
Department of Informatics
Technical University of Munich

Master’s Thesis in Information Systems

Interactive Visualizations for
Supporting the Analysis of

Distributed Services Utilization

Daniel Graf Hoyos

Department of Informatics
Technical University of Munich

Master’s Thesis in Information Systems

Interactive Visualizations for Supporting the
Analysis of Distributed Services Utilization

Interaktive Visualisierungen zur
Unterstützung der Analyse der Nutzung

verteilter Services

Author: Daniel Graf Hoyos
Supervisor: Prof. Dr. Florian Matthes
Advisor: Martin Kleehaus, M.Sc.
Date: June 15, 2018

I confirm that this master’s thesis is my own work and I have documented all
sources and material used.
Ich versichere, dass ich diese Masterarbeit selbstständig verfasst und nur die an-
gegebenen Quellen und Hilfsmittel verwendet habe.

Munich, June 15, 2018 Daniel Graf Hoyos

Abstract

During the past few years, a fundamental architectural shift has taken place in
the field of software development. Classical monolithic systems are progressively
transformed into or replaced by Microservice-based architectures. This process
has been mainly pioneered and accelerated by large tech companies like Netflix,
Spotify or Uber, which describe their experiences publicly and extensively provide
open source software. Microservices are the result of a decomposition of the com-
plex internal logic of monolithic applications into small, clearly separated tasks.
Each Microservice performs only one independent task and delegates more com-
plex processes further on to other Microservices. While communication between
different services takes place over well-defined, standardized interfaces, there is a
large heterogeneity in the characteristics of Microservices and their instances like
programming languages or run-time environments, respectively. The benefits of
Microservices over monoliths include easier scaleability, improved technology fit
and better service reusability. They enable agile development, where small teams
can rework individual Microservices in shorter iteration cycles. However, the
lower inner complexity of a single service is achieved through a higher outer com-
plexity, as hundreds of Microservices can be necessary to replace one monolithic
system. In order to thoroughly monitor and document these large service net-
works, a new tool for Service Architecture Discovery was developed at TUM. This
work focuses on the visualization of the obtained Architecture Discovery results.
Different views providing information for various stakeholders are implemented
in a prototype visualization tool. Evaluation of the implementation is performed
in a lab environment providing a basic distributed Microservice infrastructure.

vii

viii

Contents

Abstract vii

Outline of the Thesis xi

1 Introduction 1
1.1 From Monoliths to Microservices . 1
1.2 Microservice Monitoring and Visualization 3

2 Background 5
2.1 Microservices . 5

2.1.1 Scalability . 7
2.1.2 Complexity . 8
2.1.3 Microservices in Action . 10

2.2 Enterprise Architectures . 11
2.2.1 Enterprise Architecture Frameworks 11
2.2.2 ISO 42010 . 12
2.2.3 Stakeholders . 13
2.2.4 Architectural Layers . 14
2.2.5 Artifacts . 16

2.3 Distributed Tracing . 18

3 Related Work 23
3.1 Service Architecture Discovery . 23
3.2 Anomaly Detection Based on Distributed Traces 25
3.3 Enhanced Enterprise Architecture Model 26

4 Solution Approach 27
4.1 Entities . 27
4.2 Data Sources . 29

ix

Contents

4.3 Stakeholders . 31
4.4 Suggested Views . 34

4.4.1 Enterprise View . 34
4.4.2 Domain View . 36
4.4.3 Product View . 38
4.4.4 Microservice View . 39

5 Prototype Implementation 41
5.1 Data Model . 41
5.2 Architecture . 43
5.3 Use cases . 46
5.4 Page Elements . 47

5.4.1 Graphs . 48
5.4.2 Entity Listings . 52
5.4.3 Recent Problems . 53
5.4.4 Instances and API Specification 54

5.5 Navigation Flow . 55

6 Evaluation 59
6.1 Microservice Test Environment . 59
6.2 Functional Evaluation . 60
6.3 Other Comparable Visualization Tools 65

7 Outlook and Conclusion 67
7.1 Additional Data . 67
7.2 Further Features . 69
7.3 Conclusion . 70

List of Figures 73

List of Listings 75

Bibliography 77

x

Contents

Outline of the Thesis

CHAPTER 1: INTRODUCTION

In this chapter, the transition from monoloithic systems to the newly emerging Mi-

croservice technology is presented. Besides, an overview is given of the thesis and

its purpose.

CHAPTER 2: BACKGROUND

This chapter provides a more detailed view on features, characteristics and ben-

efits of Microservice-based architectures compared to monolithic systems. The

description of Enterprise Architectures explains the applied EA framework and

introduces stakeholders with their respective interests and necessary information.

Additionally, layers and artifacts are described, thereby providing an idea of the

entities included in the visualized architecture model. Finally, the concept and

goals of Distributed Tracing are presented, which underlie the Architecture Dis-

covery approach described in the next chapter.

CHAPTER 3: RELATED WORK

The present thesis is embedded in the context of other thesis work at the SEBIS

chair at TUM. This chapter gives an overview about the work on Service Archi-

tecture Discovery, Anomaly Detection and an Enhanced Enterprise Architecture

Model, performed by Patrick Schäfer, Lukas Steigerwald and Christopher Janietz,

respectively. All three of those theses are advised by Martin Kleehaus

CHAPTER 4: SOLUTION APPROACH

This chapter provides the theoretical basis of the visualization for the subsequent

prototype implementation. It outlines displayed Entities, used Data Sources and

imagined Stakeholders of the visualization prototype. Key decisions are made re-

garding the provided views and information, aggregation levels and navigation

flows.

xi

Contents

CHAPTER 5: PROTOTYPE IMPLEMENTATION

The prototype implementation is documented by describing components of the

views conceptualized in the previous chapter and summarizing the applied li-

braries, frameworks and application platform. The chapter also provides code

examples and depicts the navigation flow through the implemented prototype.

CHAPTER 6: EVALUATION

For the evaluation of the implemented prototype, a test environment with a ba-

sic Microservice architecture is used. Increasingly complex data sets are provided

to the prototype and functional correctness of the produced graphs is ensured.

Additionally, other Microservice visualization approaches are considered in com-

parison to the designed prototype.

CHAPTER 7: CONCLUSION AND OUTLOOK

The last chapter discusses potential extensions to the visualization by including

more diverse data types or implementing additional features. A short conclusion

wraps up the work.

xii

1 Introduction

1.1 From Monoliths to Microservices

In our increasingly digital world, everyone uses countless services and applica-

tions offered by various IT companies. From online shopping, social media, stream-

ing of music and movies to platforms for ordering food or transportation, billions

of user interactions take place every day. This digitization of the daily life is re-

flected by the rapid expansion of the corresponding IT companies like Amazon,

Spotify or Uber. However, as a consequence of this enlargement, many compa-

nies struggled to scale up their IT landscapes at the same speed as their businesses

grew. But development speed is crucial to compete in the marketplace, as Net-

flix Director of Web Engineering Adrian Cockcroft learned [Mauro, 2015b]. This is

why Netflix as one of the first global players decided to radically turn over their

IT architecture by abandoning their classic, monolithic system for the emerging

Microservice technology.

In a traditional monolith, a single IT system contains many IT processes and

components of a company in a tightly coupled manner. Such a self-contained ap-

plication is able to perform all tasks on the way to a specific function by itself,

independently from other applications. Such systems had been state-of-the-art

software development in the early 2000s, but the limitations of monoliths became

especially apparent during rapid expansion of the businesses. As all components

in a monolith are tightly coupled, a performance bottleneck in a single process

limits the whole application. Likewise, reworking a part of the system requires

a redeployment of the full code base and becomes more and more complex with

1

1 Introduction

growing code size. Together with the increasing tendency towards agile software

development and shorter release intervals, these drawbacks of monoliths fostered

the emergence of Microservice-based architectures. In this architectural and orga-

nizational software development approach, a complex system is broken down into

small entities called Microservices. They communicate via well-defined interfaces

and perform only a single, isolated task each. This decoupling allows the inde-

pendent development, operation and scaling of the individual services, thereby

enabling agile development with shorter release cycles.

Figure 1.1: Transition from a monolithic system to a Microservice-based
architecture

From 2015 on, more and more major global players announced to reorganize

their IT systems by converting their monolithic systems into Microservice-based

architectures. Netflix was one of the first companies to bet on Microservices and

was quickly followed by Amazon, Walmart, Spotify and many others. In a 2016

survey by the German software company LeanIX, more than 100 IT decision-makers

from leading companies in the US and Europe were asked for their companies’

2

1.2 Microservice Monitoring and Visualization

opinion on Microservices [LeanIX, 2016]. 80% of the surveyed companies planned

a transition to Microservices or had already achieved it, while companies that re-

lied mostly on Microservices were able to release new software significantly faster

than those not using Microservices.

1.2 Microservice Monitoring and Visualization

While Microservice-based architectures provide a wide range of benefits, they also

come at the cost of a highly complex system. A large application may easily con-

sist of several hundred Microservices. This is a result of the transition from the

inner complexity of a large, monolithic application towards the outer complexity

between individual Microservices performing all the distributed tasks. Due to this

complexity, architecture monitoring, recovery and documentation are more chal-

lenging than for a monolithic system. Different monitoring approaches have been

developed to tackle this issue, but they often lack the connection between the IT

infrastructure and business processes [Kleehaus et al., 2018].

At the chair for Software Engineering for Business Information Systems (SEBIS)

at TU Munich, a research project is centered around a new tool for monitoring and

analyzing distributed Microservice architectures. An Architecture Discovery was

developed, which automatically detects Microservice instances and matches them

to existing business processes. As a resulting artifact, it creates a an adjacency

matrix containing all Microservices, their instances and associated hardware as

well as any communication between services. After manual annotation of business

processes and mapping to the corresponding user interfaces, business processes

are also added to the adjacency matrix.

For a limited number of entities included in the adjacency matrix, the resulting

table may directly serve as a depiction of the underlying Microservice architecture.

However, with growing data set size, the adjacency matrix quickly becomes com-

3

1 Introduction

plicated to use as read-out. To allow thorough monitoring of an IT architecture

and its associated business layer, a meaningful visualization is needed.

To this end, the present thesis describes the conceptualization and implementa-

tion of a prototype visualization tool. Based on the needs and interests of different

Enterprise Architecture stakeholders, several views on the underlying Microser-

vice architecture are drafted and subsequently realized. Varying aggregation and

magnification settings allow to monitor services at the respective level of detail

for each use case. Evaluation of the implemented prototype employs a lab envi-

ronment with a basic Microservice infrastructure to test for functional correctness

with increasingly complex data sets.

4

2 Background

2.1 Microservices

Microservices are a modern architectural design concept being the latest evolu-

tion of the well known Service Oriented Architecture (SOA) [Newman, 2015]. As

their name already indicates, Microservices still specify as services as defined in

the SOA context. But while SOA services provide sometimes large and complex

functionality, Microservices break down processes into much smaller generic enti-

ties. Such an entity performs only a single independent and isolated business task

and in turn delegates more complex tasks further on to other Microservices. Com-

munication among Microservices is typically handled through HTTP web requests

using REST as a unified data exchange format. These isolated tasks are executed

on separate run-time environments each.

The main difference between Microservices and the original SOA concepts lays

in the fact, that Microservices often already know about each other and how to use

the the other parties interfaces, while in a SOA scenario services by design need to

be discovered at first during run time. Such a Repository and discovery structure

might indeed be also implemented in a Microservice based environment but this

is far from an obligatory prerequisite [Daya et al., 2016].

