fairly obvious that understanding the
software stack simplifies the process of correct assignment of bug reports to the proper
development team.

In our opinion and based on the notions with respect to Triaging Challenges we obtained
in the interviews, SBRDTs affect the pre-triage stage and can save time to spend effort
on more meaningful tasks which is the metric companies seek to improve in the end.
One expert even mentioned the potential for total automatic triaging without the need
for a scrub meeting at all but in our view and also in the view of the other experts
detecting similar bug reports is a hard task and without 100% reliability there is too
much room for error resulting in damage that could cost the company valuable money.
Especially in terms of Understanding the Ticket, we believe that an improvement could
be achieved because as mentioned before, multiple similar tickets can contain unique
information. But also in terms of Understand the Priority, we are convinced of the
benefits of tool assisted similar issue detection, for instance, because of bugs being
flagged as similar to already fixed high priority ones that reappeared in a new release
of the software.

The next topic, namely In-depth Issue Discussion, originated from observations of the
scrub meeting. In general, bug reports are discussed rather quickly (see Observations of
the scrub meeting in section 6.1). However, under certain circumstances, these reports
are covered more in-depth. We wanted to learn about the reasons for these extended
discussions and relate these reasons to the pre-triage stage because we found a relation
between the extra time spent on such bug reports and the report being resolved as
duplicate in the scrub meeting.

62

6 Results

Table 6.11: Sentiments of the topic In-depth Issue Discussion.

Notion (c) SIE1 SIE2 SIE3 SM DM Score (ns)

Slow Ticket Progress + 0.62
Unclear Tickets + + + + 0.88
Reappearing of Same Tickets + 0.62
High Frequency of Same Problem + 0.62
Uncompleted Feature Work + 0.62
High Assignment Rate Per Team + 0.62
Proper Assignment + + + 0.81

tsIn-depth Issue Discussion 0.68

A plus (+) indicates approval or acceptance (oc,e = 1) of the notion
A minus (–) indicates disapproval or rejection (oc,e = 0) of the notion
A blank space () indicates no mention (oc,e = 0.5) of the notion

We identified seven notions (
∣∣CIn-depth Issue Discussion

∣∣ = 7) (see Table 6.11). Again, one
notion is very prominent among the answers of the experts. Unclear Tickets not only
cause difficulties in Understanding the Ticket (Table 6.10), but also ensure that a bug
report is taken a closer look at. In our first interview, the expert mentioned more
detailed reasons which do not directly contribute to the answer of this research question,
i.e., Slow Ticket Progress and Uncompleted Feature Work1. However, Reappearing of Same
Tickets and High Frequency of Same Problem are difficulties which could be simplified by
SBRDTs. Regarding High Frequency of Same Problem, in particular, is where we see the
best fit for Defejavu. Especially when the similar report is a TYPE I duplicate. The
notions High Assignment Rate Per Team and Proper Assignment can be indirectly affected
by tools like Defejavu. Nevertheless, these notions would be better suited to be included
in the answer to RQ4 but we do not believe that such tools can help to reduce the time
spent discussing a particular bug report, so we leave them be just as information for
the reader.

We already mentioned Spread of Information while presenting Triage Preparation (see Ta-
ble 6.9). Now we want to take a closer look at this notion and the other three ones
(
∣∣CLinking Policy

∣∣ = 4) from the topic Linking Policy (see Table 6.12). Interestingly, at Sky
or more specifically in the teams we were in touch with, a linking policy as such (No
Linking Policy) is not known or applied according to the experts but there is a Atlassian

1Uncompleted product features that are already being tested

63

6 Results

Table 6.12: Sentiments of the topic Linking Policy.

Notion (c) SIE1 SIE2 SIE3 SM DM Score (ns)

No Linking Policy + + + + – 0.71
Unclear Main Ticket Rule + + 0.76
Common Sense Rule for Duplicate Links + + + – 0.59
Spread of Information + 0.62

tsLinking Policy 0.67

A plus (+) indicates approval or acceptance (oc,e = 1) of the notion
A minus (–) indicates disapproval or rejection (oc,e = 0) of the notion
A blank space () indicates no mention (oc,e = 0.5) of the notion

Confluence2 (CONFLUENCE) page with some rules regarding links authored by the
DM who pointed it out during our interview.

Linking duplicates to the original ticket is mandatory, yet as seen in Table 6.12 most
experts consider this to be common sense (Common Sense Rule for Duplicate Links)
instead of a clear rule. Sometimes, the chronologically more recent BR is considered
to be the main report and older reports are then resolved as duplicates. Again, it is
assumed by most of the experts that there is no clear rule for defining the main ticket
(Spread of Information) in case of a duplicate report.

However, the ruleset of the DM demands newer tickets to be resolved as duplicate and
the oldest one should be kept as the main ticket. Nonetheless, even the DM described
an exception to this rule in our interview: the ticket with the most useful and detailed
information will be used as main ticket and sometimes this can cause the older ticket
to be resolved as duplicate.

Because of this and in contrast to Sun et al. [1] and Alipour et al. [38], we did not opt
for oldest ticket equals main ticket in our approach. Instead, we neglected the direction
because our solution does not rely on clustering. Furthermore, incorporating the
direction of the link as constraint would not reflect the real world at Sky.

Regardless of the rule for the main ticket, we believe that linking adds to improved
documentation within an ITS. By highlighting possible duplicates or similar issues at
least, we are convinced of SBRDTs helping to build an interwoven ITS easy to follow

2https://www.atlassian.com/software/confluence (verified 2020-03-03)

64

https://www.atlassian.com/software/confluence

6 Results

by users and newcomers who are unfamiliar with the new domain especially when
considering the Spread of Information as mentioned by one expert and Bettenburg et al.
[61].

Table 6.13: Sentiments of the topic Tool Assisted Similar Issue Detection.

