
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Information Systems

Assessing the Cost and Benefit of a
Microservice Landscape Discovery Method in

the Automotive Industry

Nektarios Machner

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Information Systems

Assessing the Cost and Benefit of a
Microservice Landscape Discovery Method in

the Automotive Industry

Bewertung der Kosten und des Nutzens einer
Methode für die automatisierte

Rekonstruktion von Microservice
Architekturen in der Automobilbranche

Author: Nektarios Machner, B.Sc.
Supervisor: Prof. Dr. Florian Matthes
Advisor: Martin Kleehaus, M.Sc.
Submission Date: 15.11.2019

I confirm that this master’s thesis in information systems is my own work and I have
documented all sources and material used.

Munich, 15.11.2019 Nektarios Machner, B.Sc.

Acknowledgments

It has been a long journey, but it has finally come to an end. So at this point, I would
like to take the opportunity to thank a few people without whom this thesis would not
have been possible. First and foremost, I would like to thank my family and friends for
always believing in me and supporting me throughout the duration of writing this thesis.
Secondly, I would like to extend my gratitude to my advisor Martin Kleehaus from TUM who
provided invaluable guidance in designing and writing the thesis, but also Jan Schäfer and
Stefan Volkert from our industry partner who made this thesis possible and helped finding
interview partners for the evaluation. Speaking of interview partners, I also want to express
my gratitude to these people who took time out of their day to diligently answer all of my
questions. Last but not least, I would like to thank the SEBIS chair headed by Prof. Dr. Florian
Matthes, which this thesis was written at. And before I close off this section, in a time of
rising mental health issues, I believe it is of utmost importance to always love yourself and
therefore, I would like to end this section by also thanking myself for having the discipline to
see this thesis through to the end.

Abstract

Enterprise Architecture Management is a widespread practice in today’s organizations all over
the world. Part of this managerial function is to document the current IT landscape in order to
provide valuable information, on which decisions are based regarding the future orientation
of the enterprise. Due to the rising adoption of trends like DevOps and microservice-
based architectures, Enterprise Architecture Documentation (EAD), which is still performed
manually to a large extent, faces various challenges that need to be overcome.

Recent research endeavors explored approaches that assist the documentation process in
an automated manner through the usage of runtime data in order to minimize the manual
effort and improve the overall quality of available information.

In this thesis, a novel approach to leverage the automated extraction of runtime data from
an Application Performance Monitoring (APM) tool and reconstruct the as-is IT landscape is
implemented in a real world environment situated in the automotive industry. The imple-
mented IT artifact is tested and evaluated through expert interviews with EA practitioners
from our industry partner.

The proposed solution approach shows promising results and is able to automatically
extract EA-related information from runtime data and provide various visualizations for
exploring the reconstructed IT landscape.

Keywords: Enterprise Architecture Management (EAM), Enterprise Architecture Documen-
tation (EAD), Application Performance Monitoring (APM), distributed tracing, automated
discovery algorithm, automated runtime data extraction, automotive industry

iv

Contents

Acknowledgments iii

Abstract iv

1. Introduction 1
1.1. Motivation & Problem Description . 1
1.2. Research Questions . 2
1.3. Research Methodology . 3
1.4. Outline . 4

2. Concept 5
2.1. Theoretical Background . 5

2.1.1. Terminology . 5
2.1.2. ArchiMate . 6

2.2. Microlyze . 10
2.2.1. Overview . 10
2.2.2. Prerequisites . 10
2.2.3. Theoretical Discovery Algorithms . 11

2.3. Related Work . 13
2.4. Delimitation . 14

3. Implementation 15
3.1. Proposed Solution - Overview . 15
3.2. Implementation Environment . 17

3.2.1. Requirements Analysis . 17
3.3. Monitoring - Dynatrace AppMon . 19

3.3.1. AppMon Overview . 19
3.3.2. Metamodel & Data Structures . 20
3.3.3. Limitations & Workarounds . 21

3.4. Data Model . 26
3.4.1. Logical Data Model . 26
3.4.2. Mapping . 29
3.4.3. Physical Data Model . 32

3.5. Backend . 35
3.5.1. GraphQL . 35
3.5.2. Database - MongoDB . 36
3.5.3. Automated Architecture Discovery Algorithm 37

v

Contents

3.6. Frontend - Visualizations . 41
3.6.1. Business Landscape View . 41
3.6.2. Application Landscape View . 41
3.6.3. Table View . 43
3.6.4. Communications View . 44
3.6.5. Application Interaction View . 45
3.6.6. Comparison View . 46
3.6.7. GraphQL View . 47