Microservices decompose code of large applications into small, separate func-

tional units. Each Microservice has clearly defined boundaries, tasks and depen-

dencies. This forces a low coupling and a high encapsulation. Breaking down large

and complex application logic into such functional pieces helps to reduce the com-

5

2 Background

Figure 2.1: Service Oriented Web Service Architecture along the defini-
tions in [Newcomer et al., 2004] and [Matthew MacKenzie
et al., 2006]

plexity and interdependency of code and therefore results in appreciable shorter

development cycles. Especially parallel development of Microservices is enabled

and dependencies are also reduced in terms of software testing [Bakshi, 2017].

This development totally fits the currently prevalent tendency towards more

agile software development processes to live up to the demand of shorter release

intervals and more flexibility [Fowler and Lewis, 2014].

Not only during the initial design and development stages of Microservices,

but also during later maintenance and potential code revision phases the bene-

fits of well-defined Microservices come into play. If a single Microservice is being

reworked, only this particular entity needs to be redeployed as long as the pro-

vided service interface stays unchanged. Particularly in large settings with various

Microservices, this enables nearly continuous operation of business, minimizing

downtime by preventing extensive redeployment of largely unchanged code.

As each Microservice is highly specialized on a very specific task, there is a large

variation in software architecture, run-time environment and external dependen-

cies (such as databases or other data storage solutions) among Microservices to

6

2.1 Microservices

match their respective needs. Some services may for example utilize classic re-

lational databases while others will benefit from the use of noSQL or time series

databases [Hasselbring, 2016].

Similarly, requirements regarding the technical features provided by their host

system may differ widely between Microservices, from processing power to large

RAM allocations and capabilities to extensive parallel calculations. Thus, opti-

mization of existing Microservices can not only be performed on code level, but

also on hardware and visualization levels. In general, different Microservices

might even be based on different programming languages as long as they are ca-

pable of providing a REST API to interact with.

Based on this possible heterogeneity in terms of technology, Microservices en-

able developers to experiment with new technologies in a small and restricted en-

vironment without needing to go along with or to abandon existing technologies.

2.1.1 Scalability

Figure 2.2: AKF scale cube adapted from [Richardson, 2017]

Compared to monolithic systems, a Microservice Architecture allows higher

7

2 Background

flexibility in terms of scalabilty [Bradley, 2015]. Each Microservice may run on

very specific selected hardware (typically on top of virtualization) fitted tightly to

the Microservice characteristics. Thereby, performance of single Microservices can

be highly optimized. While in traditional, monolithic architectures a performance

bottleneck resulted in an upscale of the whole application, in a Microservice archi-

tecture only a single functionality needs to be re-scaled.

Regarding the AKF scale cube introduced by Abbott [Abbott and Fisher, 2015],

scaling can be performed into three different dimensions, which are illustrated

along the edges of a cube (fig.2.2). A duplication or cloning of a system resembles

an X-Axis scaling, which is also called horizontal scaling. The second, vertical di-

mension (Y-axis) relies on functional decomposition and therefore breaks down a

large system into smaller, functional parts. Finally, the third, orthographic dimen-

sion (Z-axis) is based on data partitioning by contextual factors.

Microservices by design already represent a variant of Y-axis scaling, as they

are in fact already a functional decomposition of a potentially larger monolithic

system. Furthermore, the use of Microservices reduces the effort for X-axis scaling

as well as for Z-axis scaling.

Both types, x- and z-axis scaling can be performed on Microservice level and

therefore allow a precise targeting of bottlenecks. Operating multiple instances of

a single Service runs smoothly and plain load balancing between these instances

represents an X-axis scaling. In contrast, a data partitioning between multiple in-

stances of the same Service would result in a Z-axis scaling [Richardson, 2017].

2.1.2 Complexity

Monolithic applications come along with high code complexity and require large

maintenance efforts over time. In contrast, each individual unit in a distributed

Microservice environment covers comparably low complexity. In return, a high

distribution level and short release cycles on Service-level and therefore frequently

changing version constellations lead to a considerably higher complexity on Ar-

8

2.1 Microservices

chitecture Level. In fact, changing a monolithic architecture into a Microservice

architecture does not reduce the overall complexity of the whole system. Instead

the added abstraction and communication layers might even further complicate

the system.

Figure 2.3: Breakdown of Inner and Outer Architecture in a Microservice
Architecture Environment [Olliffe, 2015]

Gary Olliffe, Research Director at Gartner, framed a reasonable differentiation

between inner and outer architecture of Microservices [Olliffe, 2015]. The inner

architecture correlates to the implementation architecture within a specific Service,

whereas the outer architecture covers all inter-service communication and delega-

tion logic, which is further complemented by all efforts required to run and main-

tain service instances.

Reduced complexity of the inner architecture is what is mostly considered as a

9

2 Background

main benefit of a distributed service architecture that leads to more efficient de-

velopment. In fact, it is just shifted towards the outer architecture, where it needs

to be addressed likewise. The skills to establish and operate such a distributed

architecture are nowadays combined into the job of DevOps, whose assignments

involve developmental tasks as well as operational tasks [Wootton, 2014].

2.1.3 Microservices in Action

In modern technology fields, companies often share their technology insights in

blog posts, forums and publicly released tech talks. This is how several large tech

companies have openly described their movements towards a Service Oriented

Application Landscape.

Netflix, a major video streaming provider, was one of the first global players to

establish a Microservice architecture. They extensively covered their transition

and a bunch of standard use cases and best practices arose from their pioneer

work in modern Service-Oriented Architectures [Mauro, 2015a]. Netflix Director

of Web Engineering and then Cloud Architect Adrian Cockcroft emphasizes the

need for clear modularization and defined boundaries on all levels, ranging from

separate data stores for each Microservice through separate builds for individual

Microservice to small software development teams. Netflix open-sourced many of

their tools, thereby actively contributing to further development of Microservice

architectures. Examples are Netflix Eureka as a Microservice Repository and Net-

flix Conductor, a central orchestrator that manages up to multiple million process

flows in a complex Microservice environment [Baraiya and Singh, 2016].

The disruptive mobility intermediary Uber started their business with a classical

monolithic system, which sufficiently met all requirements as long as they were a

small company focusing on a single product in a single city. During their rapid

growth, they realized they had to break up their complex system into a distributed

Service-Oriented Architecture. Uber Engineering described their movement from

10

2.2 Enterprise Architectures

a monolithic application towards hundreds of Microservice in late 2015 [Haddad,

2015]. While taking the opportunity of redesigning their application landscape

for the purpose of a major cleanup of their codebase, they also faced some newly

emerging problems during this extensive transition. For example the huge number

of single services led to a lack of obviousness, which they tackled by introducing

clear communication standards like mandatory Requests for Commons before in-

troducing a new service to avoid code duplications [Reinhold, 2016].

Other streaming industry players such as Soundcloud [Calçado, 2014] and Spo-

tify [Novoseltseva, 2017] likewise adjusted their IT strategy, decomposing their

year-old monoliths into novel small and independent services. Finally, huge com-

mercial players like Amazon [Novoseltseva, 2017] and Walmart [Webber, 2016] with

vast IT landscapes are turning the tide. They fixed their by now overcharged sys-

tems by shifting towards agile development in manageable small teams.

2.2 Enterprise Architectures

In order to successfully pursue business, companies operate a large number of IT

systems, applications, digital services and processes. While use of and responsibil-

ities for those systems may be spread throughout the company, top level manage-

ment still needs to be able to keep track of the entire IT landscape and its devel-

opment. This top-level view of Enterprise IT is called the Enterprise Architecture.

Associated roles and tasks managing the IT landscape are organized as the Enter-

prise Architecture Management.

2.2.1 Enterprise Architecture Frameworks

Throughout the last three decades, several Enterprise Architecture Frameworks

emerged in order to establish a defined set of terms and relationships in the field

of Enterprise Architecture. The Zachman Framework was published in 1987 by IT

consultant John A. Zachman [Zachman, 1987] and served as a blueprint for mul-

11

2 Background

tiple following definition sets. Further development of Enterprise Architecture

Frameworks was largely driven by US federal agencies introducing the Techni-

cal Architecture Framework for Information Management (TAFIM) and the De-

partment of Defense Architecture Framework (DoDAF) by the United States De-

partment of Defense [Department of Defense, 1996, DoD, 2012], the Treasury En-

terprise Architecture Framework (TEAF) by the US department of the treasury

[Department of the Treasury, 2000] and the Federal Enterprise Architecture Frame-

work (FEAF) by the Federal government of the United States [Council, CIO, 1999].

Another popular framework, The Open Group Architecture Framework (TO-

GAF), which is in turn based on TAFIM, is developed by The Open Group, a large

consortium of businesses and government agencies [The Open Group, 2018a]. TO-

GAF is nowadays extensively used by large companies around the world, being

established at most of Global 50 and still the majority of Fortune 500 [The Open

Group, 2018b].

Those Frameworks were mostly developed in parallel, adopt features from each

others and offer slightly different artifacts, displayed from various points of view,

leading to a distinct fragmentation of Enterprise Architecture results [Urbaczewski

and Mrdalj, 2006].

2.2.2 ISO 42010

The international standard ISO 42010 was introduced by IEEE in 2011 [ISO42010,

2011]. By defining fundamental terms and abstraction layers, it finally gave a

common basis for the scientific discourse as well as for practical implementations

and advancements. The standard deals with stakeholders, views, models and re-

lations. Additonally, a comprehensive consideration of Enterprise Architecture

Frameworks helps to describe Enterprise Architectures on a basis of mutual un-

derstanding.

In the context of ISO Standards, the term system is formulated as a broad concept

and embraces not only hard- and software, but also includes any configurable and

12

2.2 Enterprise Architectures

man-made item. This means that processes, procedures, facilities and even human

beings are covered by the definition [ISO15288, 2015].

Enterprise Architectures describe a set of systems and their relations among each

others. This description proofs to be helpful throughout the whole life cycle of

an IT system. It is not only used through planning and implementation phases,

but also during operation, maintenance and evaluation periods up to an even-

tual disassembly stage and potentially a final replacement of the system.[ISO15288,

2015, ISO24748, 2011]

2.2.3 Stakeholders

The Enterprise Architecture does not only describe the IT systems of a company,

but also includes the environment surrounding the systems. As such, several dif-

ferent roles and responsibilities in a company are relevant to the Enterprise Archi-

tecture.

ISO 42010 gives a rough overview of important stakeholders that should be cov-

ered by an architecture description. In this ISO context, all stakeholders are con-

sidered in their relations towards the system to be described.

First of all, a system is applied the users actually using it, while someone else

is responsible for continuous operation of aforementioned system. Furthermore,

someone owns it, whereas potentially another stakeholder acquired the system

beforehand. Additionally, the system is in turn supplied by potentially yet another

stakeholder.

From a technical perspective, someone planned and built the system, while de-

velopers actually implemented the system and maintainers ensure an ongoing

operation and perform inevitable adjustments.

For each of those different stakeholder roles, different concerns are relevant to

the architectural description. Varying views in an Enterprise Architecture descrip-

tion allow a satisfying fulfillment of these concerns [ISO42010, 2011].

13

2 Background

2.2.4 Architectural Layers

Figure 2.4: Enterprise Architecture layers reproduced from [Jonkers et al.,
2003]

In order to structure an Enterprise Architecture in a meaningful way, it is a com-

mon approach across the various Enterprise Architecture Frameworks to break

an Enterprise Architecture description into three hierarchical architectural layers.

These layers differ in scope, abstraction level and information granularity [Jonkers

et al., 2003].

On each layer, a set of views examines the respective layer from different angles,

fulfilling diverse requirements and needs. From Top to Bottom, layers gradually

switch from a pure business perspective towards a solely technical representation.

Each layer tackles different topics, also called architectural domains. In the follow-

ing, the most common layers are shortly described.

Business Layer

The Business Layer is the topmost layer in an Enterprise Architecture. It influ-

ences and shapes almost any other of the more technical layers. The business layer

is generally the point of origin of all actions undertaken in order to perform as

14

2.2 Enterprise Architectures

a business. On the business layer, all business-relevant elements are taken into

account, covering four different architectural domains.