Notion (c) SIE1 SIE2 SIE3 SM DM Score (ns)

Positive Disposition + + + + + 1.00
Support Triage + + + + 0.86
Ease of Use + + + + 0.88
Early Feedback + + + + + 1.00
Pre-Submission Feedback + + + 0.76
Relevance Score + 0.62
Limited List of Most Relevant Tickets + + + + + 1.00
Simple Bug Tracking System Integration + + + 0.81
External Problem + 0.62
Reduced Time Wasted + + 0.62

tsTool Assisted Similar Issue Detection 0.82

A plus (+) indicates approval or acceptance (oc,e = 1) of the notion
A minus (–) indicates disapproval or rejection (oc,e = 0) of the notion
A blank space () indicates no mention (oc,e = 0.5) of the notion

Even more, when similar tickets are suggested close to or before creation of a bug
report, it is considered to add the most value as seen in Table 6.13 which introduces the
next topic, namely Tool Assisted Similar Issue Detection. According to the experts, Early
Feedback and even Pre-Submission Feedback is considered to be the most helpful. They
are all positive regarding tool assisted similar issue detection (Positive Disposition) and
consider it to be supportive with respect to triaging (Support Triage) except for the DM
who did not mention this notion directly, but due to his attitude towards such tools,
we still believe that in his view it adds value in the pre-triage meeting stage especially
when considering his approval in terms of Early Feedback. Automated similar Issue
detection can also help to reduce wasted effort spent on bug reports that are duplicates
of TYPE I (Reduced Time Wasted) when considering the notion Time Wasted on Triaged
Duplicates from the topic Duplicate Reports (Table 6.6).

The remaining notions (Ease of Use, Relevance Score, Limited List of Most Relevant Tickets
and Simple Bug Tracking System Integration) from Table 6.13 will be addressed when

65

6 Results

presenting the results of RQ5. Additionally, we picked the notion Relevance Score to be
included in the results of RQ4.

Summary. Based on the discussions we had with the experts in the interviews, the
answer to this research questions is yes.

Even more, we identified the following advantages of automated similar issue detection
before triaging:

• reduce the reliance on memory (see Table 6.9)

• help better understanding the report (Understanding the Ticket and Spread of Infor-
mation, see Tables 6.10 and 6.12)

• reduce time spent by the DM on similar or duplicate reports (Prevention of Waste
of Time and Reduced Time Wasted, see Tables 6.10 and 6.13)

• clarify unclear tickets for the DM (Unclear Tickets, see Table 6.11)

• help to better intertwine an ITS and therefore improve the quality of its documen-
tation feature (see Table 6.12)

• early presented recommendations of similar issues add most value (Early Feedback
and Pre-Submission Feedback, see Table 6.13)

Regarding the topic sentiment scores for the topics covered in this section, there are
many individual and unique opinions for each topic and so these scores indicate a
rather neutral outcome. However, we did not include all notions from each topic.
Instead, we took only specific ones into account and thus it makes more sense to
consider the more detailed notion score of each notion. Nevertheless, the experts seem
to be very uniform in their opinions regarding Tool Assisted Similar Issue Detection with
tsTool Assisted Similar Issue Detection = 0.82.

RQ4 Does tool assisted detection affect finding duplicate defect reports
during the scrub meeting?

Results. To provide an answer for RQ4 we want to refer to the answer to RQ3 because
the results presented there are also mostly valid for the results here. Therefore, we will
mention the topics from RQ3 shortly if the results can be mapped directly. However,

66

6 Results

we also want to highlight the differences to RQ3 which we found in the interviews with
the experts.

In terms of Triage Preparation (see Table 6.9), the main difference lies in the DM’s task in
the scrub meeting as described in section 2.2. Since he is the moderator of the meeting,
in this case, SBRDTs are more valuable for the other participants who actually triage
the bug reports.

Apart from that, due to Low Frequency of preparation before the scrub meeting, automa-
tion with respect to SBRDTs should render itself useful, because it supports experienced
triagers with lots of domain knowledge (see Table 6.13), but helps in onboarding triagers
new to the defect management process as well when considering the improved linking
in the ITS due to such tools.

Actually, one expert mentioned that the day after our interview was his last day in
the scrub which corroborates the usefulness of SBRDTs and considering this research
question, we believe it would diminish the need for Triage Preparation to some extent
or more specifically reduce the time taken to prepare for the scrub meeting for new
triagers, in particular.

As far as Triaging Challenges are concerned (see Table 6.10), we do not have much more
to add other than SBRDTs being helpful in handling of some of these challenges and
therefore, we refer to the results of RQ3 at this point.

The same applies to the topic In-depth Issue Discussion (see Table 6.11) with one excep-
tion. As already mentioned, we attended 15 scrub meetings where we could correlate
in-depth discussions to resolutions as duplicate for the bug report under triage. This
was not a notion obtained from the answers of the experts in the interviews, but we are
convinced of SBRDTs contributing to the reduction of time spent of such reports so that
triagers can focus on other tickets in the meeting and other tasks after the meeting.

For the topic Linking Policy, we do not have anything to add, so we refer to the answer
to RQ3 (Table 6.12 and its description, in particular).

In our approach, we presented the recommendations of similar reports not only with
the ticket id and summary, but also provided a relevance score along with the other
information (see section 4.4, Table 4.5). While discussing the topic Tool Assisted Similar
Issue Detection (see Table 6.13), one of the experts expressed his thoughts in a positive
way about the Relevance Score. According to him, the score was very useful, in general.
He continued by pointing out helpful recommendations in the case of a high relevance

67

6 Results

score. Obviously, this is only one opinion and the tool was not in use for a sufficient
period of time to reason about significant results, but it provides an idea of the outcome
of a future evaluation. We believe that this has to do with the Positive Disposition
towards SBRDTs in general and therefore, automatically providing recommendations
of similar bug reports definitely adds value to a triage workflow.

Continuing the useful aspects of SBRDTs, we want to shortly pick up Triaging Im-
provements which we presented in “Observations of the scrub meeting” in section 6.1
(see Table 6.5). There are two notions which matter for the results of RQ4, one being
Duplication Detection and the other one being Better Prioritization.

Duplication Detection is literally the motivation of our research regarding improvements
of a triage workflow. Two of the experts mentioned this improvement directly. For
the others, we are convinced that it would constitute an improvement as well, because
all experts were well disposed towards SBRDTs (Positive Disposition, see Table 6.13).
However, we did not push them to express their favour of Duplication Detection as
benefit while discussing Triaging Improvements, because we wanted to acquire unbiased
thoughts of the experts.

Better Prioritization is an improvement that can be inferred from the triaging challenges
presented in Table 6.10. We already mentioned the possibility of SBRDTs to support to
Understand the Priority, so we refer to the description of Table 6.10 at this point.

