TUTl

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Informatics

Modelling and Implementation of Access

Control Mechanisms in Ethereum Smart
Contracts

Thomas Hain

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Informatics

Modelling and Implementation of Access

Control Mechanisms in Ethereum Smart
Contracts

Modellierung und Implementierung von
Zugriftskontrollmechanismen in Ethereum
Smart Contracts

Author: Thomas Hain
Supervisor: Professor Dr. Florian Matthes
Adyvisor: Ulrich Gallersdorfer, M.Sc.

Submission Date: December 16th, 2019

0

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, December 16th, 2019 Thomas Hain

Acknowledgments

First, I would like to thank my advisor Ulrich Gallersdorfer. By providing advice and
ideas he served as a constant stream of input in the process of directing and shaping
this thesis. He was always open for discussing crucial parts concerning my research and
often provided valuable insights and perspectives concerning the Blockchain technology.
In addition he promoted an environment which allowed me to envision and describe
my own understanding of the topic.

Additionally I want to thank Professor Dr. Florian Matthes for his help in the pro-
cess of formulating the thesis title and its goals and for the opportunity to write this

thesis at the Software Engineering for Business Information Systems (SEBIS) chair.

Furthermore I want to thank my family and friends for supporting and encourag-
ing me throughout the whole process of conducting my research.

Thank you.

Abstract

The Ethereum Blockchain has gained a lot of popularity within the recent years. While
it is often mentioned alongside Bitcoin, it receives an increasing amount of attention by
itself. One of the reasons for the rising interest lies in systems lies in its capability of
encoding enforceable code on its Blockchain. This allows an automatic and transparent
transfer of funds between the network’s participants and eliminates the need for a
Trusted Third Party. Further it is currently being the subject of diverse researchers as its
potential use cases expand beyond the financial domain. In the past there have been
several successful attacks however. Oftentimes they might have been prevented by a
more sophisticated model of access control. As Smart Contracts are being exposed to
the complete network this leaves many possible attack vectors. This is underlined by the
fact that these programs can hold big amounts of currency. This makes it necessary to
carefully evaluate one’s security model and to assess each component’s required degree
of public exposure. This is being further complicated by the fact that Ethereum’s most
popular programming language Solidity suffers from a lot of shortcomings compared
to more established ones oftentimes leading to programming errors which can only
be debugged by rather primitive means. As a consequence the thesis includes an
evaluation of different implementations of access control in Ethereum and derives their
commonalities in order to derive desirable features of a new implementation. In addition
it provides insights about the topic of data privacy in Blockchain systems by describing
the permissioned Blockchain Quorum. It provides a perspective on how to approach
the decision making process behind publicly exposing one’s system to a network of
multiple competing nodes and gives warnings about related implications. The findings
are then being accumulated and formulated into a model finally being transferred into
the implementation of an own modified XACML based system. This prototype provides
a reusable and flexible framework for future implementations.

Contents

Acknowledgments
Abstract
1 Introduction
1.1 Motivation e e e e e
1.2 Research Questions e
13 Approach.
1.4 Outline e e
2 Fundamentals
2.1 Networks, Requests & Resources
2.1.1 Client-Server & Peer ToPeer
212 HTTPRequests
213 Layered Design
2.2 Basics of Cryptography
2.2.1 Hash-Functions & Merkle Trees
2.2.2 Symmetric & Asymmetric Encryption
223 Digital Signatures. L Lo
224 Securing HTTP
2.3 Blockchains e
2.3.1 Commonalitieso
2.3.2 Mining, Validation and Consensus
2.3.3 Private, Public and Permissioned Blockchains
234 Ethereum & Quroum
3 Related Work

Access Control and Previous Implementations

41 Typesand Terminology
4.2 Access Control in Client-Server Architectures
42.1 Basic Authentication
4272 Authorization
4.3 Evaluation of Access Control Systems in Blockchains
431 DataPrivacy & Quorum
43.2 Access Restriction via Smart Contracts

433 RBAC-SC

iii

23

27
28
31
31
33
37
37
39
44

vii

Contents

434 XACML and Smart Policies

5 Modelling and Implementation of Access Control Mechanisms in Ethereum
Smart Contracts
51 System Requirements.
52 Modified XACML Architecture,
53 Derived Models
53.1 Processes & Protection Mechanisms
53.2 Considerations on the Implementation

6 Evaluation
6.1 Software Tests e
6.1.1 Testing Smart Contracts
6.1.2 Test Setup and Execution
6.2 Comparison With Smart Policies

7 Conclusion and Future Work
7.1 Conclusion e
7.2 Future Work e

List of Figures
List of Tables
List of Listings

Bibliography

75
75
75
75
77

81
81
81

83

85

87

89

viii

1 Introduction

1.1 Motivation

With the rise of Authorization frameworks like "XACML"[87] and "OAuth"[90] there’s an
increasing amount of flexible authentication systems. At the same time monolithic archi-
tectures are slowly being replaced by cloud services to ensure a higher availability and
scalability. Managing access to these distributed systems is an increasingly complex task.
While over the years multiple solutions to these problems emerged many Blockchain
applications are still resorting to very basic ways of protecting their functionality. Thus
a unified access control solution could potentially serve as a starting point for increasing
the overall security of decentralized applications. Thus it poses an interesting target
for research. Access Control is strongly linked to the currently on-going debate about
data privacy on Blockchains which is even being under observation by Vitalik Buterin
the inventor of the Ethereum chain[86]. As private data often poses a valuable target to
attacks topics like information security and cryptography play a major role in designing
a secure system for regulating access on the Ethereum Blockchain. Because Ethereum
allows storing small programs also known as "Smart Contracts"[41] on its chain they
can be analyzed for their capability of provisioning and managing access rights. Many
of these contracts solve relatively small tasks and are therefore rather simple compared
to bigger software developed in older programming languages such as Java or C++. On
the other hand Ethereum’s limits regarding computation are being an obstacle in finding
a common solution for the problem of regulating access. Incorporating them into the
design of newly developed systems introduces several adaptations of existing solutions.
While historical systems often rely on dividing their network infrastructure into individ-
ually secured servers the interaction with these publicly distributed programs can be is
transparent to the public[96]. This introduces a whole new level of complexity to the
current understanding of evaluating access rights. Many of the traditional concepts rely
on the establishment of trust between multiple parties.[98] Because Ethereum is being
highly transparent to its participants the public visibility of the decision making process
behind the revocation or granting of rights can be made publicly visible[25]. Still there
are many different scenarios where such a degree of transparency is not required or
even strictly opposed to the intended functionality of a system[96]. Therefore careful
considerations have to be taken in order to determine whether a Blockchain solution
can be a reasonable choice for a given scenario.

Thus the thesis tries to provide information about which limitations and benefits a
Blockchain based access control system offers by presenting a prototype implementation
of multiple Smart Contracts working together in order to form an extendable decentral-

1 Introduction

ized application. This directly contributes to the development of Ethereum and similar
Blockchains supporting Smart Contracts. Thus the thesis” aim is to provide a flexible
approach which can be adapted to a wide range of existing problems.

As the subject of access control is based on multiple disciplines including network
architectures, protocols and cryptography it also provides an overview about the degree
of inter connectivity between these topics. As there is no common consensus in the
Blockchain community on how a possible implementation of an access control system
could look like the thesis offers a common ground for further discussion by providing
a fully implemented system including the documentation of the underlying design
choices. This extends previous research in this area as at the time of writing there are
few published works in which include full implementation details. In addition the thesis
branches off into the controversial topic of "private" and "permissioned"[42] Blockchains
and discusses their usefulness regarding varying requirements of data privacy. This way
it provides guidelines for any company exploring Ethereum’s capabilities or researchers
interested in expanding their understanding of access control systems. As a consequence
the thesis implementation tries to accommodate features to allow an easy adaptation to
individual security requirements.

1.2 Research Questions

During the starting phase of conducting the research multiple questions arose. As a
consequence they are being included in this chapter to give an overview about the
questions the thesis answers in subsequent chapters.

Q1: What are current challenges regarding the implementation of access control on a
Blockchain?

To be able to understand existing implementations of access control systems it is neces-
sary to evaluate the motivation behind them first. What problems do they try to solve
and how are they approaching them? This information can be aggregated and evaluated
in order to provide possible perspectives on common obstacles and derive re occuring
patterns. What measurements can be taken in order to overcome them and to advance
current research?

Q2: What is the current state of implementations regarding access control in Solid-
ity?

There are different existing implementations of access control systems implemented in
Solidity. They can be found in literature as well as online repositories such as GitHub.
Therefore a general evaluation of the various sources is required in order to assess the
community’s understanding of the subject. These findings could prove to be valuable in
the design process of an own prototype. Motivated by this idea the thesis analyzes code
samples for similarities in order to find possible improvements.

1.3 Approach

Q3: Which advantages does using Blockchain technology provide for access control?

Making use of the Blockchain technology comes with various implications. As Blockchains
are often open and highly transparent systems[29] they might provide advantages over
existing non-Blockchain solutions. How can the technology be leveraged to maximize
its benefits and how do they compare to traditional systems?

Q4: How can an extendable access control system be modelled and implemented?

The thesis tries to aggregate the results of the previous research questions in order to
derive its own implementation of a reference prototype. The modelling process is being
influenced by each of the previous research questions. The provided system is then
being evaluated in order to find out whether existing approaches could be improved.
Both the implementation and modelling can provide potentially valuable insights for
other researches trying to understand the design decisions. This is motivated by the
possibility of providing a point of reference for future discussion on the subject.

1.3 Approach

The research conducted in this thesis is based on an iterative narrowing down of collected
information. As the early stages of conducting research resulted in a big collection of
data it had to be grouped multiple times according to its categories. By repeatedly
contextualizing the accumulated data the underlying principles became clearer and their
connections became more apparent. These findings ultimately led to the formulation of
concrete design goals and led to the decision to implement a prototype. As the thesis is
inspired by multiple sources of literature its discovery and analysis was the first step
throughout research. In addition the sources served as constant reference points during
orientation processes.

o Literature Research In order to answer the stated research questions it was neces-
sary to first understand the current state of several different research areas ranging
from modern web applications to Blockchain technology. As each of the analyzed
disciplines evolved by developing its own philosophies and best practices the
primary concern was dissecting them for the purpose of understanding their most
essential parts and the problems they try to solve.

e Analysis of Smart Contracts In addition to the literature research itself the im-
plementation of existing access control libraries was examined. Oftentimes this
included manual inspection of their source codes as the documentation was rather
limited. This included multiple contracts hosted on different repositories. As a
result of this analysis the thesis conducts two code analyses. Their findings helped
in shaping the system reach its final state.

1 Introduction

o Testnetworks and Implementation Tests After explaining some commonalities
of current strategies for enforcing access restrictions the thesis branches off into
an actual implementation of a prototype system. In order to prove its stability
the thesis provides a suite of unit tests based on a publicly available JavaScript
testing framework for Smart Contracts. Each of these tests were run on multiple
test networks both locally and public. This ensures an easy reconstruction of the
stated results making them provable. The testing also included experiments with
publicly available projects such as "zk-SNARKS"[35] and node-Casbin[casbi].

1.4 Outline

The thesis is structured in multiple chapters. Each of them provides information which
ultimately led to the implementation of a prototype. In order to follow the decisions in-
volved in its design process the fundamentals of networks, encryption and Blockchain’s
need to be understood first. Therefore each of these topics is being described in chapter
2: "Fundamentals". Chapter 3 then proceeds by giving an overview of existing pub-
lications and how they relate to the subject. Then chapter 4 proceeds by explaining
basic concepts of access control and includes an evaluation of three different existing
systems. In addition it provides an introduction in Solidity programming because two
of the evaluations require a basic understanding of the language. As a result of the final
evaluation chapter 5 begins by outlining a proposal for improving an existing system
and then concludes with a finished implementation of a prototype. Afterwards the
prototype is both being compared with a related project and being tested in chapter 6.
The final chapter contains a conclusion of the findings and a discussion about future
work regarding the subject.

Disclaimer: The thesis” text makes use of terms in the generic masculine in order to
ensure an easier readability. However both female and male readers are meant equally.

2 Fundamentals

As the presented technologies all rely on a solid understanding of securing the propaga-
tion of messages through networks it is a necessity to lie the groundwork first. Securing
messages in a network is often done without a user’s knowledge. Each time a user
opens a website like PayPal or Google its connection is secured in order to protect
sensitive parts of the exchange of data. As Blockchain technology implies a perspective
on desirable infrastructure it is explained and compared to traditional web servers.
Both Blockchains and traditional approaches make use of cryptography to protect data
and prove one’s identity. Thus this chapter starts off by giving a brief introduction
into the topic of network architectures including the common approach of separating
different functionality into "layers"[51] and then continues by describing multiple types
of cryptography. Each of these topics are relied on in later chapters of the thesis and are
crucial in the context of exercising access control on Blockchains.

2.1 Networks, Requests & Resources

Networks are the foundation of the current degree of intercommunication humans
face in the modern world. Whenever a user interacts with a website messages are
exchanged between the user also known as "client"[65] and the host commonly referred
to as "server"[65]. The interaction between a client and a server follows strict protocols
and architectural choices to ensure an efficient transmission of data between them[43].
These design principles are constantly evolving since the internet surfaced. However
its core technologies remain mostly unchanged. With the goal of formulating desirable
properties of communication the following sections therefore explain the implications of
traditional web-based software.

2.1.1 Client-Server & Peer To Peer

The most basic form of network communication comes in the form of "Client-Server
Architecture"[60]. In a pure client-server architecture there is one single central server
simultaneously handling the requests of multiple different clients[60]. A concrete
example is a chat server. It maintains a list of all connected clients while listening
to each client’s messages at the same time. Whenever it receives a message from a
client it distributes it to all other connected clients. This architectural style has the
advantage that each participant only needs to know how to connect to the server instead
of requiring each client to be able to directly connect to everyone else. On the other
hand this approach is considered to be rather vulnerable due to being centered around

2 Fundamentals

a "Single Point of Attack"[89]. The term highlights the negative impact of basing one’s
architecture around a central server. If it fails or crashes the downfall of the complete
infrastructure follows. As a consequence modern infrastructures rely on a distribution
of their services to multiple servers instead[90]. By doing so an attacker gaining access
to one of the servers is not automatically having control over the other server as well.
Due to an increase in complexity of modern websites application servers are added as
another layer operating behind traditional web servers. A single website often makes
use of multiple application servers to provide a higher degree of scalability as each of
them is potentially linked to its own database server.

The understanding of how to scale infrastructures is crucial to big software companies
trying to reach a large customer base. As a consequence big companies like Netflix invest
lots of effort in the maintenance of their infrastructures. However there is an alternative.
The technology "Peer to Peer"[39] allows the connection of a possibly infinite amount
of computers thus presenting a flexible and scalable alternative without relying on a
central server[39]. This is achieved by establishing connections between all the network’s
participants known as "nodes"[1]. In case a node disconnects the system remains intact
as the transfer of its messages doesn’t follow a strict path. In addition the absence
of a Single Point of Attack makes it more resilient. This is underlined by the online
piracy community using a Peer to Peer based protocol and file-sharing system known
as "Torrents"[68]. If a user illegally uploads a movie to the network it can only hardly
be taken down via copyright claims because the files are distributed between multiple
participating nodes[68]. The reason for this is that such file-sharing protocols often
automatically turn participants who downloaded parts of the movie into distributors
themselves.[68] Consequentially this results in multiple coexisting copies of the movie
on each participant’s hard drive. In order to enforce copyright claims each participant
would be required to delete that file. This circumstance is of such importance that it still
poses a problem to current legal institutions.[68] But there are not only advantages of
using Peer to Peer. Because there is no guarantee that two participants have an adequate
connectivity data transfer varies greatly.[17] Commonly this is known as "propagation
speed"[17].

2.1.2 HTTP Requests

Both of the previously presented infrastructures are based around messages. In order
for a network participant to understand how to participate in their exchange it requires
additional information on how to behave. This knowledge is referred to as "protocol".[65]
In the previous section BitTorrent was already introduced as an example of a popular
Peer to Peer protocol. One commonly used protocol in the client-server domain is
called "Hypertext Transfer Protocol" (HTTP)[65]. The underlying principle is rather
simple: The client sends a request message and the server responds to it.[65] The actual
content of these messages can vary depending on the use case. As HTTP is defined as
"stateless"[49] each request is handled individually without being affected by previous
requests.[49] The server responsible for handling incoming HTTP requests is called "web

2.1 Networks, Requests & Resources

server'[49].

Whenever a client sends an HTTP request it encodes its "method"[65] and a header to
include additional information fields.[49] In modern Access Control frameworks like
"OAuth2"[90] a header can include information about a client’s authorization to execute
a request[90]. HTTP is based on the "four basic operations"[85]:

e HTTP GET for fetching information from the server

e HTTP POST for sending information to the server

e HTTP PUT for updating server data

e HTTP DELETE for deletion of information from the server

Similar to the way the HTTP Protocol is responsible for defining a common behavior
the "REST"[85] (Representational State Transfer) standard revolves around addressing
"resources"[85]. Resources can be thought of as references to any type of data (e.g. text,
movie,...). Combining HTTP with REST is the foundation of request-based retrieval
and alteration of data stored in various sources like databases. While there are varying
definitions of REST it can be described based on a set of five different constraints:

e Resources are identified by a resource identifier
e Access methods have the same semantics for all resources

e Resources are manipulated by exchanging their representations

Representations are being manipulated via messages

The application state is handled via Hypertext

In other words: the access to a resource is carried out via HTTP. In case the resources are
access restricted they follow a common convention. The referenced data can be altered
via messages carrying the information about which alterations to make. By making use
of identifiers resources data can be handled equally and independently of their type.
They are commonly being referred to as "Uniform Resource Identifier"[91] or "URI"[91].
Often they are linked to database indices referring to data sets identified by a unique id
field.

Web servers often expose their functionality via a so called "API"[61] (Application
Programming Interface). Combining this approach with the principles of REST results
in a a concept commonly referred to as "REST API"[61]. As its name indicates a REST
API provides a central point responsible for answering incoming requests. Making use
of APIs allows a wide range of possible applications because there are many publicly
accessible APIs. The naive approach of defining a resource identifier is to combine a
resource’s type with its index in the database. As viewing a website does nothing else
than sending an HTTP GET request to a webserver and receiving its HTML content a
response to a fictional URL including a referenced resource might therefore look like:

2 Fundamentals

https://www.myserver.com/users/1

This way the server is directly able to lookup said resource via its index in the corre-
sponding table by mapping this request to a corresponding database query. Due to
the simpleness of this approach modern web frameworks such as "Laravel"[50] allow
the definition of "Resource Routes"[50] which by default include a predefined set of
standard operations. This quickly provides multiple publicly accessible points. Because
their individual functionality can be defined by the programmer of the web application
its use cases are unlimited. As an example of a definition of end points responsible for
varying requests involving the storage, viewing and updating of a photo resource the
following routes could be the result of an automatic generation via Laravel’s command
line interface.

Method URI Controller Action
GET / HEAD | api/photos index
POST api/photos store

GET / HEAD | api/photos/{photo} | show
PUT / PATCH | api/photos/{photo} | update
DELETE api/photos/{photo} | destroy

Table 2.1: Example result of automatic API route generation

The variable "photo" indicated by the parentheses has to be provided by the request. It
is also known as "query string"”. One way a user can set it is to access the interface by
supplying a corresponding value to the URL:

https://www.myserver.com/api/photos/1/show

As the table already indicates the resources” URIs are assigned a controller’s action.
The code in the controller then defines how to process the received request including
its parameters.[50] This could include setting the content of the response to a data set
retrieved from a database by its id. Other types of requests might be altering referenced
data instead. This can be seen by the "DELETE" entry within the table. Its controller code
could invoke the removal of data from the database. Other operations such as updating
or creating new objects can potentially require multiple parameters. Consequentially
query parameters are not the only possible way of passing additional data. In addition
the controller can use information supplied by the request in order to check a user’s
authorization status. In case the user is not allowed to access a resource can then be
responded to with an error code, such as 401.

While the previous examples were mostly based on the understanding that a user
accesses a website via a browser this is by no means a necessity. As the name API
already suggests it is being used as an interface for applications instead. In addition
it allows the communication between different web services via messages. Therefore

NVl = W IN -

2.2 Basics of Cryptography

the publicly accessible routes of APIs often define a required data format for incoming
requests. A common format also used within the context of Blockchains[36] is "JSON"
[74] (JavaScript Object Notation). The name already reveals two facts about it: first it is
used by the scripting language JavaScript and second it provides a way of serializing
objects. This allows an easy transfer between interacting web servers. A JSON-formatted
object including multiple students could have the following representation:

{

"students": [
{"firstName":"John", "lastName":"Doe"},

{"firstName":"Anna", "lastName":"Smith"},

]

Listing 2.1: JSON File Structure

Another rather common way of serialization is to encode data in "XML"[74] (Extensible
Markup Language). Its explanation is part of the thesis’ chapter about XACML.

2.1.3 Layered Design

The separation between data storage and operations is often solved by a "layered
architecture". According to Richards[73] a rather common solution is to structure one’s
software into the following layers: presentation, business, persistence and database. Each
layer only communicates with others via interfaces.[73] In other words the persistence
layer does not require any information about how a business layer internally handles
incoming requests. Instead it only needs to know how to interact with it. Likewise the
presentation layer (e.g. an Android client) does not need to be able to execute operations
on the server’s database directly. It only needs to know how to request functionality
exposed by an API’s routes.

In the domain of web servers where data is often stored on a separate machine or
cloud service applying this architecture is rather straight-forward. It is important to note
however that the architecture’s use cases are in no way limited to web services. While
the previous examples implied using a database as a target of the persistence layer there
are other options as well. The actual storage of data can be as simple as a single file
serializing all the information (e.g. JSON). Because access control often requires the
storage of "policies"[54] in addition to the data itself the chapter about the Ethereum
Blockchain discusses to which degree a Blockchain can be used as a persistence layer and
how Ethereum’s functionality can be exposed to users via a layered approach similar to
traditional web applications.

2.2 Basics of Cryptography

The communication within networks relies on the transmission of messages. Depending
on which participants receive the message they might be able to acquire information

2 Fundamentals

about its content or even modify it. In a public Blockchain system like Bitcoin messages
are transmitted transparently[29] to every participant of the network making it an
easy target for attacks.[1] Likewise HTTP requests are transferred in plain-text and
are therefore considered insecure and vulnerable. In order to ensure that data is only
accessible by the intended audience encryption serves as a common tool. Applying
encryption is a common means of ensuring confidentiality of data.[15] HTTP requests
are therefore often guarded by "TLS"[43] encryption. This way their data is being
protected from being publicly readable. HTTP’s encrypted counterpart is known as
"HTTPS"[43] (Hypertext Transfer Protocol Secure). Later chapters include information
about how a Blockchain called "Quorum"[42] includes HTTPS messages in order to send
private data. Understanding the importance of ensuring confidentiality directly leads
to an understanding of access control. Further the following chapters include multiple
approaches limiting a users” access to resources solely by cryptographical measurements.
In addition Blockchain technology makes heavy use of the concepts explained in the
following sections. Thus this chapter includes a short summary of the basic technologies
involved in the context of Blockchains and Client-Server architectures.