The organizational domain contains all structural aspects of entities acting in the

company as well as their roles organizational setting.

The Process domain deals with all business activities leading to an added value,

for example by making products or offering services. In contrast, the Product do-

main covers all information about the actual products and services and how they

shape the overall business behaviour.

The information domain forms the fourth and last domain on the business layer,

dealing with all business-relevant information. [Jonkers et al., 2003].

Application Layer

As second important layer, the application layer is the conjunctive link between

business and technology worlds.

Its informational aspect is covered by the data domain, which contains all au-

tomatically processable information and serves as provider for the business infor-

mation domain as well as the application domain.

The application domain in turn is responsible for all applications and IT systems

operated. These applications in turn support and enable the business processes.

The application domain only handles the software side of applications [Jonkers

et al., 2003].

Technology Layer

The third and lowermost layer is the technology layer, which is the foundation

for the operation of any applications. Only a single domain is covered by the

Technology Layer.

The Technical Infrastructure Domain describes all elements providing a func-

tional environment in order to run applications. This includes not only hardware

to provide processing power but also virtualization, network and communication

infrastructure [Jonkers et al., 2003].

15

2 Background

Other Layers

In addition to those three basic layers, some Enterprise Architecture Frameworks

further distinguish between business and application layer by introducing a few

supplemental layers.

As such, a separate Process layer is introduced to segregate all process related in-

formation from the business domains. This new layer handles all matters concern-

ing the implementation and operation of services in order to increase efficiency.

As another additional layer, the Integration layer specifically takes care of the

application structure and in general of interactions among applications. The In-

tegration layer helps to evolve a friction-less application implementation [Winter

and Fischer, 2006].

2.2.5 Artifacts

A set of artifacts is typically present across Enterprise Architecture Frameworks,

helping to describe different domain needs. Along the aforementioned scheme,

artifacts can be matched to layers and specific domains. They describe facets of

the overall IT landscape and usually confirm the corresponding specifications. As

such they comprehensively specify an object of interest from different viewpoints.

As the following artifacts are a superset of multiple Enterprise Architect Frame-

works, including all of the specifications in an actual Enterprise Architecture de-

scription might result in a redundant and too detailed description. Therefore, sev-

eral of the artifacts should be slimmed, or moved to lower level architectural de-

scriptions such as for example the software architecture, for an actual Enterprise

Architecture implementation.

Strategy Specification

Domiciled in the business layer, the strategy specification covers all matters con-

cerning the company strategy. A companies’ strategy specification is defining what

the company is doing and in which direction it is headed. This does not only in-

16

2.2 Enterprise Architectures

clude organizational goals and success factors but extends to marketing strategies,

mission statements, organization-wide values and business principles [Winter and

Fischer, 2006].

Organization and Process Specification

Another artifact of the business layer are the organizational and process specifi-

cations. This guideline specifies how business should be undertaken. These spec-

ifications particularly describe how the organization is structured into business

units, their hierarchies and how these units should work and collaborate among

each other. Such a specification should also cover metrics to evaluate the overall

performance [Winter and Fischer, 2006].

Application and Software specification

In order to support enterprise business activities, the IT alignment is specified in

the application specification, emerging from the application layer. It tackles the

specification of services, applications and their respective components to support

a reasonable application landscape.

The Software specification in turn is describing the same information for the

software components inside one application and their functionality as well as the

relations to data and input sources and interfaces to provide data.

Technical Infrastructure specification

For the Technology layer a specific description of IT components and actually used

hardware meets the relevant needs.

Dependency specification

Additionally to the layer-specific artifacts, there is another set of layer-independent

artifacts. These specifications explicitly describe the relations and dependencies

between the different layers or at least between multiple specifications.

17

2 Background

Possible examples of such dependencies could be an application ownership be-

tween an organizational unit (Business layer) and an individual application (Ap-

plication Layer), the hardware and infrastructure (Technology Layer) usage of

a specific Software component, or the relation between strategic goals (Strategy

Specification) and performance indicators or metrics (Organization Specification)

to track progress towards the goal [Winter and Fischer, 2006].

These cross-specification-dependencies are especially valuable, as they ensure a

comprehensive consideration of different aspects in relation to each other.

2.3 Distributed Tracing

As the deployment of large-scale distributed systems catches on lately, a particu-

lar need for monitoring and controlling tools emerged. On a classical monolithic

system, it is often sufficient to inspect a single log-file in order to identify and

understand problems. In contrast, the complexity of the same task can be sev-

eral magnitudes higher within an environment of distributed systems. Log-files

from different machines, potentially running on totally different technical environ-

ments, need to be evaluated. Additionally, the sequence of procedures needs to be

retraced and matched among multiple services. This requires a re-identification

of calls on different systems, for example by matching call time-stamps. Asyn-

chronous calls additionally complicate things, as they can only be reconstructed

using the beginning time stamps.

Different solutions that tackle the task of tracing calls in distributed systems

have emerged over time. One solution approach has been presented by Google in

its Dapper paper [Sigelman et al., 2010]. The core product of Google, the Google

Search Engine, is a large construct of sometimes more than a thousand distributed

systems involved responding to a single search request. Naturally, there exists a

particular interest in understanding relations and activity sequences among this

vast amount of Microservices.

18

2.3 Distributed Tracing

Two especially important characteristics of such a distributed tracing tool were

identified by Google in the process of designing Google Dapper.

Firstly, distributed tracing needs to allow a ubiquitous deployment, which in

turn ensures consistent monitoring without interruptions as far as each and every

Microservice can actually be monitored.

Secondly, continuous monitoring of Microservices is a crucial requirement, en-

abling the monitoring to actually observe anomalies and performance issues on

the go, as these might be exceedingly hard to reproduce in hindsight.

In order to meet these two high-level requirements, four major design goals pro-

vide a solid foundation for Google Dapper:

Low overhead

Performance is crucial, especially for front-end applications, where response

times heavily govern the bounce and exit rates. Therefore, it is essential that

any monitoring solution produces little to no additional load, minimizing the

negative effects for end users. A too heavy monitoring implementation may

easily exceed its benefits by producing too much load.

Application-level transparency

The distributed tracing implementation must not obstruct Microservice de-

velopment in any ways. As a result, developers should not even need to be

aware of distributed tracing and developers should not at all be required to

perform any steps or implement and add any code in order to enable dis-

tributed tracing. Quite the contrary, distributed tracing should be a ubiqui-

tous feature and tool that does not produce any hassle in development and

maintenance.

Scalability

The striven solution for distributed tracing needs to be freely scalable to al-

low systems of vastly different sizes to successfully perform distributed trac-

19

2 Background

ing in their respective system architecture. This may range from small ap-

plications relying on only a few distributed services to large-scale products

such as the Google search engine, which is based on thousands of services of

different size.

Fast data availability

In order to deduct meaningful data from a distributed tracing, it is of partic-

ular importance to make the gathered data available as soon as possible.

Figure 2.5: Communication sequence of a Microservice based system as
example for Google Dapper [Sigelman et al., 2010]. Adapted
from [Sigelman et al., 2010]

Figure 2.5 illustrates an exemplary user request in a Microservice based archi-

tecture. If all Services in this example are instrumented in a distributed tracing

environment, each service will report its own call to the distributed tracing server

20

2.3 Distributed Tracing

in form of a span. Each span contains information about the service itself, the id of

the parent Service that invoked the method call, the called method inside the ser-

vice and exact timings from request begin to end. Each span sent by the individual

Microservices contains the same trace id which matches to a single user request and

allows a recognition of related span. Based on this tracing id, the contained parent

span id and the annotated timings, it is possible to reconstruct the complete call

sequence of such a request as displayed in fig. 2.6 [Sigelman et al., 2010].

Figure 2.6: Sequential course of the exemplary user request displayed in
fig. 2.5 [Sigelman et al., 2010]

21

2 Background

22

3 Related Work

During the realization of this thesis, two other master thesis were written dealing

with different aspects of the same Microservice Test Environment. The concept of

this thesis is largely built upon the results of those other two works. Another third

thesis has just recently been started and will also contribute to the whole complex

as described in section 3.3.

3.1 Service Architecture Discovery

In his 2017 master thesis, Patrick Schäfer [Schäfer, 2017] presents a possible proce-

dure to automatically discover Microservice Instances and manually match them

to existing Business Processes. The presented solution does not only detect Mi-

croservice Instances, but also processes inter-service communication by evaluating

the distributed tracing spans produced by zipkin. This helps to gather data about

service usage and to enrich this data set with their associated communication de-

pendencies.

In order to reconstruct the request structure, the distributed tracing library en-

ables services to report their call spans as described in 2.3. All these reports from

the Microservices may be reassembled afterwards by matching the trace identifier,

which is included in each span. Based on this information, not only the order of

requests is traceable, but also the timings of services, as well as all instrumented

inter-service communications. This information is further useful for the purpose

of an Anomaly Detection which is described in section 3.2.

Based on the in this manner observed spans, the prototype designed by Schäfer

spreads an adjacency matrix. This adjacency matrix contains all Microservices,

23

3 Related Work

Figure 3.1: Adjacency matrix of the test environment at SEBIS chair TUM.
This adjacency matrix already contains observed communi-
cations between Microservices as well as manually modelled
Business Activities [Schäfer, 2017]

their instances and even the associated hardware on which the instances are oper-

ating. Schäfer does not distinct between virtual and physical hardware, as services

and service repository are equally unaware if they are running on virtual systems.

The mentioned entities are each placed along x and y axis at the same time. The ac-

tual fields inside the adjacency matrix are marked with an X for each call that was

ever observed by the system between the corresponding x and y-axis nodes. This

marker stays unchanged, independent of any additional communications between

the two nodes concerned.

The only way a marking can be removed occurs when one of the involved nodes

24

3.2 Anomaly Detection Based on Distributed Traces

is recognized as unavailable, which happens for example at a shutdown or rede-

ploy of a Microservice, its instances or their underlying Hardware. This prevents

the adjacency matrix from keeping outdated information that was indeed observed

at least once before, but might be no longer valid due to code or infrastructure

changes.

To further amend this observed data set, Schäfer offers a tool to manually anno-

tate business processes and their associated business activities steps and map them

to the corresponding user request interfaces. By this data model enhancement,

connections between a planned and modelled business process and an actually

implemented and observed Microservice architecture are established.

Business Activities are added to the scales of the adjacency matrix in line with

the already observed components. An example of the resulting adjacency matrix

for a small distributed Microservice architecture is displayed in figure 3.1

3.2 Anomaly Detection Based on Distributed Traces

In another 2017 master thesis, Lukas Steigerwald also contributed to the distributed

Microservice architecture research project at SEBIS chair, TUM [Steigerwald, 2017].

Steigerwald uses the resulting spans of a distributed tracing tool such as zipkin

for a real-time analysis. Utilizing three different analysis algorithms, Steigerwald

performs an anomaly detection in order to identify Microservice malfunctions or

performance losses during runtime.

By further analyzing the gathered data, a root cause anlysis is performed, reveal-

ing the actual originating Microservice that is responsible for a system malfunction

or broader performance losses. The results of theses analyses are streamed in real-

time to the distributed streaming platform kafka, where other services may con-

sume the gained information. In figure 3.2, a service outage of Service A and B is

observed, while the root cause analysis identified Service E as the actual point of

failure.

25

3 Related Work

Figure 3.2: A failing Service E caused subsequent failures in Services A
and B. The root cause analysis could nevertheless identify Ser-
vice E as the actual point of failure [Steigerwald, 2017]

3.3 Enhanced Enterprise Architecture Model

There is ongoing research at SEBIS chair at TUM in the field of enhanced Enter-

prise Architecture models. Specifically, Christopher Janietz has recently started

his master’s thesis, in which he is developing a solution in order to map high level

enterprise architecture objects such as domains and products to low level monitor-

ing information from Microservices [Janietz, 2018]. This combines the proposals

of Schäfers work discussed in section 3.1 with the concept of Domain Driven De-

sign and will presumably result in a conceivable data source for the prototype

presented in this thesis.