4. Evaluation 48
4.1. Quantitative Analysis . 48

4.1.1. Discovery Run . 48
4.1.2. Findings . 49
4.1.3. Conclusion of the quantitative analysis 58

4.2. Qualitative Analysis . 59
4.2.1. Relevance of problem description . 60
4.2.2. Solution Approach . 61
4.2.3. Technical Integration . 69
4.2.4. Organizational Integration . 73
4.2.5. Usability . 76
4.2.6. Visualizations . 79
4.2.7. General Remarks & Feedback regarding the visualizations 87
4.2.8. Use Cases . 88
4.2.9. General Remarks & Feedback regarding the overall solution approach . 89
4.2.10. Conclusion of the qualitative analysis . 89

4.3. Before-and-After Analysis . 90
4.3.1. Requirements Analysis - Revisited . 90
4.3.2. Documentation Process - Comparison . 91

5. Conclusion 93
5.1. Summary . 93
5.2. Findings . 93

5.2.1. RQ1: Runtime Data Discovery . 93
5.2.2. RQ2: Requirements . 94
5.2.3. RQ3: Benefits & Limitations . 95
5.2.4. Final Assessment . 97

5.3. Outlook . 98

A. Appendix 99
A.1. Interview Questionnaire . 99
A.2. Transcripts . 100

A.2.1. Transcript 1 . 101
A.2.2. Transcripts 2 & 3 . 106

vi

Contents

List of Figures 117

List of Tables 118

Glossary 119

Acronyms 120

Bibliography 121

vii

1. Introduction

This chapter will introduce the motivation behind this thesis, present the research questions
and the underlying research methodology and give an outline of the overall structure of the
thesis.

1.1. Motivation & Problem Description

Enterprise Architecture Management (EAM) is a common practice in mid- and large-sized
organizations with the purpose of managing the complexity of the enterprise’s IT landscape
in relation to the business requirements [1]. Companies with a solid foundation are found to
have higher profitability, faster time to market, and lower IT costs [2]. Therefore, Enterprise
Architecture as a foundation for execution, which depends on a tight alignment between IT
capabilities and business objectives, takes on increasing strategic importance [2].

Part of the managerial function of EAM is the documentation and analysis of the organi-
zation’s as-is landscape which builds the foundation for adapting to upcoming trends and
deriving plans for future transformations.

In the recent years, various trends started to gain a lot of popularity. Trends such as
microservices and DevOps are considered growing concepts with a comparable rate of
growth since the year 2014 [3]. A multitude of well-known companies such as Amazon
and Spotify utilize microservice architectures and as a consequence claim to have achieved
scalability, agility and reliability [4].

Due to the rising complexity of IT landscapes, Enterprise Architecture Documentation
(EAD) faces a set of challenges:

• EAD is performed mostly manually and is therefore a costly and time-consuming task.
[1] [5] [6] [7] [8]

• The documentation is incomplete and/or outdated, which results in decisions made on
the basis of low quality data. [1] [9]

• There are no clear responsibilities for documentation. [10]

• The IT landscape is constantly changing and evolving, too fast for manual documenta-
tion. [3] [6]

Recent research started investigating automated approaches as a chance to meet these
challenges and facilitate the documentation process (cf. Related Work in section 2.3). To that
effect, a novel approach is being developed at the SEBIS chair of the TUM, which leverages

1

1. Introduction

runtime data from an Application Performance Monitoring (APM) tool and enriches it with
information from federated information systems in order to reconstruct the EA landscape
and assist its documentation. As part of this thesis, this approach will be implemented in a
real world environment within the automotive industry and evaluated by EA practitioners
from our industry partner. The aim is to critically assess the benefits and limitations of this
solution approach and provide feedback for future research.

1.2. Research Questions

This master’s thesis aims at answering the following research questions:

• RQ1: Which IT artifacts and their communication relationships can be discovered
through runtime data?

• RQ2: What requirements need to be fulfilled for the proposed solution approach to
function as intended?

• RQ3: What are benefits and limitations of the proposed solution approach?

RQ1 aims at identifying all relevant EA-related elements that can be extracted from runtime
data in an automated fashion. The goal is to achieve an overview of which elements can be
discovered and which ones can not so that further research can be done in exploring means
how to close this information gap and provide more valuable information with reduced
manual effort over time.