Summary. We would like to answer this research question with a yes without a doubt
due to the conveniences described earlier and the favourable disposition of the experts,
but the scrub meeting at Sky is highly optimized and moves very quickly even though
there is room for improvement (see Table 6.5). According to the experts it is better to
provide Early Feedback (see Table 6.13), so the answer is yes but the impact of SBRDTs
during the scrub meeting is not that high compared to pre scrub recommendations. We
still compiled a list of advantages of SBRDTs where we think triagers would draw
benefits from:

• support triaging (see Table 6.13)

• reduce the time spent in general and on in-depth discussions (Unclear Tickets and
Reduced Time Wasted, see Tables 6.11 and 6.13)

• indicate the relevance of a recommendation for a similar bug report by providing
a relevance score (Relevance Score, see Table 6.13)

68

6 Results

6.4 Generalizability of Defejavu

RQ5 How generalizable is the proposed duplicate detection tool to support
bug triage processes in other domains?

Results. In order to obtain the notions on how defect triage is understood by the
experts at Sky, we first asked them to describe their view of the scrub meeting (Triage
Process Description).

Table 6.14: Sentiments of the topic Triage Process Description.

Notion (c) SIE1 SIE2 SIE3 SM DM Score (ns)

Correct Assignment + + + + + 1.00
Improve Ticket Progress + + + 0.88
Meeting Scope + + + + 0.88
Quality of Report Check + + + + 0.88

tsTriage Process Description 0.91

A plus (+) indicates approval or acceptance (oc,e = 1) of the notion
A minus (–) indicates disapproval or rejection (oc,e = 0) of the notion
A blank space () indicates no mention (oc,e = 0.5) of the notion

When Table 6.14 is considered, it is clear that the experts try to correctly assign a BR to
the proper development team which is one of the few notions where all experts agree
(Correct Assignment). Additionally, they feel that the meeting’s purpose is to check the
quality of new BRs (Quality of Report Check), i.e. in case the reported bug is valid, it
should be possible for a developer to provide a fix and this is only possible if the BR is
clear and of high quality. Most of the experts even mentioned that defect triage is meant
for ensuring and also improving ticket progress (Improve Ticket Progress). Without the
scrub, tickets would tend to stall. To summarize this topic, they agree on the scope of
the scrub meeting and this is why the topic sentiment score for this topic is very high
(tsTriage Process Description = 0.91).

We used this topic (Triage Process Description) to form a baseline for the generalizability
of Defejavu. However, we also wanted to learn how the experts see the scrub in
comparision to defect triage outside of Sky, i.e., if they think it is a rather tailored or
general process which is consolidated in Table 6.15 as Triage Process Classification. This
topic turned out to be hard to grasp because most of the experts, although having

69

6 Results

Table 6.15: Sentiments of the topic Triage Process Classification.

Notion (c) SIE1 SIE2 SIE3 SM DM Score (ns)

Up to date + – + 0.65
General + + + + 0.95
Unchanged – + + 0.58

tsTriage Process Classification 0.72

A plus (+) indicates approval or acceptance (oc,e = 1) of the notion
A minus (–) indicates disapproval or rejection (oc,e = 0) of the notion
A blank space () indicates no mention (oc,e = 0.5) of the notion

plenty of experience, not only did not have the opportunity to participate in defect
triage outside of Sky, but also they did not agree on the notions forming the topic
which is reflected in the rather low topic sentiment score (tsTriage Process Classification = 0.72).
Only two of the experts believe the process to be up to date with one expert disagreeing
with this notion (Up to date). Interestingly, the same expert who does not believe the
process to be up to date also thinks that the process did not remain unchanged which is
surprising at first glance considering the DM clearly agreeing to the notion Unchanged.
We believe that this is due to the shorter time of participation in the scrub meeting by
the DM compared to the expert SIE2. In spite of the two notions mentioned previously
resulting in a greater spread of opinions, the experts still agree on the scrub being rather
General than tailored towards the needs of Sky.

Table 6.16: Sentiments of the topic Perks of the Triage Process.

Notion (c) SIE1 SIE2 SIE3 SM DM Score (ns)

Short and Proper Duration + + + 0.74
Effective + + + + + 1.00
Broad Insights (Products) + 0.62
Proficient Participants + + + + 0.88

tsPerks of the Triage Process 0.81

A plus (+) indicates approval or acceptance (oc,e = 1) of the notion
A minus (–) indicates disapproval or rejection (oc,e = 0) of the notion
A blank space () indicates no mention (oc,e = 0.5) of the notion

We already presented Triaging Improvements previously (Table 6.5), but we want to pick

70

6 Results

it up again along with the new topic Perks of the Triage Process and its notions shown in
Table 6.16 to reinforce the base for reasoning about the generalizability of Defejavu.

The experts consider the current form of defect triage and especially the scrub meeting
to be very Effective mostly because of the presence of Proficient Participants who are
able to quickly iterate over the outstanding BRs for each meeting (Short and Proper
Duration). One notion (Broad Insights (Products)) which sticks out should actually be a
prerequisite for defect triagers because they should have a high level overview over all
software products to be able to assign a BR to a corresponding development team. We
believe that this expert was referring to products from the perspective of a customer
and outside the SDLC including defect management at Sky. In general, the experts are
convinced of the current defect triage process and had to take a break to think about
their answer when asked about Triaging Improvements. This is also visible by the sparse
agreement (Table 6.5) on notions about this topic.

Where the experts mostly agree is Increased Strictness. In their view, the quality of BRs
is essential to resolving a bug. Therefore, it is necessary to warrant that BRs contain
as much correct information as possible. In this sense, they have to be more strict in
demanding more or improved information from the reporters. At this point, we want
to neglect the other notions from the topic Triaging Improvements because they are either
too specific, too sparse or do not reflect the overall opinion of the group of experts with
the only exceptions being Duplication Detection and Better Prioritization which we both
covered in the answer to RQ4 in section 6.3.

Table 6.17: Sentiments of the topic Rapid Topic Understanding.

Notion (c) SIE1 SIE2 SIE3 SM DM Score (ns)

Experience + + + + + 1.00

tsRapid Topic Understanding 1.00

A plus (+) indicates approval or acceptance (oc,e = 1) of the notion
A minus (–) indicates disapproval or rejection (oc,e = 0) of the notion
A blank space () indicates no mention (oc,e = 0.5) of the notion

Accordingly, defect management including the scrub meeting is a highly optimized
process at Sky which seems to be hard to improve according to the experts who offer a
lot of Experience leading to Rapid Topic Understanding (see Table 6.17), i.e., grasping the
idea of a BR. However, next to Increased Strictness, Duplication Detection (topic Triaging

71

6 Results

Improvements) is one of the few ways to support the experts in the task of defect triage.
We want to revisit this notion for the answer to this research question.