26

4 Solution Approach

The main focus of this thesis is the visualization of a clear, high-level overview of a

distributed Microservice architecture. For this purpose, information from several

data sources is collected and aggregated to a more comprehensive summary and

visualization. By this means, information with different levels of detail is brought

together into a multilayer picture.

4.1 Entities

The in this thesis proposed solution is able to visualize various facets of a living

enterprise architecture. The following chapter gives a rough overview of the dif-

ferent entities tackled and characterized by the proposed solution.

Domain

Modern IT landscapes are often structured by their business domain contexts. In-

line with Domain Driven Design [Evans, 2004], a separation of concerns helps to

partition a large business in smaller functional units, with delegated tasks and

responsibilities each. This also allows a clustering of IT infrastructure, business

applications and users into such sections with high coupling and dependencies

within each one itself, while staying largely independent among each other. These

clusters are in turn called domains, providing separate services and products in-

side the enterprise context, living up with an enterprise strategy and in the long

run accounting for financial and competitive market success of a company.

27

4 Solution Approach

Product

Within each Domain, functionality is again subdivided into smaller parts called

Products. This Product partitioning reflects the actual department structure within

the domain. Thus, all functionality of one Product is developed by a single devel-

opment team. In modern agile teams, business accountability and operations are

settled alongside in the same team to advocate a culture of short distances and flat

hierarchies.

Microservice

Before the adoption of Microservices, each product would have been home to

one or more monolithic services. In contrast, through the transformation towards

Microservices these occasionally enormous monolithic systems are broken down

into a more or less complex network of Microservices communicating among each

other (see 2.1).

By decomposing the systems into smaller items, a cross-Product utilization of

functionality is suddenly an ease and the enterprise can actually benefit from this

newly gained Microservice reusability.

Instance

Either for the purpose of scaling (see 2.1.1), to ensure higher resilience or simply

in order to reduce latency times from different places, multiple Instances of a Mi-

croservice may be operating independently at the same point in time.

Each instance operates in its own runtime environment and is approachable at

its own address and port combination, even if this fact might be hidden behind

a load-balancing mechanism. Besides the address, multiple Instances of the same

Microservice offer the exact same interfaces providing the same functionality.

28

4.2 Data Sources

API

Each Microservice in turn provides one or more Interfaces to programmatically use

its features. These APIs are typically offered as HTTP REST Interfaces, potentially

consuming parameters and allowing read, write or manipulation tasks.

Within each Product, some of the Microservices offer public Interfaces that ini-

tiate the core functionality. These public Interfaces are the official Endpoints of

a Product. External Microservices from other Products may still call any specific

Interface of any Microservice in order to use its features.

Microservice Relation

A relation between two Microservices bases on a caller-callee contact between two

Microservices. In cases of a recursive call, caller and callee could potentially also

be the same Microservice. A call is a single HTTP request on one REST interface in

order to trigger an action. These calls might either be synchronously waiting for its

answer, asynchronously continuing with their respective work and processing the

actual response at a later point in time or only trigger another Microservice action

without expecting any response.

4.2 Data Sources

As described in 4.1, domains are the top-level entities inside an Enterprise Archi-

tecture. The organizational unit that is responsible for the IT planing and Man-

agement (e.g. a designated IT Management department) typically already uses a

designated Enterprise Architecture Management tool (EAM) in order to fulfill its

responsibilities. Thus, details about user and domain structure can be drawn from

the corresponding Enterprise Architecture Management Tool.

Alongside the domain structure, data concerning applications and the actual

Microservices as well as their relationships is added. Data about currently active

29

4 Solution Approach

Figure 4.1: The aggregation strategy in order to integrate all required data

Microservices can be gathered from a Microservice Directory Service. Supplemen-

tally, performing an architecture discovery helps to learn about relations among

Microservices. The information about Microservices can additionally be enhanced

with details about the underlying virtualization and hardware layers and their

properties. Such data could be retrieved from a architecture discovery service as

proposed by Kleehaus [Kleehaus et al., 2018].

As an adequate complementary step, application and technical Microservice

data should be combined with the Enterprise Architecture Model. In this case,

Applications and Microservices could be matched to their functional business do-

mains as described above. In this way, augmented data sets allow a thorough

investigation of an operating environment of distributed Microservices.

Finally as a third, even more low-level data source, functional data about each

individual Microservices API can be attached. Modern tools like Swagger are able

to extract the signatures of all interfaces a Microservice provides directly from its

code. While this does not fully substitute a contextual description of the Microser-

vice, it still provides enough insights to build a basic and useful living documen-

tation.

30

4.3 Stakeholders

A main benefit of this data aggregation is based on the possibility to integrate

the whole process into a fully operating distributed Microservice environment.

Such an integrated analysis solution allows a continuous and mostly automated

assessment of the actually existing Enterprise Architecture, in contrast to a one-

time analysis which does not allow re-evaluations after adjustments have been

made without manually re-iterating the complete analysis process.

Simultaneously, the proposed solution provides a set of helpful tools, instru-

ments and reports to perform a monitoring of the living Microservice environment

based on the exact same data sources.

4.3 Stakeholders

The proposed system serves as a valuable data-source for a variety of stakeholders,

depicting a Microservice Architecture in its entirety. Nevertheless, each stakehold-

ers role implicates another point of view on a corresponding subset of the data,

ranging from high level and non-technical business perspectives down to solely

technical interests into Microservice relations and application interfaces. The fol-

lowing summary of roles with illustrates the breadth of the range of varying po-

tential interests.

Enterprise Architect

An Enterprise Architect inherently needs to keep track of the organizations over-

all IT landscape. To enable an as frictionless as possible interplay of IT systems,

the Enterprise Architect especially needs to keep an eye on cross-domain relations.

His responsibility does not explicitly lie on preventing such cross-domain rela-

tions, but rather on design beforehand and tailoring the IT landscape along the

way towards a balance between isolated domain silos and strongly coupled and

interdependent domains.

31

4 Solution Approach

Domain Owner

Within a specific domain, a classification of separate products and their boundaries

needs to be performed and thereupon further monitored. In an agile organization

environment, Product teams shall act widely autonomous and come to their own

decisions. Therefore, a Domain Owner tracks the coupling between products from

a technical perspective, while managing the partitioning of Products from a busi-

ness perspective.

Product Owner

The interests of a Product Owner lie in particular on the overall performance of

his product. Thus, he is responsible for the functionality made available by his

product, for example in form of one or more APIs provided. Generally, the inter-

est of a Product Owner is focused on managing this functionality and their key

performance indicators from a business perspective. The Microservice call stack

may nevertheless be of note, as for example already the sheer amount of sub-

sequently called Microservices may significantly increase API response times on

product level compared to a more simplified Microservice architecture.

Besides the Product Owners own product, it is of substantial importance to him

which other products, possibly even living in another domain are originating re-

quests on services provided within his own Product. Such an external utilization

may of course also exist the other way around, when Services from other Products,

or Domains are utilized by Microservices from the Product Owners realm. These

inbound and outbound requests should by all means be considered at the budget

planning for operation and maintenance efforts.

Software Architect

The Software Architect in a product team designs the actual Service structure in

order to fulfill the business requirements of the respective product. In order to

32

4.3 Stakeholders

review and monitor this service structure, Software Architects need comprehen-

sive insights on product level, whereas their particular focus lies on the relations

between Microservices and the complexity within the boundaries of a product.

Developer

After the initial implementation of a Microservice, developers are also in charge of

Microservice maintenance and further optimization. For this purpose all origina-

tors of requests to the specific Microservice are of particular interest, as depending

on the actual manners of utilization optimization strategies may vary. Again, the

other way around is the set of called Microservices may need to be evaluated for

optimization endeavors.

Operator

During operations, a close monitoring of Microservices is inevitable in order to

ensure trouble-free business. Operations is focusing primarily on vitality data of

individual Microservices and their actual Instances. This data is amended by vi-

tality data of the underlying virtual and physical hardware systems. Beneficial

insights can be additionally provided through an automated anomaly detection as

proposed by [Steigerwald, 2017] and an accompanying root-cause analysis in or-

der to track down incident causes in an efficient manner.

DevOps

Due to the shift towards more agile processes in software development, in recent

years DevOps emerged as a new role aggregating developer and Operation re-

sponsibilities into a new, more holistic field of action. Therefore DevOps also share

the concerns of developers and operators combined.

33

4 Solution Approach

4.4 Suggested Views

In order to fulfill the needs of all the varying stakeholders introduced in 4.3, the

proposed tool provides multiple views. Users are able navigate freely between

views by directly selecting the desired element to focus on within the graphical

representation.

In all directed graphs, edges illustrated communication between two entities.

These edges are always originating from a caller and are directed towards the cor-

respondent callee. The direction is implied by an arrowhead at the callee-side on

the receiving end of an edge.

4.4.1 Enterprise View

Figure 4.2: Enterprise View with relations between Products

On enterprise level, a greater summary depicts the organizational domain struc-

ture. As an adequate software cartographic representation the well-proven form of

a cluster map has been chosen [Matthes, 2008]. In the graphical visualization, Do-

mains are represented as compounded nodes, whereas products are illustrated as

regular nodes. Products belong always to exact one Domain. Edges between reg-

ular product nodes stand for relations among the products. Domains may be dis-

34

4.4 Suggested Views

played side by side for horizontal coexisting entities. While in the case of parent-

child relations, domains can be positioned as nested representations respectively.

Products that belong directly to a domain are displayed, alongside potential sub-

ordinate domains, inside their respective parent domain.

The enterprise view does not include any Microservices or virtual and physical

hardware nodes. Therefore it resides solely on the Business Layer, giving a high-

level and organization-wide overview.

To get additional context information, the relations between products, not only

existing within the boundaries of each domain, but also crossing domain bound-

aries, are added. For this purpose any distinct caller-callee relations between two

Microservices are select, where both Microservices belong to different products. As

the enterprise view does not consider Microservices, multiple relations between

the exact same two products are combined to a single relation.

To further adapt the enterprise view for individual needs it is possible to omit

relations either inside a domain, between domains or even any relations. Alterna-

tively, users may choose to aggregate relations between products again into super-

ordinate ones depicting relations between domains instead of products.

Figure 4.3: Enterprise View with relations between Domains

35

4 Solution Approach

This enterprise view serves as information basis for Enterprise Architects and

could also be used as an executive summary for C-level-Management. Besides

the organizational structure, the enterprise view enables the viewer to perform

a rough inspection of domain interdependence by examining inter-domain cou-

pling.

Users can navigate to individual Domains and Products by selecting the appro-

priate visualization entities, leading towards Domain (4.4.2) and Product Views

(4.4.3) accordingly.

4.4.2 Domain View

Figure 4.4: Domain View with relations between Microservices

The Domain view describes a single Domain, depicting all associated Products

and their Microservices, as well as the relations to other Domains. The visualiza-

tion shows all Products inside the domain as Compound Nodes, containing all

Microservices attributed to the domain. These Microservice-nodes are connected

in a directed graph, in which the edges represent caller-callee relations between

two Microservices. Again, each edge is an aggregated representation of all com-

munications between the respective caller and callee Microservices. A second edge

may exist between two nodes, if both parties have called each other at any point

point in time.

36

4.4 Suggested Views

Any incoming and outgoing relations to Microservices outside the Domain bound-

ary are added to the visualization to keep the context of the Domain in sight.

The graph settings allow the user to further aggregate relations on product level.

Along the lines of the enterprise view features, all edges across Product boundaries

are further merged. This helps to identify and evaluate relations across and among

products.