2.2.1 Hash-Functions & Merkle Trees

Hash-Functions map input text of any length to an output string of a fixed length.[81]
A typical example is the so called "SHA-256" function. It is classified as being a "one-
way hash-function"[81] meaning that its near impossible to reconstruct the original
input value from a given output value. This allows representing any given file by its
respective hash value. As the name suggests SHA256 always produces an output of
256Bits independent of the input’s length.

SHA-256Hash("StringWhichIsBeingHashed") =
"3CF4A6B8DODFBD75A8FOA3EBE91F605054D45A0718E462211B3FC7539AF1B7BB"

Listing 2.2: Example of applying a SHA256 Hash Function

While the definition of hash functions which map multiple inputs to the same output is
possible the subcategory of cryptographical hashes tries to minimize the probability of
such an occurrence known as "collision"[22] to an extreme. SHA256 is one representative
of this group. This makes it a suitable unique identifier for files because there are
practically no overlaps. This technique is often used in so called "Content Addressable
Storage"[28] (CAS) systems which handle the storage and retrieval of data sets by
using their hash values as references instead of a traditional continuous index known
from a typical database system[28]. One example of such a system is the distributed
network "IPFS"[28] (Interplenetary File System). It is often used in conjunction with a
common software pattern used in Blockchain context known as "Content-Addressable
Storage"[28]. This term will reoccur at later parts off the thesis as it plays a role in many
different applications.

Another consequence of the low probability of collisions is that whenever its input
(e.g. the binary representation of a file) changes its hash value changes as well. Thus it

10

2.2 Basics of Cryptography

is possible to find out whether data has been changed.

Because a network and its messages are often exposed to manipulation attempts hash
values serve as a protection mechanism ensuring that data remains unaltered between
its sender and its receiver[71]. Thus hash values are often used in order to ensure
the "integrity"[71] of data. One prominent example of a hash-based mechanism used
in order to ensure the integrity of messages is known as "HMAC"[71] (Keyed-Hash
Message Authentication Code). Because using the same input for a hash value results in
the same output they are also used to store passwords securely in databases. Instead
of storing the actual password its hash representation is stored. This way whenever a
user tries to authenticate himself at a later stage the web server only needs to calculate
the hash value of the supplied password and compare it with the stored value. If this
technique is applied correctly it offers an important advantage over storing the actual
data: If an attacker is able to hijack the server he can’t reconstruct the actual password.

By combining multiple hash values into a data structure known as "Merkle Patricia
Tree"[88] a Blockchain network is able to protect the integrity of messages its participants
regard as valid. A Merkle tree is a recursively constructed tree of hash values. Each node
is obtained by concatenating its leaves’ values and hashing them afterwards. The leaves
are hash values themselves. As previously stated whenever the represented data changes
its hash value requires recalculation. As a consequence this step is recursively executed
for all parent nodes whenever an alteration of one of its children occurs ultimately
resulting in an update of the root node. As the root node is being calculated as the
hash-value of the concatenation of all its leaves” hash values it serves as a single value
ensuring the integrity of all its children. This is why it serves as an efficient way of
protecting multiple messages at once.

2.2.2 Symmetric & Asymmetric Encryption

The importance of encryption on today’s communication is observable in multiple forms.
In June 2017 the whistleblower Edward Snowden even posted a message on twitter stat-
ing that the US government is unable to decrypt PGP encrypted documents[79]. While
PGP itself is not especially relevant in Blockchain scenarios, this example showcases the
impact these technologies have on modern communication.

On the other hand the governments themselves make use of encryption for concerns
of confidentiality.[63] This property is especially important in the light of access control
systems as they often require the transmission of passwords or similar secret data. Such
data is often being used to initially authenticate a user to a web server in order to
determine whether he can access a resource or not. This can be regarded as the most
basic form of access control in web scenarios. Because authentication is one of the
essential components of access control this thesis includes a dedicated section about it.
Therefore further explanation about the details of the various authentication mechanisms
are omitted here. Instead the underlying types of encryption are explained.

e Symmetric Encryption uses a single key to both encrypt and decrypt informa-

11

2 Fundamentals

tion.[16] A common example is the encryption algorithm "AES"[63] (Advanced
Encryption Standard). It is defined as a "block cipher"[45] processing the source
data in equally sized blocks of multiple Bits[45]. Oftentimes these blocks use
a size of 128 Bits.[45] Following the naming convention of appending the key
length in Bits multiple AES implementations exist. This includes "AES-192"[7] and
"AES-256"[7]. AES is explicitly approved by the US government and therefore is
considered to be secure and suitable for highly confidential data[8]. In addition it
can be used during the communication via HTTPS.

e Asymmetric Encryption Other than symmetric encryption its counterpart asym-
metric encryption requires the usage of two keys.[16] These keys are called "pri-
vate"[16] and "public"[16] key. They both work together in the process of encrypting
and decrypting data.[16] In a scenario where each user holds his own private-
public key pair a sender can encrypt its data by using another user’s public key.[16]
As the user’s public key is linked to its private key by its generation the data can
only be decrypted by it.[16] This scenario assumes that the private key is only
known to him. In the Ethereum Blockchain each user is identified by a hashed
version of a public key.[92] This key is used in order to link his messages to an
account.[48] In Ethereum these keys are derived from a common representative of
asymmetrical encryption known as "elliptic-curve cryptography".

2.2.3 Digital Signatures

Various problems in everyday life require signing a form. Procedures such as buying
a house and signing a marital contract even require the presence of a notary. As such
signatures serve a multiple purposes. However in the virtual world there is no equivalent
to a handwritten signature. Instead a combination of asymmetric cryptography and
hash values are used to both prove the connection between a private - public key pair
and to link a signature to an integrity protected state of a document.[2] The signing
process of a document or any other type of data works the following way: Let’s assume
that user A owns a private key (prK) and its corresponding public key (puK) and wants
to sign a message.

e First he creates a hash-value of that message known as "Hash-Digest"
e Then he encrypts the hash-digest with his private key
e Finally he appends the encrypted hash-digest to the message itself

This serves the purpose of ensuring the integrity of a given document and also lets other
users link the document to the signee’s identity. Verifying the signature can be achieved
by decrypting the hash digest with the signee’s public key and then comparing the hash
digest’s value with a self generated hash value of the clear text message. If both hash
values match the signee’s identity can be inferred and the integrity of the message is
confirmed. Digital signatures are appended to every message entering a Blockchain

12

2.2 Basics of Cryptography

network.[92] This way its sender can be verified and the message remains integrity
protected. This is essential because Blockchains are based on Peer To Peer technology. If
a member’s message is potentially being redistributed to every other participant this
could otherwise lead to possibly infinite manipulation attempts.

2.2.4 Securing HTTP

The previous chapter outlined HTTP and its requests. However there is one major
shortcoming of it. It is being transmitted as plain text. Because Client-Server connections
are rarely direct connections but instead rely on different relayers such as the Internet
Service Provider (ISP) and other physical machines this circumstance poses a potential
issue. The message can be intercepted at any point in between the intended receiver
and the sender. This is also referred to as "Man-in-the-Middle"[95] attacks. In order
to prevent this its counterpart "HTTPS" (Hypertext Transfer Protocol Secure) uses
asymmetric cryptography. The server has a public-private key pair. Its public key is then
being linked to certain attributes such as the server’s domain and then being signed by
a trusted authority.[95] This document is called "certificate".[95] Because the signature
can’t be forged without having access to the authority’s private key this practice is being
considered rather secure. Because these institutions provide certificates they are also
called "Certification Authorities" or "Certifying Authorities"[95]. A customer explicitly
needs to request certification for their servers. Depending on the type of certification
it requires filling out multiple forms which are being proved by the authority. In case
the customer provided valid information the authority will then send him a signed
certificate. This way whenever a client sends a HTTPS request to the server it can answer
with its certificate.[95] Because many clients browsers contain a list of trusted certificate
authorities it can then decide whether it should establish a connection to the server or
to show a warning message concerning the certificate’s validity first.

Having a trusted entity within this system therefore allows trusting a server’s provided
public key. Because the certificate includes the server’s public key a secure connection
can then be established. This is achieved by using a technique known as "TLS"[43]
(Transport Layer Security). During the establishment of a TLS connection multiple
steps occur. It is initiated whenever a client requests a server’s website via HTTPS.
Because the server responds with its certificate the client can verify its validity.[80] Then
both parties securely negotiate the TLS version they intend to use and a symmetric key
algorithm to establish a "session key".[80] Because this communication is being secured
by asymmetric cryptography the newly generated key is only known to the server and
the client. Therefore it can then be used for further communication between the two
parties. In addition to HTTPS being used for Client-Server communication it is also
applied to communicate privately between nodes in the Quorum Blockchain[42].

13

2 Fundamentals

2.3 Blockchains

Blockchains gathered a lot of public interest in the last decade. Especially a cryp-
tocurrency called "Bitcoin" became increasingly popular. In fact its implications are
so powerful that whole governments actively pursue its regulation in order to stop an
uncontrolled flow of currency.[10]

Bitcoin’s proposal was originally published in a white paper by Satoshi Nakamoto.[56]
Until today his identity is still unconfirmed. However the paper led to multiple scientific
implications and questions important parts of everyday life, including our understanding
of the importance of banks.

As Blockchain technology is often referred to being a "distributed ledger"[59] the term
"ledger" requires explanation first. In financial institutions such as PayPal the recording
of their clients” balances is written to a structure known as "ledger". Essentially it can be
regarded as a type of database listing all the clients” balances in a financial institution
such as a bank. By handing over the management of one’s money to a bank or another
institution a client inherently places its trust in it.[98] More precisely in a scenario where
there is only a one bank exercising control over a single ledger holding all the users’
account balances the bank can alter the state arbitrarily.

In addition to the fact that said institution might have malicious intentions their
systems often revolve around IT-based communication, i.e. programs. Naturally this
exposes additional attack vectors to hackers. There are wide-ranging examples where
placing trust into banks or other payment providers backfired due to the fact that their
systems were not adequately secured and hacked by often unknown entities. As a
consequence the user not only needs to trust the institution itself but also its systems.

The cryptocurrency Bitcoin and the platform Ethereum are developed with the inten-
tion of removing third parties (banks, etc.) from this equation by distributing trust.[98]
Both projects are based on software applications which are maintained by the Open-
Source community. This fact already indicates that the control over these systems is
partially or fully handed over to the the public.

Similar to traditional payment providers both of these Blockchains prevent relying on
a bank[18] which prevents the installment of a Single Point Of Failure by not relying on
single ledger and instead distributing their ledger to a network of nodes within a Peer
to Peer network. Basically each node then keeps its own copy and is therefore able to
verify its validity.

Due to the nature of varying propagation speeds within Peer to Peer networks there
are multiple competing ledgers at any point in time making it necessary to determine
the ground truth, i.e. the "real" ledger within the network.[57]

In addition to the question about how to determine this "ground truth" the following
sections answer questions about how a Blockchain reaches agreement on a shared state
and how Ethereum is extending the characteristics of traditional crypto currencies like
Bitcoin by storing executable programs known as "Smart Contracts"[77] on its chain.

14

2.3 Blockchains

2.3.1 Commonalities

As Bitcoin and other Blockchain networks are using Peer to Peer technology to pass
messages between their nodes. In a public Blockchain like Bitcoin each node is able to
distribute a message to the network. In the terminology of Bitcoin these messages are
called "transactions".[64]

Thinking in terms of a currency Bitcoin is based around the idea that each partici-
pant’s balance in a ledger can be constructed by a flow of currencies within a chain
of transactions.[27] This is reflected by the way Bitcoin handles transactions. Each of
them specifies a number of "inputs"[27] and "outputs"[27] . The inputs specify where the
included amount of currency stems from while the outputs state its destination. In order
to make Bitcoin’s participants addressable they are identified by a public key known
as their "address"[32]. The only exception to the necessity of declaring a transaction’s
inputs is when new currency is generated. The detailed workings of generating currency
is described in the next section about mining. However there is still another potential
issue. The message could’ve been forged by another participant in order to fake a user’s
intention to transfer his money. To prevent this each transaction is signed by the input’s
account to prove the owner’s will.[56]

In addition to the transfer of the currencies BTC in Bitcoin and ETH in Ether transac-
tions can also include a payload of data.[92][56] In order to keep the chain’s total amount
of data relatively low Ethereum links costs to the amount of data their transactions
contain[55].

A "Block"[29] as in the name "Blockchain" is a data-structure responsible for aggregat-
ing multiple transactions.[56] It consists of a header and a body.[56] Both the structures
of Ethereum and Bitcoin Blocks are similar. Therefore an explanation of Ethereum’s
Block is given by a header containing information about the the previous Block’s hash
value and the root hash of the Merkle Tree spanned by all its included transactions.[92]
The Block’s body contains the concrete representation of all its transactions making it
rather big compared to the header itself.[92] By making use of hash-values and Merkle
Trees an integrity protection of all the previous Blocks and transactions is given re-
cursively. This mechanism is implemented to prevent a participant from cheating the
system by forging a different chain of events or manipulating Blocks themselves in order
to alter his or others” account balances. The motivation behind such an action could be
to alter his own holdings in his favor.

The separation into header and body offers another advantage. While the full Block
includes all its transactions the body only stores their Merkle root. By only storing a
single hash value instead of all the transactions participants can still contribute to the
stability of the network without storing all the transactions” data. While this might not
seem relevant at first it is important to note that Bitcoin’s full chain requires roughly
250GB of storage at the current date (Nov 2019).[11] This is an interesting fact as Bitcoin’s
official website states that a Block has a maximal size of [9]. Because a Block consists of
multiple transactions it is safe to assume that each included transaction is less than 1MB
in size. This already indicates that its intended purpose is not to store much data on the

15

2 Fundamentals

chain. This is an understandable decision as transactions need to be replicable by any
peer in the network. Thinking of storing high quality video footage on the Blockchain
containing multiple gigabytes of data can therefore be considered bad practice.

2.3.2 Mining, Validation and Consensus

Because of propagation effects there are multiple competing chains at any given time.[99]
Whenever a node considers a Block valid it is appended to the chain and distributed to
connected nodes.[99] This process runs recursively leading to the independent verifica-
tion of multiple nodes. The goal behind this approach is to prevent abuse of malevolent
participants. Since whoever holds the power of convincing the majority of the network
about appending a new Block is able to manipulate the global state of the network
there are many possible competitors.[99] Whenever most of the network’s participants
consider the same chain to be valid the network reaches "consensus"[5]. The two most
common consensus mechanisms are known as "Proof of Work"[5] and "Proof of Stake"[5].
Both operate under the assumption that the longest chain is the "real" chain.[99]

e Proof of work is based on guessing a "nonce"[56] (number only used once) in
such a way that the new Block’s hash value is ending with a specified amount
of zeros.[56] Considering that a one way hash function is used there is no way
to construct the required nonce instead of guessing. This procedure makes the
inclusion of a new Block a difficult task. To alter the problem’s difficulty the
required format of the nonce can be altered.[56] In Bitcoin it contains an amount
of zeros which can be adjusted.[56] After finding a correct nonce a node publishes
its result to other nodes which can easily confirm its validity by checking whether
the contained transactions are possible according to the state of their individual
ledger and by confirming the nonce’s format by calculating the Block’s hash value
themselves.[56]

Because each guessing attempt requires computational effort the execution of the
protocol is being additionally incentivized.[69] Each time a node publishes a Block
it can append a transaction with his address to it which output includes Bitcoin
without the requirement of being linked to a valid input. This leads to the issuance
of currency also known as "mining". If the node’s Block is propagating the network
the fastest i.e. being successfully validated and redistributed by other multiple
other nodes it becomes the network’s ground truth due to the fact that it is being
included in the network’s longest chain. Due to the inclusion of the generation
transaction the network then agrees that the miner owns the Block reward.

The amount of financial value a Block Reward itself carries already hints the high
amount of competition a mining node faces within the realm of Bitcoin. In fact,
it serves as such a high incentive that there are mining services consisting of
computer farms who distribute acquired Block Rewards to all its paying users.[99]
Bitcoin is of such high relevance for regulated economies (e.g. the Republic Of
China) try to impose restrictions on its execution. This poses a problem since

16

2.3 Blockchains

acquiring the majority of the network’s computational power leads to having
high influence on determining the validity of Blocks. This in turn leads to a
centralization of the network. In this context oftentimes the term "51% attack"
surfaces. Its name is based on the idea that an entity holding more than half of the
network’s computational power is able to manipulate the chain according to its
liking. However there is research stating that this scenario might be more complex
than previously assumed.

Proof of Stake presents an alternative approach of finding consensus.[2] It is
currently planned to be included in the upcoming Ethereum 2.0 release. Other
than in Proof Of Work verifying nodes are called "validators"[5] instead of miners.
Whenever a validator wants to participate in the process of Block inclusion it
is required to "freeze" a certain amount of their Ether (ETH) known as "stake".
Multiple validators then vote about the validity of the Block. The amount of ETH
each of the nodes provide is considered during the decision process increasing
the likelihood of a node successfully verifying the Block. In case the account
successfully verifies a Block its balance is unlocked and the validator is rewarded
by gaining a portion of the transaction fees. In Ethereum these fees are known as
"gas"[55]. Other than in Proof of Work Ethereum’s documentation states that the
punishment for declaring wrong Blocks as valid is being "explicit"[69]. Therefore
it provides mechanisms which removes funds from a misbehaving party.[69] It
explains that this is necessary as Proof Of Stake does not provide any "implicit"[69]
cost like the amount of required electricity[69] in a mining-based system. This
statement already shows of its main benefits. As it is based around staking
instead of raw computational power it is often considered to be a more sustainable
alternative.

Raft-based consensus is different to the other presented types of consensus due to
its limitation on closed membership Blockchains (e.g. private / consortium chains).
While a more detailed description of these Blockchain types is found in the next
section intuitively reaching consensus on a predefined network of assumed-to-be
trustful nodes is not as difficult as in public and open Blockchains. In Raft nodes
are organized in "clusters"[70]. Each cluster contains a single elected "leader"[70]
which is responsible for ensuring that all nodes share the same state.[70] To achieve
this he accumulates data and distributes them in packages known as "log[s]"[70].
This makes the leader the only entity able to append new Blocks to the chain.[70]
However there are possible reelections where a leader can lose its status.[70]

Each other node in Raft assumes a role of either being a "verifier"[70] or a
"learner"[70]. The leader continually sends its data to all the verifiers in order
to prove its liveness and to distribute Blocks.[70] Each of them responds with a
confirmation that they included the new Block in its chain.[70] If a verifier doesn’t
receive a message of the leader for a certain amount of time it starts a new election
process and turns into a candidate for potential leadership.[70] This process allows

17

2 Fundamentals

a verifier to become a new leader.[70] Both leaders and verifiers are able to add
and remove verifiers and to promote learners to verifiers.[70] Learners are simply
appending the Blocks of the leader to their own Blockchain.[70] Except the ability
of removing themselves from the chain they have basically no additional rights.
In order to actively participate in the process of forming the chain they have to
wait for their promotion.[70] This imposes a hierarchical structure on the networks
nodes. This is an important feature because Raft’s consensus can be used by
the Quorum Blockchain which is being an important part of the thesis proposed
solution for issues regarding data privacy.

As the example of Raft-based consensus already indicated the determination of con-
sensus is also strongly linked to the question of who is able to participate within the
network. Thus the differences between private, public and permissioned Blockchains
are being described in the following.

2.3.3 Private, Public and Permissioned Blockchains

The explanations in the previous sections were mostly based on the assumption that
anyone can participate. While a cryptocurrency like Bitcoin benefits from such a property
the understanding of who is able to participate (i.e. send and receive transactions)
and who is hosting the nodes strongly differs in "private"[94] and "permissioned"[94]
Blockchains.

e Public Blockchains are typically open for anyone to participate. Thus their main

advantage lies in the amount of transparency they provide. This is the reason why
there are public websites allowing a detailed examination of currently included
Blocks. One of these websites is Etherscan.[30] It provides data about every
Ethereum transaction ever occurred and can therefore be used as a valuable tool
in data analysis. Because of this each of the transactions and Blocks can be
inspected and checked for their validity. The previous chapters already listed two
prominent examples of this archetype: Bitcoin and Ethereum are both being hosted
publicly. As both these networks benefit by providing every member with publicly
verifiable information about the history of transactions maximizing transparency
is a reasonable choice. Intuitively guaranteeing a high degree of transparency
counteracts a need for privacy. Their interdependence is a crucial part in the
research area "Information Security". This is being explained in greater detail
in later parts of the thesis. Shortly summarizing its principles: if every data is
available to the public there are no secrets. Thus choosing a private system instead
can provide benefits depending on one’s use case.

Private Blockchains as its name already indicated private Blockchains limit who is
able to partcipate and who is not. Such a scenario might involve a single or multiple
companies restricting their Blockchain and its participants to their employees or
customers. Hosting one’s own infrastructure oneself leads to responsibility in

18

B W N e

2.3 Blockchains

choosing nodes. This fact often leads to a lot of confusion. One might argue
that if a company selects its nodes by itself it doesn’t necessarily require any
consensus at all as it places inherent trust into its nodes. However there might
be multiple departments within a company which don’t necessarily trust each
other.[94] Another scenario can be constructed by thinking of multiple non-trusting
organizations trying to establish trans organizational trust without using a third
party. Whenever multiple companies agree on using a Blockchain together they
form a "consortium".

Both public and private Blockchains can be permissioned.[94] The act of setting permis-
sions could include restricting the readability of transactions of different nodes within
the system.[94] In addition nodes can be managed by being added or excluded from the
validation process.[70]

In order to achieve a differentiation between participating and excluded nodes a
reasonable requirement is for each of them to be uniquely identifiable. In Ethereum
nodes can be identified by a combination of their IP address, their port and their public
key.[19] After an initial establishment of a connection to nodes who are hard coded
within Ethereum’s source code each node proceeds to inform others about the existence
about peers it is connected to.[19] Optionally a node can provide a file called "static-
nodes.json"[19] which can be used to define a set of additional nodes to initially connect
to. As it is JSON formatted it is structured as an array of nodes. An example of its
structure can be found below.

[
"enode://publicKeyAQipA:portA",
"enode://publicKeyB@ipB:portB"

]

Listing 2.3: Structure static-nodes.json

This makes it possible for every computer wanting to participate in the network to join.
A simple way of achieving this is to install the publicly available software "geth"[36]. It
offers a command line interface which can be queried to gain insight about currently
connected nodes or to send transactions to the network. The choice about whether to
restrict users from joining a network can be regarded as a way of exercising access control
by system design making it an important part of the modelling process. One Blockchain
allowing a detailed specification of the different rights a node has is "Quorum"[42]. To
achieve this Quorum extended geth’s functionality by methods to dynamically add and
remove nodes or to promote and demote them according to the principles described in
the thesis’ section about Raft consensus.[70] This fact already indicates that Quorum
is originally based on Ethereum. Therefore both of these chains are explained in the
following.

