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Engineering meets NLP

Enable engineers to find matching solutions
for their technical challenges at the push of a button.



Solution overview
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Newsletter
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https://en.rokin.tech/techmonitor

https://en.rokin.tech/techmonitor


The Language of Engineering
Training a Domain-Specific Word Embedding Model for Engineering

Idea:
§ Word Embeddings are vector representation of words that are supposed to encode their semantic meaning

§ Pre-trained Word Embeddings like Google‘s Word2Vec are trained on huge corpora (~ 100 billion words)
§ However, they are trained on domain-unspecific corpora (often news articles and Wikipedia)
§ In domains with a lot of technical jargon (like engineering), they might not be able to represent meaning

Research question:
§ Can a domain-specific Word Embedding model (even if trained on a smaller data set) outperform a larger 

non-specific model in domain-specific tasks?
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The Language of Engineering
Training a Domain-Specific Word Embedding Model for Engineering

Data Set

§ More than 100 engineering trade publications in English in the domain of mechanical and electrical
engineering

§ Focus mainly on topics such as robotics, automation, 3D printing or augmented reality, but also on more
economical aspects such as investments, mergers and acquisitions or personnel changes in companies

§ Roughly 600,000 articles published between 1969 and 2020

Model Training
§ Gensim Word2Vec algorithm
§ Vocabulary of over 1.1 mio words

© sebis20210624 TSaaS sebis day 6



The Language of Engineering
Training a Domain-Specific Word Embedding Model for Engineering

Conclusion

§ Training domain-specific embedding models can

§ improve the semantic representation of technical terms within the vector space and

§ improve the results of domain-specific classification tasks,

§ even if the model was trained on a smaller data set than a general purpose model.
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Lbl2Vec
An Embedding-Based Approach for Unsupervised Document Retrieval on Predefined Topics

Problem:
§ Crawler provided us with ~600.000 unlabeled documents
§ ROKIN wants the documents labeled according to their pre-defined topics

§ Manual labeling is not possible considering the huge amount of documents

à How to classify huge amounts of documents unsupervised?
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1 Actuators
2 Assistance systems / wearables
3 Augmented/Virtual Reality
4 Autonomous vehicles
5 Electronic components
6 IT Security
7 IIoT platforms
8 Communication technologies
9 Artificial Intelligence
10 Robotics
11 Sensors
12 Simulation software
13 Tracking and identification
14 Production process technologies



AI

Lbl2Vec
An Embedding-Based Approach for Unsupervised Document Retrieval on Predefined Topics

Idea:
§ Learn jointly embedded semantic representations of words and documents
§ Learn label embedding from predefined topic description keywords
§ Assign class of most similar label embedding to each document
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Lbl2Vec
An Embedding-Based Approach for Unsupervised Document Retrieval on Predefined Topics

Classification Evaluation

Conclusion

§ Lbl2Vec can

§ create better representations of predefined topics than standard modeling approaches,

§ yield better unsupervised document classification results than previous approaches,

§ but providing labels for each document is paramount for highly accurate classification results.
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Classification Method F1

Unsupervised baseline 76.6

Lbl2Vec 82.7

Supervised Naive Bayes 89.8



Technology Scouting as a Service
Research Team
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Thomas KinkeldeiDaniel Braun Alexandra Klymenko Tim SchopfProf. Dr. Florian Matthes

Further research:

§ Evaluation of different approaches to train BERT for classification in the engineering domain

§ Evaluation of semantic linking capabilities between engineering specific word embeddings in english and german

§ Classification of new technologies in engineering articles with neural networks

§ Information extraction of technologies, products, product properties, and companies from engineering articles

§ And much more ...
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