Figure 4.5: Domain View with relations between Products

A Domain Owner can use this view to keep track of products and inter-product

communications. Additionally, this view can give insights into how closely prod-

ucts are linked. Relations to other Domains’ Microservices show how isolated, or

the other way around, how closely coupled the domain is concerning the enter-

prise context.

For a narrower breakdown of a single Product, users can navigate to the respec-

tive Product View (4.4.3). Whereas by selecting a specific Microservice, the user

reaches the appropriate Microservice View (4.4.4) for the purpose of a technical

in-depth analysis.

37

4 Solution Approach

Figure 4.6: Product View

4.4.3 Product View

The proposed solution offers a separate view for each product. This view incorpo-

rates details about the Microservice communication flows within the product, as

well as inbound and outbound communication with external Microservices. For

this purpose each Microservice associated with the product is represented by a

node in a directed graph in which edges in turn represent the relations among

Microservices. Multiple communication flows between two Microservices are still

represented by a single connection per communication direction.

This view displays the architecture of a product, which was originally planned

and gets monitored by a Software Architect from a technical point of view. From

a business perspective, a product owner can utilize this Product View to either

evaluate dependencies and coupling of Microservice inside his Product Team, but

also to negotiate the utilization of Microservices provided by other domains or

products departments.

Incoming calls, originating from other products and domains, are of particular

importance, as the emphasis on them may prevent Product Owners and Software

38

4.4 Suggested Views

Architects from potentially abolishing Microservices, that are actually still utilized

by other entities within the enterprise.

Users can dive into the technical details of a single Microservice by selecting the

appropriate graph node and thus reaching the corresponding Microservice View

(4.4.4).

4.4.4 Microservice View

Figure 4.7: Microservice View

Finally, the Microservice View characterizes an actual Microservice. For this pur-

pose all known technical details about the Microservice in question are summa-

rized in one place. In a directed and horizontal oriented Graph the Microservice is

displayed in context with all directly related Services, describing its closest envi-

ronment.

As a central node the particular Microservice is placed in the middle of the

graph. On its left side, all Microservices originating calls to the center one are de-

picted as additional nodes. Within each Microservice-node their affiliation to Prod-

ucts and Domains are denoted for reference. Edges between left-side and center

39

4 Solution Approach

node resemble inbound communications, utilizing the characterized Microservice.

On the right side in turn, all Microservice dependencies of the specific Microser-

vices are specified as nodes. Again product and domain belonging are amended

inside the nodes. And edges originating from the central Microservice describe the

calls to other entities inside the Enterprise.

Next to this directed graph, technical details about actual Instances of the re-

spective Microservices are listed, enriched with the corresponding hostnames, IP

addresses and ports, as well as their current up-time. This data set is directly re-

quested from the Eureka service via REST API.

Another special data box gives information about average response times and

further usage statistics. While a third additional info box describes all APIs, pro-

vided by the specific Microservice in order to fulfill other Microservices’ needs.

Details about provided interfaces are obtained from an API documentation, such

as Swagger as discussed in 4.2.

This view is especially useful for Development and Operations of a service, as

analyzing the Microservice in context of its actual use cases can help in terms of

service performance optimization.

Selecting any of the related Microservices nodes leads the user directly to the re-

spective Microservice View (4.4.4), while the product and domain annotations in-

side each node lead to the correspondent Product (4.4.3) and Domain Views (4.4.2).

40

5 Prototype Implementation

The solution proposed in this master thesis is realized in a state of the art frontend

web application. This web application is based on the conventional web funda-

mentals Hyper Text Markup Language (HTML) and Cascading Style Sheets (CSS)

for representation and styling purposes, accompanied by JavaScript as scripting

language in order to handle communications and executing business and appli-

cation logic. To apply concepts of modern business web applications, the whole

project is built upon the Angular application platform, enabling the realization of

a Model-View-Control based architecture.

Angular code is written in TypeScript rather than JavaScript, which is in turn a

strict superset of the later and fully transpiles into standard JavaScript [Microsoft,

2018]. Alongside neither actual HTML nor CSS has to be written, instead so-called

Angular templates are filed with data and translated into HTML markup on run

time and the Syntactically Awesome Style Sheets (SASS) language adds several

new features to CSS such as variables, inheritance, nesting and loops which in

turn are precompiled to standard CSS [Catlin et al., 2018].

The following sections describe the different parts of the web application in de-

tail.

5.1 Data Model

The entities introduced in 4.1 are implemented in TypeScript. Domains, Products

and Microservices correspond to the different kinds of nodes to be displayed in

the various graphs subsequently and all of them share common similarities and

are therefore inherited from a more generic Component class.

41

5 Prototype Implementation

Figure 5.1: Class Diagram for the visualization prototype

A specific type field is used to identify the actual class type of such a component

while different types can be configured using a custom enum ComponentType. As

discussed later on in 5.4.1, node styling in graphs also depends on this Compo-

nentType. This enables a later amendment or adaption of this entity structure at

little to no expense. Besides the type, the Component class offers member vari-

ables in order to store a component name as a string, its id and the id of a parent

component as integral numbers. For each of these private members, the Compo-

nent class offers getter and setter methods. Additionally a method for the export

of a ready to use graph node object is provided inside this class. The output of this

method matches the node input expected by the graphing library. Furthermore, a

static method provides deserialization functionality to convert plain JSON objects

to actual TypeScript objects.

Each Microservice belongs to exactly one parent Product, whereas each Product

42

5.2 Architecture

belongs to exactly one parent Domain.

Relations between Microservices are reflected in a specific Relation class. At the

moment, this class has members for a numerical id and most significantly a caller

and a corresponding callee members containing the respective ids of two different

Mircoservices. In case of a recursive call on itself, a Microservice would be caller

and callee of a relation at the same time. As further discussed in 7.1, the infor-

mation value and meaningfulness could be considerably enhanced by providing

more detailed data about each relation. The relation class offers, just like the Com-

ponent class before, a static class for the deserialization of plain JSON objects and

an equivalent method in order to generate an edge object for the graph library.

To each Microservice belongs an API definition describing the provided API

endpoints as well as the corresponding input and output ressource structures.

These endpoints are specified using the OpenAPI specification, originally designed

under the name Swagger Specification by SmartBear Software, which is now devel-

oped further by the OpenAPI Initiative which in turn is part of the Linux Founda-

tion.

One of the core features of the Microservice concept is the possibility to scale

individual Microservices by duplication. Those duplicated Microservices are all

Instances of the same Code running inside an individual environment each. A

service repository such as Netflix Eureka keeps track of all Microservices and all

currently available Instances of these Microservices. The data about each Instance

contains basic information about host, ip address and port as well as uptime infor-

mation.

5.2 Architecture

The web application is structured into multiple components with the purpose to

present the different views to the user. These components are in turn supported

43

5 Prototype Implementation

Figure 5.2: Component Diagram for the visualization prototype

by several services, retrieving data from the various data sources and building a

data separation layer to facilitate subsequent data source replacements. Domain,

Product and Microservice view components are all using the same generic com-

ponent view as basis which provides the basic layout layout structure as well as

connecting to Relation and Component services, whereas the enterprise view is

implemented in a separate component as it is different from the other views by not

being constructed around a single Component.

Relation and Component services retrieve the results of an Architecture Discov-

44

5.2 Architecture

ery and provide these in convenient interfaces, offering methods for retrieving a

single component by id, all child components of a specified component or even all

available components of a certain type at once.

The relation service offers methods for retrieving a unique relation by id and

another one for getting all relations of a specified Array of Microservices in a

structured way. For this special case relations are separated into inner relation

having source and target Microservices included in the provided array, inbound

relation when only the target Component belongs to the array and outbound re-

lations when only the source is contained in the specified array. Furthermore the

externalNodes array contains a set of all source Components of inbound relations as

well as all target Components of outbound relations.

getRelationsByComponents(components: Component[]): {
inbound: Relation[],
inner: Relation[],
outbound: Relation[],
externalNodes: Component[]

}

Listing 1: TypeScript signature of the getRelationsByComponents()
method from the relation service

The enterprise view utilizes additionally an incident service in order to retrieve

the results of the root cause analysis displayed as recent problems as described in

5.4.3.

The mostly technical Microservice view utilizes another two services getting in-

stance data from a Microservice repository such as Netflix Eureka , alongside an

API service that provides the OpenAPI specification of services.

Cytoscape JS as graph visualization framework and dagre as layouting algo-

rithm are obviously used by both component and enterprise views. These are sup-

plemented by momentJS in order to conveniently handle JavaScript Date objects

and naturally the Angular Core components to form a ready for use MVC web ap-

plication. The last two components are obviously also utilized within the various

services.

45

5 Prototype Implementation

5.3 Use cases

Figure 5.3: Use Cases for the distributed Microservice architecture visual-
ization prototype

The distributed architecture visualization tool proposed in this thesis shows sev-

eral different use cases depending on the particular user role and the accordingly

analyzed views. Starting at a very technical user role, the following consideration

will widen its view up to broad ranged business views.

At the technical position, a Microservice Operator can use the visualization to

monitor all instances of a Microservice in his maintenance responsibility. Another

technical viewpoint is brought up by developers, who are interested in the com-

munication partners of a specific Microservice in question. This naturally includes

callers of the Microservice as well as callees. Based on this communication be-

46

5.4 Page Elements

haviour, developers can adjust the code of a Microservice in order to optimize it

for its actual utilization. A DevOp would combine the positions of Operators and

Developers in a single role and can gain additional benefits from knowing both

sides of the medal.

A Software Architect can use the Product view to review the distributed Mi-

croservice architecture and match it with the initially planned structure. In addi-

tion, the Software Architect can inspect a single Microservice and its communica-

tion structure in order to identify such servers that should be split up in multiple

ones, as their is too much different functionality inside one service, or even the

other way around it might be sufficient to merge two Microservices if they show a

particularly high coupling.

A Product owner evaluates the coupling of his own Product to others, thereby a

Product Owner takes a business perspective and might need to negotiate budgets

in order to square usage costs with other Products Microservices.

Domain Owners are again managing the usage of external Microservices from

outside the scope of their domain. Further the clustering of functionality in ap-

propriate products and potential adjustments to this structure fall into the do-

main owners duties. Products with a particularly high coupling might need to

be merged, while inflated products with too much diverging functionality should

potentially be further partitioned.

As a final, superordinated role, Enterprise Architects need to handle the domain

structure and keep track of the overall complexity of a Distributed Microservice

architecture. Starting from the enterprise view, a Enterprise Architect may dive

into the details of Domains, Products and Microservices to broaden the high-level

overview.

5.4 Page Elements

The different views proposed in 4.4 are construct of a series of different view com-

ponents. Each of these components is based on specific data sources and provides

47

5 Prototype Implementation

valueable information to the user. This section discusses these varied view com-

ponents in detail.

5.4.1 Graphs

The core feature of this frontend solution is the visualization of a Microservice

architecture in graph form. In order to find a suitable web based graphing library,

several requiremants were defined at the outset:

Graph Positioning Such a graphing solution needs to be able to position nodes in

a directed graph in a sensible manner, while avoiding intersections of edges

to a large extent.

Directed Multigraph Such a framework is supposed to display multiple edges

between two nodes, as this is necessary to make mutual communications

well recognisable.

Compound Nodes In order to display the hierarchical nature of Domains, Prod-

ucts and Microservice enclosing each other, so-called Compound Nodes, which

are able to contain other nodes again.

Navigatable The graph should be presented in such a way, that the user is capable

of navigating it easily to be able to keep the overview and be able to recognize

details at the same time, even in large and complex graphs.

Convenient API In order to enable user interactions directly with the graph, the

graphing solution needs to provide a comprehensive API.