19

2 Fundamentals

2.3.4 Ethereum & Quroum

While Bitcoin’s primary goal lies in the financial world Ethereum extends this concept
by the ability to store executable programs on its Blockchain. To make them addressable
Ethereum introduces the concept of "accounts". It differentiates between "Externally
Owned Accounts"[75] (EOA) and "Contract"[75] accounts. The former is being held and
managed by users and their private key while the latter is not. In other words both
types of accounts are assigned a public address while only EOAs hold a corresponding
private key.

Smart contracts are stack-based programs which are stored on Ethereum.[92] Due to
their turing completeness are very versatile.

However they are limited by their distributed nature. Since the Ethereum network
requires a common state it is necessary for each node to execute the Smart Contract
until the network reaches consensus about its execution. Every contract’s byte code is
executed in the nodes” "EVMs"[23] (Ethereum Virtual Machines). As a consequence the
byte code encodes basic EVM operations to instruct the machine. In the public Ethereum
chain every node receives a copy of its byte code as it is being stored on the Blockchain.
Because of this both the contracts and the network’s transactions are being known to all
the participants. This way every node can confirm a contract’s correct execution and
results.

Each contract can be interfaced via transactions directed to its public address con-
taining information such as the transaction’s signature and the parameters. Similar to
multiple servers communicating through their APIs contracts can interact with other
contracts via messages. However the starting point for each alteration of the Blockchain’s
state is a transaction originating from an EOA.

The calling format of all a contract’s functions are further specified by a contracts
ABI ("Application Binary Interface")[34] which compilers such as Solidity automatically
generate while building. As the execution of operations is costly Ethereum transactions
include a fee as additional incentive for a miner to include it within a Block. It is
called "gas"[55] and is being expressed by filling the transactions fields responsible
for stating a gas price and start gas. The actual fee in Ether is then being derived
from a multiplication of both these values plus an additional cost for every executed
operation.[92] In case the account didn’t has sufficient funds the transaction is fully
reverted. Because the sender of a transaction can define the amount of gas he is willing
to pay it can influence the likelihood of being included in a miner’s block by providing
more gas as a miner is assumed to be maximizing its profit and therefore prioritizing
this Block over others with transactions who provide a lower amount of gas. This allows
a sender to to influence the propagation speed of a transaction he sends.

Another reason for introducing gas is to link the execution of operations to a cost as it
requires computational effort of the network’s participants.[55]

Because a node can listen to all the transactions entering the system it can apply diverse
reverse engineering techniques to dissect the network’s flow of data.[1] Depending
on different factors such as knowledge about the contract’s address or its ABI these

20

2.3 Blockchains

magnitude of such an attack can vary. While this open and transparent interaction
between EOAs, other EOAs and contracts ensures "public verifiability"[94] on the one
hand it is being the core problem of ensuring "data privacy"[86] on the Blockchain. This
is amplified by the fact that contracts often hold currency making them an interesting
target for attacks. Thus it is important to include considerations about the privacy of
a contract’s data during the early phases of modelling and before deploying it on the
chain.

While Ethereum can also be hosted privately in order protect sensitive data by
reducing its exposure to the public a Blockchain known as "Quorum"[42] introduces
additional privacy and node management features.

It can be run using the Raft consensus explained in the previous chapter. In addition
to Quorum allowing the execution of any Ethereum Smart Contract it can process
transactions privately.[42] While previously transactions were assumed to be publicly
readable including all their details Quorum introduces a differentiation between private
and public transactions. As it is being the subject of a later evaluation it is described in
more detail in the thesis” chapter about Access Control and Previous Implementations.

21

3 Related Work

As a result of the initial literature research multiple related publications were found. All
of them provided insights into the current state of access control inside or outside the
Blockchain domain. As a consequence this chapter gives an overview about prexisting
work in order to present the current state of the art.

"Using Blockchain to build decentralized access control in a peer-to-peer e-learning
platform"[53]:

is a related Master’s thesis implementing an Access Control system for handling re-
sources in the context of an E-Learning platform for the aboriginal community. As it is
one of the few related findings which include details on its implementation including an
off-chain MySQL database as persistence layer, a REST-based API and GUIs for teachers
and students it is mentioned in this chapter. Its approach is based on managing permis-
sions by storing various flags similar to an Access Control List (ACL) in a JSON-File.

"Blockchain Based Access Control"[76]:

explains the differences between encoding access control as policies within transactions
and storing them in off-chain repositories. It mentions the impact of storage limitations
of Blockchains in the light of storing access control policies. While its policies are based
on an XML language (XACML) its approach is to reduce storage costs minimizing the
amount of information stored on the Blockchain. Instead of relying on Smart Contracts
it uses transactions as a representation of access control policies. Each of them can
be altered during the process of granting new or different rights to subjects while the
Blockchain maintains a history of all occurred changes. Further the article explains the
possibility of storing policies outside of the chain (e.g. databases). Instead of encoding
the policies directly in a transaction’s payload it then only carries a resource identifier
and possibly its hash-value to ensure its integrity. Interestingly it even hints using
torrents as means of distributing policies.

"RBAC-SC: Role-Based Access Control Using Smart Contract"[21]:

RBAC-SC is a Solidity based Access Control framework for Smart Contracts. It is
published on GitHub and implements a basic role management. Its management is
handled by an administrator which is assigned to the address of the user who initially
deployed the contract. By using a combination of software patterns, events and map-
pings RBAC-SC can be understood as a database keeping track about all its registered
users and their roles. By itself it doesn’t implement functionality to determine whether
a user is having a role or not. While such an extension is easy to implement its core

23

3 Related Work

idea is not based around protecting a Smart Contracts functions similar to an REST-API
but instead relies on the implementation of challenge-response-response based protocol
which is being executed off-chain. This includes an linking a user’s off-chain identity to
the role has holds within the Smart Contract. In a resource exchange process a user is
therefore required to proof his ownership of the public key linked to a role in order to
be granted access to said resource.

"Secure Attribute-Based Signature Scheme With Multiple Authorities for Blockchain
in Electronic Health Records Systems'"[40]:

describes an encryption based approach on how to handle Electronical Health Records
(EHR). Its goal is to allow fine-grained access control mechanisms for EHRs. Patients,
hospitals, research institutions and other possible stakeholders are involved in a system
of the assignment and possession of attributes which allows a participant (e.g. doctor or
patient) to request and store data via a set of different signatures each of which serve as
a proof of attributes similar to attribute based encryption schemes:

((cardiopath) AND (disease period more than 10 years))
OR (((Harvard professor) OR (Yale professor))
AND (Expert on cardiopathy)))

In addition the article outlines the possibility of each of the parties participating in
a consortium Blockchain. Each Block in the proposed system represents a patient’s
treatment and includes additional information such as the state of his insurance. This
system tries to expand on the traditional health-care system in which a patient’s EHRs
are kept by only a few health providers and doctors which are the only entities capable
of managing the database holding all the health records.

MedRec: Using Blockchain for Medical Data Access and Permission Management[4]:
presents a different approach for solving the issue of EHRs. It makes use of private
Blockchains synchronisation between off-chain provider databases and Smart Contracts.
Its concept is based on deploying one Smart Contract for each provider keeping a
patient’s records. This "Patient Provider Relationship" (PPR) contract keeps informa-
tion about how to connect to the corresponding database (e.g. port + hostname) and
encodes permissions by storing allowed SQL queries. The EHRs are therefore kept on
the providers” databases. Its advantages are an easier adaptation of existing systems
over Blockchain-only solutions. The PPR additionally encodes viewership permissions
as SQL queries, leading to a lot of flexibility. The provider both maintains and executes
the available SQL queries. Whenever a patient wants to grant a third party access to
his health records he is able to access a website offered by MedRec where he answers
different questions about what information should be accessible. MedRec then generates
a query string based on the given criteria and stores it in on the Blockchain linked with
the third party’s public key. The system provides an off-chain access interface for each
providers’ database which requires a signed request to link a person’s off-chain identity
with his permissions in a smart contract.

24

"Security and Privacy on Blockchain"[97]:

is a summary of privacy preserving techniques linked to Blockchain technology. Due
to the transparency of Blockchain data there are multiple approaches to encrypt and
or handle data. It proposes the usage of advanced technologies such as homomorphic
encryption, Zero-Knowledge Proofs, attribute-based encryption, secure multiparty com-
putation and ring signatures. As encryption can enforce confidentiality it can be used as
another way of enforcing access rights by design choice.

"FairAccess: a new Blockchain-based access control framework for the Internet of
Things"[64]:

is a widely cited framework designed around its own access control protocol. Resources,
their owners and requesters are described as potentially residing in different organiza-
tions. In order to achieve a high degree of flexibility and preserve the organizations’
autonomy over their access control decisions, FairAccess defines its own access control
protocol. Each entity (i.e. resources, requesters and resource owners) are identified by
their address. A resource owner generates and maintains potentially multiple trees of
derived addresses to its resources using a common private key as generator. By doing
so identifiers can potentially be reconstructed in cases of data loss. The actual granting
and delegation of access rights is handled by including an access token. Whenever a
resource owner intends to grant another user access to one of his resources he encodes a
token into a transaction and publishes it to the network. The token itself is encrypted
with the public key of the requester in order to ensure confidentiality between the
two parties. Alongside the token the transaction includes the public addresses of the
requester, the resource and instructions about requirements a requester needs to fulfill
to spend said token. During the actual request phase a user then includes a proof
of his rights alongside a "GetAccess" transaction. In addition, its future work section
FairAccess gives an outlook on concrete storage proposals.

"On or Off the Blockchain? Insights on Off-Chaining Computation and Data"[29]
includes insights of previous research about how to preserve important Blockchain
properties such as integrity protection and transparency while evaluating different
degrees of off-chaining. It includes a list of different design patterns for Smart Contracts
and scenarios of when to apply them. Patterns ranging from "Content-Addressable
Storage" to "Challenge-Response” find many different use cases and are therefore found
in many parts of this thesis. The gathered observations play an important role in the
decision process of how to implement various strategies regarding data privacy.

25

4 Access Control and Previous
Implementations

While the previous chapter provided an overview about different approaches of the
past the thesis expands on them. While previous research often stated the relevancy
of permissioned and private chains there are full-featured implementations are rare.
The thesis on the other hand tries to accommodate them right in the beginning of
the prototype’s designing phase. As a consequence it includes implemented variants
of its Smart Contracts which are designed explicitly in order to be run on Quorum.
At the same time the thesis system tries to expand on previous projects while still
maintaining its capability of being deployed to a public Blockchain. Because of these
goals this chapter first defines the steps involved in the evolution of different access
control systems and then proceeds by explaining related terminology and concepts.
Understanding them is necessary in order to be able to follow the chapter’s evaluation
of existing approaches. Before each individual analysis related topics are explained.
Because two of the evaluations require some basic knowledge of the programming
language Solidity the chapter also includes a short description of its functionality. In
addition it describes how the private Blockchain Quorum can be used in order to
ensure privacy on Blockchains. The chapter then concludes by explaining an approach
based on the "XACML"[54] language and architecture and gives examples of possible
shortcomings of the existing solutions in order to formulate system requirements for an
own implementation.

Authorization revolves around the basic question "who" is able to do "what". As
simply as this might seem it dictates a careful assessment and determination of involved
actors and their roles including who is able to read and alter data. Thus it is strongly
linked to the three fundamental goals of Information Security: confidentiality, integrity
and availability.[66] In literature these are also being referred to as "CIA Triad"[66].
Because these data properties are interdependent maximizing one factor can lead to
a decrease of another one.[66] As an example: one can argue that by ensuring a high
amount of confidentiality its availability is reduced. Differently stated: If only a single
person within a whole organisation knows a secret its confidentiality is high while its
availability very low. In terms of Blockchain technology the factors of integrity and
availability are maximized due to its distribution of transparent transaction data. In
addition it is often being argued that its confidentiality property due to its transactions
being publicly readable.

Not fulfilling requirements such as integrity or confidentiality by not adequately
modelling a system’s flow of information may lead to security breaches or data loss

27

4 Access Control and Previous Implementations

which can strongly impact the public image of a company leading to economical damage
and potential lawsuits. For this reason several economic branches evolved. There are
certification companies which a a company can consult to prove its trustfulness and
insurances which cover the damages caused by data breaches. Even the previously
mentioned Certificate Authorities can be regarded as being part of this business model.
This showcases the amount of money their customers are willing to pay in order to
prove their integrity. Oftentimes fulfilling the necessary requirements for achieving a
certification enforce the definition and establishment of strict rules. In order to prove
their trustworthiness companies are trying to fulfill their requirements despite the
additional workload their implementation poses and the implications they might have
on its hierarchical structure.

4.1 Types and Terminology

Access control by itself is no new discipline. Instead it evolved over several decades
and is being found in a multitude of different projects. It is in no way limited to the
domain of web technology. Instead it is being used by electrical devices just as much.
One common example is the "fingerprint sensor"[78] which is often integrated into
modern smart phones. During the evolution of the discipline itself the development
of its terminology followed. This makes it necessary to give a basic overview of the
existing types of access control. Because Access Control is subdivided into three major
types it makes sense to start by giving an explanation of each of them first.

e Discretionary Access Control (DAC)[44] In DAC each resource has an owner
who is responsible for managing other subjects’ rights to it. One example of
widespread usage of DAC are Linux systems. In Unix each user who creates a file
has the option to grant others access to it. Its permissions are defined in a so called
"Access Control List"[44]. Such a list provides information about which operations
can be carried out on a resource. In Linux each file’s permissions are expressed by
three values of the size of a single byte called a "flag". A can then be defined by a
binary addition of the following numbers:

100 Read (r) 010 Write (w) 001 Execute (x)

The access control list of a given file in Linux can be viewed by a calling "getfacl"
followed by the file’s path. This is being shown in the following example.

$ getfacl tum.pdf
file: tum.pdf
owner: thomas
group: users
user: :rw-

AU W IN -

group: :r--

28

4.1 Types and Terminology

7 other::r--

Listing 4.1: Linux Access Control List

The code listing shows that the file’s owner is called "thomas" and that he currently
holds read and write rights (rw) identified by the binary number "110". Each file’s
permissions can be altered via the "chmod" command followed by three decimal
numbers representing the binary number converted to its decimal representation.
These three numbers indicate the permissions the file’s owner, the group called
"users" and all others have. The example would therefore indicate a permission
flag of 644. In Linux an owner can even revoke his own permissions to alter the
given file. To prevent inaccessible files every administrator in Linux (i.e. root user)
can change the permission of a file nevertheless. Such emergency mechanisms can
be used in order to prevent user-side errors.

e Mandatory Access Control (MAC) is based on the concept that each subject and
resource are assigned security levels.[44] Depending on the type of MAC a user
with a lower security level than a resource is not able to write said resource but is
still able to read it. Similar to the permissions an Access Control List grants, the
security levels are responsible for the determination of whether a subject is able to
read and / or write a resource. The decision on whether to allow or deny such a re-
quest is based on the concepts such as "No-read-up"[12] and "No-write-down"[12].
No-read-up says that a resource can only be read by a subject if the subject’s
security level is higher than the one of the resource.[12] No-write-down states that
the security level of a subject needs to be less than the resource’s in order to alter
it.[12] Due to the strictness of permission assignment and revocation, literature
defines MAC’s main areas of applications in sectors requiring high amounts of
confidentiality (e.g. military sector). These extreme security considerations can
lead to problems with the originally intended transparency of Blockchain’s making
MAC a rather uncommon option in Ethereum.

e Role-based Access Control (RBAC) depends on grouping subjects by their roles.[44]
The example of a Linux Access Control List already made use of a very basic types
of roles by including groups into their definition. This shows that RBAC by itself
can be implemented based on DAC principles. A user might recognize RBAC from
its every day computer usage. To give an example a user can log into a computer
by either using the administrator account or by using his own account. In contrast
to MAC there are preexisting implementations of RBAC Smart Contracts to date.
Two examples of them are: RBAC-SC and Openzeppelin’s RBAC. Both of them are
evaluated at a later stage of this chapter. To give a more business related example
of applied RBAC an employee of a company might hold multiple roles at the same
time. Therefore he can both be a general employee and book keeper. Each of these
roles is linked to different rights. This allows him to change between the roles
depending on the requirements of his current task. The concrete definition and

29

4 Access Control and Previous Implementations

modelling of purposeful roles is by itself, a demanding task. This is underlined by
the fact that there might be conflicting roles and even hierarchical role structures
which inherit a parent role’s rights. One of its main advantages lies in its ability to
provide an easy mapping from real world entities to their respective roles within
an RBAC system. However depending on the complexity of the underlying Access
Control model this can quickly evolve to a rather complex task.

In addition to the aforementioned terminology there are different reoccurring patterns
in the domain of access control. As the popular Solidity framework "OpenZeppelin"
includes an implementation a "Whitelist" strategy it is being explained in the following
including its counterpart the "Blacklist".

o Blacklists Blacklisting refers to the act of allowing anyone to access a resource
except for users which are explicitly excluded. Figuratively one could say that
these individuals are therefore being part of a so called "Blacklist". Due to its
openness it is generally considered to be rather unsafe and not applicable in most
business scenarios due to its lack of confidentiality. Using Blacklists based on
Ethereum account’s address is essentially useless as a subject can easily generate a
new key pair and account.

o Whitelists are based on the opposite approach of Blacklists and deny access by
default. Only users, which are included on a list called "Whitelist" are granted
access. In its extreme case a Whitelist can only define a single subject as being
allowed to manage a resource. This is essentially done whenever an administrator
is the only entity within a system which is allowed to interact with a resource.

All of the previous explanation are being rather concrete in the way they are being
implemented. As access control does not necessarily imply limiting oneself to rather
primitive means such as Access Control Lists another technique known as "Chinese
Wall" provides a more abstract stance on the topic of exercising access control.

"Chinese Wall"[14] tries to combine the advantages of DAC and MAC approaches
by grouping different users, resources and companies into "conflict of interest"[14]
classes. Chinese Wall therefore operates on a higher level of abstraction. Its original
model revolves around companies and their data.[14] For this reason it groups data into
"company datasets"[14]. It then explicitly states that a subject is only allowed to access
another object if it has already accessed an object from the "same company datasets"[14]
or if it belongs to "an entirely different conflict of interest class"[14]. To give a basic
example:

An employee works for the content provider network "Netflix". As his everyday job is
to provide subtitles to the series the network provides he is directly interacting with the
company’s datasets. As its competitor "Hulu" can be regarded as being within the same
"conflict of interest" class the employee is not allowed to provide its subtitles to Hulu. If
he instead shares it with the company responsible for producing the series in order to

30

4.2 Access Control in Client-Server Architectures

ask for corrections he doesn’t surpass any the "Chinese Wall" by not leaving his own
class of "conflict of interest".

This model provides an intuitive explanation on what companies try to achieve. Many
of them try to guard their secrets from their competitors as they can provide valuable
insights to them. A company which has a unique way of producing a product could
try to take multiple measurements in order to preserve its secret. Therefore one of the
main goals of access control is often stated as limiting the "information flow"[46]. In
order to understand how to limit this flow of information within a publicly readable
Blockchain like Ethereum it is therefore necessary to first analyse existing solutions from
the domain of client-server architectures.

4.2 Access Control in Client-Server Architectures

While many of the existing implementations of access control systems in Ethereum are
rather basic there are many well established frameworks which are targeting web servers
and their applications. Consequentially multiple strategies evolved. By first defining
them it is possible to derive conclusions and best practices which can serve as a basis
for transferring the gathered knowledge to a Blockchain system. Thus the following
paragraphs introduce the two fundamental and universally applicable concepts of
"authentication" and "authorization" by explaining the way they are interpreted in
traditional Client-Server architectures.

4.2.1 Basic Authentication

According to the definition of "authentication" it is "an act [...] of showing something [...]
to be genuine"[3]. In the context of web applications it is used to prove one’s identity[43].
TLS already provided a method for proving a server’s identity by the signature of a
trusted third party.[43] Clients on the other side often don’t go through such certification
processes.

Single & Multifactor Authentication

Instead many web applications make use of simple password based authentication for
identifying their clients. Whenever a user accesses a website he provides his username
and his password. The data provider can then look up fitting entries within its user
storage to access additional information. This could include personal user data such as
his last name or his individual preferences for viewing the website.

To confirm the validity of the transmitted password the database holder compares its
hash value to the ones stored in his database. This is common practice as storing hash
representations instead of actual passwords adds another layer of security in case of a
successful attack.

The initial set up of the password might have been part of a user’s registration at
the website or subsequent edits of his account’s data. In order to ensure that these

31

4 Access Control and Previous Implementations

credentials are transmitted securely an HTTPS connection can be used. The necessity of
ensuring their confidentiality is is especially important in the context of Smart Contracts.
If a transaction includes the plain-text version of a password it can be read by every
participant in a public chain. Consequentially later sections of this chapter include an
explanation on how Quorum makes use of HTTPS in order to solve this issue.

This type of authentication can be categorized as being a method of "Single Factor
Authentication"[47] as it only requires the knowledge of a single secret. Its counterpart
"Multi-Factor Authentication"[47] requires the knowledge of two or more secrets to
improve security. It is often used by banks when they request a TAN alongside a
username and a password during online banking sessions.

After a successful authentication the server can respond by opening a so called
"session" encoding a unique identifier for the current connection between him and the
client. This way the client can provide its identity by sending his session id instead of
its password in subsequent requests. To simplify its management its possible to store
the session ID within the client’s browser.

Challenge Response Authentication

Another way of authentication is known as "Challenge Reponse Authentication"[67]. It
requires the client prove his knowledge of a "shared secret"[67] to the server without
exposing its content by transmitting it. This secret could be a password only the server
and the client know. One possible way such an authentication can be executed by to
leveraging hash functions. In case the client knows the secret he uses a one-way hash
function to generate its hash representation. Afterwards he can proceed to send it to the
server. The server is then able to confirm whether the client has successfully answered
his challenge by generating a hash value of the secret as well. If the comparison of
both the hash values is proving their equality the challenge is being fulfilled. As a
consequence the client is being authenticated by the server.

Single Sign On

All these scenarios can be extended by adding more than one server to the scenario.
Because resources are not necessarily stored on a single server but multiple machines
instead accessing them would require a user to provide his credentials each time he
interacts with a new server.[24] This problem is solved by "Single Sign On"[24] sys-
tems who rely on a central authentication server which reigns over multiple machines
including their resources.[24] After a successful authentication the server responds
with a "token"[24] which can be by a user to authenticate with all the machines. The
storage of the credentials is handled by a so called "authentication authority"[24]. The
fact that they are also referred to as "Trusted Third Parties" already indicates that the
domain’s participants who the actual resource data need to be able to trust the entity
responsible for the management and validation of user credentials. This is why related
literature mentions that a successful attack on this system grants an attacker access to

32

4.2 Access Control in Client-Server Architectures

the complete domain. In other words the system relies on a strong centralization of trust.