RQ2 is geared towards identifying various requirements that need to be fulfilled so that
an automated approach can be successful in reconstructing the IT landscape and assist the
documentation process.

RQ3 represents a conclusive evaluation of the proposed solution approach after implement-
ing and testing it in a real world environment. To that effect, a quantitative and a qualitative
analysis will be conducted including expert interviews with EA practitioners. As a result,
benefits and limitations of the overall solution approach will be presented and assessed and
ideas for further research to improve the solution approach will be discussed.

2

1. Introduction

1.3. Research Methodology

Hevner et al. describe seven guidelines for design science in information systems research,
which they derive from the principle of design-science research that "knowledge and under-
standing of a design problem and its solution are acquired in the building and application of
an artifact." [11]

The first guideline (GL1) states that a viable artifact needs to be produced by the performed
research [11]. This thesis complies with GL1 by building upon already existing research and
producing a prototypical instantiation of the conceptualized solution approach.

The second guideline (GL2) requires the produced artifact to be relevant with respect
to problems or issues encountered by IS practitioners [11]. The herein produced artifact
is relevant to multiple problems as introduced in 1.1, e.g. in assisting the process of EA
documentation, among other use cases.

The third guideline (GL3) calls for a profound evaluation with suitable methods [11]. As
part of a case study, the designed artifact will be integrated into the productive environment
of our industry partner from the automotive industry, whereby it will be subjected to a
continuous cycle of adaptation and feedback from the corresponding advisors over a period
of three months. The case study will be concluded with a quantitative analysis of multiple
metrics and a qualitative analysis in the form of multiple expert interviews with practitioners
from our industry partner.

The fourth guideline (GL4) requires the conducted research to contribute meaningfully to
its respective field [11]. The research within this thesis primarily contributes to the field of IS
research and EAM by providing a proof of concept (through construction and implementation
in a real-world scenario) and an assessment of benefits and limitations of the proposed
solution to be considered for future research.

The fifth guideline (GL5) dictates applying rigor when constructing and evaluating the
artifact [11]. This thesis applies rigor by choosing technologies for the implementation of the
IT artifact that have been tested and prevailed in the field and selecting relevant stakeholders
and metrics for its evaluation.

The sixth guideline (GL6) states that design science needs to be viewed as a continuous
search process [11]. In order to apply to this guideline, the implementation of the IT artifact
will constantly be critically assessed and updated accordingly in search for the best possible
solution.

The seventh guideline (GL7) recommends presenting the research in an effective way to
a managerial as well as a technology-affine audience [11]. This thesis adheres to GL7 by
introducing the conducted research and presenting the findings in a way that does not require
a profound understanding of the problem domain, since the necessary knowledge is outlined
within the thesis and enriched with references to the underlying literature for further reading,
but by also including a chapter that discusses the technical implementation of the IT artifact
in more detail. Additionally, the source code of the implemented artifact is attached for
further inspection should technology-savvy readers be interested.

3

1. Introduction

1.4. Outline

The remainder of this master’s thesis is organized as follows:
Chapter 2 will cover the theoretical background of this thesis and introduce the conceptual

foundation which will serve as a basis on which the proposed solution approach will later be
built upon.

Chapter 3 will explain the implemented IT artifact in more detail and discuss a variety of
technical matters including design choices and limitations of the proposed solution approach.

Chapter 4 will evaluate the implemented IT artifact within a quantitative analysis with
regard to multiple metrics and a qualitative analysis where interviews conducted with experts
from our industry partner will be assessed and their respective statements critically reflected
upon.

Chapter 5 will summarize the findings, conclusively answer the stated research questions
and discuss ideas for future work.

4

2. Concept

This chapter will cover the theoretical background of this thesis and introduce the underlying
concept in more detail. The goal is to explain the foundations on which the implementation
in chapter 3 will build upon.

2.1. Theoretical Background

2.1.1. Terminology

While the glossary will cover most of the terms used throughout this thesis, some terms need
to be elaborated on more thoroughly for a deeper understanding and clarification.

• Application (software / program)

In the literature and in the field, the term application is used excessively and very
broadly without giving much thought to the meaning of the term. In general, an
application can be seen as a logical grouping of functions to fulfill one or a set of
tasks. Depending on the context, the actual meaning and provided functionality can
differ largely. Therefore, the author will make an effort to always specify what kind of
applications the term refers to when used throughout the thesis.