Adjustable Styling And last but not least, a wide range of styling features is re-

quired to display varying node types in a clearly distinguishable and yet

pleasent way.s

Several different graph libraries were discussed during this thesis, but eventu-

ally a decision for cytoscape JS was made. Cytoscape JS is the JavaScript based

48

5.4 Page Elements

web-offshoot of the Java based and therefore client side visualization platform cy-

toscape. Which in turn is specialized on the visualization of complex network-

like structured data. Cytoscape JS, licensed under the MIT open source license, is

funded by the U.S. National Institues of Health and the National Center for Re-

search Resources [Franz et al., 2016]. It offers a rich API which works similar to

the jQuery API to select and manipulate graph data and to adjust styling. Besides

that, it relies on a easy to handle data structure for nodes and edges and it offers a

CSS based styling approach.

{
'data': {
'id': '123',
'title': 'CORE-BUSINESS', // Microservice name
'parent': '110' // ID of its parent compound node

},
'classes': 'microservice', // space separated classes
'selected': false, // not selected by default
'selectable': true, // users can select nodes
'grabbable' : true, // users can rearrange nodes

}

Listing 2: Example of a graph node JSON representation

In order to reach the desired node positioning outcome, cytoscape Js does not

only offer multiple included onboard layout algorithms, but also a convenient

plugin system enabling several third party layout solutions to be included. One

of these plugins, dagre, is used for the graphs presented in this thesis. Dagre is de-

veloped by Chris Pettitt and it is specialized on tree-like data structures and nearly

intersection-free visualizations [Pettitt, 2018].

Graph nodes can be passed to cytoscape JS as an array of node objects. Each

node object needs to have at least an id, all other fields are optional. classes are

used to style the different component types respectively. Edge objects generally

show the same appearance, but have target and source fields instead of a parent

field. In all presented graph visualizations users are enabled to freely rearrange

any nodes by setting the grabbable attribute to true, this feature in turn is not avail-

49

5 Prototype Implementation

able for edges, as their positions are already defined by their source and target

nodes positions. Rearrangements are performed by a simple drag-and-drop move-

ment.

{
data: {
id: 'e1', // an identifier
source: '123', // source node id
target: '321' // target node id

},
'classes': 'relation', // space separated classes
'selectable': false

}

Listing 3: Example of a graph edge JSON representation

By pressing and holding a modifier key, which depending on the used operating

system might be any of ctrl , , or Alt keys, users are further able to select

multiple nodes simultaneously and can rearrange this selection collectively.

Moreover the whole graph can be moved around by clicking and dragging the

graph-background and zooming is performed by using the mouse-wheel. The

graph can always be re-positioned to fit inside the viewport by clicking the ap-

propriate button, which in turn calls cytoscapeGraph.fit() for this purpose.

The styling of graph elements is performed on base of element types, classes and

states. Along the lines of conventional HTML and CSS selectors each element has

exactly one type, an arbitrary number of classes and it can adopt different states,

describing its current situation.

50

5.4 Page Elements

{
selector: 'node',
style: {
'label': 'data(title)',
'width': 'label',

}
}, {
selector: 'node.' + ComponentType.Product,
style: {
'shape': 'rectangle',
'font-size': 12,

}
}, {
selector: 'node.' + ComponentType.Product + ':parent',
style: {
'text-valign': 'top',
'padding': '20px',
'text-margin-y': '18px',

}
}, {
selector: 'node.' + ComponentType.Product + ':childless',
style: {
'text-valign': 'center',
'padding': '10px',

}
}

Listing 4: Styling of all Component nodes and specifically Product nodes,
either for compound or self-contained Product nodes

As illustrated in Listing 4, styling of a node can be constructed hierarchically

by combining several complementary styling selectors. A basic styling for all

nodes specifies that all nodes should display their title attribute as label, while

scaling their width dynamically in such a way that the label is always fully con-

tained. For any nodes resembling Components of the ComponentType Product

additional stylings are applied to manipulate the node shape and label font size.

the state-selectors :parent and :childless allow the differentiation between

compound nodes and self-contained nodes, whereas compound nodes need some

extra styling in order to align their labels appropriately.

51

5 Prototype Implementation

Via the cytoscape JS API it is possible to manipulate a set of existing graph el-

ements in different ways. The most convenient way to do so, is by adding or

removing classes from graph elements. Cytoscape JS then automatically refreshes

the representation accordingly.

cytoscapeGraph.on('tap', 'node', function(event) {
// perform any actions inside here
angularRouter.navigate(['/service', event.target.id()])

});

Listing 5: Adding an event listener on graph nodes for taps on mobile de-
vices and clicks on dektop devices

Beyond that, a variety of event listeners are provided by cytoscape JS in order

to process any user interactions with the graph. An example for such an event

listener is illustrated in code Listing 5. In this example, a listener for any taps or

clicks on nodes is registered wich evaluates incoming events and passes the id of

the corresponding node on to the angular router in order to navigate the user to

the appropriate angular view.

5.4.2 Entity Listings

Each graph is accompanied by a so called entity list which presents all entities

visualized inside the graphical representation in a structured manner. Entities are

sorted by type and alphabet, providing a useful overview at a glance. To get a

visual connection of graph nodes and entity list items, users can hover the entity

list items in order to highlight the corresponding graph node. The entity lists are

created from the same data as the graph nodes. For Products and Microservices

the parent Components are added to the list in a separate section.

To further streamline the user experience, the entity list items are simultaneously

acting as links to the corresponding component views.

52

5.4 Page Elements

Figure 5.4: Entity list of a Microservice, displaying all graph nodes

5.4.3 Recent Problems

On the enterprise view, a list of recent incidents is presented chronologically .

These incidents are based on the results of a root cause analysis as described in

the related master thesis of Lukas Steigerwald [Steigerwald, 2017]. Each incident

entry links to the specific Microservice, identified by the root cause analysis. As

no actual Microservices are displayed inside the enterprise view, its parent Prod-

uct is highlighted in a red warning color instead. Additionally a colored indicator

displays the severeness of the observed incident, ranging from green for minor in-

cidents, along yellow for longer delays up to red for total outages of a service. And

to finally be able to classify the problems chonologically, the time span passed since

the observed abnormality is displayed alongside in a nicely readable way and gets

update in real-time using a special amTimeAgoPipe proivided be the momentJS li-

brary for Angular templates as in {{incident.time | amTimeAgo}} which

53

5 Prototype Implementation

<div class="card">
<div class="card-block">

<h4 class="card-title mb-0">Entities</h4>
<div *ngFor="let entityGroup of entities">

<hr class="mb-4">
<h3>{{entityGroup.name}}</h3>
<div *ngFor="let entity of entityGroup.entities">

<a routerLinkActive="active"
[routerLink]="['/service', entity.id]"
(mouseenter)="highlightNode(entity)"
(mouseleave)="highlightNodeOff(entity)" >

{{entity.name}}

</div>
</div>

</div>
</div>

Listing 6: Angular Template for entity lists

result in outputs such as "a few seconds ago", "3 minutes ago" or "12 days ago".

5.4.4 Instances and API Specification

The Microservice view is enhanced with some technical data about the designated

Microservice and its Instances. For a quick overview of the Instances JSON data

from the Microservice repository is retrieved and displayed in a well organized

way. These data sets contain information about hostname, ip address and port as

well as current state and uptime of the respective instance.

The OpenAPI specification of that Microservice is also displayed as interactive

JSON, which is completely folded up on start up, but allows the user to unfold its

deeper layers to retrieve details such as the exact entry points and there respective

specifications.

54

5.5 Navigation Flow

Figure 5.5: Displaying all Instances of a Microservice based on data from
a Microservice Repository

5.5 Navigation Flow

The interactive visualization offers multiple ways to conveniently navigate through

a distributed Microservice architecture. The most obvious and convenient way is

to click or tap on a component directly inside the graph, which immediately leads

the user to the associated component view. This allows both, a zoom into a specific

sub component of the currently displayed one and a lateral movement to adjacent

components.

In this way, the visualization enables users to move from the enterprise view

towards domain and product views, from domain views to product and Microser-

vice views and from Product views also to the associated Microservice views as

well as lateral navigation on domain, product and Microservice level.

55

5 Prototype Implementation

By design this obviously does not allow any upwards movement to superordi-

nated parent components. To compensate this shortcoming, a designated button is

provided directly above the graph to navigate to the direct parent of the currently

displayed component. A summary of all provided navigation paths is provided in

figure 5.6.

Figure 5.6: All available navigation paths provided among the available
views

Next to the actual graph is a corresponding entity list located. This list con-

tains not only links to the same components as shown in and therefore navigable

through the graphical representation. Links to all parent components are added

supplementary for a further streamlining. In the same way, users are enabled to

navigate directly to the originators of all recent incidents displayed on the enter-

prise dashboard.

This varied navigation is performed by using the router service integrated in

Angular. The id of the concerned component is passed to a general component

56

5.5 Navigation Flow

view which retrieves the particular component and chooses and triggers the ap-

propriate view based on the ComponentType. As the angular router parameter is

passed via URL, specific views can also be called up by directly opening the appro-

priate url. This additionally allows other applications to link directly to a desired

component views and simplifies the integration with existing applications.

57

5 Prototype Implementation

58

6 Evaluation

6.1 Microservice Test Environment

Figure 6.1: Microservice Test Environment at SEBIS chair TUM

For academic purposes, a test or lab environment with a basic distributed Mi-

croservice infrastructure was created at the chair for Software Engineering for

Business Information Systems (SEBIS) at TU Munich.

The Microservices represent the web application TravelCompanion, which could

be a typical business use case. Travelers should be able to utilize the TravelCom-

panion Application in order to find other co-travelers who aim for the same travel

destination. Two different travel data provider, DeutscheBahn and DriveNow car

59

6 Evaluation

sharing, are integrated for the purpose of calculating suitable travel routes. Subse-

quently, the application displays any available travel groups along this route that

could offer a free spot to split travel expenses.

From a technical point of view, the lab setup features Java based-distributed Mi-

croservices, whereas multiple instances may exist of each Microservice. The central

gateway service Zuul handles all user requests and forwards them to the appro-

priate responsible Microservice instances. These Microservices in turn divide their

tasks further on and call again other services for specific tasks such as travel route

calculating. The test environment Microservice structure is illustrated in figure 6.1.

To be able to follow those service calls, each service implements Zipkin [Open-

Zipkin, 2018], a specific system for distributed tracing. Additionally, all service

instances report themselves to Eureka [Netflix, 2018], a Microservice repository

server developed by Netflix. These language and dependency choices are solely

exemplary, as they only serve the purpose of demonstrating the use case. In a real

world application, all choices could be replaced by similar tools.

6.2 Functional Evaluation

In the following sections, an evaluation of the functional correctness of the proto-

type is described. In multiple steps, several different data sets are provided to the

visualization prototype, emulating an architecture discovery service in different

environments, starting from the most simple architecture and increasing in data

complexity with each step. The produced graph visualizations are checked for cor-

rectness in order to ensure functional correctness of the complete prototype. For

simplicity, only a subset of the available views is shown in the respective figures.

60

6.2 Functional Evaluation

A Single Microservice

In a first step, a single Microservice along with its embracing product and domain

is provided to the component service. A closer look at the enterprise view reveals

the Business Domain embracing the Travel Companion Product, which in turn acts

as a parent to the TRAVELCOMPANION-MOBILITY-SERVICE Microservice on the

Product and Domain views. Figure 6.2 shows the outputs for Enterprise and Prod-

uct views. Alike, Domain and Microservice view are also showing the expected

behaviour.

The navigation paths are also working correctly, as a click on either Domain,

Product or Microservice always leads to the associated view.

Figure 6.2: A single Microservice with its embracing product is shown in
the Enterprise View (left) and Product View (right).