In the context of Blockchains authentication strategies can range from simply own-
ing a private key linked to a public address to more complex ones involving proving
ones knowledge of a shared secret ("zk-SNARKSs"[35]). In order to implement a full
access control system it is necessary to consider the transparency involved in the process
of authenticating a user. This makes it necessary to implement authentication strategies
which don’t rely on the transmission of secret data. One secure proposal of an authenti-
cation model could be modelled the following way: A Smart Contracts initializes itself
during its deployment by storing the address of its deployer. During its initialization
phase it requires a second parameter which is being an address of a second user. After
both arguments are provided the contract proceeds to store both users as registered
members. It then provides the functionality to vote on new members which request
registration. In case at least two registered members confirm its registration the new
user is being added. While this strategy is rather simple it does not rely on any secret
data being shared.

4.2.2 Authorization

After the user is authenticated it is necessary to determine his permissions. This is
the subject of authorization. It tries to answer the question "who has the right to do
what?". One everyday example of applied authorization is found in the management of
WhatsApp groups. Each group has a single or multiple administrators who are able to
invite new members. Other non-administrators are not able to do so. While the impact
of deciding who administrates such a group might be negligible, protecting sensitive
customer data is not.

Over the years multiple forms of Access Control have emerged. Common terms in the
context of authorization are: "Subject”, "Object" and "Action"[44]. The previous examples
already included a possible object when they introduced an API’s resources. Restating
the previous question in access control terminology leads to the assessment of whether
a subject (e.g. a user) has the right to perform an action on a resource. These questions
are being the subject of "authorization".

OAuth2

One common framework in the context of authorization is "OAuth"[90]. It is being
publicly available and allows a user to authorize a third party API which is referred to
as "Client"[90] to access another API which acts as a "Resource Server"[90]. It should
be noted that this terminology is based on OAuth’s variation called "Authentication
Code Flow"[90]. The user is being responsible for deciding whether to grant a client
access to his resources or not. Therefore he is also being called "Resource Owner".[90]
This is achieved by using a central "Authorization Server"[90]. The resource server can
potentially keep any type of information. Therefore the resource server could include

33

4 Access Control and Previous Implementations

personal information about the user such as the user’s first and last name or different
photos and videos he stored. The authorization server provides an interface for clients
trying to access the a user’s resources.

Summarizing the steps described by OAuth’s documentation[90] its process can be
described in the following steps:

e A client requires user authorization to access one of its resources

o Therefore it redirects the user to a website hosted by the authorization server. The
website can be regarded as an interface.

e The user is then being prompted for its confirmation

o After the client’s confirmation the server redirects him back to the client’s applica-
tion

e This redirect results in an "Access Token"[90] for the Client

e The client can then use the "Access Token"[90] for subsequent requests to the
resource server

In more detail: To be able to communicate which actions a client wants to use the
request defines a "scope"[oauthscope]. The scope could be set to "update" and "create"
indicating that the third party application intends to use these types of operations.
However depending on the use case its possible to define own scopes. The authorization
server’s website can then warn the user about the intentions such an application might
have and about the possible consequences such an authorization. As a reminder the
create and delete operations have already been explained in the thesis” chapter about
HTTP Requests and APIs.

In addition the request contains a URL to which the user is being redirected after
finishing his authorization.[31] Because this URL can be set to an endpoint of the client
it can be used in order to send it an access token which it can use in future requests.[31]

To give an example of applied OAuth one can imagine a third party Smartphone
application which tries to post photos to a user’s Instagram timeline. As it can be
assumed that the application is not automatically able to interact with Instagram due to
missing access rights the application redirects the user to the authorization server hosted
by Instagram. In its request it encodes the scope of the operation as "createPhotos" as
the application’s only intention is to post new photos. Instagram then informs the user
that a new application is asking to post new photos to his timeline. In case he accepts
an access token is generated. This token is then being transferred back to the third party
application which it can use in order to post photos by interacting with Instagram’s API
functionality.

XACML

Each company is under the influence of laws, competitors and its customer’s desires.
To smartly navigate along this frame a company formulates policies indicating rules of

34

4.2 Access Control in Client-Server Architectures

conduct for their employees. Thus concepts such as guidelines and rules a are commonly
established. These rules are often formulated as "company policies"[87]. They may be as
simple as: "a developer does not need to know the income of the company’s employees
except his own.". Its employees are then being expected to follow them and to keep
informed about policy changes. This is ensured by sometimes long lasting compliance
seminars. This underlines the amount of importance placed into their application. A
policy is technically useless without its implementation. In other words if no employee
follows it, it has no effect on its own. This separation between policy formulation and
its "enforcement"[26] is also found in the context of access control.

As access control can be expressed as a set of rules it can be understood as a language
including syntax and semantics.[26] Approaching the limitation of information flow at
this level of abstraction allows a greater flexibility compared to hard coding restriction
mechanisms. concrete implementation of restricting code. By combining multiple
policies different security concepts can be established. Such constructs can range from
simple blacklists to more complex structures. One common problem in formulating
policies is to handle conflicts in case they contradict each other. Residing in the realm
of compliance, company policies and access control policies there is a process known
as certification. Different trusted institutions offer a so called "certification" granting
its owner a presentable indication of quality. It can be used to attract customers and
positively reflects a company’s image. Certifications are therefore often required to
establish a company in the software consulting area or other areas, which require a
lot of trust (e.g. banking sector). Because the management of these policies is can be
complex many companies use special systems to manage their Access Control System.
Alongside the ability to add and enforce new policies and rules it includes monitoring
and emergency features in order to audit and handle historical or upcoming requests to
a company’s data. Because the formulation of policies is a historical problem there are
already existing approaches.

The most common one is known as "XACML"[13] (eXtensible Access Control Markup)and
presents an both an architecture and a XML-Schema based language for managing and
processing access control policies. Due to its flexibility it can model multiple differ-
ent types of access control.[13] It is being standardized and maintained by the OASIS
consortium and provides functionality for the handling and management of requests
according to formulated policies.[13]

XACML defines a system of multiple components called "points"[13]. Points define
an infrastructure sequentially handling an incoming access request originating from
a "subject"[13] with the intention to access an "object"[13]. Each point is responsible
for a different step within the process of granting or denying said request by reaching
a decision. The conclusion is derived from on a set of policies defined in a Policy
Repository.

Policies in XACML are grouped into "PolicySets"[13] which allows an easier man-
agement. Each of the policies can include rules. Each of the rules states an effect and
targets. Its targets are required to determine whether a given rule needs to be applied. In

35

O 00 NI O Ul i W IN =

4 Access Control and Previous Implementations

addition to an explicit statement of the subject, the user and the action the target refers
to XACML provides operators such as "anyOf"[38] or "allOf"[38]. A simple example of
an XACML policy can be found below.

<Policy>
<Rule Effect="Permit">

<Target>
<Subject "Thomas" />
<Resource "Movie: Drive" />
<Action "READ" />

</Target>

</Rule>
</Policy>

Listing 4.2: Example of a XACML Policy

The code sample states that a user called "Thomas" is allowed to read the resource
"Movie: Drive". Including this policy inside an XACML repository results in a successful
request whenever the user tries to "read" the movie file. In other words: The user can
watch the movie. While the given example is rather simple XACML supports a wide
range of operations. In order to achieve this XACML provides a complete architecture for
processing incoming requests. To give an intuitive example of how an incoming request
is handled the following scenario can be constructed: A user (subject) is trying to watch
(request) a movie (object) on Netflix. In order to receive file his request is processed in
the following way (based on the information included in XACML'’s specification[38]:

A user authenticates himself - this is done outside of XACML

The authenticated user sends a request to the platform’s Policy Enforcement Point
containing the URI of the movie.

The Decision Point currently only holds the information contained in the request
itself (e.g. User: "Thomas", Movie: "Drive")

The Decision Point queries a Policy Repository to gather related policies.

The Decision Point queries linked Information Points to gather contextual infor-
mation (such as the user’s subscription status)

The Decision point aggregates all the information he is holding

As the user is successfully authenticated and has an active subscription status the
evaluation of the policies yield a positive result.

Consequently the Decision Point informs the Enforcement Point about its positive
decision

The Information Point then retrieves the movie from its attached file storage and
transmits it to the user

36

4.3 Evaluation of Access Control Systems in Blockchains

This way XACML can enrich the evaluation of policies by contextual information and
provides an abstraction layer on top of subjects, objects and resources. It provides way
more flexibility than a simple system like the previously explained Smart Contracts
based on RBAC. During literature research a single project was found which tried to
fully implement a Smart Contract based XACML system.

4.3 Evaluation of Access Control Systems in Blockchains

After outlining the applied strategies of authentication and authorization within Client-
Server architectures it is necessary to evaluate the current state of Blockchain based
systems. Thus this chapter includes a description of different approaches related to the
concept of access control. It starts by explaining how Quorum implements leverages
HTTPS in order to send private data.

4.3.1 Data Privacy & Quorum

In Quorum each node contains a system called "Tessera"[42]. It extends it by a component
known as "Transaction Manager"[42]. It is able to communicate with the other nodes’
managers via HTTPS.[42] This way it is possible for them to exchange confidential
messages without the necessity of exposing this confidential data on the Blockchain.
Quorum’s documentation contains a list of multiple extensions it provides to the
way Ethereum’s Blockchain model works. One of its main addition however lies in
its capability of sending private transactions and Smart Contracts.[42] In order to
understand the way this was implemented its process can be summarized as shown in
the list of steps below. The following explanations are therefore being a simplification of
the original list provided by Quorum[42].

e As a Quorum node receives a transaction including a field "privateFor". Therefore
the node knows that this transaction has to be processed privately.

e The field’s content corresponds to the public keys of all the intended recipients’
transaction managers.

e Each time a node wants to send private data it sends the original transaction to its
Transaction Manager which redirects it to a component called "Enclave"[42]. Its
responsibility lies in the encryption and decryption of the transaction’s payload.

e The Enclave answers with an encrypted version of the transaction’s payload
containing different keys which ensure that only the intended recipients are able
to decrypt it.

e The Transaction Manager then proceeds to distribute the Enclave’s encrypted
response to all the Transaction Managers listed in the "privateFor" field. This is
being carried out via HTTPS.

37

4 Access Control and Previous Implementations

o After it is being received each Transaction Manager stores it in a storage which
uses the data’s hash value as an index.

e The sender’s node then waits for the acknowledgement of a successful transfer.

o It then proceeds by replacing the transaction’s payload by its encrypted represen-
tation and setting the transaction’s "V"-field value to "37 or 38" to mark it as a
private transaction.

e Then it publishes the transaction to the Blockchain itself. Consequentially every
node within the network knows about its existence without being automatically
be able to read its content.

e Each node in the network will then query its Transaction Manager for the transac-
tion’s hash index to find out whether it has access to its contained data.

o In case it does not it receives a "NotARecipient” message as an answer. Otherwise
its Enclave is able to use the Transaction Manager’s private key to decrypt the keys
necessary for decrypting the payload itself.

o The final step after successfully decrypting the payload is to send its unencrypted
data to its EVM to update its state accordingly.

Evaluation The described approach provides a solution to the issue of sending private
data through a Blockchain. While it additionally introduces the overhead of requiring
the installment of a transaction manager Quorum also offers the capability of deploying
private Smart Contracts between participants. Each of these contracts is being protected
by not sharing its state with excluded participants. Regarding this subject the doc-
umentation explicitly states that the "execution will update the state in the Quorum
Node’s Private StateDB only."[42] Therefore other contracts don’t know about the state
of the node’s contract. While on the one hand this makes it impossible to reach net-
work consensus over its data it can be leveraged to ensure its confidentiality. In other
words this approach limits the public verifiability of its execution in order to privately
communicate.

However one could argue that many scenarios such as sharing Medical Records
strongly favor privacy related features over being part of a consensus process.

As Quorum allows the deployment of arbitrary Smart Contracts it allows the imple-
mentation of an access control system which can both be used for private and public
scenarios. The thesis therefore decided to provide an access control system which
additionally includes Smart Contracts which are intended for being used within a
Quorum environment. This serves as an extension to previous research by offering a
new perspective to the on-going debate of data privacy on Blockchains. In addition
to the privacy features themselves Quorum also introduces a complex permissioning
system which is entirely based on the implementation of Smart Contracts. Therefore a
synthesis between the proposed system and existing functionality is imaginable. Further

38

4.3 Evaluation of Access Control Systems in Blockchains

each account can be assigned a role which it holds within an organization reminding of
the Chinese Wall principle described earlier.

4.3.2 Access Restriction via Smart Contracts

In the past there have been various examples which don’t make use of Smart Contracts
within their access control system. One example of such an approach can be found in
"Blockchain Based Access Control"[25]. As the thesis goal is to specifically determine
Access Control mechanisms in the Ethereum environment limiting its approaches to pure
transaction-based access control is ignored in favor of Smart-Contracts implementing
AC functionality. This decision is based on a crucial implication: Both Quorum and
Ethereum include contracts. Therefore the developed mechanisms can be used in
applications based on either chain. As Quorum introduces private transactions[42] it can
then be used in conjunction with the implemented system to restrict access even further
via exercising control through Raft’s mechanisms or via Quorum’s permissioning.

Basic Programming in Solidity

As this chapter includes detailed analyses of reference code it requires some basic un-
derstanding of programming in Solidity. Thus this chapter begins with a short summary
of its basic functionality. Other than object-oriented programming languages like Java
or C++, Solidity is based around "contracts"[20]. Each source files provides the ability
to import other source files via an import statement.[20] This allows the inclusion of
libraries.[20] The complete chapter serves as a summary of the information provided by
Solidity’s official documentation.[20]

Variables Variable assignments require an explicit declaration of their type. Simi-
lar to C++, it includes types such as integers, strings and booleans. In addition Solidity
provides its own bytes and address types. Thus every declaration of integers and
bytes can be followed by a number. In case of integers this indicates its required bits
ranging from 8 to 256. If the variable was of type bytes instead the number needs to be
multiplied by 8. A bytes32 variable therefore has the same length as a int256 value. In
addition integers can be marked as unsigned by adding the letter "u" in front of their
declaration as in "uint". Each of these primitive types can be used in conjunction with
arrays or mappings. A mapping links a key to a value. Thus they are being expressed
by the notation (typeA => typeB). By default mappings initialize all values to the zero
representation of typeB. A mapping of type (address => uint) would therefore result in
a 0 value for every address unless explicitly set otherwise.

Functions can include multiple operations. A full declaration includes parameters
and the data type of the return value. They can be declared as "pure" in case they don’t
read or modify state variables or "view" if they are only reading from state without
writing it.

39

O 0 NI O Ul i W N =

[
=]

12
13
14
15
16
17
18
19
20
21
22

U= W N =

4 Access Control and Previous Implementations

Contracts consist of multiple functions and and variables. This allows them to represent
state. In addition they can include an optional constructor which is similar to the ones
known from other programming languages. Aggregating the previously explained
concepts in a single contract yields the following example:

pragma solidity ~0.5.0;

contract ExampleContract {
uint callCount = O0;
// mapping from address to uint
mapping(address => uint) public balances;

// array of size ten of 8 bit unsigned integers
uint8[10] unusedArray;

// Sets value of callcount to 1 during initialization
constructor () public { callCount = 1; }

// msg.sender is a constant value from the transaction’s sender
function changeBalance(uint balance) public {
balances [msg.sender] = balance;

}

// pure function
function unsignedMultiply(uint a, uint b) public pure returns (uint) {
return axb;

}

Listing 4.3: Implementation of a Contract

Sidenote: In line 15 the array is indexed by the constant "msg.sender". It is being pro-
vided by Solidity and corresponds to the transaction’s sender identified by its address
at runtime.

Inheritance Just like C++ allows inheriting from parent classes contracts can be in-
herited from. This allows overriding functions and basic polymorphism.

Structs can be used to group the combination of multiple types under one name.
Currently it is not possible to declare structs recursively by self-referencing. Still structs
are often used in order to build data-structures like linked lists. This is a common
workaround found within implementations. The reason for their existence lies in the
fact that Solidity offers no concept like C++ pointers.

ListEntry[] entries;
struct ListEntry {
uint index;
int next;

40

B W

4.3 Evaluation of Access Control Systems in Blockchains

Listing 4.4: Implementation of a Struct

The code shown above introduces an array keeping all the list’s entries. Whenever a
new ListEntry is appended its index can be set to the current length of the "entries"
array. Setting the "next" value of an element therefore refers to the referenced element’s
index within the array. To introduce an entry as last element its next value can be set to
a negative value such as "-1".

Events can be used in order to notify clients that a state change occurred. Their defi-
nition can include multiple parameters of basic types, making it possible to add more
information to the notification itself. Based on the previous example of a Smart Contract
featuring lists one idea would be to extend its functionality by emitting an event when-
ever an entry was appended. Its event’s parameters could then include information such
as the index it was stored to.

Exceptions are thrown when one of the following statements fail: assert, require, revert.
All of them include parameters.

Function Modifiers A modifier is used to to annotate functions. Thus their definition
requires the inclusion of a "_:" statement. This part of the code is then being is re-
placed with the annotated function’s body. Using them in conjunction with throwing an
exception is often being used in order to stop the execution of a function.

modifier annotatedFunctionIsNeverExecuted(address irrelevantParameter){

require(1l == 0);
_; // this is being replaced by the actual functions body

Listing 4.5: Implementation of a Modifier

This technique is often used in the context of access control and part of Solidity’s official
documentation[20].

As the basics of implementing Smart Contracts have now been described it is now
possible to analyse existing implementations of Access Control within Solidity. During
the next few sections the library "OpenZeppelin"[62] and another project known as
"RBAC-SC"[21] are being evaluated.

OpenZeppelin

OpenZeppellin is an MIT-licensed library hosted on GitHub with more than 200 contrib-
utors. It calls itself "a library for secure smart contract development"[62]. It implements
different security features including basic RBAC functionality. As it is a library its
main focus lies on being applicable in multiple different projects by extracting common
pieces of code and presenting them in a reusable fashion.[62] Because it is hosted on

41

4 Access Control and Previous Implementations

GitHub the open-source community is able to actively participate in its development.
An important addition to the common understanding of how traditional libraries work
in languages such as C++ is that in a distributed network such as Ethereum a chain
only needs to persist the compiled library once making its storage more effective and
providing functionality for the whole network.

OpenZeppelin includes the implementation of two contracts regarding access con-
trol:

Ownable.sol is a contract included in OpenZeppelin. It includes a state variable called
"owner" which is assigned within the contract’s constructor. It is being initialized with
the constant value "msg.sender" which refers to the address of the transaction’s sender.
It then introduces a modifier "onlyOwner" which limits the ability to call an annotated
function to the owner himself. Therefore it can be regarded as a Whitelist containing
only a single member. In addition the contract includes events whenever changes of
ownership occur. Initiating a transfer of ownership is being protected by the onlyOwner
modifier and takes another address as a parameter. Alongside the ability to transfer
ownership the contract provides functionality to unset its owner. This is being achieved
by setting the state variable’s value to address(0). In Solidity this can be done to remove
an as it is being considered extremely unlikely to generate the private key corresponding
to the null address. The code’s comments explicitly state that this is a permanent
decision. As a consequence it states that setting the owner variable to null will effectively
disable every function which makes use of the function modifier. The revocation of
ownership is restricted by an "onlyOwner" modifier itself as a means of protection.
There are only two non-restricted and publicly accessible functions. One of them returns
the address of the owner. The other one returns a boolean value determining whether
its caller’s address (msg.sender) is equating to the address of the owner. Because they
don’t alter the contract’s state they are being implemented as "view" type functions.

Evaluation The contract’s implementation by itself is rather basic. It doesn’t include
any of the flexibility any more advanced features such as roles. Still its inclusion in
OpenZeppelin hints that it solves a reoccurring problem in the domain of Smart Con-
tracts. It adds events in order to notify subscribers about transfers of ownership. In
addition implementing functionality to permanently revoke one’s own ownership can
be seen as being dangerous. This is underlined by the fact that a fallback mechanism
is not implemented. Potentially such a feature could be implemented by inheriting
from the contract and overriding existing functionality. Without it an owner could
accidentally revoke his own ownership permanently losing the ability to execute all
annotated functions. Another disadvantage is that its entire access control model is
based on the usage of modifiers. Therefore adding new functionality to a contract
requires manual addition of a corresponsing modifier.

42

U= W N =

UGl = W IN -

4.3 Evaluation of Access Control Systems in Blockchains

RBAC.s0l[72] can be used in order to implement various access control types. The
name already implies its usage of RBAC. The implementation’s source file "RBAC.sol"
imports from one of its own solidity libraries which is being stored in a separate file
called "Roles.sol". It includes the definition of the following "Role" struct.

library Roles {

struct Role {
mapping (address => bool) bearer;

}

Listing 4.6: Role Library in Roles.sol

The listing shows that internally the role membership of a user is being determined
by its address being mapped to a bool value. Until now there is no name of the role
defined yet. This is being done within "RBAC.sol" instead.

contract RBAC {
using Roles for Roles.Role;
mapping (string => Roles.Role) private roles;
event RoleAdded(address indexed operator, string role);
event RoleRemoved(address indexed operator, string role);

Listing 4.7: Registering Roles in RBAC.sol

The code sample imports from the previously defined Role library and uses its struct
in conjunction with a mapping. As the Role struct itself is only including a mapping
the code can be deconstructed in the following way: mapping (string => mapping
(address => bool)) dissectedMapping; This shows that Role Membership is expressed
by a nested mapping. Further it can be derived that the strings serve as identifiers for
roles. This is an understandable decision as by using nested mappings a role can only
be defined once. If the same string would be used for the definition of another Role it
would overwrite the existing contents. The mapping’s functionality can be formulated
as the following sentence:

a role can contain multiple addresses which all have an own individual bool value indicat-
ing their membership status.

Further RBAC.sol provides functionality regarding the removal and addition of role
assignments. In both cases it emits an event notifying subscribers about such a change.
It also includes a hasRole function which returns a bool value indicating whether an
address is being linked to a role. In addition RBAC.sol includes a modifier "onlyRole"
parametrized by a string value. It is being applied before its contained function’s body
throwing an exception in case msg.sender doesn’t have role stated by its parameter. All
of these operations are being internally conducted on the struct defined in Roles.sol.

Evaluation The intended purpose of RBAC.sol is to provide an inheritable contract. This

43

O 0 IO\ Ul =W~

4 Access Control and Previous Implementations

can be seen in the contract "RBACWithAdmin.sol" which is being included within the
repositories example directory.

contract RBACWithAdmin is RBAC {
string public constant ROLE_ADMIN = "admin";
constructor ()
public
{
addRole(msg.sender, ROLE_ADMIN) ;
}
}

Listing 4.8: Initial Assignment of an Administrator in RBACWithAdmin.sol Example

This allows a programmer to inherit the base contract potentially overriding functionality.
As the code listing shows this can be leveraged in order to assign an admin role to
the message’s sender during the contract’s construction. This address then refers to
the account who deployed the contract. As a consequence of inheritance each of the
resulting contracts follow a similar structure. They all implement events to notify its
subscribers about changing role assignments and they all provide functions to assess and
change the membership status of their users. The main benefits of this approach lie in its
flexibility and reusability. Because the programmer can decide how to combine roles to
more complex structures like hierarchical RBAC could potentially be implemented. The
example contracts already provide functionality for Whitelisting. Logically following it
is possible to derive an implementation of Blacklisting similarly. However the downsides
of using this library are outweighing its benefits for more complex applications. For
an example one could argue that its approach of linking strings to addresses is being
error prone and requires constant care of a system’s administrator. As it is expressing
authorization rather primitively it requires the manual addition of modifiers to every
newly implemented function. Forgetting to add them could therefore lead to a breach
of protection. Further as it is not providing a full access control system it doesn’t
automatically provide any considerations on how to handle confidentiality issues. While
this is by no means the intention of the OpenZeppelin project it still serves as a first step
in assessing the landscape of existing Access Control implementations.