Since we identified a way for improving defect management at Sky and the research of
the past (see chapter 3) indicates that the problem of duplicate BRs remains partially
unsolved, we are keen to make our contribution as general as possible.

Table 6.18: Sentiments of the topic Software Tool Classification.

Notion (c) SIE1 SIE2 SIE3 SM DM Score (ns)

Productivity Boost + + + + + 1.00
Positive User Experience + + + 0.74
Minimal Set of Restrictions + + 0.76
High Accuracy + + 0.71
Ease of Use + + + + 0.88
Robustness + 0.55

tsSoftware Tool Classification 0.77

A plus (+) indicates approval or acceptance (oc,e = 1) of the notion
A minus (–) indicates disapproval or rejection (oc,e = 0) of the notion
A blank space () indicates no mention (oc,e = 0.5) of the notion

Therefore, we asked the experts in the interviews to share their views on how a
software tool should behave in general (topic Software Tool Classification, see Table 6.18)
and brought their answers into relation with the results of the topic Tool Assisted Similar
Issue Detection (see Table 6.13).

In general, the experts expect from a software tool to boost the productivity for a given
task (Productivity Boost). They clearly denied restrictiveness of a tool for the most part
(Minimal Set of Restrictions) where a specific process could restrict the feature set of a
tool, i.e., to streamline the appearance of BRs which should contain information about
“steps to reproduce”, “expected behaviour”, “actual behaviour”, etc.

Positive User Experience can be seen as an overall requirement for any tool and is rather
general because if a user is not satisfied or even frustrated with the experience of using
a tool, productivity cannot be boosted and Ease of Use is not guaranteed. Interestingly,
some of the experts mentioned High Accuracy and Robustness to be important, poten-
tially because of their knowledge about the technical approach presented in this work
where accurate and robust results are key to justified existence of such tools.

72

6 Results

This ties into the answers given to questions related to the topic Tool Assisted Similar
Issue Detection with the overlapping notion Ease of Use. When considering the notion
Relevance Score and Limited List of Most Relevant Tickets and comparing it with how
recommendations of similar BRs are presented (see Table 4.5), it is apparent that our
approach matches the experts’ idea of such tools.

In terms of Simple Bug Tracking System Integration, the experts suggested an improved
way of the overall way of representation of top-k recommendations. They did not really
like hijacking the comment feature of JIRA for the top-k lists. Additionally, an easy way
of navigating back and forth between the query BR and the recommended similar BRs
was missing in their opinion.

Summary. At its core, Defejavu is a tool for identifying similarities between a set of
two arbitrary documents from a given dataset with the ability to present the results to
a select group of users.

Based on the rather general way of defect triage at Sky and usage of REST APIs for
extracting BRs and returning top-k recommendations of similar BRs, we believe that
Defejavu is usable in other JIRA projects to support identifying duplicate BRs.

Additionally, we are convinced of more broad usages of Defejavu especially when
users are interested in the similarities between a set of two documents as long as the
underlying system used for tracking these documents is JIRA. However, since we did
not built a JIRA bound plugin which cannot run standalone, our tool is easily extensible
with an investment of a small effort. This is mainly due to the decoupled architecture
of Defejavu (see Figure 4.1) relying on message passing using a message broker. Each
of the four components is easy to configure, i.e., ETL, or even easy to replace with a
custom implementation and each component relies on loosely coupled modules. This
allows for quickly-to-establish support of systems other than JIRA.

Our conclusion regarding this research question is based on the following results:

• Visual presentation of recommendations matches the experts’ idea in general
(Relevance Score, Limited List of Most Relevant Tickets, see Tables 4.5 and 6.13).

• Defejavu was used to calculate recall rate@k for BRs from the JIRA projects JENK-
INS and Sky (see section 6.1).

• Message passing architecture allows for easy extensibility of Defejavu.

73

6 Results

• In a well optimized defect management process, SBRDTs are one of the few ways
for improving the process (Duplication Detection and Short and Proper Duration,
see Tables 6.5 and 6.16).

6.5 Domain Knowledge as Underappreciated Asset

In 2005, Bowler [62] introduced the concept of the truck factor where the higher the
number is the more people on a team have to be absent at the same time before
consequences of the absence are impactful. In other words it means that if the truck
factor is 1, only a single person has to be absent to cause issues within a project.
Considering the motivation for this research question where we provided the example
of MicroPython3 the assumed truck factor would be close to 1. It is assumed because
we are not involved in the project and we were not in touch with its maintainers.

RQ6 Are there any measures in place to cope with a total loss of domain
knowledge of the defect scrub team?

Results. At the time of the interviews we were not aware of the term truck factor but
we still wanted to learn about the measures at Sky to prevent loss of domain knowledge
and what the experts think of a disastrous scenario where the whole scrub team was
lost due to a catastrophic accident.

Table 6.19 shows the notions mentioned in the answers of the experts about the topic
Loss of Domain Knowledge. It was initiated with an example where the experts should
imagine an accident which would lead to the death of all defect scrub participants.
We picked a dramatic example to ensure the interviewees were in the proper mindset
to provide an answer as accurate as possible. Nearly all of them considered such a
scenario to be tough (Tough Scenario) with the only exception being the SM. His answer
was given based on the certainty of spread knowledge within the team he is in meaning
that if he was gone, one of the other team members could replace his role in the defect
scrub.

We have to point out that the opinion of the experts matched in terms of No Disaster
Strategy which could lead to the conclusion of no measures at Sky to cope with the loss

3https://github.com/micropython/micropython (verified 2020-02-21)

74

https://github.com/micropython/micropython

6 Results

Table 6.19: Sentiments of the topic Loss of Domain Knowledge.

Notion (c) SIE1 SIE2 SIE3 SM DM Score (ns)

Tough Scenario + + + – + 0.90
Onboarding Required + + + 0.79
Introduction of Cheat Sheet + 0.62
No Disaster Strategy + + + + + 1.00
WIKIs + + 0.74
Spread/Duplication of Knowledge + + + + 0.88

tsLoss of Domain Knowledge 0.82

A plus (+) indicates approval or acceptance (oc,e = 1) of the notion
A minus (–) indicates disapproval or rejection (oc,e = 0) of the notion
A blank space () indicates no mention (oc,e = 0.5) of the notion

of the defect scrub team. However, the experts were certain about Spread/Duplication of
Knowledge providing the possibility to replace any member on the scrub.