Two Microservices Within The Same Product

In a second step, the DEUTSCHEBAHN-MOBILITY-SERVICE is also added to the

same Product. Furthermore, a first relation between both available Microservices

is amended. The expected output should show no differences for the Enterprise

view, as no additional Domains or Products have been added and the only ex-

isting relation is solely describing communication inside a Product. All subse-

quent views show both services including the relation among them, leading from

Travelcompanion-mobility-service to Deutschebahn-mobility-service. The corre-

61

6 Evaluation

Figure 6.3: Two Microservices within the same product are shown in the
Enterprise View (left) and Product View (right).

sponding results are displayed in figure 6.3.

Three Microservices in Two Different Domains

Another Microservices is added for the third step, but this time the service is

added inside another Domain. The MAPS-HELPER-SERVICE gets also called by

the Travel-companion-mobility-service, but lives inside the Frontend Services Prod-

uct belonging to the Technology Domain. This results not only in a cross-Product

but even in a cross-Domain relation between two services.

As visible in figure 6.4, the call from Travelcompanion-mobility-service to the

Maps-helper-service is correctly displayed as a relation between Business and Tech-

nology Domain on the Enterprise view. The Product view in turn displays the

actual relation directly between both Microservices in questions. The relation to-

wards the Deutschebahn-mobility-service is further on displayed correctly from

Domain view downwards.

62

6.2 Functional Evaluation

Figure 6.4: The Enterprise View (left) shows two connected Domains with
their respective product, while the Product View (right) dis-
plays one product with its two internal Microservices and one
outbound Microservice.

Switching Between Aggregation Levels

To further adjust Enterprise and Domain views, users can choose the relation ag-

gregation level as discussed in sections 4.4.1 and 4.4.2. On the Enterprise view,

the decision is between Domain-level and Product-level aggregation, all relations

should switch their source and target Components accordingly.

Multiple relations between two Domains with the same direction are aggregated

to a single relation. To observe this behavior, a more complex data model with

two additional Products and corresponding nodes as well as additional relations

is provided to the visualization. Figure 6.5 clearly shows the desired behavior and

proves the correctly applied aggregation.

Similarly, the aggregation switch for the Domain view is successfully tested in

figure 6.6. When aggregation is enabled, all relations between the same Products

are accumulated and a clean and more tidy Product structure is visible. By dis-

abling the aggregation on Product level, all communication flows between the Mi-

croservices are displayed and the detailed relations can be analyzed.

63

6 Evaluation

Figure 6.5: The Enterprise View is shown with different aggregation levels
for relation aggregation on Domain (left) or Product (right) level

Figure 6.6: The Domain View showing aggregated relations on Product
(top) or non-aggregated relations on Microservice (bottom) level

64

6.3 Other Comparable Visualization Tools

Additional Info Box: Entities

Besides the graphical representation, all displayed entities should be listed inside

an entity list next to the graph view. On hovering the mouse on one of the list en-

tries, the appropriate graph node is highlighted in a light green color for the pur-

pose of a quick and reliable association. The correct behaviour of the entity list is

illustrated in figure 6.7. Additionally, the Entity list entries are angular router links,

leading to the associated component views, this was also successfully checked for

its correct functionality.

Figure 6.7: The full visualization tool is shown including its navigation
possibilities and additional information like the displayed En-
tities at the Enterprise View Level and a mouse-hovering on a
single Entity (highlighted in light green).

6.3 Other Comparable Visualization Tools

There is a range of different tools for the visualization of software systems avail-

able. This section look at some of these in comparison to the proposed Microser-

vice architecture prototype.

65

6 Evaluation

ExplorViz

ExplorViz did originally visualize system internals and produces automated clus-

tering based on code structures. It is able to impress with it stunning physical 3D

cluster models. Nowadays, ExplorViz does also support the visualization of dis-

tributed service environments [Zirkelbach et al., 2018] and it additionally offers

some useful tools for trace inspections. But in contrast to the solution proposed in

this thesis, it does not offer any integration of business entities [Fittkau et al., 2013].

ExTraVis

ExTraVis is a tool specialized on the visualization of application traces, again the

focus lies on system internal execution traces. The produced circular bundle graphs

are beautiful to look at and at the same time rich in substance giving detailed in-

sights.[Cornelissen et al., 2007] Neither a visualization of distributed architectures

nor an amandment of business entities is supported by ExTraVis.

Monitoring Solutions for Distributed Systems

Serveral different providers such as Dynatrace, AppDynamics, Netsil or Instana

are commercial players, specialized on the application performance monitoring

of distributed Microservice and cloud-based architectures. None of these appli-

cations offers an integration with Enterprise architecture software, while several

provide features for segmenting, grouping or automated clustering of distributed

Services [Dynatrace, 2018, Cisco, 2018, Netsil, 2018, Instana, 2018].

Enterprise Architecture solutions

Enterprise Architecture solutions are a perfect fit for the visualization of Business

artifacts, but the integration of real-time Microservice data is for these kinds of

software out of scope.

66

7 Outlook and Conclusion

During the course of this thesis, a first prototype of a visualization of a distributed

Microservice architecture and its different layers was designed and developed. In

the course of its implementation, varying possible feature additions and sugges-

tions arose. This chapter gives a rough overview of these topics and ideas.

7.1 Additional Data

As the prototype is situated in a web of different data sources it is heavily con-

strained by the data-extent provided by these data sources. The actual informa-

tion value of visualizations could significantly be enhanced by extending the data

suppliers appropriately. An outline of some possible data extensions is presented

here.

Relation Data

In its current form, the Architecture Discovery tool does condense the distributed

tracing information into simple binary relations between two Microservices. This

means a large amount of potentially interesting data is omitted as the architecture

discovery does only state if there is any relation between two Microservices - or

not.

But in order to classify relations it would be of interest to be able to identify

communication types and therefore to distinguish between synchronous and asyn-

chronous communication or to indicate if a communication is actually invoking a

data stream, or just calling another method.

67

7 Outlook and Conclusion

Associated therewith could be a measuring of relation frequencies on which flow

weights could be based. This would help to evaluate actual load causes and im-

prove the classification of Microservice couplings. A conceivable way to visualize

the data flow to and from a service could be an interactive Sankey diagram, this

would even allow users to figure the internal data flow of a Microservice out, as

hovering over an input flow could also highlight the associated outgoing flows

and vice versa.

Based on such additional flow data it would also be possible to gather and pro-

vide profound statistics for Microservice relations, containing information such as

average communication timings, failure rates, or even observing daily observed

usage spikes to specific times.

For such extensive relation data, a more sophisticated algorithm for relation ag-

gregations would certainly be needed, as relations between products or even do-

mains could no contain a wide variety of different communications which proper-

ties would eventually be known.

Microservice Data

Alongside a more sophisticated relationship model, the data concerning Microser-

vices could also be notably broadened by adding additional statistics about each

Microservice. The same applies for the individual Instances, as their life data pro-

vided by the Microservice Repository is rather limited. By adding more life data

about resource usage and connected data sources the tool could emerge to an even

more valuable monitoring solution. To conclude Instance data, a direct integration

of Instance log files could streamline the failure analyses processes.

Business Data

To additionally improve the integration of business data into the technical infor-

mation, it could be considerably valueable to annotate a business value to Mi-

croservices and Products, which would allow a better assessment of Microservices

68

7.2 Further Features

and especially of failures. Furthermore it could be of similar interest to assess how

critical to success a specific Component is.

7.2 Further Features

Beyond the additional information sets mentioned above, a few additional features

have been identified, that could also sustain the proposed visualization solution.

Omni Search

A special search feature would help users to navigate the components conve-

niently. A search for arbitrary components would be included in a single search

box, offering auto-complete functionality and displaying results grouped by Com-

ponent type.

Entry Points

The solution could offer different dashboard like entry points for the various user

roles. A Product Owner for example would directly be taken to his associated

product view right after authentication. Alongside this feature the visibility of

higher level views could be restricted based on a rights management system.

Impact Analyses

Integrating an impact analysis tool into the visualization solution could help to as-

sess the consequences of a specific Microservice failure, or even for routine main-

tenance outages. Combined with the results of a root cause analysis, currently

affected Components could be identified and highlighted accordingly. This would

also help to asses and comply with concluded Service Level Agreements.

69

7 Outlook and Conclusion

Advanced Graph Handling

Additional features for the actual graph presentation could include a small min-

imap to keep track of the current graph viewport in relation to the complete graph,

as well as advanced mechnaism to persist user adjusted node layouts across ses-

sions. A problem with such a layout persistence is the complicated alignment of

new graph nodes.

7.3 Conclusion

In this thesis, a prototype for the visualization of a distributed Microservice ar-

chitectures was conceptualized and implemented. The proposed solution allows

meaningful illustrations of diverse Microservice relations and their mapping to

the respective business entities. Aggregations at different levels serve to reduce

the displayed complexity to a reasonable and perceivable extent. Multiple views

are tailored to the needs of various Enterprise Architecture stakeholders for Mi-

croservice monitoring and documentation. The present prototype provides a solid

base for further development including the additional data sources and features

described above.

70

Appendix

71

List of Figures

1.1 Transition from a monolithic system to a Microservice-based archi-

tecture . 2

2.1 Service Oriented Web Service Architecture along the definitions in

[Newcomer et al., 2004] and [Matthew MacKenzie et al., 2006] 6

2.2 AKF scale cube adapted from [Richardson, 2017] 7

2.3 Breakdown of Inner and Outer Architecture in a Microservice Ar-

chitecture Environment [Olliffe, 2015] 9

2.4 Enterprise Architecture layers reproduced from [Jonkers et al., 2003] 14

2.5 Communication sequence of a Microservice based system as exam-

ple for Google Dapper [Sigelman et al., 2010]. Adapted from [Sigel-

man et al., 2010] . 20

2.6 Sequential course of the exemplary user request displayed in fig. 2.5

[Sigelman et al., 2010] . 21

3.1 Adjacency matrix of the test environment at SEBIS chair TUM. This

adjacency matrix already contains observed communications between

Microservices as well as manually modelled Business Activities [Schäfer,

2017] . 24

3.2 A failing Service E caused subsequent failures in Services A and B.

The root cause analysis could nevertheless identify Service E as the

actual point of failure [Steigerwald, 2017] 26

4.1 The aggregation strategy in order to integrate all required data 30

4.2 Enterprise View with relations between Products 34

73

List of Figures

4.3 Enterprise View with relations between Domains 35

4.4 Domain View with relations between Microservices 36

4.5 Domain View with relations between Products 37

4.6 Product View . 38

4.7 Microservice View . 39

5.1 Class Diagram for the visualization prototype 42

5.2 Component Diagram for the visualization prototype 44

5.3 Use Cases for the distributed Microservice architecture visualization

prototype . 46

5.4 Entity list of a Microservice, displaying all graph nodes 53

5.5 Displaying all Instances of a Microservice based on data from a Mi-

croservice Repository . 55

5.6 All available navigation paths provided among the available views . 56

6.1 Microservice Test Environment at SEBIS chair TUM 59

6.2 A single Microservice with its embracing product is shown in the

Enterprise View (left) and Product View (right). 61

6.3 Two Microservices within the same product are shown in the Enter-

prise View (left) and Product View (right). 62

6.4 The Enterprise View (left) shows two connected Domains with their

respective product, while the Product View (right) displays one prod-

uct with its two internal Microservices and one outbound Microser-

vice. 63

6.5 The Enterprise View is shown with different aggregation levels for

relation aggregation on Domain (left) or Product (right) level 64

6.6 The Domain View showing aggregated relations on Product (top) or

non-aggregated relations on Microservice (bottom) level 64

6.7 The full visualization tool is shown including its navigation pos-

sibilities and additional information like the displayed Entities at

the Enterprise View Level and a mouse-hovering on a single Entity

(highlighted in light green). 65

74

List of Listings

1 TypeScript signature of the getRelationsByComponents() method from

the relation service . 45

2 Example of a graph node JSON representation 49

3 Example of a graph edge JSON representation 50

4 Styling of all Component nodes and specifically Product nodes, ei-

ther for compound or self-contained Product nodes 51

5 Adding an event listener on graph nodes for taps on mobile devices

and clicks on dektop devices . 52

6 Angular Template for entity lists . 54

75

Bibliography

[Abbott and Fisher, 2015] Abbott, M. L. and Fisher, M. T. (2015). The art of scala-

bility: Scalable Web Architecture, Processes, and Organizations for the Modern Enter-

prise, Second Edition. Addison-Wesley Professional, New York, NY.