In addition there might be scenarios where the "hasRole" function might not be re-
quired at all. This is due to the fact that events are permanently accessible in Ethereum
which allows a client to check whether a user has a certain role or not without the need
to call a function. This is also being leveraged by another project implementing more
complex access control via "Smart Policies"[25]. Its approach is being evaluated in the
next chapter about XACML.

4.3.3 RBAC-SC

RBAC-5C is the concrete implementation of an access control contract described, imple-
mented and published by multiple members of the IEEE. Its source code is hosted on

44

IO U WDN -

| S e W e W e Y S gy S Gy Y
O O XN Ul WN = OO

4.3 Evaluation of Access Control Systems in Blockchains

GitHub and provides an alternative approach to OpenZeppelin’s RBAC in Ethereum.
Because this article is quoted by multiple different works it offers another perspec-
tive in both the current state of access control as well as the scientific community’s
understanding of the AC discipline.

It bases its concept around a "role-issuing organization"[21] which manages roles and
a "service-providing organization"[21] which confirms whether a user holds them or not
in order to determine whether the user is able to access its service.[21] In order to assign
roles the role-issuiing organization needs to deploy a Smart Contract which it maintains
by adding new users including their roles. In case a user wants to access a service he
sends a request to the service-providing organization stating that he is authorized by a
role he holds within the role-issuing organization’s contract.[21] To prove the validity of
this claim both parties (the user and the service provider) execute a challenge response
authentication. During its execution the service provider therefore requires the user to
sign a random message by its private key associated with his Ethereum account’s public
key.[21] In case this public key is assigned a fitting role within the Smart Contract of the
role-issuing organization it serves as a prove that the user in fact holds the role.[21]

Its code is contained in a single source file and makes use of modifiers, events and
structs. The code doesn’t explicitly define a constructor. Instead a function called
"SCRBAC"[72] essentially resets all the contract’s variables and initializes the contract.
During this process an owner variable is set to the value of msg.sender. Other than the
owner himself the system includes structs for the definition of two different entities.
They are being referred to as "Users"[21] and "Endorsees"[21]. Both of them are being
stored in separate arrays of their respective struct type. This is shown in the code listing
below. It is being part of the original source code which is being provided by the authors
via GitHub.[72]

uint public number0OfUsers;

uint public numberOfEndorsees;

mapping (address => uint) public userld;
mapping (address => uint) public endorsedUserId;
User[] public users;

Endorse[] public endorsedUsers;

struct User {
address user;
string role;
string notes;
uint userSince;

I

struct Endorse {
address endorser;
address endorsee;
string notes;
uint endorseeSince;

Listing 4.9: Structs in RBAC-5C

45

= W N -

4 Access Control and Previous Implementations

Both the mappings "userld"[72] and "endorsedUserIld"[72] map to indices in their
respective arrays. The sample shows that the code contains two variables of type
uint stating the current amount of both Endorsees and Users. Both of these values
are modified whenever new members of these groups are added or removed. The
addition of new Users is only permitted to the owner himself. Still Users can add and
remove Endorsees by appending or removing from the "endorsedUsers"[72] array. An
Endorsee is then linked to the User who initially added him by reference via its field
"endorser"[72]. The functions responsible for the addition and removal of Endorses are
being protected by an onlyUsers modifier. This modifier performs a lookup operation
within the mapping userld. A code snippet from the GitHub’s repository[72] can be
found below:

modifier onlyUsers {
require (userId[msg.sender] != 0);

Listing 4.10: OnlyUsers Modifier in RBAC-SC

It can be seen that the modifier performs a lookup operation based on the address of the
transaction’s sender (msg.sender) in order to determine whether he is being a valid User
or not. To achieve this it checks whether the corresponding value equates to zero. As the
mapping’s values are being defined as being of type uint any provided address would
yield the value 0 if not explicitly assigned otherwise. Therefore RBAC-SCs construction
includes an append operation to its arrays adding both an "empty" User and an empty
Endorse to the arrays. Therefore RBAC-SC assumes a valid index to be greater than
zero. This makes it possible to easily check whether an address is being registered as
either User or Endorse. In order to do so it only requires performing a lookup within its
respective mapping. If this operation returns a non-zero value it is being included in the
array as it has a valid index. In order to link the appending of new Users (or Endorses)
to the state of the mapping the functions for their addition and removal are not simply
adding values to the arrays. Instead they simultaneously increases or decreases the total
count of the corresponding entity and sets the mapping accordingly. In order to prevent
gaps within the arrays the implementation therefore uses sorting within its "remove"
and "add" operations.

Another means of exercising control within the system is being implemented by a
state variable named "status". It allows the owner to set the contract’s status to either
true or false depending on whether it is considered active or inactive. If the contract is
currently inactive no users can be added.

Evaluation In contrast to OpenZeppelin’s Roles.sol no hasRole function is implemented.
This is intended by RBAC-SC developers as they rely on a challenge-response based
protocol including off-chain entities responsible for the actual enforcement of access
control. This is being carried out by requiring the user to sign random data with its
private key corresponding to his Ethereum account. This way it is possible to link his

46

4.3 Evaluation of Access Control Systems in Blockchains

identity to the role he holds within the contract.

Other than OpenZeppelin, RBAC-SC specifically tailors its solution to a given problem
statement. Therefore its contracts are not as reusable as the contracts provided by the
library. Instead it introduces endorsees with the intention of making transitive rights
management possible even if is only to a limited degree.[21] As the text implies that the
contract is deployed by the role-issuing organization it can be derived that the owner in
the source code refers to it. As a logical consequence of this model the contract heavily
centralizes its control. If the corresponding private key is lost no alterations of role
assignment can be made. As the assignment of an owner only occurs within the function
SCRBAC all role assignments are cleared in case of ownership changes. However the
most important finding lies within the fact that RBAC-SC other than OpenZeppelin
is based around the enforcement of a request.[21] It explicitly describes a scenario in
which the actual enforcement of the request is being executed off-chain.[21] This raises
the question whether this is desirable as it can’t be guaranteed that a service provider is
really carrying out a successful request of a user.

Summary of RBAC-Evaluations The main issue of the previously implemented so-
lutions is that while they are rather lightweight none of them includes a any abstraction
for actions or objects. Instead a developer is required to implement these features by
himself. If this is not done however it results in the necessity of applying modifiers
to each operation they aim to protect. This is not optimal as programming errors like
forgetting to add them can easily break protection. Both these contracts are therefore
better suited for smaller scale projects. If complex access control is to be used both
RBAC contracts require the introduction of multiple roles. This makes it questionable
whether these approaches are suitable for more complex scenarios. Another more
flexible solution is based on a language used for modelling access control. It is called
"XACML"[25].

4.3.4 XACML and Smart Policies

"Smart Policies"[25] are an XACML based approach implemented in Solidity. They
were proposed by the work "Blockchain Based Access Control Services"[25]. They use
a combination of on- and off chain programs to both compile XACML policies into
executable Smart Contracts and deploy them.[25] It calls these contracts "Smart Policies".
Each of them exposes functionality to evaluate its value. This evaluation is being equal
to the response a Decision Point would yield.[25] During their evaluation they query
so called "Attribute Managers" [25](AMs) which are used to fill the policy’s contextual
information and are therefore effectively replacing Information points. AMs are being
deployed as Smart Contracts and their address being hard coded into the Smart Policies
themselves during their compilation phase.[25] In order to remove Smart Policies each
of them contains self destructing functionality which can be called by their owner. In
order to keep track of the deployed policies” addresses another off-chain component is
used.

47

4 Access Control and Previous Implementations

It is called "Policy Administration Point"[25] and keeps a "Smart Policy Table"[25]
(SPT) of all the deployed Smart Policies including their address. Incoming requests are
handled by an off-chain PEP exposing an API to users.[25] In case of an incoming request
at the PEP’s API it establishes a connection to the last off-chain component known as
the system’s off-chain "Context Handler"[25] indicated by its abbreviation (CHo). The
Context Handler then interacts with the PAP by passing the request’s information about
the resource ID it requests.[25] The PAP is then able to respond with a matching contract
address.[25] The Context Handler then encodes the request’s parameters to a contract
processable format and forwards it to the Smart Policy.[25] Its execution is then yielding
either a "Permit"[25] or "Deny"[25] statement. The PEP is then responsible for executing
the request. Policy creation is occuring whenever a "Resource Owner" enters a new
policy into the PAP. [25]The PAP then passes the information about the new policy
to the CHo which compiles and deploys it via the resource owners account.[25] The
evaluation of Smart Policies allows the system to reach an on-chain decision which
can be publicly verified.[25] Whenever decision about whether the request is denied
or granted it is communicated to the network via events.[25] The events keep both the
client and possibly other interested parties informed about the decision-making process.
By listening to these events the resource owner knows about the request being permitted
or denied.[25]

Evaluation The proposed system introduces a concept which wasn’t introduced in
the thesis until now. Namely the combination between on- and off-chain software. This
however comes with a problem. While Smart Policies might increase the level of ab-
straction in their access control model to ensure a higher flexibility than OpenZeppelin’s
RBAC contract its off-chaining comes with a disadvantage. The system itself can’t be
used in a "Smart Contract" only approach. While its off-chain Context Handler can
still modify the Blockchain’s state itself it can’t be forced to do so. Let’s construct the
following scenario:

A user wants to request the alteration of a fictional test contract. This contract only
stores a variable X. In order to set it the contract offers a publicly accessible set function.
If the user queries the PEP’s API with this request the system runs into a problem. While
the decision that the request was permitted might be successfully be published by the
evaluation of the Smart Policy the actual enforcement and therefore execution of the
set function needs the off-chain Context Handler to call it. This breaks the direct flow
of information within the Blockchain by leaving its domain. Because of this the actual
enforcement can’t be guaranteed as the Context Handler could be disconnected from
the network. This is even reflected in the work’s discussion section where it points out
that a resource owner could prevent a permitted request by manipulating the PEP.

In addition its flexibility regarding the dynamic addition of information can be
questioned as the AMs address is being directly compiled into the Smart Policies.
While this might be achieved by a redeployment of new policies or other workarounds
the process seems rather complex. Therefore it is considered as less reusable than a

48

4.3 Evaluation of Access Control Systems in Blockchains

framework like OpenZeppelin. In addition it leaves the responsibility for modelling
users and resources in the hands of a programmer. Therefore it doesn’t provide any
unified user or resource model. As a consequence it doesn’t include authentication
mechanisms.

While this is not part of its scope a full access control requires the inclusion of a basic
authentication just as much. Because many approaches rely on simply enforcing their
decisions simply based on the value of the constant "msg.sender" they lack abstraction
and are less flexible than a system based on URI’s identifying the users.

While this by itself is a universal approach and therefore not to be considered rather
special it imposes important features to user management as this allows them to be
subjects of access control just as much as any other resources.

"Blockchain Based Access Control Services"[25] itself correctly describes "auditabil-
ity"[25] as one of the benefits of the public evaluation of Smart Contracts this feature can
be pushed even further by placing additional components such as the actual storages
on the Blockchain. To a certain degree this is already being done in both RBAC-SC
and RBAC.sol as they also use basic data structures like arrays and mappings to store
their users. However the thesis expands on this by including a more extendable storage
model into its considerations. Because the evaluation of existing approaches is now
concluded the next chapter can begin to outline the requirements of its proposed model.
To achieve this it first starts off by defining its requirements. This critique therefore
serves as a guideline in the process of the thesis” presented model and its following
implementation.

49

5 Modelling and Implementation of Access
Control Mechanisms in Ethereum Smart
Contracts

This chapter describes an approach on how to model access control for the Ethereum
Blockchain. As pointed out in previous chapters there are different downsides of using
Blockchain technology. Depending on one’s individual requirements the system needs
to be adaptable for either providing a high degree of confidentiality or a high degree of
transparency as these goals are being directly opposed to each other.

While different presented approaches were only based on modifier usage they lack the
abstraction a policy language like XACML provides. On the other hand the presented
XACML based solution[25] uses off-chain compilation during their access control process
effectively negating many of the benefits of running the complete process transparently
on a Blockchain. As a consequence the thesis therefore provides a synthesis of the
evaluated access control solutions by both basing its core architecture on XACML and
providing a reusable framework at the same time. It aims to allow a developer to actively
decide how to adapt the system’s evaluation of decions according to his own liking.
Therefore its goal is to find a balance between OpenZeppelin’s reusability and XACML's
flexibility.

5.1 System Requirements

One common strategy in the domain of software engineering is to base a system’s
implementation on the "V-Model"[6]. It describes a system’s implementation an iterative
process ultimately resulting in the execution of various test cases. This makes it a
suitable approach as it provides a structure which can be followed throughout the
complete process of formulating, implementing and testing the system. Laying down
the base requirements of the system later aids in the evaluation process as it can be
determined whether it provides the initially desired functionality. Therefore the first
part of this chapter is dedicated to the assessment of the system’s most important
requirements. Traditionally they are being categorized as being either "functional"[52]
or "non-functional"[52].

While functional requirements revolve around a system’s "actions"[37] non-functional
requirements define desirable "attributes"[37] of the program instead. As the basic
principles of requirements engineering have now been laid out the modelling process
can start by declaring the different properties it tries to fulfill. Because the implemented

51

5 Modelling and Implementation of Access Control Mechanisms in Ethereum Smart Contracts

system is heavily based on traditional XACML the following specification focuses on
the modifications of the newly proposed system. Still the base XACML system aims to
preserve all of the existing XACML features except for its policy language.

Functional Requirements

User

UR 1) ...shall be able to send a request

UR 2) ...shall be able to verify the state of his request

Authentication

AU 1) ...shall be able to register a User within a User Storage

Storage Contracts

XS 1) ...shall provide interfaces for CRUD via URIs

XS 2) ...shall notify Subscribers when CRUD data

XACML

Enforcement Point

XE 1) ...shall be able to enforce requests on-chain

XE 2) ...shall be able to notify off-chain Enforcement

XE 3) ...shall notify Subscribers about a Grant

XE 4) ...shall notify Subscribers about a Deny

Decision Point

XD 1) ...shall be able to read from a User Storage

XD 2) ...shall be able to include retrieved User information during decision
XD 3) ...shall notify Subscribers about a Deny

XD 4) ...shall notify Subscribers about a Grant

XD 5) ...shall notify Subscribers when its connections to Information Points change
XD 6) ...shall notify Subscribers when its connection to Policy Repository changes
Information Points

XI 1) ...shall be able to respond to the Decision Point

Policy Repository

XP 1) ...shall be able to respond to the Decision Point

Non-Functional Requirements

NF 1) Extendability

NF 2) Security

NF 3) Availability

Table 5.1: Requirements Specification

Users, Authentication and Storage Contracts The specification is subdivided into dif-
ferent categories. The first one is describing the "User" component. It states that every
user should be able to send requests and to verify the state of his request (UR1 UR2).
This allows him to directly communicate with the XACML system. Because XACML's
main responsibility lies in handling the authorization instead of the authentication the

52

5.1 System Requirements

specification explicitly includes an Authentication Component. Its main feature is the
registration of users (AU1). By including this component into the system the model
provides another level of abstraction on top of the User’s EOA address.

In addition the specification lists Storage Contracts. They are being components which
are implementing basic functionality for reading and writing. The specification states
that these operations should be callable on the storage’s data via an URI (XS1). A
primitive example of such an URI could be a consecutive number like in a database.
However the specification does not enforce any specific type of URI by itself.

Information Points and Policy Repository Both the Information Points and the Policy
Repository are required to communicate with the Decision Point (XI1, XP1). While this
is part of the standard XACML model it is being included within this specification to
highlight that both of them provide the Decision Point with data as this is being used by
the thesis own implementation of a minimal policy language. Note that the specification
defines Multiple Information Points instead of a single one.

Notifications The document expands traditional XACML functionality by requiring the
emission of notifications whenever an Enforcement Point or a Decision Point decides
or responds to a request.(XE3, XE4, XD3, XD4). Additionally XD5 and XD6 state that a
Decision Point needs to inform its subscribers in case its connection to the Information
Points or the Policy Repository changes. As these two points are an XACML system’s
source of data these notifications provide another layer of security within the system.
Similarily Storage Contracts send events whenever their data is being either altered or
read via its interfaces (XS2). This can be a valuable information to resource owners
which could be responsible for the storage contract’s administration.

Enforcement & Decision Point The requirements XE1 and XE2 are providing func-
tionality both regarding on- and an off-chain enforcement. The former requires the
newly implemented Enforcement Point to be able to completely enforce a request on
a resource held by one of the system’s "Storage Contracts". Therefore the system re-
quires the implementation of feature XS1. By leveraging and combining the operations
provided by this feature the enforcement point is able to execute varying operations
on a storage. XE2 only provides a notification for off-chain services. This allows the
framework to be used in different environments. In case a use case favors transparency
a request can be handled by the Enforcement Point oneself. Otherwise it needs to be
delegated off the chain leaving essentially no proof of the request’s actual enforcement.
This way the framework allows the implementation of flexible off-chain solutions. If the
system operates in this mode it is essentially being a variation of the approach outlined
by the work of about Smart Policies as they are also being monitored by an off-chain
system which waits for their evaluation. However instead of relying on the constant
compilation of Smart Contracts the thesis introduces its own basic policies based on
matching pairs of conditions and attributes. These constructs and the reasoning behind

53

5 Modelling and Implementation of Access Control Mechanisms in Ethereum Smart Contracts

linking the Decision Point to a user storage (XD 1) is part of the Modified XACML
Architecture the system provides. It is described after a short explanation of the system'’s
non-functional requirements.

Non-Functional Requirements In order to include important attributes the software
needs to fulfill the following Non-Functional Requirements have been declared:

o NF 1) Extendability can be considered as one of the most crucial properties
of the proposed systems. As it aims to advance the state of existing access
control solutions one important feature it has to offer is to be extendable and
therefore adaptable to individual problems. This property is directly derived
from the evaluation of OpenZeppelin’s contracts. While it is a rather unrealistic
goal to provide a feature complete extendable system right from the start its
implementation and design designs still lay the groundwork.

e NF 2) Security is a primary concern in the design process of this solution as
both "public" and "external" functions potentially expose a contract’s state to the
outside world. Therefore the interactions between the different components of the
system need to be secured. Instead of relying on arbitrary user inputs they need
to implement a strict flow of information relying on trusted components of the
system.

e NF 3) Availability is implicitly being included by system design. As long as the
system runs in full "on-chain mode" it is able to provide high availability due to
the fact that it is being executed by every participant of the network. However its
availability may vary depending on the amount of participants within a Blockchain.
This is a crucial consideration to make as the system can be run in private Quorum
instances just as in an Ethereum Blockchain.

5.2 Modified XACML Architecture

One crucial design decision linked to its reusability has to be made right from the start.
As the system’s goal is to to be use able in both full on-chain and partially off-chain
systems it is required to provide a simplified policy language. This decision is made
based on the verbosity of both XML and XACML itself. An important downside of not
making use of the original policy language is that the proposed system can not possibly
achieve a similar level of flexibility. However one can argue that at the current state of
research this is still a rather unrealistic approach as the gas costs linked to the evaluation
of such policies can potentially be very high. This assumption is being made based on
the fact that in order for policies to be evaluated they are being parsed first. This can
be seen by looking at public source codes by other policy based frameworks such as
"node-Casbin".[58] While a full explanation of the underlying reasons is being omitted
here it can be understood intuitively by imagining that a policy has to be filled by inputs

54

5.2 Modified XACML Architecture

such as the user ID in order to be evaluated. This however is extremely ineffective
regarding gas costs and also directly opposes the ideas of the "Low Contract Footprint
Pattern" which states that a Smart Contract has to strictly optimize its usage of write
operations. This is based on the fact that read statements such as pure functions don’t
cost any gas when being called from EOAs. If a system relies on multiple evaluations
of policies this can therefore be regarded as rather inefficient. In addition it should be
noted that executing string operations in Solidity is still rather complex. By default
strings don’t provide any functionality such as splitting or substrings.

Similar to Smart Policies[25] the system is based around attribute based policies.
The policy model is based on the assumption that each policy can be expressed as a
tuple of (userID, resourcelD, actionID) = required Attribute. This attribute is then either
being supplied by an Information Point or not. As a consequence both the Information
Point and the Policy Repository receives the request tuple and return either an attribute
(Information Point) or a condition (PolicyRepository). If necessary they can be linked
to an internal storage and perform lookup operations within it to determine which
of its attributes are related to the request. The Decision Point then queries both its
Policy Repository and all of its Information Points for the requested conditions and the
provided attributes. It then proceeds to combine them in order to come to a decision on
whether the request should be granted or not. Additionally the Decision Point is being
linked to a User Storage. This can be regarded as a modification to base XACML. The
reasoning behind this is to allow the Decision Point to resolve the address of the user
sending the request to a UserID. This is necessary as the policies should not depend on
"msg.sender" but instead the user’s index as an URI.

As the intention of the system is to maximize public auditability all its storage systems
need to be indexed in order to provide public lookup functionality. This decision is
based on the thesis assumption’ that a programmer who wants to to publish private data
takes precautions such as using encryption or either permissioned or private Blockchains.
The public accessibility of the storage allows each User to confirm that his request was
actually enforced instead of just being simulated by the Enforcement Point.

In addition the introduction of an indexed storage system aids in the development of
a Authentication Point as it provides a storage system for registered users. Because a
user management solely based on identifiying users via "msg.sender" is rather unflexible
regarding lost keys etc. abstracting them by storing a reference to their public address
allows a replacement of public keys by storage administrators or authentication contracts.
Therefore the thesis aims to provide a inheritable Base Contract for implementing one’s
own variation of authentication.

Other than in base XACML and the Smart Policy system the thesis” Enforcement Point
is being subdivided into two different implementations by inheritance. Its base contract
only includes a simple request function which is publicly accessible and basically mirrors
the decision of the Decision Point by returning it. As a consequence of the proposed
request tuple this function takes an actionID and a userID as its only parameters while
returning a bool indicating its decision. This decision is based on the fact that a user

55

5 Modelling and Implementation of Access Control Mechanisms in Ethereum Smart Contracts

can’t be trusted to send his correct ID. If he was able to provide it by himself it would
open the system to possible manipulation attempts. After the It returns either true or
false depending on whether the request was granted or not. It is important to note that
this base contract intentionally does not provide any enforcement yet. Therefore the
simplest implementation of an Enforcement Point is provided by its off-chain variant
which effectively only serves as an emitter of events to off-chain systems. As they need
to be able to interact with a storage contract they can be declared as its owner similar
to the modifier based approach both OpenZeppelin and Ethereum’s documentation
provide. As all of the storages offer public auditability by simply being readable by
system participants the parties can agree to use it as an auditable interface. Therefore
the storage needs to allow an arbitrary resource owner to manage its data. In case
he requires full privacy he could potentially deploy it as a private Smart Contract
on Quorum in order to share it with only few exclusive participants of the network.
However as the thesis didn’t place much emphasis on the implementation of an efficient
storage system this is not advised.