Nonetheless, they admitted to the need for onboarding of participants new to the
defect scrub process at Sky (Onboarding Required) which is backed up by WIKIs, i.e.
documentation about the defect management process stored in CONFLUENCE pages,
and could be improved by providing a cheat sheet with all acronyms and terminology
used in the defect scrub meeting (Introduction of Cheat Sheet).

Summary. Considering the responses of the experts, we answer this research question
with yes if only a few people are absent and no if many people are absent.

Domain knowledge seems to be well spread across team members and in case of
the absence of team members, colleagues with equal knowledge can be set in place
(Spread/Duplication of Knowledge).

If a new colleague has to be trained to partake in the defect management process, the
onboarding process is backed by documentation in the form of CONFLUENCE pages
(WIKIs). However, if something disastrous happened where the whole team was lost, it
would pose a Tough Scenario for Sky.

We believe that coping with such a scenario can be improved by introducing tools
such as SBRDTs that help automating the defect management process. As far as Sky is

75

6 Results

concerned, there are no measures in place to properly cope with a disaster (No Disaster
Strategy).

6.6 Threats to Validity

In order to improve or better validate our results, we have to further work on the
following threats to validity.

Threats to Internal Validity

Training a NLDNN should be improved by providing negative samples that consist of
nondup-dup pairs where the nondup truly is a BR that is not linked to any other BR. In
this work, we picked a dup BR and paired it with another dup BR. This approach might
leak the relation between BRs into the set of negative samples.

For creating the relevant and irrelevant samples a similar issue was observed. We
rely on the validity of the underlying dataset, i.e., the BRs from the ITS. However, we
observed BRs being resolved as duplicate without any links to another BR. Again, this
might leak the relation between two BRs into the set of negative samples.

Additionally, we considered all tickets from ITS for training the RankNet based model,
i.e., negative samples could consist of a BR paired with a user story. It is possible that
users mistakenly pick the wrong issue type and flag a report as a user story instead of
a BR. We believe that this type of error can be neglected and thus only considering BRs
would narrow down the amount of candidates for calculating the top-n lists. However,
we do not have data to prove our claim.

The idea of non-linearity of document vectors (NLD) is only experimental and was not
fully evaluated. However, the initial experiments show promising results and need to
be further investigated.

Threats to External Validity

Only two datasets were used and only the one extracted from Sky was analyzed more
deeply to better optimize and select DRFs.

76

6 Results

Furthermore, the answers given by the experts might be biased because we only
considered experts at Sky.

Threats to Construct Validity

The metric topic sentiment score used to rate the experts’ answers might be too weak
because often it is closer to a neutral ranking due to the spread of notions mentioned
by the different experts.

It is important to note that the results in Figures 6.1, 6.2, 6.3, 6.4 and 6.5 only represent
the recall rate@k where only all ori and dup BRs where available as candidate similar
BRs for calculation of the top-n lists. The rest was not considered. Therefore, it can be
assumed that recall rate@k will be lower when all BRs are available as candidates.

We use the terms similar and duplicate interchangeably as if they meant the same
but actually detecting duplicates is by far a more complex problem than detecting
similarities between documents. Unfortunately, best to our knowledge, previous work
did not point out if they were trying to solve the problem of detecting duplicates or
simply highlighting similarities between documents but calling it duplicate detection.

Threats to Conclusion Validity

We conducted a total of five qualitative interviews with experts from a single industry
partner. Apart from that, Defejavu was not compared to previous work (chapter 3) in
terms of recall rate@k. Therefore, our results do not have a statistically significant effect
on the measured outcome.

77

7 Conclusion and Future Work

In this work, we present a recommender system for finding similar BRs based on a
query BR featuring a novel approach regarding the calculation of similarities between a
set of two document vectors. With the non linear distance (NLD), we propose the idea
of nonlinearity with respect to similarity of document vectors. Our early results show
that the recall rate@k based on NLD surpasses the one based on cosine similarity (cosine
distance) for k < 22. If we combine multiple Word2vec models, i.e., SO200 and GN300,
we observe even better performance where CD is outperformed for k > 4. According to
the experts from our interviews in the realm of issue tracking systems (ITSs), k should
not exceed 4, i.e., no more than four items should be recommended based on a query
bug report (BR) to prevent too much effort spent on inspecting the recommendations.
At recall rate@4, we note percentage changes of +67% for the Sky dataset and +29% for
the JENKINS dataset compared to CD using our two pass ranking approach.

From our interviews, we learned that similar issue detection is considered to be useful
and supportive for defect management in a software development life cycle (SDLC).
Recommendations should be provided as early as possible to prevent waste of effort
primarily with respect to fixers, i.e., developers, but also regarding triagers and reporters.
Therefore, we conclude that similar bug report detection tools (SBRDTs) add the most
value when lists of similar BRs are associated with a new BR close to or at creation time.
Such tools can be useful in the context of a triage meeting, i.e., the scrub, in a closed
source environment but with the triage process we saw at Sky and also according to
the experts the most benefits are gained through early recommendation.

In the future, we want to evaluate the NLD measure with more and improved ex-
periments to draw a definite conclusion about the nonlinear similarity property of
document vectors. Additionally, Defejavu should accept feedback to further improve
its recommendations. On dynamic rank feature (DRF) level, it could be interesting
to investigate an improved encoding of the feature reporter where duplicate BR rates
are incorporated in the similarity value. For the Sky dataset, we observed better per-
formance of NLD based on the general purpose model GN300. This model covers a

78

7 Conclusion and Future Work

broader area of topics compared to SO200. Therefore, training a custom Word2vec
model to further improve recall rate@k will potentially turn out to add even more value
to Defejavu.