[Bakshi, 2017] Bakshi, K. (2017). Microservices-based software architecture and

approaches. In 2017 IEEE Aerospace Conference, pages 1–8.

[Baraiya and Singh, 2016] Baraiya, V. and Singh, V. (2016). Netflix conductor:

A microservices orchestrator. http://techblog.netflix.com/2016/12/

netflix-conductor-microservices.html. Accessed: 2018-06-14.

[Bradley, 2015] Bradley, T. (2015). The challenges of scaling microservices. www.

techbeacon.com/challenges-scaling-microservices. Accessed:

2018-06-14.

[Calçado, 2014] Calçado, P. (2014). Building products at soundcloud—part

ii: Breaking the monolith. https://developers.soundcloud.com/

blog/building-products-at-soundcloud-part-2-breaking-the-

monolith. Accessed: 2018-06-14.

[Catlin et al., 2018] Catlin, H., Weizenbaum, N., Eppstein, C., and et al. (2018).

Sass: Syntactically awesome style sheets. https://www.sass-lang.com/.

Accessed: 2018-06-14.

[Cisco, 2018] Cisco (2018). Application performance monitoring & management |

appdynamics. https://www.appdynamics.com/. 2018-06-14.

77

Bibliography

[Cornelissen et al., 2007] Cornelissen, B., Holten, D., Zaidman, A., Moonen, L.,

Van Wijk, J. J., and Van Deursen, A. (2007). Understanding execution traces

using massive sequence and circular bundle views. In Program Comprehension,

2007. ICPC’07. 15th IEEE International Conference on, pages 49–58. IEEE.

[Council, CIO, 1999] Council, CIO (1999). Federal enterprise architecture frame-

work version 1.1. Retrieved from, 80:3–1.

[Daya et al., 2016] Daya, S., Van Duy, N., Eati, K., Ferreira, C. M., Glozic, D., Gucer,

V., Gupta, M., Joshi, S., Lampkin, V., Martins, M., et al. (2016). Microservices from

Theory to Practice: Creating Applications in IBM Bluemix Using the Microservices

Approach. IBM Redbooks.

[Department of Defense, 1996] Department of Defense (1996). Technical frame-

work for information management.

[Department of the Treasury, 2000] Department of the Treasury (2000). Treasury

Enterprise Architecture Framework, Version 1.

[DoD, 2012] DoD, C. (2012). Dod architecture framework version

2.02. DoD Deputy Chief Information Officer, Available online at

http://dodcio.defense.gov/dodaf20/dodaf20_pes.aspx.

[Dynatrace, 2018] Dynatrace (2018). Software intelligence for the enterprise cloud

| dynatrace. https://www.dynatrace.com/. 2018-06-14.

[Evans, 2004] Evans, E. (2004). Domain-driven design: tackling complexity in the heart

of software. Addison-Wesley Professional.

[Fittkau et al., 2013] Fittkau, F., Waller, J., Wulf, C., and Hasselbring, W. (2013).

Live trace visualization for comprehending large software landscapes: The ex-

plorviz approach. In 2013 First IEEE Working Conference on Software Visualization

(VISSOFT), pages 1–4.

[Fowler and Lewis, 2014] Fowler, M. and Lewis, J. (2014). Microservices. Viittattu,

28. Accessed: 2018-06-14.

78

Bibliography

[Franz et al., 2016] Franz, M., Lopes, C. T., Huck, G., Dong, Y., Sumer, O., and

Bader, G. D. (2016). Cytoscape.js: a graph theory library for visualisation and

analysis. Bioinformatics, 32(2):309–311.

[Haddad, 2015] Haddad, E. (2015). Service-oriented architecture: Scaling the uber

engineering codebase as we grow. https://eng.uber.com/soa/. Accessed:

2018-06-14.

[Hasselbring, 2016] Hasselbring, W. (2016). Microservices for scalability: Keynote

talk abstract. In Proceedings of the 7th ACM/SPEC on International Conference on

Performance Engineering, ICPE ’16, pages 133–134, New York, NY, USA. ACM.

[Instana, 2018] Instana (2018). Instana - dynamic apm for microservice applica-

tions. https://www.instana.com/. 2018-06-14.

[ISO15288, 2015] ISO15288 (2015). Iso/iec/ieee international standard - systems

and software engineering – system life cycle processes. ISO/IEC/IEEE 15288

First edition 2015-05-15, pages 1–118.

[ISO24748, 2011] ISO24748 (2011). Ieee guide–adoption of iso/iec tr 24748-1:2010

systems and software engineering–life cycle management–part 1: guide for life

cycle management. IEEE Std 24748-1-2011, pages 1–96.

[ISO42010, 2011] ISO42010 (2011). Iso/iec/ieee systems and software engineer-

ing – architecture description. ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC

42010:2007 and IEEE Std 1471-2000), pages 1–46.

[Janietz, 2018] Janietz, C. (2018). Enhancing enterprise architecture mod-

els using application performance monitoring data (work in progress).

https://wwwmatthes.in.tum.de/pages/ybzuz28r8mq9/Master-

Thesis-Christopher-Janietz. Accessed: 2018-06-14.

[Jonkers et al., 2003] Jonkers, H., van Burren, R., Arbab, F., de Boer, F., Bonsangue,

M., Bosma, H., ter Doest, H., Groenewegen, L., Scholten, J. G., Hoppenbrouw-

ers, S., Iacob, M. E., Janssen, W., Lankhorst, M., van Leeuwen, D., Proper, E.,

79

Bibliography

Stam, A., van der Torre, L., and van Zanten, G. V. (2003). Towards a language

for coherent enterprise architecture descriptions. In Seventh IEEE International

Enterprise Distributed Object Computing Conference, 2003. Proceedings., pages 28–

37.

[Kleehaus et al., 2018] Kleehaus, M., Uludag, O., Schaefer, P., and Matthes, F.

(2018). Microlyze: A framework for recovering the software architecture in

microservice-based environments. In 30th International Conference on Advanced

Information Systems Engineering (CAISE Forum), Tallin, Estonia.

[LeanIX, 2016] LeanIX (2016). Survey 2017, beyond agile: Is it time

to adopt microservices? https://www.leanix.net/de/download/

Microservices-Study/. Accessed: 2018-06-14.

[Matthes, 2008] Matthes, F. (2008). Softwarekartographie. Informatik-Spektrum,

31(6):527–536.

[Matthew MacKenzie et al., 2006] Matthew MacKenzie, C., Laskey, K., Mccabe, F.,

F. Brown, P., and Metz, R. (2006). Reference model for service oriented architec-

ture 1.0. OASIS standard.

[Mauro, 2015a] Mauro, T. (2015a). Adopting microservices at netflix: Lessons for

architectural design. https://www.nginx.com/blog/microservices-

at-netflix-architectural-best-practices/. Accessed: 2018-06-14.

[Mauro, 2015b] Mauro, T. (2015b). Adopting microservices at netflix: Lessons

for team and process design. https://www.nginx.com/blog/adopting-

microservices-at-netflix-lessons-for-team-and-process-

design/. Accessed: 2018-06-14.

[Microsoft, 2018] Microsoft (2018). Typescript programming language. https:

//www.typescriptlang.org/. Accessed: 2018-06-14.

[Netflix, 2018] Netflix (2018). Netflix/eureka: Aws service registry for resilient

80

Bibliography

mid-tier load balancing and failover. https://github.com/Netflix/

eureka. 2018-06-14.

[Netsil, 2018] Netsil (2018). Netsil: Universal observability and monitoring for

modern cloud apps. https://www.netsil.com/. 2018-06-14.

[Newcomer et al., 2004] Newcomer, E., Haas, H., Orchard, D., McCabe, F., Ferris,

C., Champion, M., and Booth, D. (2004). Web services architecture. W3C note,

W3C. http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

[Newman, 2015] Newman, S. (2015). Building microservices. O’Reilly Media, Se-

bastopol, CA.

[Novoseltseva, 2017] Novoseltseva, E. (2017). Benefits & examples of microser-

vices architecture implementation. https://apiumhub.com/tech-blog-

barcelona/microservices-architecture-implementation/. Ac-

cessed: 2018-06-14.

[Olliffe, 2015] Olliffe, G. (2015). Microservices : Building services with the guts

on the outside. https://blogs.gartner.com/gary-olliffe/2015/01/

30/microservices-guts-on-the-outside/. Accessed: 2018-06-14.

[OpenZipkin, 2018] OpenZipkin (2018). Openzipkin - a distributed tracing sys-

tem. https://zipkin.io/. Accessed: 2018-06-14.

[Pettitt, 2018] Pettitt, C. (2018). dagre - graph layout for javascript. https://

github.com/dagrejs/dagre. Accessed: 2018-06-14.

[Reinhold, 2016] Reinhold, E. (2016). Rewriting uber engineering: The opportuni-

ties microservices provide. https://eng.uber.com/building-tincup/.

Accessed: 2018-06-14.

[Richardson, 2017] Richardson, C. (2017). The scale cube. www.microservices.

io/articles/scalecube.html. Accessed: 2018-06-14.

81

Bibliography

[Schäfer, 2017] Schäfer, P. (2017). Eine prototypische implementierung zur erken-

nung von architekturänderungen eines verteilten systems basierend auf unter-

schiedlichen monitoring datenquellen.

[Sigelman et al., 2010] Sigelman, B. H., Barroso, L. A., Burrows, M., Stephenson, P.,

Plakal, M., Beaver, D., Jaspan, S., and Shanbhag, C. (2010). Dapper, a large-scale

distributed systems tracing infrastructure. Technical report, Google, Inc.

[Steigerwald, 2017] Steigerwald, L. (2017). Using distributed traces for anomaly

detection.

[The Open Group, 2018a] The Open Group (2018a). The togaf standard, version

9.2.

[The Open Group, 2018b] The Open Group (2018b). Togaf worldwide. http://

www.opengroup.org/subjectareas/enterprise/togaf/worldwide.

[Urbaczewski and Mrdalj, 2006] Urbaczewski, L. and Mrdalj, S. (2006). A compar-

ison of enterprise architecture frameworks. Issues in Information Systems, 7(2):18–

23.

[Webber, 2016] Webber, K. (2016). Revitalizing aging architectures with microser-

vices. https://www.youtube.com/watch?v=SPGCdziXlHU.

[Winter and Fischer, 2006] Winter, R. and Fischer, R. (2006). Essential layers, ar-

tifacts, and dependencies of enterprise architecture. In 2006 10th IEEE Interna-

tional Enterprise Distributed Object Computing Conference Workshops (EDOCW’06),

pages 30–30.

[Wootton, 2014] Wootton, B. (2014). Microservices - not a free lunch!

http://highscalability.com/blog/2014/4/8/microservices-

not-a-free-lunch.html. Accessed: 2018-06-14.

[Zachman, 1987] Zachman, J. A. (1987). A framework for information systems

architecture. IBM Systems Journal, 26(3):276–292.

82

Bibliography

[Zirkelbach et al., 2018] Zirkelbach, C., Krause, A., and Hasselbring, W. (2018). On

the modernization of explorviz towards a microservice architecture. In Com-

bined Proceedings of the Workshops of the German Software Engineering Conference

2018, volume Online Proceedings for Scientific Conferences and Workshops,

Ulm, Germany. CEUR Workshop Proceedings.

83