Even if the Enforcement is delegated to an off-chain system the previous decision still
needs to be communicated. This is being already described by "Blockchain Based Access
Control Services"[25] which describes "auditability"[25] as the main reason for doing so.
This opinion is valid and therefore needs to be reflected by each access control system
on the Blockchain as its one of its main advantages over non-Blockchain solutions.

In order to provide a even higher degree of auditability than Smart Policies are able
to provide the thesis’” system intentionally offers the possibility to implement a full
on-chain enforcement. To achieve this even actions need to be stored within an accessible
storage. As they both need to provide functionality and need to offer references they
are being modelled as executable Smart Contracts. The way this is achieved is therefore
being part of the next chapter explaining the derived models which served as a reference
for the system’s implementation.

5.3 Derived Models

The previous chapter already pointed out the key modifications which have been made
to the original XACML system. In order to present how the system is able to provide the
desired features and modifications this chapter lays out the different models. Each of
them has evolved through an iteration of multiple re-implementations. As the system is
being based on a set of different acting components each of them is now being explained
in greater detail in order to provide information on how to implement a similar system
on one’s own.

Smart Contracts

Smart Contracts and Transactions are used to implement every functionality of the
system. This way it can be used by both Quorum and Ethereum. By listening to a

56

5.3 Derived Models

contract’s events any participant can be informed that a user sent a request and remains
informed about its handling. Named Contracts Almost every contract in the system
inherits from the Contract "Named". This contract’s only functionality lies in exposing a
publicly accessible name of type bytes. This allows providing an ASCII name for the
child contracts. Due to its simplicity a UML diagram is omitted at this part of the thesis.
However it can be inspected by referring to complete UML diagram. Indexed Storage
Any contract offers the capability of allocating persistent storage which is directly stored
on the Blockchain. By applying a layered architecture a smart contract can therefore
be used as a primitive persistence layer. Consequentially such an approach introduces
the common Blockchain benefits of protecting the storage’s integrity ensuring a high
availability due to its distribution. On the other hand data replication is costly and data
privacy might be more important than transparency. As the design decision depends on
a company’s model the distribution of priorities can be gradual.

Depending on the system, different entities require a certain amount of storage.
Just like applying a modifier based access restriction strategy requires storing a user’s
address, policies and other types of entities all need to include storage.

In contrast to other works the thesis implements its own storage contracts. Each of
them essentially provides the same functionality. They support basic operations such
as reading via retrieval, writing, overwriting and deletion. As a consequence of their

Indexed Storage
{abstract}

+ isStored: mapping(uint32==hoal)

+ DataRemoved(_origin: address, _sender. address, index: uint32). event
+ DataRetrieved(_origin: address, _sender: address, index: uint32): event
+ DataWritten(_origin: address, _sender: address, index uint32): event

+ AllDataRetrieved(_origin: address, _sender: address); event

+ constructorinm: bytes, accessor. address
+ entryCount(); uint32 {abstract}
+ removeDatalindex: uint32): bool {abstract}

Figure 5.1: Indexed Storage UML

similarity multiple contracts inherit from the "IndexedStorage" contract shown above.
As it is being declared as abstract it can’t be instantiated directly. The most important
functionality this contract provides lies within its mapping. Just like OpenZeppelin’s
Roles.sol mapped addresses to a bool in order to determine whether a user has a role the
IndexedStorage maps indices to a bool in order to determine whether they are included
or not. This allows implementing an efficient retrieval strategy by terminating retrieval
operations early in case the mapping’s state indicates that a specific index is not yet set.
As indexing lies directly in the responsibility of the described contract this state variable
is therefore being included.

57

5 Modelling and Implementation of Access Control Mechanisms in Ethereum Smart Contracts

In addition the contract’s basic capabilities include the emission of multiple events.
They occur in case of writing, overwriting or retrieval. The differentiation between
overwriting and writing is that writing requires a currently unwritten index as a
parameter. This is to ensure that no accidental overwriting occurs. Internally this check
is executed by looking up the index within the mapping and determining whether its
value either corresponds to true (index already set) or false (index currently unset). Such
a feature is not included in overwriting.

In addition to the events it provides basic interfaces for either querying the amount
of currently included items within a storage or removing data via its index. While
this might seem as being rather limited the contract’s interfaces are intentionally being
designed this way. The reasoning behind it is that Solidity does not support any concept
such as generics. However as a more detailed explanation of this circumstance is being
discussed in more detail within the chapter about "Specific Implementation Details" it is
omitted here.

The contract’s constructor takes two arguments. The first one of them is of type bytes.
This is going to reoccur frequently throughout these models as it refers to the contract’s
name (inherited by the Named Contract). The second parameter is of type address.
This is being used to link the storage to another contract in order to limit access to
its functionality. It is therefore used in order to ensure that only administrators and
another contract are allowed to write its storage. An possible example includes linking
a PolicyRepository to a storage in order to grant it write rights. As the underlying
functioanlity is being inherited from the "Protected Contract" specific details on how
this is achieved can be found in its corresponding section.

1 1

Bytes32Storage Bytes Storage
+ dataSets: bytes32[] + dataSets: bytes]]
+valueTolndex: mapping(bytes32=>uint32) + valueTolndex: mapping(bytes==uint32)
+ constructor(accessor. address) + constructor(accessor. address)
+ entryCount(): uint32 +entryCount(). uint32
+ removeData(index: uint32): bool + removeDatalindex: uint32): bool
+ refrieveDatalindex: uint32). (bytes32, boal) + refrieveDatalindex: uint32): (bytes, bool)
+ retrievelndexivalue: bytes32). (uint32, bool) + pushData(value: bytes)
+ removeFoundValue(value: bytes32). bool +writeDatalindex: uint32, value; bytes)
+ retrieveAll(): bytes32]] + overwriteData(index: uint32, value: bytes)
+ pushData(value: bytes32)
+writeData(index: uint32, value: bytes32)
+ overwriteDatalindex; uint32, value: bytes32)

Figure 5.2: Bytes32 & Bytes Storage UML

The previous example shows two children of the Indexed Storage. As can be seen
both of the contracts provide functionality for data retrieval, writing and overwriting.
The dissimilarities between both of them arise due to limitations regarding the way
Solidity handles strings. More information about this circumstance is being provided
in a later part of this chapter. However the diagram shows that BytesStorage offers the

58

5.3 Derived Models

most basic capabilities a storage can solve by including an array of bytes. This array
carries all the information the storage contains. It is therefore the source and target of
the operations the contract provides. As can be seen these include pushing, writing,
overwriting and retrieving. Every function except pushing is based on the data’s index.
This can be understood intuitively since pushing refers to the act of appending to an
array.

The other representative of an IndexedStorage is the Bytes32Storage. The system uses
it for storing the conditions of policies as well as the attributes provided by Information
Points. As it is not based on bytes it offers extended functionality. This includes
operations for retrieving a dataSet via its index. When it returns it includes both the
index and a bool value. This value includes information of whether the data was actually
found or not. The reason for this is that the system relies on unsigned indices. Therefore
it is unclear whether an index of 0 indicates a non-existing entry or an actual element.
Another possible implementation would be to append "null" elements such as RBAC-SC
did when defining its users and endorsees.

Alongside the two presented types of storage the system also includes an AddressStor-
age containing an array of addresses instead. However it only differs from a Bytes32 by
storing addresses instead of bytes32 values. Its main purpose is that it is being used
for storing the users and actions of the system. However as it stores addresses it can be
leveraged to store arbitrary references to existing Smart Contracts.

The reasoning behind modelling storage in such a way is that just like a traditional
database it uses indices for making data accessible. An index can be used as a simple
URL Like in REST this ensures a globally equal system of addressing resources and
simplifies the modelling process of access requests. In order to support a combination
of multiple storages is imagineable. As the implementation includes an AddressStorage
they can be linked recursively.

In addition the system can accomodate generic URIs to external systems. This is being
done in a pattern called "Content-Addressable Storage". Such an approach is possible
as the BytesStorage could contain arbitrary URIs of external off-chain systems. The
software pattern makes use of Content Addressable Storage systems which are indexed
by the data’s hash values. Further the pattern states that storing these hashes on a
Blockchain turns it into a kind of register. In addition such separation of storages can be
used in order to limit the data’s readability as it is not guaranteed that a node of the
Blockchain has access to the external system.

While the inclusion of these types of systems is a byproduct of the aim to provide a
general purpose storage there are still valid reasons for relying on an off-chain storage.
One of them could be that the Blockchain carries each historical information of all the
transactions. Therefore the understanding of the delete and update operations has some
important implications as they are essentially undoable.

Enforcement Point As in base XACML the Enforcement Point is the central point
interacting with both the resources and the user. The proposed system therefore
implements the following Smart Contract.

59

5 Modelling and Implementation of Access Control Mechanisms in Ethereum Smart Contracts

EnforcementPoint

+ decisionPoint: DecisionPoint
+ Granted(userlD: address, reslD: uint32, actionlD: uint32, onchain: bool). event 0.
+ Denied(userlD: address, reslD: uint32, actionlD: uint32, onchain: bool): event h

~ emitEventiuserlD: address, resiD: uint32, actionID: uint32, onchain: bool, granted: bool)
~ emitGranted(useriD: address, resiD: uint32, actionlD: uint32, onchain: bool)
~ emitDenied(userlD: address, resiD: uint32, actionlD: uint32, onchain: bool)

+ constructorinm: bytes)

+request(resiD: uint32, actionlD: uint32). bool
+ setDecisionPoint(decision: address)

T T

Figure 5.3: Enforcement Point UML

As the diagram shows it has to be linked with a Decision Point. The reason for this is
that it either enforces a request or not depending on the decision from its referenced
DecisionPoint. Therefore the user itself is not involved in the decision process whatsoever.
It only allows a user to send a simple request encoding what operation he intends to
perform and its target provided as a resource ID. It can be seen that both of the
parameters are being passed as being of type uint32. The reasoning behind this is that
the storage uses this data type for its indices. Thus it is apparent that both parameters
refer to indices within a storage.

This can be leveraged for both on- and off-chain storage scenarios as has already been
pointed out in the previous section about the IndexedStorage.

One notable design decision is that its model does not include any attached Storage
by default. Therefore it allows the implementation of an storageless Enforcement Point.
This can be used in order to turn the Smart Contract into a proxy for further off-chain
Enforcement solely interacting via the emission of events. Consequently these events
mirror the state of the of the request by either being of type "Granted" or "Denied".

Along this implicit information they encode the address of its sender’s account, the
resource ID and the actionID as well as a bool indicating whether the enforcement was
carried out either on-chain or off-chain. Thus this presents the purest form off off-chain
enforcement.

In its most basic form the corresponding request only encodes identifiers which have
no representation on the chain itself. Instead the off-chain system needs to provide its
own mapping of operations and users. Therefore a developer can gradually decide which
level of transparency he wants to provide by including additional storages. By itself
this does not necessarily include any operations on storages” data but instead allows
using storages as a public interface for further information. As an example a Storage of
type bytes could serve as an register containing an operation’s description. This way
system’s participants could receive additional information about the enforcement which
is handled off-chain.

In contrast to the pure off-chain approach on-chain enforcement requires the ability

60

5.3 Derived Models

to execute actions. As it was already hinted in the previous chapter this is being done
by referencing executable Smart Contracts. Consequently they can be stored within an
address type Storage. This makes it possible to model the following chain of Smart
Contract inheritance:

EnforcementPoint

I

ActionEnforcementPoint

+ gactions: AddressStorage

+ setActionStorage(store; address)

T

OnChainEnforcementPoint

T

TextEnforcementPoint

+ text: BytesStorage

+ setTextStorage(store: address)
+ read(reslD: uint32): bytes
+ request(resiD: uint32, actionlD: uint32): bool

Figure 5.4: Chain of Inheritance Enforcement Point UML

The example shows how a TextEnforcementPoint can make use of the given infras-
tructure in order to attach both an AddressStorage representing its actions as well as
a BytesStorage containing arbitrary sized text. Combining both of these components
grants it the ability to execute operations directly on the chain as he is being granted the
ability of altering and reading the attached storage’s text. This way he can call a related
action by delegating the operation itself to the referenced Smart Contract. A more
detailed description of how this is achieved can be found in the following paragraphs.

The proposed system uses abstraction in order to provide actions. Because they
are only being referenced by their address it is possible to model one’s own arbitrary
combinations of Enforcement Points and corresponding actions. However the thesis
includes a sample implementation based on the simple assumption that most alterations
of data can be modelled by a single input parameter being converted to an output of the

61

5 Modelling and Implementation of Access Control Mechanisms in Ethereum Smart Contracts

same type. This can be modelled the following way:

TextAction
{interface}

execute(data: ytes): bytes

"
"

WriteHelloWorld AppendZero

execute(data: bytes): bytes # execute(data: bytes): bytes

Figure 5.5: Inheritance TextAction UML

The diagram shows the definition of an interface called "TextAction". Because interfaces
can not be instantiated directly they need to be inherited from in order to provide
matching functionality. Thus two child contracts are shown. Both of them implement
the parent’s functionality by providing their own interpretation of the execute function.
The contract called "AppendZero" works the following way:

e Its execute function is being called including a bytes encoded text parameter, e.g
the unfinished statement "1 is not equal to"

e The AppendZero contract receives and alters it by appending the hex representa-
tion of the character 0 (0x30)

e Consequently this results in the string "1 is not equal to 0"
o Afterwards it returns the altered text

The example shows that this way multiple different operations can be modelled. Its
counterpart WriteZeros is ignoring the input’s parameter and blindly responds with the
bytes representation of a string containing 32 zeros. An Enforcement Point can then use
this result in order to alter the state of its attached storage based on a predefined action.
In order to provide more transparency on the internal workings of the action itself it is
possible to publish its actual source code for the public. This is especially interesting
in the context of a using the website Etherscan as it offers a feature to verify contracts.
This procedure uses a contract’s address as well as its source code in order to link both
of them. This is done by comparing the compilation results of Etherscan itself with the
ones published at a given address. This ensures that an action does what ever a source
code states.

However the more direct way a user can confirm that a contract executed its request
is to compare the results of its attached storage with the ones he expected.

62

5.3 Derived Models

Attributes & Conditions Until now the explanation ignored the internal handling
of decisions in favor of explaining the enforcement model. As the policies in the system
are expressed as conditions and attributes it is necessary to explain them first. As
previously expressed the decision to exclude the XACML language is based on its
verbosity. Thus the thesis implements attributes and conditions based on the datatype
bytes32.

It is the biggest fixed size data type Solidity provides and therefore does not suffer
from the limitations of other data types such as bytes or strings. As an ASCII character
requires exactly one byte such a value can therefore encode a string of 32 characters.
Consequently an attribute could encode the attribute and its corresponding condition
the following way:

AsciiToHex("isAdmin") = "69 73 41 64 64 69 6e".

The way both of them are processed is being explained in the following paragraphs as
they are involved in the decision process of a Decision Point contract.

Policy Repository & Information Points

Because both the Information Point and the PolicyRepository are communicating with
the Decision Point by providing attributes and conditions their processing is being
simplified by both of them sharing the same type.

Processing

+ constructorinm: bytes, link: address)
processRequestiuserD: uint32, res|D: uint32, actionlD: wint32); ytes32]]

PolicyRepository InformationPoint

Figure 5.6: Processing Contract UML

This is being achieved by both of them inheriting from a common parent contract.
The diagram shows that the system enforces no other constraints on the child contracts
except the specification of a processRequest function. The function definition already
hints that it assumes that both the Information Point as well as the Policy Repository
respond by arrays of type byte32. As the previous section showed this refers to their
conditions and attributes. Both the Policy Repository and the Information Point can
therefore perform internal operations in order to determine request related information.
Consequently it is possible to attach Indexed Storages to them. This makes its possible

63

5 Modelling and Implementation of Access Control Mechanisms in Ethereum Smart Contracts

for the system to receive requests regarding its own policies by recursively applying the
system’s model and referencing either the storage holding the conditions or the storage
holding the policies. The full model of an Information Point the thesis implemented can
be found below.

InformationPoint

+ information: Bytes325torage

processRequest{useriD: uint32, resiD: uint32, actionlD: uint32): bytes32]

+ constructor{decisionPoint. address)

+ informationCount(): uint32

+ pushinformation(info: bytes32)

+ writelnformation(index: uint32, info: bytes32)

+ ovenwritelnformation{index: uint32, info: bytes32)
+ retrievelnformation{index: uint32): (bytes32, bool)
+ removelnformation{index: uint32): bool

+ removeAllinformation()

Figure 5.7: Information Point Sample Model UML

The example shows a basic Information Point. It responds to each processRequest call
with the complete information contained within its referenced storage via a retrieveAll
call. It is implemented in such a that the input parameters are ignored during the
process of producing the output. Therefore it is functionally independent. In the context
of Smart Policies a similar construct called "static" Information Point is used. However
as a programmer is able to provide its own variant of an Information Point it allows
adaptation for a wide range of different applications. As both the PolicyRepository and
the InformationPoint are inheriting from the same parent class the following example of
a PolicyRepository’s implementation could therefore serve as an Information Point just
as much.

PolicyRepository

+ conditionStorages: mapping(uint32=>mappingiuint32==mapping(uint32==Bytes 32Storage)})

+ ConditionStoragelnitialized(store: address). event
+ ConditionStorageSet(store: address). event
+ ConditionStorageUnset(store: address). event

processRequest{userlD: uint32, reslD: uint32, actionlD: uint32). ytes32]]

+ constructor{decisionPoint; address)

+ appendCondition({userlD; uint32, resourcelD; uint32, actionlD: uint32, condition: bytes32)
+ getConditionStorage(userlD: uint32, resourcelD: uint32, actionlD: uint32). address

+ setConditionStorage(userlD: uint32, resourcelD: uint32, actionlD: uint32, store: address)
+ unsetConditionStorage(userlD: uint32, resourcelD: uint32, actionID: uint32)

+ clearConditionStorage(userlD: uint32, resourcelD: uint32, actionlD: uint32)

Figure 5.8: Policy Repository Sample Model UML

64

5.3 Derived Models

The model shown was used during the evaluation via software tests. Its main in-
tention is to prove that more complex applications can be modelled via the proposed
system. Thus by itself it seems rather complicated. However it is based on a simple
process. Each tuple of (user, request and action) is being assigned a corresponding
Bytes32Storage. This storage then contains all the conditions for the stated tuple. As
the tuple corresponds to a request it allows assigning each individual request a set
of conditions. In addition multiple requests can refer to the same Storage effectively
grouping conditions together similar to the PolicySets provided by XACML.

DecisionPoint The DecisionPoint is the most central component within this system. As
it extends on the principle of XACML it not only interacts with a PolicyRepository and
different InformationPoints but also with a UserStorage. This is being shown in the
diagram below.

DecisionPoint
{abstract}

+ usersStorage: AddressStorage
+ informationPoints: Processing]]
+ policyRepository: Processing

+ Decision(_origin: address, _sender: address, result: bool). event
+ InformationPointsChanged(_origin: address, _sender: address) event
+ PolicyRepositoryChanged(_origin: address, _sender: address) event

decide{userAddress: address, resiD: uint32, action|D: uint32): bool {abstract}

+ constructorinm: bytes, enforcementPoint: address)
+ setlUserStorageiusers: address)

+ removeAll()

+ removelnformationPoint{index: uint): bool

+ removeAllPolicyRepositories()

+ remaoveAllinformationPoints ()

+ getinformationPointCount(): uint

+ setPolicyRepository(polRep: address)

+ appendinformationPaint{infoPoint. address)

Figure 5.9: Decision Point Model UML

As the DecisionPoint explicitly references instances of the "Processing" contract for
both its Information Points as well as its PolicyRepository a programmer is fully capable
of providing its own implementation of both these components. As the contract itself is
abstract it explicitly requires a developer to inherit from it in order to instantiate it. Along
different operations for managing its policyRepository as well as its InformationPoints
it allows to implement one’s own implementation of the function "decide".

The UML model also shows that the decide function takes an address as its first
argument. This corresponds to the "msg.sender" value of the original requester and is

65

5 Modelling and Implementation of Access Control Mechanisms in Ethereum Smart Contracts

being passed by the EnforcementPoint. This shows that the expected flow of information
begins with a user’s request to an EnforcementPoint which asks the DecisionPoint for
its decision by including the sender’s address. The User Storage can then be queried for
the provided address to determine whether a user was registered or not and include
this information in its decision making process.

Authentication Point & UserStorage The previous section already pointed out that
the decision whether a user is registered or not can be rather important in the process
of arriving at a decision about whether a request should be granted or not. As this
was already explained in previous chapters about authentication and authorization the
thesis provides its own extendable model.

Authentication Point

+ userstorage: AddressStorage

+ UserReqistered(user: address).event

+ constructorinm: bytes, protectedBy: address)
+ onlyRegistered(y modifier

+ setlserStorageistore; address)

+ registerJser{user address)

Figure 5.10: Authentication Point Model UML

As the model shows the Authentication Point references a Storage contract of type
address. As both users and contracts are identified via its address it can serve as a
persistence layer for them. The process of registering a user can be understood as adding
it to the storage. Therefore his inclusion indicates that he is authenticated. The simplicity
of this idea is being reflected by the diagram. In addition to the base functionality
it provides a modifier which can be applied to either execute a function or throw an
error message depending on whether "msg.sender" is registered or not. However as
the provided system is capable of handling requests to any indexed resource the access
to the referenced storage can be handled by another instance of the thesis system. By
linking a User Storage to both the DecisionPoint and the Authentication Point it can
serve as a central interface. This way it can be managed by the Authentication Point
while being read-only queried from the Decision Point. To give a concrete example of
an implemented Authentication Point the following model can be used.

66

5.3 Derived Models

Authentication Point

FourEyesAuthenticationPoint

+ eyes: mapping(address==address[])
+ ReqgistrationAttempt{origin: address): event

+ constructoristore: address)
+ initisecond: address)
+vote(usr: address)

+ attemptRegistration()

Figure 5.11: Four Eyes Authentication Point Model UML

provides a rather basic authentication system which requires an initiation providing
two addresses of initial users. Both of them are instantly added to the linked storage and
therefore registered. Then new participants are required to wait for the confirmation
of at least two other registered members in order to be included within the Storage
themselves. This in turn allows them to participate in subsequent votings about the
inclusion of new members.
This concludes the examination of the all of the proposed components with the exception
of the "Protected Contract". It is being used to restrict access between the different units
of the system. As a consequence it is being involved in most of its processes. Thus it is
being included in the next chapter.

5.3.1 Processes & Protection Mechanisms

Because contracts allow everyone to call functions it is necessary to differentiate between
trusted and untrusted callers. In other words the system has to generally assume that
a user tries to manipulate the it via attacks. This makes it necessary to expose as little
functionality as possible to a user.