• Application Performance Monitoring (APM)

APM can denote the terms Application Performance Monitoring and Application Perfor-
mance Management. Usually, monitoring is part of the management function or in other
words, in order to adeqately manage applications, applications need to be monitored
first so that relevant information can be identified and collected. Unless otherwise
specified, the acronym APM will refer to Application Performance Monitoring.

5

2. Concept

2.1.2. ArchiMate

ArchiMate is a EA modeling language developed and maintained by The Open Group, which
was designed to provide a consistent representation for EA-related diagrams. The latest
version of the specification is 3.1.1

The core framework is composed of three layers and three aspects which together form 9
cells as depicted in Figure 2.1.

Figure 2.1.: ArchiMate Core Framework, taken from [12]

The aspects are not as important, but the different layers and their color coding are necessary
to correctly interpret the models and understand the presented findings later in this thesis
and shall be therefore defined and explained hereinafter.

• Business Layer

"The Business Layer depicts business services offered to customers, which are realized
in the organization by business processes performed by business actors." [12]

This layer concerns itself with the overarching business perspective of an organization
including elements such as domains and products. The elements found within this layer
are understood on a logical level, technical details are abstracted.

• Application Layer

"The Application Layer depicts application services that support the business, and the
applications that realize them." [12]

This layer represents the technical side of things and contains the elements necessary to
provide all the business services defined in the business layer. While technical details
are not abstracted, they are still understood on a logical level.

1pubs.opengroup.org/architecture/archimate3-doc/toc.html

6

2. Concept

• Technology Layer

"The Technology Layer depicts technology services such as processing, storage, and
communication services needed to run the applications, and the computer and commu-
nication hardware and system software that realize those services. Physical elements
are included for modeling physical equipment, materials, and distribution networks to
this layer." [12]

As the definition states, the elements found within this layer build the necessary
foundation on which the elements of the application layer run on.

The ArchiMate language offers a variety of different elements, but only the ones used in this
thesis will be defined hereinafter.

• Business Function

Business Function Notation

"Represents a collection of business behavior based on a chosen set of criteria (typically
required business resources and/or competencies), closely aligned to an organization,
but not necessarily explicitly governed by the organization" [12]

• Product

Product Notation

"Represents a coherent collection of services and/or passive structure elements, accom-
panied by a contract/set of agreements, which is offered as a whole to (internal or
external) customers." [12]

7

2. Concept

• Business Service

Business Service Notation

"Represents explicitly defined behavior that a business role, business actor, or business
collaboration exposes to its environment." [12]

• Application Component

Application Component Notation

"Represents an encapsulation of application functionality aligned to implementation
structure, which is modular and replaceable." [12]

• Application Collaboration

Application Collaboration Notation

"Represents an aggregate of two or more application internal active structure elements
that work together to perform collective application behavior." [12]

• Application Interaction

Application Interaction Notation

"Represents a unit of collective application behavior performed by (a collaboration of)
two or more application components." [12]

8

2. Concept

• Application Service

Application Service Notation

"Represents an explicitly defined exposed application behavior." [12]

• Node

Node

"Represents a computational or physical resource that hosts, manipulates, or interacts
with other computational or physical resources." [12]

• Facility

Facility

"Represents a physical structure or environment." [12]

9

2. Concept

2.2. Microlyze

This section will introduce Microlyze in more detail. Microlyze is a novel solution approach
to discover and maintain EA-related information in order to assist and possibly one day
replace manual EA documentation to some extent. It is designed and conceptualized at the
SEBIS chair of the TUM in Munich and is based on microservice-based architectures.

2.2.1. Overview

Figure 2.2 shows an overview of the underlying ideas that will be explained hereinafter.
During the development process a JSON configuration file is created by the product owner

and development team that contains static information about a corresponding microservice
including references to federated information systems.

When a microservice is ready to be deployed, it is committed to the CI/CD pipeline which
contains a test case that validates the included JSON configuration file against a JSON schema
globally defined by enterprise/IT architects. The validation ensures the presence of such
a configuration file and checks whether all necessary fields have been supplied with the
according information. Only if this validation succeeds can the developed microservice be
cleared for deployment. In that case, the configuration file is transferred to a centralized
reference repository and stored for later use. Otherwise, the development team needs to
amend the configuration file and retry the deployment process including the validation step.