79

List of Abbreviations

ANSIBLE Red Hat Ansible1

API application programming interface
BR bug report
CD cosine distance
CONFLUENCE Atlassian Confluence2

DM Defect Manager
DOCKER Docker3

DR defect report
DRF dynamic rank feature
ETL extract, transform, load
GENSIM Gensim Python library4

GN300 Google News 300
IDF inverse document frequency
IR information retrieval
ITS issue tracking system
JENKINS Jenkins CI5

JIRA Atlassian Jira6

JQL JIRA Query Language7

JSON JavaScript Object Notation8

KERAS keras9

1https://www.ansible.com/ (verified 2020-04-05)
2https://www.atlassian.com/software/confluence (verified 2020-03-03)
3https://www.docker.com/ (verified 2020-04-05)
4https://radimrehurek.com/gensim/ (verified 2020-03-10)
5https://issues.jenkins-ci.org/projects/JENKINS (verified 2020-02-24)
6https://www.atlassian.com/software/jira (verified 2020-02-04)
7https://www.atlassian.com/blog/jira-software/jql-the-most-flexible-way-to-search-jira-
14 (verified 2020-04-02)

8https://www.json.org/json-en.html (verified 2020-04-05)
9https://keras.io/ (verified 2020-04-05)

80

https://www.ansible.com/
https://www.atlassian.com/software/confluence
https://www.docker.com/
https://radimrehurek.com/gensim/
https://issues.jenkins-ci.org/projects/JENKINS
https://www.atlassian.com/software/jira
https://www.atlassian.com/blog/jira-software/jql-the-most-flexible-way-to-search-jira-14
https://www.atlassian.com/blog/jira-software/jql-the-most-flexible-way-to-search-jira-14
https://www.json.org/json-en.html
https://keras.io/

List of Abbreviations

LUCENE Apache Lucene10

mongoDB mongoDB11

NLD non linear distance
NLDNN NLD neural network
NLP natural language processing
NP numpy12

PD pandas13

PRED prediction
PREP preprocessing
PUB publish
PY Python 3.714

REST representational state transfer
RMQ RabbitMQ15

SCRUB triage
SDLC software development life cycle
SBRDT similar bug report detection tool
SIE System Integration Engineer
SM Scrum Master
SO200 Stack Overflow 200
SRF static rank feature
SV similarity vector
SYNCPIPES SyncPipes16

TF term frequency
TS TypeScript17

TYPE I TYPE I duplicate bug report
TYPE II TYPE II duplicate bug report
VBR vectorized bug report

10https://lucene.apache.org/ (verified 2020-04-05)
11https://www.mongodb.com/ (verified 2020-04-05)
12https://numpy.org/ (verified 2020-04-05)
13https://pandas.pydata.org/ (verified 2020-04-05)
14https://www.python.org/ (verified 2020-04-05)
15https://www.rabbitmq.com/ (verified 2020-04-05)
16https://wwwmatthes.in.tum.de/pages/2gh0u9d1afap/SyncPipes (verified 2020-03-08)
17https://www.typescriptlang.org/ (verified 2020-04-05)

81

https://lucene.apache.org/
https://www.mongodb.com/
https://numpy.org/
https://pandas.pydata.org/
https://www.python.org/
https://www.rabbitmq.com/
https://wwwmatthes.in.tum.de/pages/2gh0u9d1afap/SyncPipes
https://www.typescriptlang.org/

List of Figures

2.1 Bug Report Life Cycle (simplified) . 10

4.1 Defejavu Workflow Overview . 20
4.2 NLD Algorithm . 26
4.3 NLDNN Architecture . 27
4.4 Time Delta Similarity Measures . 32
4.5 Similar bug report retrieval . 36
4.6 RankNet: Neural network architectures 37

6.1 recall rate@k (all) . 49
6.2 recall rate@k (top 40) . 50
6.3 recall rate@k with ranking (top 40) . 51
6.4 Comparision of percentage change (top 40) 51
6.5 Performance on the Sky dataset: 24 DRFs 53

82

List of Tables

1.1 Expert Triagers . 3

4.1 Textual Static Rank Features . 23
4.2 Categorical Static Rank Features . 24
4.3 DateTime Static Rank Features . 24
4.4 Dynamic rank features . 31
4.5 Example list of top-k Recommendations 38
4.6 Overview of duplicate detection approaches 40

6.1 Expert Triagers Scoring Weights . 45
6.2 Sentiment of Sample Topic . 48
6.3 Development Machine Stats . 48
6.4 Similarity Methods for Hit Aggregation 49
6.5 Sentiment of Triaging Improvements . 54
6.6 Sentiment of Duplicate Reports . 55
6.7 Sentiment of Lack of Native Similar Issue Detection 57
6.8 Sentiment of Preventive Measures against Duplicate Reports 58
6.9 Sentiment of Triage Preparation . 60
6.10 Sentiment of Triaging Challenges . 61
6.11 Sentiment of In-depth Issue Discussion . 63
6.12 Sentiment of Linking Policy . 64
6.13 Sentiment of Tool Assisted Similar Issue Detection 65
6.14 Sentiment of Triage Process Description . 69
6.15 Sentiment of Triage Process Classification 70
6.16 Sentiment of Perks of the Triage Process . 70
6.17 Sentiment of Rapid Topic Understanding 71
6.18 Sentiment of Software Tool Classification . 72
6.19 Sentiment of Loss of Domain Knowledge . 75

83

Bibliography

[1] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo. “A discriminative model
approach for accurate duplicate bug report retrieval.” In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume 1. 2010, pp. 45–
54.

[2] J. Anvik, L. Hiew, and G. C. Murphy. “Coping with an open bug repository.”
In: Proceedings of the 2005 OOPSLA workshop on Eclipse technology eXchange. 2005,
pp. 35–39.

[3] N. Jalbert and W. Weimer. “Automated duplicate detection for bug tracking sys-
tems.” In: 2008 IEEE International Conference on Dependable Systems and Networks
With FTCS and DCC (DSN). IEEE. 2008, pp. 52–61.

[4] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-
Hill, 1983.

[5] ISO/IEC/IEEE 12207:2017. Systems and software engineering — Software life cycle
processes. Standard. Geneva, CH: International Organization for Standardization,
Nov. 2017.

[6] J. MacKay. Software Development Process: How to Pick The Process That’s Right For
You. Oct. 2019. url: https://plan.io/blog/software-development-process/
(visited on 2020-02-13).

[7] SDLC - Overview. url: https://www.tutorialspoint.com/sdlc/sdlc_overview.
htm (visited on 2020-02-13).

[8] N. B. Ruparelia. “Software development lifecycle models.” In: ACM SIGSOFT
Software Engineering Notes 35.3 (2010), pp. 8–13.