While it has already been pointed out that the privacy of transaction data itself can
currently only be solved by either off-chaining or encryption the system still is able to
differentiate between the different addresses indicating the origin of transactions. As
OpenZeppelin's Ownership contract already showed this allows to implement basic
access restriction via modifiers. Similarily the proposed system internally handles
processes by applying modifier based access restriction between its components.

67

5 Modelling and Implementation of Access Control Mechanisms in Ethereum Smart Contracts

Protected Contracts

Instead of allowing every arbitrary user to call its input each component is restricting
access to its vital functionality. The reasoning behind this is to ensure that the system
can not be manipulated from external parties. To achieve this almost each of the pre-
viously explained contracts inherit from a super class called "ProtectedContract". The
only exception to this rule is the definition of Actions as it is unnecessary to protect
functionality which by itself only does calculations without altering the system’s state.
To give an brief overview of the importance of the Protected Contract its UML diagram
is being shown below:

| Named |

£

9 ProtectedContract q AuthenticationPoint

+ linkedContract: ProtectedContract
+ superadmin: address

EnforcementPoint

i

+ constructor(contractMame: bytes, linked: address)
+ isProtected(): modifier
+ setLink(protectedContract: address)

DecisionPoint

Processing []3

A A IndexedStorage

PolicyRepository InformationPoint Z‘S ZF ﬁx

| AddressStorage | BytesStorage | Bytes32Storage |

i

Figure 5.12: Complete Inheritance Graph UML

As can be seen the Protected Contract is being inherited by all the crucial components
of the system. It is based on a variation of the Ownership Contract provided by
OpenZeppelin. Thus it includes an assignment of an address during the contract’s
deployment. As its implementation is easy to follow the following listing shows its
source code.

68

IO Ul WN -

| T S | i gy
O O OO Ul ke WDN = O o

5.3 Derived Models

{

contract ProtectedContract is Named {
ProtectedContract public linkedContract;
address public superadmin;

modifier isProtected{
require(msg.sender == superadmin || msg.sender == address(linkedContract));

-

}

function setLink(address protectedContract) isProtected public {
require(msg.sender == superadmin);
linkedContract = ProtectedContract(protectedContract);

}

constructor(bytes memory contractName, address linked) Named(contractName) public{
linkedContract = ProtectedContract(linked);
superadmin = msg.sender;

}
Listing 5.1: Source Code: Protected Contract

As can be seen a state variable called "superadmin"” is initially assigned during the con-
tract’s construction. In addition it allows passing an address to a "linkedContract". Both
these entities are the only parties who can execute a function modified by isProtected.
This can be seen in line 7 which expects the sender of a message to either equal to the
super admin or the linked contract. The setLink function is additionally restricted by
a require statement which further limits its access to the superadmin itself. Inheriting
from it therefore allows each component to make use the isProtected modifier.

Additionally during each of the components’ constructions their state remembers the
address of its deployer. This introduces the concept of administrators within the system.
Each of them is capable of changing the components links to its counterparts. The
importance of protecting these links can be understood by imagining a malicious user
altering a Decision Point’s state by changing one of its Information Points addresses.
Doing so would allow him to provide an Information Point which could effectively
mirror the attributes of other requesters within the system. As the previous chapters
have pointed out he could obtain them by listening to the network’s flow of transactions.
Doing so would grant him operative access to restricted resources even though he was
only able to manipulate a single point within the system.

Thus the ProtectedContract ensures that only a component’s admin as well as their
linked components are being granted access. Thus the following summary serves as
a reference point of the protected functionality. This includes both all the storages’
write operations as well as all the setting operations of relationships such as adding or
removing a Policy Repository from its Decision Point. The important assumption this
design makes is that both the administrator and the linked contract are not attempting
to manipulate the system.

69

5 Modelling and Implementation of Access Control Mechanisms in Ethereum Smart Contracts

The initial setup of the system therefore requires an administrator to either provide a
contract with a fitting LinkedContract or to set it to null (address 0). Doing so allows
him to be the only entity within the access capable of doing write operations. If a User
Storage’s would remove its link the Authorization Point could not continue to register
new users. However as read operations are not protected it can still read from it. The
design decision to allow read access globally is based on the results of the previous
chapters. Thus a programmer might opt for deploying the system via private Smart
Contracts if he has a high need for confidentiality.

Another consequence of storages blocking write operations from non-trusted parties
is that an on-chain Enforcement Point is unable to enforce a request on it by overwriting
its data. One direct result of applying the XACML architecture is therefore that the
decide function of the Decision Point can be modelled to be publicly accessible as it
does not interact with other contracts via write statements.

This can be shown by the following example involving authentication:

o A user registers at an Authentication Point
e Thus the Authentication Point writes to the storage
e Consequentially he has to be the storage’s linked contract

e Therefore a Decision Point has to be read-only

Consequentially a DecisionPoint does not require linkage to both its PolicyRepository
and its InformationPoints. However a possible consideration is to link an inherited
EnforcementPoint to them in order to do direct Enforcement on conditions and attributes.
This allows to apply the system recursively effectively providing a flexible approach on
access control.

70

5.3 Derived Models

Processes
As the implementation of the Decision Point’s decision function lies in the hands of the
programmer he can impose different limitations on the validity of requests. As an exam-
ple of possible constraints being imposed the following list gives an overview of system
conditions which default to a deny decision of the prototype’s own implementation of a
DecisionPoint called "Required AttributesDecisionPoint":

e Decide false in case no Information Points are connected
e Decide false in case no Policy Repository is
e Decide false in case no Policies exist

e Decide false if user is not registered

Similarily the implementation of an Enforcement Point could deny a request based on
its connection status with an Action Storage or a Resource Storage.

In order to understand the way a complete request works a sequence diagram of a
successful request is shown on the next two pages.

71

5 Modelling and Implementation of Access Control Mechanisms in Ethereum Smart Contracts

In the following the request presented in the sequence diagram is being textually
described as a list of consecutive steps. It gives an example of the different steps a
decision process could involve.

1.

2.

10.

11.
12.

13.

14.
15.

16.

A user sends a request for the execution of action 0 on resource 0

The Decision Point queries the UserRepository to determine the user’s registration
status

The Storage returns that he found the user and includes his index

The Decision Point knows that the user is being registered and knows its internal
ID

. The Decision Point queries its Policy Repository for related constraints providing

UserlD, ResourcelD and ActionID.

The repository answers with the conditions "isAdmin" and a randomly required
"second Attribute"

The Decision Point queries its (single) Information Point for attributes related to
the request

The Information Point returns both attributes "isAdmin" and "second Attribute"

. As the Decision Point can confirm that the user holds both attributes it decides to

grant the request

Thus the Enforcement Point retrieves the data identified by its index 0 "Hello
Mars"

It then queries its ActionStorage for the action 0
The ActionStorage responds with the address of the contract named "Hello World"

The Enforcement Point calls the execute function of the "Hello World" Contract by
passing the initial data ("Hello Mars")

The Action responds with "Hello Mars"
The Enforcement Point overwrites "Hello World" with "Hello Mars"

The user can confirm that his request was successfully carried out by reading the
storage and confirming its results answers with

72

5.3 Derived Models

obeiojgixa] oy} jo sseippe sy suimel
YOIM JUI0JIUaWAdI0JUT aY) 0} ||BD 1ayjoue Aq
puey bujeq s1 uopeuuyuco sip Ajleusiu|

Jo sanjeA CREINETINY

e

oM ©]|2H.. ‘0 :l2dinosal)ejegallimiane

wSIBI OJI8H,

PLOMOIIZHBHIM

abeioyguonoy

ELLIISVET

1 sa1Aq :(:q1e2Inosal)eIeqaALlB)

any) :asuodsal

|ooq :(:19e “Q :saipisenbal

w (ysrew suonIpuod) eniy :uoIsIdap
[.ainquuypuodas, ' uwpysl,] :sangune
sanqupe [lzgsarkq :(g:uopoe g : ‘0 :apesnhsanbay d
| Lanqumypuoses, ‘ ujwpys.] isuopp
Tizsserkq :lp:uonde ‘9 psenbay d
i _ _ ann :pungj ‘g :xapui
; t Jooq ‘uin :(sssippy) 181
i ' ; |ooq :(p:10e ‘g 1581 ‘ssaippyissn)epiosp
wequeneuniopul: d-] uppy :ebeiisiesn Juloquoisiaaq: JUO4IuaWadIoUIXS]

73

= W N -

5 Modelling and Implementation of Access Control Mechanisms in Ethereum Smart Contracts

5.3.2 Considerations on the Implementation

In order to give an outlook of possible future improvements on the proposed model this
final section provides a short overview about techniques which could be applied. If and
how the related functionality is going to be included within Solidity is unclear.

Generics / Templates

Introducing templates known from other programming would allow to extend the pro-
cessRequest function by a generic type T. Consequentially this would result in arbitrarily
typed conditions and attributes. Instead the system requires re implementation in case
a programmer intends to use attributes of type short. This is an imaginable scenario
as his intentions might be based on the consumption of gas the operations require. In
addition the Storage model could be simplified by making use of an array of generically
typed values. Thus the implementation of multiple different storage contracts for the
individual types would not be required. The topic of generics was mentioned its official
GitHub page via a feature request.[82] However the general stance of the community is
that this feature has a rather low probability of being included in near releases.

Structs

Solidity explicitly states within it FAQ[33] that it currently does not support passing
structs through external functions. If that was possible a request could be sent as a
struct instead of three single values. This could improve abstraction and allow a better
readability of code.

struct Request {

uint userID;

uint actionID;
uint resourcelD;

Listing 5.2: Request Struct

74

6 Evaluation

In order to provide a final evaluation of the implemented prototype different techniques
were applied. As it is being implemented in Solidity the thesis provides a set of different
Test Cases. The Test Setup including a description of the tested features is included in
the first chapter of the evaluation process.second chapter includes an overview of the
functionality the prototype provides and compares them with Smart Policies.

6.1 Software Tests

6.1.1 Testing Smart Contracts

The Truffle Suite provides a complete environment for the steps involved in creating,
testing and deploying a Smart Contract.[93] Consequentially its features include the
setup of a local Test-Blockchain. As a means of interaction it both includes one graphical
and one non-graphical interface.[84] Both of them are able to deploy the Smart Contracts
on the local Blockchain and to test them based on a provided JavaScript based testing
language[84]. This framework allows various means of testing code. All of the thesis’
tests were conducted with truffle version v5.0.27. The package provides all the necessary
components for running the tests. In addition it should be noted that deploying the
contracts to truffle allows making use of its "Clean Room Environment"[83] feature. It
allows the evm to revert to a previous state in order to allow test cases to be executed
separately from each other and without sharing the same state.

6.1.2 Test Setup and Execution

In total 41 different test cases were conducted based on an own implementation of the
abstract contracts and interfaces. This was done in order to prove a complete workflow
within the system. Thus the testing included the definition of the previously mentioned
contracts "TextEnforcementPoint" and "FourEyesAuthentication". In addition a Require-
dAttributesDecisionPoint was implemented who bases its decision on whether a request
is executed based on a minimum set of fulfilled threshold of conditions. The reasoning
behind this testing approach was to both show that the system is both extendable to
more complex scenarios and that the described condition attribute matching can be used
as a basic way of expressing access control. As the thesis” included sequence diagram
is representing a test case of the system it can be used as a reference. In addition
the storage contracts were tested both separately and individually. Its individual tests
were conducted on the contract described as "AddressStorage". As it shares the exact

75

N Ul W N =

6 Evaluation

same code structure with the Bytes32Storage both of their correct basic functionality
(read, write, overwrite, delete) is covered by unit tests or the full system test. The full
system test was conducted by giving a set of two initially unregistered users which
were registered to a Four Eyes Authentication Contract during initialization. Then
both the authenticated and the unauthenticated users performed basic operations such
as performing a request or accessing protected functionality. As the Decision Point
included a decide() function which blocked unauthorized users by default all of the
unauthenticated users were being denied at this stage. The authenticated user was
able to perform a full request including on-chain Enforcement via the thesis provided
TextEnforcementPoint. This request altered the state of an attached storage system and
therefore proved that the proposed approach works. The DecisionPoint was tested on
whether it was able to perform an accurate matching of conditions and attributes and to
arrive at correct decision based their combination.

Interactions between Decision Point, PolicyRepository and InformationPoints

let initialValues = [

asciiHex("ConditionA"),
asciiHex("ConditionB"),
asciiHex("ConditionC"),
asciiHex("ConditionD"),
asciiHex("ConditionE"),

1] 5
Listing 6.1: Initial Test Values

To prove this both an Information Point as well as a the PolicyRepository were initialized
with the values mentioned above. Then an authorized user was being used to conduct
multiple requests via a loop. As this test was focused on the DecisionPoint itself it
directly called its decide function. As expected the system reached a state when the
provided amount of attributes did not match all the system’s conditions anymore. Con-
sequently the system replied by emitting a deny event. In addition the testing involved
two different scenarios both involving the random generation of a variable amount of
Information Points initialized with an individual random amount of attributes. The
system set the amount of randomly generated Information Points to a range between
1 and 10. Each of the Information Points were provided between 1 and 20 different
attributes. In addition the Decision Point’s Policy Repository was added a single condi-
tion. The test then branched off in two different directions. One test case hid a single
fitting attribute within all the randomly generated attributes of the Information Points
and another one did not. Both test cases were executed in multiple iterations each single
one of them asserting that a Decision Point either finds the attribute and grants or does
not find it and denies. These two scenarios were run 50 times in order to ensure that the
Decision Point responds as expected. times.

Interactions between DecisionPoint, Enforcement Point, Actions and Storages

As the previous tests confirmed that the correct functioning of the DecisionPoint it

76

6.2 Comparison With Smart Policies

was necessary to test whether a TextEnforcementPoint is able to alter the state of an at-
tached storage by executing an Action referenced within a storage. To to this its attached
Storage of type bytes was initialized with the text "NOTHELLOWORLD" at position 0.
Then two full system tests were conducted by combining the execution of the previously
stated tests for the DecisionPoint with the Enforcement itself. The Enforcement Point
then executes a request in order to alter the stored value from "NOTHELLOWORLD"
to "Hello World". As this can be reflected by a few lines of code the test’s main part
follows.

debugMessage("Starting enforcement...", vbo.CRITICAL);

await textEnforcementPoint.request(0, 0); // Request is sent

let result = await textStorage.retrieveData.call(0); // Retrieval in order to compare
with expected value

let data = result[0];

debugMessage ("Stored afterwards: " + data, vbo.CRITICAL);

assert.equal(data, asciiHexNoPad("Hello World"), "Hello World was not written!"); //
Assertion that text was altered to "Hello World"

Listing 6.2: Full System Test Grant & Enforcement

The example above shows the assertions in case of a Decision Point’s grant. It executes
the request, then retrieves the storage’s data and finally compares it to "Hello World".
Its negative formulation correctly yielded a "deny" response from the Enforcement Point.
Then the storage’s state was asserted to be equal to its state before in order to prove that
it does not enforce in case it doesn’t receive a grant.

In addition the tests included unit tests proving that the storage’s are able to execute
their implemented methods of retrieval and deletion. In addition they are being covered
by the Full System Tests. In addition the functioning of the Protected Contract was
examined. One test case includes a FourEyesAuthenticationPoint who tries to register a
user to a storage but fails as it is not being linked. Then the link is established and the
registration succeeds.

The test results directly confirm the system’s extendability. During the different full
system tests the expected notifications were emitted by each of the individual compo-
nents. Thus the system was successfully implemented according to its requirements
specification.

6.2 Comparison With Smart Policies

As Blockchain-based Access Control served as the primary point of reference during the
implementation of the thesis’ prototype a comparison between both projects is necessary.
Instead of providing two competing solutions each of them provides a different approach
to a shared problem. As the thesis is approaching the subject from the perspective
of providing a reusable framework for future implementations it to focus on specific
aspects. Therefore the following table only serves as a rough comparison between both
these projects.

77

6 Evaluation

Smart Policies | Implementation

XACML

X1) Includes Full On-Chain Enforcement -

X2) Supports On-Chain Policy Decisions

+ |+ |+

X3) Supports Dynamic Addition of Information Points

+o]+

X4) Supports Complex XACML Policies

Utility

U1) Includes Basic Authentication Contract

U2) Supports Resource Abstraction

U3) Uses Events to notify Subscribers +

++ |+]+

U4) Allows public Auditability +

Privacy

P1) Can be deployed on Quorum - +

P2) Includes Off-Chain Enforcement Point + -

Extendability

E1) Promotes Reusability by Design - +

E2) Separation between Private and Public Enforcement | - +

Table 6.1: Comparison between Smart Policies and Implementation

As the table shows there are many similarities between the functionality both systems
provide. However the proposed system is based on another principle and philosophy. Its
intention is to provide a reusable code which can be published and improved iteratively
with the help of the OpenSource community. Thus its main benefits lie in the factors E1)
and E2). The first of them specifically refers to the fact that Smart Policies make use of
off-chain compilation and a Java-based client for the Enforcement. As this forces a future
developer to both be knowledgeable in Java and Solidity development the proposed
system potentially provides an easier access. In addition the introduction of compilation
requires a programmer to understand the internal workings of the compiler system itself.
The thesis proposal circumvents this by basing its system solely on Smart Contracts.
However Smart Policies are able to compile multiple different executable Smart Contracts.
This can prove to be valuable as both systems are not mutually exclusive. Another
benefit of the proposed system is that it allows full Blockchain Enforcement maximizing
the system’s auditability (X1). However other than the Smart Policy-based system it
does not provide an actual client for off-chain enforcement. Instead it only serves as
an adapter and can fully be deployed as private Smart Contracts within Quorum. This
is not possible for the other system as its off-chain enforcement is handled by a Java
application. Still the Smart Policy system is capable of private data transfer as it is
entirely focused on its off-chain Enforcement. X3) Specifically refers to the fact that
Smart Policies use hard coded addresses of their Information Points which are being
encoded into the Smart Policies during their compilation. This makes it questionable

78

6.2 Comparison With Smart Policies

whether they are capable of achieving a dynamic addition of Information Points or not.

79

7 Conclusion and Future Work

7.1 Conclusion

Answering the initially stated questions the system showed that the current challenges
regarding access control are strongly linked to the issues of data privacy. As the degree
of data privacy decreases with an increasing amount of auditability and verifiability.
Consequently each decision regarding access control has to be evaluated more carefully
within a Blockchain context. However the proposed system also showed that the
Blockchain’s inherent properties can be leveraged in order to present a fully auditable
system instead. Further it provided a proof-of-concept implementation showing a
possible approach on how to both model and implement a functioning access control
system. This way it expands on the previous mostly modifier-based projects and
variants. As the thesis combines advantages from Smart Policies with the flexibility
of OpenZeppelin’s contracts it can be applied to many different scenarios. While the
thesis only provided theoretical tests future implementations need to determine its final
impact on the community. In addition the thesis provided privacy considerations and
a basic authentication functionality. As the different design decisions have been laid
out it is being part of very few published projects in this area of research. This is being
underlined by the fact that it includes its full modelling process including multiple
documented parts of source code. With the hope of providing both a common point
of discussion and a valuable contribution to the OpenSource community the thesis
therefore decides to publish its source code via GitHub. Thus its future is being decided
by factors such as whether it can reach wide-spread adaptation and whether is being
recognized by the OpenSource community. If it achieves this it provides a tested base
implementation which can be improved iteratively. The programming language Solidity
itself was a really small project.

7.2 Future Work

The presented system’s main advantage lies in its extendability and the fact that its model
can be applied recursively. Because the As as a whole introduces a new perspective to
solving access control problems by its inclusion of multiple storage contracts and their
corresponding extendable actions. There are two possible future additions to Solidity
which could simplify the model drastically.

On the one hand the introduction of Template Metaprogramming or Generics (such
as in C++) can lead to a more all around implementation of storage. On the other hand

81

7 Conclusion and Future Work

the current version of Solidity doesn’t support passing Structs between contracts. As
Structs could both improve code readability and maintainability greatly this feature
is currently being part of a suite of experimental features. Further the system is not
optimized for gas usage yet. While the reference implementation doesn’t make use of
string comparisons there are possibly different optimization strategies for implementing
a more efficient decision process or even the storage contracts. However as most of the
implemented contracts are inheritable their functionality can be overridden in order to
provide more efficient algorithms.

Its flexibility allows for a wide variety of potential use cases. More specifically it is
imaginable that the project MedRec which stores SQL statements inside Smart Contracts
could benefit from the proposed systems. The SQL queries could be stored in an
Indexed Storage. Afterwards actions could be defined which append or remove single
SQL operations to the queries whenever they are being executed. The thesis system
could then provide a completely auditable overview about the evolution of SQL queries
by the execution of consecutive actions. This information could be aggregated and
displayed in a specifically developed front end in order to directly monitor access
requests and their handling. More generally the implementation of a front end can
be rather useful by itself. It could include features such as off-chain policy conflict
resolution of formulated policies as this might be too expensive in terms of gas cost.

Further there is currently a lot of research regarding Zero-Knowledge proofs in the
context of authentication. Because the thesis only provided a very conservative contract
for authentication future advances could lead to a whole new perspective on the current
understanding of the subject. While this remains an open question it still proves that
the thesis findings serve as a scientific contribution in a rapidly evolving research area.

82

List of Figures

51 Indexed Storage UML 57
52 Bytes32 & Bytes Storage UML 58
5.3 Enforcement Point UML 60
5.4 Chain of Inheritance Enforcement Point UML 61
5.5 Inheritance TextAction UML 62
5.6 Processing Contract UML 63
5.7 Information Point Sample Model UML 64
5.8 Policy Repository Sample Model UML 64
5.9 Decision Point Model UML 65
5.10 Authentication Point Model UML 66
5.11 Four Eyes Authentication Point Model UML 67
512 Complete Inheritance Graph UML 68

83

List of Tables

2.1 Example result of automatic API route generation
5.1 Requirements Specification

6.1 Comparison between Smart Policies and Implementation.

85

List of Listings

2.1
2.2
23

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
49
4.10

51
52

6.1
6.2

JSON File Structure 9
Example of applying a SHA256 Hash Function. 10
Structure static-nodesjson L oo 19
Linux Access Control List 28
Example of a XACML Policy 36
Implementation of a Contract 40
Implementation of a Struct L L Lo oL 40
Implementation of a Modifier 41
Role Library inRoles.sol 43
Registering Roles in RBAC.sol 43
Initial Assignment of an Administrator in RBACWithAdmin.sol Example 44
Structsin RBAC-SCo 45
OnlyUsers Modifier in RBAC-SC 46
Source Code: Protected Contract 69
RequestStruct o 74
Initial Test Values L L 76
Full System Test Grant & Enforcement 77

87

Bibliography

[1]

[2]

3]

[4]

[5]

[6]

[7]

8]

Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. “A survey of attacks on
Ethereum smart contracts (50K).” In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Vol. 10204 LNCS. Springer, 2017, pp. 164-186. 1sBN: 9783662544549. por: 10.1007/
978-3-662-54455-6_8.

Yu Nandar Aung and Thitinan Tantidham. “Review of Ethereum: Smart home
case study.” In: 2017 2nd International Conference on Information Technology (INCIT).
IEEE. 2017, pp. 1-4.

authentication. https://www.merriam-webster.com/dictionary/authentication.
Accessed: 12/12/20109.