Once a microservice is successfully deployed, it is continuously monitored by an Application
Performance Monitoring tool that collects a plethora of relevant information in the form
of runtime data. This data is stored at a monitoring server that can be queried through its
exposed interfaces.

Microlyze includes algorithms that request relevant information from the monitoring server
and reconstruct the as-is IT landscape by processing the received runtime data. The discovered
IT artifacts are stored in a database for historization purposes.

By means of a graph-based query language it is then possible to query the database for the
stored IT artifacts enriched with static information from the associated JSON configuration
file that is retrieved from the reference repository and used to bridge the gap between the
application layer and the business layer. The queried data can be visualized and displayed to
the user through a dedicated frontend within any modern browser application.

2.2.2. Prerequisites

In order for Microlyze to function as intended, a set of prerequisites needs to be fulfilled.

1. Every microservice needs to be monitored with an APM tool.

2. A JSON configuration file needs to be created and maintained for every microservice.

3. Usage of a CI/CD pipeline is necessary to ensure the existence and validate the content
of the configuration files by means of a separate test case.

10

2. Concept

4. Handling and maintenance of the configuration files needs to be delegated to agile
teams (product owner and development team).

D
ev

e
lo

p
m

e
n

t
P

ro
ce

ss
A

p
p

lic
at

io
n

 a
n

d
 I

n
fr

as
tr

u
ct

u
re

 L
ay

e
r

Development Environment

<Naming Convention>

Monitoring
Probe

JSON
Config File

Federated Information Systems

CI / CD Pipeline

Development Commit Test Release

PO / Developer

Enterprise/IT Architects

JSON
Schema

Container

Micro-
service

Monitoring
Probe

Cloud/On-Premise
Environment

Frontend

MICROLYZE

GraphQL

Reference
Repository

IT Landscape
Discovery

Monitoring Server

m
a

in
ta

in

validate config file against schema

transfer config file

d
e

p
lo

y

runtime data

reference

Figure 2.2.: Microlyze Overview, adapted from [13]

2.2.3. Theoretical Discovery Algorithms

Two algorithms were designed and formally described in [14]. These algorithms will build the
basis for the implementation of the Automated Architecture Discovery Algorithm in chapter 3
and shall therefore be covered briefly in this section.

Assume the Enterprise Architecture A(E, C) is a directed graph with a finite set of runtime
artifacts E and communications C, whereby C ⊆ E× E.

The backward discovery algorithm recursively retrieves historical tracing data (tD) by
starting at t0 and iterating through the past in pre-defined timeframes (T) until no further
data is available due to storage limitations from the APM tool in use. Afterwards, the forward
discovery algorithm is triggered and continuously processes new runtime data.

The overall idea is to incrementally reconstruct the as-is landscape by adding newly
discovered elements to the EA graph and storing the data in a database for historization.
Since runtime data can only contain information on what has been observed, there can be
no guarantee that the discovered set of IT artifacts is complete. However, running these
algorithms for a sufficiently long enough period of time should provide eventual consistency.
For further information on the formal definition of the discovery algorithms please refer to
[14].

11

2. Concept

Algorithm 1 Backward Discovery, taken from [14]

Require: T > 0
1: function backwardDiscovery(A, t0, T)
2: if A = ∅ then
3: rD(E)← RepositoryData

4: A′ ← A(rD(E), C)

5: t1 ← t0

6: t0 ← t1 − T
7: tD(E, C)← TraceData(t0, t1)

8: if tD 6= ∅ then
9: for all e ∈ tD(E) do

10: if e ∈ rD(E) then
11: A′′ ← A′(E, C ∪ tD(Ce))

12: backwardDiscovery(A′′, t0, T)
13: else
14: return A′

Algorithm 2 Forward Discovery, taken from [14]

Require: T > 0, τ > 0
1: function forwardDiscovery(A, τ, T)
2: t1 ← t0 + T
3: rD(E)← RepositoryData

4: tD(E, C)← TraceData(t0, t1)

5: A′ ← A(E ∩ rD(E), C)
6: A′′ ← A(E′, C ∪ tD(C))
7: for all c ∈ A′′(C′) do
8: if c(lastSeen) + τ ≤ t0 then
9: c(deleted)← true

10: V(i + 1)← A′′
11: return A′′

12

2. Concept

2.3. Related Work

This section will briefly cover relevant related work regarding the usage of runtime data and
automation to reconstruct the IT landscape.