[9] H. Benington. “Production of large computer programs.” In: Proceedings of the
ONR Symposium on Advanced Programming Methods for Digital Computers. June
1956, pp. 15–27.

[10] W. W. Royce. “Managing the development of large software systems.” In: Pro-
ceedings of IEEE Wescon 26. Aug. 1970, pp. 1–9.

84

https://plan.io/blog/software-development-process/
https://www.tutorialspoint.com/sdlc/sdlc_overview.htm
https://www.tutorialspoint.com/sdlc/sdlc_overview.htm

Bibliography

[11] I. Sommerville. “Software process models.” In: ACM computing surveys (CSUR)
28.1 (1996), pp. 269–271.

[12] G. Gladden. “Stop the life-cycle, I want to get off.” In: ACM SIGSOFT Software
Engineering Notes 7.2 (1982), pp. 35–39.

[13] D. D. McCracken and M. A. Jackson. “Life cycle concept considered harmful.” In:
ACM SIGSOFT Software Engineering Notes 7.2 (1982), pp. 29–32.

[14] K. M. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M.
Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C.
Martin, S. J. Mellor, K. Schwaber, J. Sutherland, and D. Thomas. “Manifesto for
Agile Software Development.” In: 2013.

[15] SDLC - Agile Model. url: https://www.tutorialspoint.com/sdlc/sdlc_agile_
model.htm (visited on 2020-04-05).

[16] R. C. Martin. Agile software development: principles, patterns, and practices. Prentice
Hall, 2002, pp. 20–22.

[17] V. Kannan, S. Jhajharia, and S. Verma. “Agile vs waterfall: A Comparative
Analysis.” In: International Journal of Science, Engineering and Technology Research
(IJSETR) 3.10 (2014), pp. 2680–2686.

[18] S. Balaji and M. S. Murugaiyan. “Waterfall vs. V-Model vs. Agile: A comparative
study on SDLC.” In: International Journal of Information Technology and Business
Management 2.1 (2012), pp. 26–30.

[19] SDLC - V-Model. url: https://www.tutorialspoint.com/sdlc/sdlc_v_model.
htm (visited on 2020-02-14).

[20] A. X. Fellmeth and M. Horwitz. Guide to Latin in international law. Oxford Univer-
sity Press, 2009.

[21] M. Ohira, A. E. Hassan, N. Osawa, and K.-i. Matsumoto. “The impact of bug
management patterns on bug fixing: A case study of Eclipse projects.” In: 2012
28th IEEE International Conference on Software Maintenance (ICSM). IEEE. 2012,
pp. 264–273.

[22] L. Hiew. “Assisted detection of duplicate bug reports.” PhD thesis. University of
British Columbia, 2006.

[23] J. Kuruvilla. JIRA Development Cookbook. Packt Publishing Ltd, 2016.

[24] T. Dawson. ’find similar’ feature to prevent creating duplicate issue. May 2003. url:
https://jira.atlassian.com/browse/JRASERVER-1633 (visited on 2020-02-03).

85

https://www.tutorialspoint.com/sdlc/sdlc_agile_model.htm
https://www.tutorialspoint.com/sdlc/sdlc_agile_model.htm
https://www.tutorialspoint.com/sdlc/sdlc_v_model.htm
https://www.tutorialspoint.com/sdlc/sdlc_v_model.htm
https://jira.atlassian.com/browse/JRASERVER-1633

Bibliography

[25] G. Murphy and D. Cubranic. “Automatic bug triage using text categorization.”
In: Proceedings of the Sixteenth International Conference on Software Engineering &
Knowledge Engineering. Citeseer. 2004.

[26] S. R. Gunn et al. “Support vector machines for classification and regression.” In:
ISIS technical report 14.1 (1998), pp. 5–16.

[27] R. B. Segal and J. O. Kephart. “MailCat: An intelligent assistant for organizing
e-mail.” In: Proceedings of the third annual conference on Autonomous Agents. 1999,
pp. 276–282.

[28] M. F. Porter et al. “An algorithm for suffix stripping.” In: Program 14.3 (1980),
pp. 130–137.

[29] C. Buckley, J. Walz, C. Cardie, S. Mardis, M. Mitra, D. Pierce, and K. Wagstaff.
“The smart/empire tipster ir system.” In: TIPSTER TEXT PROGRAM PHASE
III: Proceedings of a Workshop held at Baltimore, Maryland, October 13-15, 1998. 1998,
pp. 107–121.

[30] P. Hooimeijer and W. Weimer. “Modeling bug report quality.” In: Proceedings of the
twenty-second IEEE/ACM international conference on Automated software engineering.
2007, pp. 34–43.

[31] P. Runeson, M. Alexandersson, and O. Nyholm. “Detection of duplicate defect
reports using natural language processing.” In: 29th International Conference on
Software Engineering (ICSE’07). IEEE. 2007, pp. 499–510.

[32] N. Mishra, R. Schreiber, I. Stanton, and R. E. Tarjan. “Clustering social networks.”
In: International Workshop on Algorithms and Models for the Web-Graph. Springer.
2007, pp. 56–67.

[33] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmermann.
“What makes a good bug report?” In: Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering. 2008, pp. 308–318.

[34] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang. “Towards more accurate retrieval of dupli-
cate bug reports.” In: 2011 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011). IEEE. 2011, pp. 253–262.

[35] S. Robertson, H. Zaragoza, et al. “The probabilistic relevance framework: BM25
and beyond.” In: Foundations and Trends R© in Information Retrieval 3.4 (2009),
pp. 333–389.

86

Bibliography

[36] M. Taylor, H. Zaragoza, N. Craswell, S. Robertson, and C. Burges. “Optimisation
methods for ranking functions with multiple parameters.” In: Proceedings of the
15th ACM international conference on Information and knowledge management. 2006,
pp. 585–593.

[37] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G.
Hullender. “Learning to rank using gradient descent.” In: Proceedings of the 22nd
international conference on Machine learning. 2005, pp. 89–96.

[38] A. Alipour, A. Hindle, and E. Stroulia. “A contextual approach towards more
accurate duplicate bug report detection.” In: 2013 10th Working Conference on
Mining Software Repositories (MSR). IEEE. 2013, pp. 183–192.