A. Azaria et al. “MedRec: Using Blockchain for Medical Data Access and Per-
mission Management.” In: 2016 2nd International Conference on Open and Big Data
(OBD). Aug. 2016, pp. 25-30. DOI: 10.1109/0BD.2016. 11.

L M Bach, Branko Mihaljevic, and Mario Zagar. “Comparative analysis of blockchain
consensus algorithms.” In: 2018 41st International Convention on Information and
Communication Technology, Electronics and Microelectronics, MIPRO 2018 - Proceedings.
2018, pp. 1545-1550. 1sBN: 9789532330977. po1: 10.23919/MIPRO.2018.8400278.

S Balaji and M Sundararajan Murugaiyan. “Waterfall vs. V-Model vs. Agile: A
comparative study on SDLC.” In: International Journal of Information Technology and
Business Management 2.1 (2012), pp. 26-30.

Alex Biryukov and Dmitry Khovratovich. “Related-key cryptanalysis of the full
AES-192 and AES-256.” In: International Conference on the Theory and Application of
Cryptology and Information Security. Springer. 2009, pp. 1-18.

Alex Biryukov, Dmitry Khovratovich, and Ivica Nikoli¢. “Distinguisher and
related-key attack on the full AES-256.” In: Annual International Cryptology Confer-
ence. Springer. 2009, pp. 231-249.

Block size limit controversy. https://en.bitcoin.it/wiki/Block_size_limit_
controversy. Accessed: 11/12/2019.

Blockchain Cryptocurrency Regulation 2020. https://www.globallegalinsights.
com/practice-areas/blockchain- laws - and - regulations/china. Accessed:

12/12/2019.

Blockchain Size. https ://www .blockchain . com/de/charts/blocks - size. Ac-
cessed: 11/12/2019.

89

https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://www.merriam-webster.com/dictionary/authentication
https://doi.org/10.1109/OBD.2016.11
https://doi.org/10.23919/MIPRO.2018.8400278
https://en.bitcoin.it/wiki/Block_size_limit_controversy
https://en.bitcoin.it/wiki/Block_size_limit_controversy
https://www.globallegalinsights.com/practice-areas/blockchain-laws-and-regulations/china
https://www.globallegalinsights.com/practice-areas/blockchain-laws-and-regulations/china
https://www.blockchain.com/de/charts/blocks-size

Bibliography

[12]

Chiara Bodei et al. “Static analysis of processes for no read-up and no write-
down.” In: International Conference on Foundations of Software Science and Computation
Structure. Springer. 1999, pp. 120-134.

Chiara Bodei et al. “Static analysis of processes for no read-up and no write-
down.” In: International Conference on Foundations of Software Science and Computation
Structure. Springer. 1999, pp. 120-134.

David FC Brewer and Micheal] Nash. “The chinese wall security policy.” In: null.
IEEE. 1989, p. 206.

Kin-Ching Chan and S-HG Chan. “Key management approaches to offer data
confidentiality for secure multicast.” In: IEEE network 17.5 (2003), pp. 30-39.

Sourabh Chandra et al. “A comparative survey of symmetric and asymmetric key
cryptography.” In: 2014 International Conference on Electronics, Communication and
Computational Engineering (ICECCE). IEEE. 2014, pp. 83-93.

Guanling Chen and Robert S. Gray. “Simulating Non-scanning Worms on Peer-
to-peer Networks.” In: Proceedings of the 1st International Conference on Scalable
Information Systems. InfoScale "06. Hong Kong: ACM, 2006. 1sBN: 1-59593-428-6.
DOIL: 10.1145/1146847.1146876.

Konstantinos Christidis and Michael Devetsikiotis. Blockchains and Smart Contracts
for the Internet of Things. 2016. por: 10.1109/ACCESS.2016.2566339.

Connecting to the network. https://github.com/ethereum/go-ethereum/wiki/
Connecting-to-the-network. Accessed: 12/12/2019.

Contracts. https://solidity .readthedocs.io/en/v0.4.24/contracts.html.
Accessed: 12/12/2019.

Jason Paul Cruz, Yuichi Kaji, and Naoto Yanai. “RBAC-SC: Role-based access
control using smart contract.” In: IEEE Access 6 (2018), pp. 12240-12251. 1sSN:
21693536. por: 10.1109/ACCESS.2018.2812844.

Ivan Bjerre Damgérd. “Collision free hash functions and public key signature
schemes.” In: Workshop on the Theory and Application of of Cryptographic Techniques.
Springer. 1987, pp. 203-216.

Chris Dannen. Introducing Ethereum and Solidity. Springer, 2017.

Jan De Clercq. “Single Sign-On Architectures.” In: Infrastructure Security. Ed. by
George Davida, Yair Frankel, and Owen Rees. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, pp. 40-58. 1sBN: 978-3-540-45831-9.

D. Di Francesco Maesa, P. Mori, and L. Ricci. “Blockchain Based Access Control
Services.” In: 2018 IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (SmartData). July 2018, pp. 1379-
1386. por: 10.1109/Cybermatics_2018.2018.00237.

90

https://doi.org/10.1145/1146847.1146876
https://doi.org/10.1109/ACCESS.2016.2566339
https://github.com/ethereum/go-ethereum/wiki/Connecting-to-the-network
https://github.com/ethereum/go-ethereum/wiki/Connecting-to-the-network
https://solidity.readthedocs.io/en/v0.4.24/contracts.html
https://doi.org/10.1109/ACCESS.2018.2812844
https://doi.org/10.1109/Cybermatics_2018.2018.00237

Bibliography

Damiano Di Francesco Maesa, Paolo Mori, and Laura Ricci. “Blockchain Based
Access Control Services.” In: Proceedings - IEEE 2018 International Congress on
Cybermatics: 2018 IEEE Conferences on Internet of Things, Green Computing and Com-
munications, Cyber, Physical and Social Computing, Smart Data, Blockchain, Computer
and Information Technology, iThings/Gree. 2018, pp. 1379-1386. 1sBN: 9781538679753.
DOI: 10.1109/Cybermatics_2018.2018.00237.

Thaddeus Dryja. “Utreexo: A dynamic hash-based accumulator optimized for the
Bitcoin UTXO set.” In: ().

Jacob Eberhardt and Stefan Tai. “On or off the blockchain? Insights on off-chaining
computation and data.” In: European Conference on Service-Oriented and Cloud
Computing. Springer. 2017, pp. 3-15.

Jacob Eberhardt and Stefan Tai. “On or off the blockchain? Insights on off-chaining
computation and data.” In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 10465
LNCS. 2017, pp. 3-15. 1sBN: 9783319672618. DOI: 10.1007/978-3-319-67262-5_1.

Etherscan. https://etherscan.io/. Accessed: 12/12/2019.

Example Flow. https://www.oauth.com/oauth2- servers/server-side-apps/
example-flow/. Accessed: 12/12/2019.

Michael Fleder, Michael S Kester, and Sudeep Pillai. “Bitcoin transaction graph
analysis.” In: arXiv preprint arXiv:1502.01657 (2015).

"Frequently Asked Questions”. https://solidity.readthedocs.io/en/v0.4.24/
frequently-asked-questions.html. Accessed: 12/12/2019.

Michael Fréwis, Andreas Fuchs, and Rainer Bohme. “Detecting token systems on
ethereum.” In: International Conference on Financial Cryptography and Data Security.
Springer. 2019, pp. 93-112.

David Gabay, Mumin Cebe, and Kemal Akkaya. “On the overhead of using zero-
knowledge proofs for electric vehicle authentication: poster.” In: Proceedings of the
12th Conference on Security and Privacy in Wireless and Mobile Networks. ACM. 2019,
pp. 347-348.

Geth. https://github. com/ethereum/go-ethereum. Accessed: 12/12/2019.

Martin Glinz. “Rethinking the notion of non-functional requirements.” In: Proc.
Third World Congress for Software Quality. Vol. 2. 2005, pp. 55-64.

Simon Godik and Tim Moses. eXtensible Access Control Markup Language (XACML)
Version 1.1. 2003.

Lisandro Zambenedetti Granville et al. “Managing computer networks using
peer-to-peer technologies.” In: IEEE Communications Magazine 43.10 (2005), pp. 62—
68.

91

https://doi.org/10.1109/Cybermatics_2018.2018.00237
https://doi.org/10.1007/978-3-319-67262-5_1
https://etherscan.io/
https://www.oauth.com/oauth2-servers/server-side-apps/example-flow/
https://www.oauth.com/oauth2-servers/server-side-apps/example-flow/
https://solidity.readthedocs.io/en/v0.4.24/frequently-asked-questions.html
https://solidity.readthedocs.io/en/v0.4.24/frequently-asked-questions.html
https://github.com/ethereum/go-ethereum

Bibliography

[40]

[41]

[42]

Rui Guo et al. “Secure attribute-based signature scheme with multiple authorities
for blockchain in electronic health records systems.” In: IEEE Access 6 (2018),
pp- 11676-11686.

Peter Hegedus. “Towards analyzing the complexity landscape of solidity based
ethereum smart contracts.” In: Technologies 7.1 (2019), p. 6.

How Tessera works. https://docs.goquorum. com/en/latest/Privacy/Tessera/
HowTesseraWorks/. Accessed: 12/12/2019.

Martin Husék et al. “HTTPS traffic analysis and client identification using passive
SSL/TLS fingerprinting.” In: EURASIP Journal on Information Security 2016.1 (2016),
p- 6.

Xin Jin, Ram Krishnan, and Ravi Sandhu. “A Unified Attribute-Based Access
Control Model Covering DAC, MAC and RBAC.” In: Data and Applications Security
and Privacy XXVI. Ed. by Nora Cuppens-Boulahia, Frédéric Cuppens, and Joaquin

Garcia-Alfaro. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 41-55.
ISBN: 978-3-642-31540-4.

Jens-Peter Kaps and Berk Sunar. “Energy comparison of AES and SHA-1 for
ubiquitous computing.” In: International Conference on Embedded and Ubiquitous
Computing. Springer. 2006, pp. 372-381.

Volker Kessler. “On the Chinese wall model.” In: European Symposium on Research
in Computer Security. Springer. 1992, pp. 41-54.

Jae-Jung Kim and Seng-Phil Hong. “A method of risk assessment for multi-factor
authentication.” In: Journal of Information Processing Systems 7.1 (2011), pp. 187-198.

Ahmed Kosba et al. “Hawk: The Blockchain Model of Cryptography and Privacy-
Preserving Smart Contracts.” In: Proceedings - 2016 IEEE Symposium on Security and
Privacy, SP 2016. 2016, pp. 839-858. 1sBN: 9781509008247. por: 10.1109/SP.2016.
55.

David M. Kristol. “HTTP Cookies: Standards, Privacy, and Politics.” In: ACM
Trans. Internet Technol. 1.2 (Nov. 2001), pp. 151-198. 1ssN: 1533-5399. po1: 10.1145/
502152.502153.

Laravel - Controllers. http: //web . archive . org/web/20080207010024 /http :
//www.808multimedia.com/winnt/kernel.htm. 12/12/2019.

Chen Liyan. “Application research of using design pattern to improve layered
architecture.” In: 2009 IITA International Conference on Control, Automation and
Systems Engineering (case 2009). IEEE. 2009, pp. 303-306.

Pericles Loucopoulos and Vassilios Karakostas. System requirements engineering.
McGraw-Hill, Inc., 1995.

Sihua Ma et al. “Using blockchain to build decentralized access control in a
peer-to-peer e-learning platform.” PhD thesis. University of Saskatchewan, 2018.

92

https://docs.goquorum.com/en/latest/Privacy/Tessera/How Tessera Works/
https://docs.goquorum.com/en/latest/Privacy/Tessera/How Tessera Works/
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1145/502152.502153
https://doi.org/10.1145/502152.502153
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm

Bibliography

Rahat Masood, Muhammad Awais Shibli, Muhammad Bilal, et al. “Usage control
model specification in XACML policy language.” In: IFIP International Conference
on Computer Information Systems and Industrial Management. Springer. 2012, pp. 68—
79.

Anastasia Mavridou and Aron Laszka. “Designing secure ethereum smart con-
tracts: A finite state machine based approach.” In: International Conference on
Financial Cryptography and Data Security. Springer. 2018, pp. 523-540.

Satoshi Nakamoto. “Bitcoin whitepaper.” In: URL: https://bitcoin. org/bitcoin. pdf-(:
17.07. 2019) (2008).

Christopher Natoli and Vincent Gramoli. “The blockchain anomaly.” In: 2016 IEEE
15th International Symposium on Network Computing and Applications (NCA). IEEE.
2016, pp. 310-317.

"Node Casbin”. https://github.com/casbin/node-casbin.

Svein Jlnes, Jolien Ubacht, and Marijn Janssen. “Blockchain in government: Bene-
fits and implications of distributed ledger technology for information sharing.”
In: Government Information Quarterly 34.3 (2017), pp. 355-364. 1ssn: 0740624X. por:
10.1016/j.giq.2017.09.007.

Haroon Shakirat Oluwatosin. “Client-server model.” In: IOSR] Comput. Eng 16.1
(2014), pp. 2278-8727.

Shyue Ping Ong et al. “The Materials Application Programming Interface (API):
A simple, flexible and efficient API for materials data based on REpresentational
State Transfer (REST) principles.” In: Computational Materials Science 97 (2015),
pp. 209-215.

OpenZeppelin. https://github. com/OpenZeppelin/openzeppelin- contracts/
tree/master/contracts. Accessed: 12/12/2019.

Siddika Berna Ors et al. “Power-Analysis Attack on an ASIC AES implementation.”
In: International Conference on Information Technology: Coding and Computing, 2004.
Proceedings. ITCC 2004. Vol. 2. IEEE. 2004, pp. 546-552.

Aafaf Ouaddah, Anas Abou Elkalam, and Abdellah Ait Ouahman. “FairAccess: a
new Blockchain-based access control framework for the Internet of Things.” In:
Security and Communication Networks 9.18 (2016), pp. 5943-5964. 1ssN: 19390122.
DOI: 10.1002/sec.1748.

Venkata N Padmanabhan and Jeffrey C Mogul. “Improving HTTP latency.” In:
Computer Networks and ISDN Systems 28.1-2 (1995), pp. 25-35.

Donn B Parker. “Toward a new framework for information security?” In: Computer
security handbook (2012), pp. 3-1.

Sarvar Patel. Method for updating secret shared data in a wireless communication system.
US Patent 6,243,811. June 2001.

93

https://github.com/casbin/node-casbin
https://doi.org/10.1016/j.giq.2017.09.007
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts
https://doi.org/10.1002/sec.1748

Bibliography

[68]

[72]

[73]
[74]

[76]

(82]
(83]

Michael Piatek, Tadayoshi Kohno, and Arvind Krishnamurthy. “Challenges and
directions for monitoring P2P file sharing networks, or, why my printer received a
DMCA takedown notice.” In: HotSec. 2008.

Proof of Stake FAQ. https://github.com/ethereum/wiki/wiki/Proof-of-Stake-
FAQ. Accessed: 12/12/2019.

Raft-based consensus for Ethereum/Quorum. https://github.com/jpmorganchase/
quorum/blob/master/docs/Consensus/raft.md. Accessed: 12/12/2019.

Dilli Ravilla and Chandra Shekar Reddy Putta. “Implementation of HMAC-
SHAZ256 algorithm for hybrid routing protocols in MANETs.” In: 2015 International

Conference on Electronic Design, Computer Networks & Automated Verification (ED-
CAV). IEEE. 2015, pp. 154-159.

RBAC-SC. https://github. com/ jpmcruz /RBAC - SC/blob/master /RBAC - SC.
Accessed: 12/12/2019.

Mark Richards. Software architecture patterns. O'Reilly Media, Incorporated, 2015.

Carlos Rodrigues, José Afonso, and Paulo Tomé. “Mobile application webser-
vice performance analysis: Restful services with json and xml.” In: International
Conference on ENTERprise Information Systems. Springer. 2011, pp. 162-169.

Sara Rouhani and Ralph Deters. “Performance analysis of ethereum transac-
tions in private blockchain.” In: 2017 8th IEEE International Conference on Software
Engineering and Service Science (ICSESS). IEEE. 2017, pp. 70-74.

Hamza Es-Samaali, Aissam Outchakoucht, and Jean Philippe Leroy. “A blockchain-
based access control for big data.” In: International Journal of Computer Networks
and Communications Security 5.7 (2017), p. 137.

David Cerezo Sanchez. “Raziel: Private and Verifiable Smart Contracts on Blockchains.”
In: arXiv preprint arXiv:1807.09484 (2018). arXiv: 1807 .09484.

John C Schmitt and Dale R Setlak. Access control system including fingerprint sensor
enrollment and associated methods. US Patent 5,903,225. May 1999.

"Signal and PGP are broken”. https://twitter.com/snowden/status/8786838820817223697
lang=de.

Dan Simon, Bernard Aboba, Ryan Hurst, et al. “The EAP-TLS authentication
protocol.” In: RFC5216, IETF, March (2008), p. 1.

Nicolas Sklavos and Odysseas Koufopavlou. “On the hardware implementations
of the SHA-2 (256, 384, 512) hash functions.” In: Proceedings of the 2003 International
Symposium on Circuits and Systems, 2003. ISCAS’03. Vol. 5. IEEE. 2003, pp. V-V.

"templates / generics”. https://github.com/ethereum/solidity/issues/869.

"Testing Your Contracts”. https : //www . trufflesuite . com/ docs / truffle/
testing/testing-your-contracts.

94

https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://github.com/jpmorganchase/quorum/blob/master/docs/Consensus/raft.md
https://github.com/jpmorganchase/quorum/blob/master/docs/Consensus/raft.md
https://github.com/jpmcruz/RBAC-SC/blob/master/RBAC-SC
http://arxiv.org/abs/1807.09484
https://twitter.com/snowden/status/878683882081722369?lang=de
https://twitter.com/snowden/status/878683882081722369?lang=de
https://github.com/ethereum/solidity/issues/869
https://www.trufflesuite.com/docs/truffle/testing/testing-your-contracts
https://www.trufflesuite.com/docs/truffle/testing/testing-your-contracts

Bibliography

[90]

[91]
[92]

Truffle Quickstart. https://www.trufflesuite.com/docs/truffle/quickstart.
Accessed: 12/12/2019.

Steve Vinoski. “Restful web services development checklist.” In: IEEE Internet
Computing 12.6 (2008), pp. 96-95.

Vitalik Buterin. Privacy on the Blockchain. https://blog.ethereum.org/2016/01/
15/privacy-on-the-blockchain/. Accessed: 12/12/2019.

Rossouw Von Solms and Basie Von Solms. “From policies to culture.” In: Computers
& security 23.4 (2004), pp. 275-279.

ceve

and Ethereum: A brief overview.” In: 2018 17th International Symposium INFOTEH-
JAHORINA (INFOTEH). IEEE. 2018, pp. 1-6.

Xunhua Wang et al. “Enabling secure on-line DNS dynamic update.” In: Proceed-
ings 16th Annual Computer Security Applications Conference (ACSAC’00). IEEE. 2000,
pp. 52-58.

Which OAuth 2.0 Flow Should I Use? https://auth0.com/docs/api-auth/which-
oauth-flow-to-use. Accessed: 12/12/2019.

Erik Wilde. “Putting things to REST.” In: (2007).

Gavin Wood et al. “Ethereum: A secure decentralised generalised transaction
ledger.” In: Ethereum project yellow paper 151.2014 (2014), pp. 1-32.

"Writing Tests in JavaScript”. https://www.trufflesuite.com/docs/truffle/
testing/writing-tests-in-javascript. Accessed: 12/12/2019.

Karl Wiist and Arthur Gervais. “Do you need a Blockchain?” In: 2018 Crypto Valley
Conference on Blockchain Technology (CVCBT). IEEE. 2018, pp. 45-54.

Haidong Xia and José Carlos Brustoloni. “Hardening Web Browsers Against Man-
in-the-middle and Eavesdropping Attacks.” In: Proceedings of the 14th International
Conference on World Wide Web. WWW “05. Chiba, Japan: ACM, 2005, pp. 489-498.
1SBN: 1-59593-046-9. por: 10.1145/1060745.1060817.

Rui Yuan et al. “ShadowEth: Private Smart Contract on Public Blockchain.” In:
Journal of Computer Science and Technology 33.3 (2018), pp. 542-556. 1ssN: 18604749.
DOTI: 10.1007/s11390-018-1839-y.

Rui Zhang, Rui Xue, and Ling Liu. “Security and Privacy on Blockchain.” In: ACM
Comput. Surv. 52.3 (July 2019), 51:1-51:34. 1ssN: 0360-0300. por: 10.1145/3316481.

Lidong Zhou, Fred B. Schneider, and Robbert Van Renesse. “COCA: A Secure
Distributed Online Certification Authority.” In: ACM Trans. Comput. Syst. 20.4
(Nov. 2002), pp. 329-368. 1ssn: 0734-2071. por: 10.1145/571637.571638.

Aviv Zohar. “Bitcoin: under the hood.” In: Communications of the ACM 58.9 (2015),
pp- 104-113.

95

https://www.trufflesuite.com/docs/truffle/quickstart
https://blog.ethereum.org/2016/01/15/privacy-on-the-blockchain/
https://blog.ethereum.org/2016/01/15/privacy-on-the-blockchain/
https://auth0.com/docs/api-auth/which-oauth-flow-to-use
https://auth0.com/docs/api-auth/which-oauth-flow-to-use
https://www.trufflesuite.com/docs/truffle/testing/writing-tests-in-javascript
https://www.trufflesuite.com/docs/truffle/testing/writing-tests-in-javascript
https://doi.org/10.1145/1060745.1060817
https://doi.org/10.1007/s11390-018-1839-y
https://doi.org/10.1145/3316481
https://doi.org/10.1145/571637.571638

	Acknowledgments
	Abstract
	Contents
	Introduction
	Motivation
	Research Questions
	Approach
	Outline

	Fundamentals
	Networks, Requests & Resources
	Client-Server & Peer To Peer
	HTTP Requests
	Layered Design

	Basics of Cryptography
	Hash-Functions & Merkle Trees
	Symmetric & Asymmetric Encryption
	Digital Signatures
	Securing HTTP

	Blockchains
	Commonalities
	Mining, Validation and Consensus
	Private, Public and Permissioned Blockchains
	Ethereum & Quroum

	Related Work
	Access Control and Previous Implementations
	Types and Terminology
	Access Control in Client-Server Architectures
	Basic Authentication
	Authorization

	Evaluation of Access Control Systems in Blockchains
	Data Privacy & Quorum
	Access Restriction via Smart Contracts
	RBAC-SC
	XACML and Smart Policies

	Modelling and Implementation of Access Control Mechanisms in Ethereum Smart Contracts
	System Requirements
	Modified XACML Architecture
	Derived Models
	Processes & Protection Mechanisms
	Considerations on the Implementation

	Evaluation
	Software Tests
	Testing Smart Contracts
	Test Setup and Execution

	Comparison With Smart Policies

	Conclusion and Future Work
	Conclusion
	Future Work

	List of Figures
	List of Tables
	List of Listings
	Bibliography