[39] X. Yang, D. Lo, X. Xia, L. Bao, and J. Sun. “Combining word embedding with
information retrieval to recommend similar bug reports.” In: 2016 IEEE 27Th inter-
national symposium on software reliability engineering (ISSRE). IEEE. 2016, pp. 127–
137.

[40] F. Koch. REST-based data integration services for software engineering domain. 2016.

[41] G. Salton, A. Wong, and C.-S. Yang. “A vector space model for automatic index-
ing.” In: Communications of the ACM 18.11 (1975), pp. 613–620.

[42] J. Beel, B. Gipp, S. Langer, and C. Breitinger. “Research-paper recommender
systems : a literature survey.” In: International Journal on Digital Libraries 17.4
(2016), pp. 305–338. issn: 1432-5012. doi: 10.1007/s00799-015-0156-0.

[43] C. D. Manning, P. Raghavan, and H. Schütze. “Scoring, term weighting, and the
vector space model.” In: Introduction to Information Retrieval. Cambridge Univer-
sity Press, 2008, pp. 100–123.

[44] T. Mikolov, K. Chen, G. S. Corrado, and J. A. Dean. Computing numeric represen-
tations of words in a high-dimensional space. US Patent 9,037,464. May 2015.

[45] T. Mikolov, K. Chen, G. Corrado, and J. Dean. “Efficient estimation of word
representations in vector space.” In: arXiv preprint arXiv:1301.3781 (2013).

[46] Word2vec. July 2013. url: https://code.google.com/archive/p/word2vec/
(visited on 2020-03-11).

[47] V. Efstathiou, C. Chatzilenas, and D. Spinellis. “Word embeddings for the software
engineering domain.” In: Proceedings of the 15th International Conference on Mining
Software Repositories. 2018, pp. 38–41.

87

https://doi.org/10.1007/s00799-015-0156-0
https://code.google.com/archive/p/word2vec/

Bibliography

[48] A. Khatua, A. Khatua, and E. Cambria. “A tale of two epidemics: Contextual
Word2Vec for classifying twitter streams during outbreaks.” In: Information Pro-
cessing & Management 56.1 (2019), pp. 247–257.

[49] M. Claesen and B. De Moor. “Hyperparameter search in machine learning.” In:
arXiv preprint arXiv:1502.02127 (2015).

[50] S. L. Harris and D. M. Harris. “3 - Sequential Logic Design.” In: Digital Design
and Computer Architecture. Ed. by S. L. Harris and D. M. Harris. Boston: Morgan
Kaufmann, 2016, pp. 108–171. isbn: 978-0-12-800056-4. doi: https://doi.org/10.
1016/B978-0-12-800056-4.00003-0.

[51] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. “Distributed
representations of words and phrases and their compositionality.” In: Advances
in neural information processing systems. 2013, pp. 3111–3119.

[52] B. C. Csáji et al. “Approximation with artificial neural networks.” In: Faculty of
Sciences, Etvs Lornd University, Hungary 24.48 (2001), p. 7.

[53] A. Kolmogorov. “On the representation of continuous functions of several vari-
ables by superpositions of continuous functions of a smaller number of variables.”
In: Proceedings of the USSR Academy of Sciences. Vol. 108. 1956, pp. 179–182. En-
glish translation: American Mathematical Society Translations: Series 2. Vol. 17. 1961,
pp. 369–373.

[54] V. Arnold. “On functions of three variables.” In: Proceedings of the USSR Academy
of Sciences. Vol. 114. 1957, pp. 679–681. English translation: American Mathematical
Society Translations: Series 2. Vol. 28. 1963, pp. 51–54.

[55] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. “Multilayer feedforward net-
works with a nonpolynomial activation function can approximate any function.”
In: Neural Networks 6.6 (1993), pp. 861–867.

[56] K. Hornik. “Approximation capabilities of multilayer feedforward networks.” In:
Neural Networks 4.2 (1991), pp. 251–257.

[57] P. Jaccard. “Étude comparative de la distribution florale dans une portion des
Alpes et des Jura.” In: Bulletin de la Société Vaudoise des Sciences Naturelles 37 (1901),
pp. 547–579.

[58] A. Hald. History of Probability and Statistics and Their Applications before 1750. John
Wiley & Sons, Inc., Jan. 1990.

[59] M. A. Alcorn. airalcorn2/RankNet. Jan. 2019. url: https://github.com/airalcorn2/
RankNet (visited on 2020-03-19).

88

https://doi.org/https://doi.org/10.1016/B978-0-12-800056-4.00003-0
https://doi.org/https://doi.org/10.1016/B978-0-12-800056-4.00003-0
https://github.com/airalcorn2/RankNet
https://github.com/airalcorn2/RankNet

Bibliography

[60] A. Egg. eggie5/RankNet. Jan. 2019. url: https://github.com/eggie5/RankNet
(visited on 2020-03-19).

[61] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim. “Duplicate bug reports
considered harmful. . . really?” In: 2008 IEEE International Conference on Software
Maintenance. IEEE. 2008, pp. 337–345.

[62] M. Bowler. Truck Factor. May 2005. url: http://www.agileadvice.com/2005/05/
15/agilemanagement/truck-factor/ (visited on 2020-04-02).

[63] American Mathematical Society Translations: Series 2. Vol. 17. 1961, pp. 369–373.

[64] American Mathematical Society Translations: Series 2. Vol. 28. 1963, pp. 51–54.

89

https://github.com/eggie5/RankNet
http://www.agileadvice.com/2005/05/15/agilemanagement/truck-factor/
http://www.agileadvice.com/2005/05/15/agilemanagement/truck-factor/

	Acknowledgments
	Abstract
	Contents
	Introduction
	Context and Motivation
	Contributions
	Research Questions

	Software Development Process
	Overview
	Defect Management at Sky

	Related Work
	Similar Bug Report Detection Systems by the Scientific Sector
	Commercial Solutions

	Methodology
	Extracting Defect Reports from the its
	Preparing Defect Reports for Ranking
	Ranking Defect Reports by Similarity
	Publishing the Ranking Result
	Comparision to Existing Approaches

	Implementation of the Recommender System Defejavu
	Results
	General Insights
	Introduction of Defejavu to the Defect Management Process at Sky
	Manual vs. Tool Supported Defect Triage
	Generalizability of Defejavu
	Domain Knowledge as Underappreciated Asset
	Threats to Validity

	Conclusion and Future Work
	List of Abbreviations
	List of Figures
	List of Tables
	Bibliography