• Buschle et al. make use of an Enterprise Service Bus (ESB) to automatically extract
EA-related information for documentation purposes [15]. This data is compared against
the metamodel proposed by ArchiMate, whereby the achieved coverage is measured.
While the approach succeeds in covering up to 75% of the application layer and up to
50% of the technology layer, the business layer was found to be covered by only up to
20%.

• Holm et al. utilize network scanning for automatic data collection [8]. The gathered
data is mapped to ArchiMate models but is not able to bridge the gap to the business
layer, thereby only providing information on the application and technology layer.
Furthermore, the extracted data is reportedly too detailed for EA purposes and lacks
information on communication relationships.

• Similar to the previous approach, Alegria et al. also monitor and analyze network traffic
in order to infer EA relevant information [16]. The apporach suffers from the same
shortcomings as [8].

• Cuadrado et al. combine static information extracted by analyzing source code directly
and dynamic information extracted by a profiling tool from runtime data to reconstruct
the architecture [17]. While this approach is similar to Microlyze in combining static
with dynamic information, it lacks the ability to identify communication relationships
and is also limited to Java code/software. Furthermore, it is not possible to export the
extracted data to a commonly used data format.

• Van Hoorn et al. developed a framework called "Kieker" that utilizes runtime data from
distributed tracing for further analysis of monitored applications [18] [19]. While the
extracted traces can be used to reconstruct the IT landscape, the focus is primarily on
improving the continuous monitoring approach and enhancing the analyses based upon
the monitoring records.

• Valja et al. successfully derive EA models by combining different data sources including
runtime data extracted from a network scanner and transforming the different sources
to a common language but also lack the ability to extract communication relationships.
[20] [21].

• Farwick et al. proposed an automated approach to integrate information about running
infrastructure instances in the cloud into an EAM view. While making use of runtime
data, it lacks the measures in place to historize data or to identify communication
relationships [1].

13

2. Concept

• Fittkau et al. use monitoring data to improve consistency between EA models and
reality. The extracted information is used to visualize relationships between applications
but is not stored for historization purposes. The approach is also unable to bridge the
gap between the application and the business layer [22].

2.4. Delimitation

This thesis uses Microlyze as conceptual foundation and implements the proposed solution
approach in a real-world environment situated in the automotive industry. It represents
a proof of concept through instantiation. While the concept of microservices is universal
and does not differ much depending on the environment it is applied to, the developed
IT artifact being implemented and evaluated in the automotive industry might impact the
generalizability of the findings.

Due to restrictions imposed by our industry partner, it is not possible to implement the
JSON configuration files within a CI/CD pipeline. This part is simulated through a manually
maintained document that contains static information from federated information systems
similar to the information that would otherwise be contained in said configuration files in
order to retain the full capability of the proposed solution approach in reconstructing the
as-is landscape and bridging the gap between application/technology and business layer. In
this way, it is possible to "paint the big picture" and thus, it is possible to evaluate the entire
solution approach.

The implementation will primarily focus on the extraction and usage of runtime data
generated through distributed tracing. Special attention will thereby be paid to identifying
and extracting communication relationships between microservices, which is scarcely covered
by other mentioned solution approaches.

14

3. Implementation

The previous chapter focused on the concept and theoretical background of the proposed
solution approach including the introduction to Microlyze. This chapter will cover the actual
implementation in more detail.

Please note:
To keep this thesis as easily readable as possible, actual code will only be shown in an
exemplary manner wherever the author deems it necessary. Otherwise, code fragments and
implementation details will be generalized and explained in text. Should one be interested in
the actually implemented code as a whole, it can be found attached to the thesis as digital
supplement.

3.1. Proposed Solution - Overview

The implemented IT artifact is mainly written in TypeScript1, a typed superset of JavaScript
which compiles to plain JavaScript. The provided functionality can be roughly divided into
two parts: data extraction and data visualization.

The data extraction part consists of automatically connecting to a supported Application
Performance Monitoring (APM) tool, extracting relevant EA-related information, mapping it
to our data model and storing it in a database.

The data visualization part builds upon the extracted data set and provides a variety of
visualizations directed at different EA stakeholders.

Figure 3.12345678910 provides a high-level overview of the implementation of the proposed
solution including the most important technologies in use and serves as a reference for
the following sections of this chapter in which the individual parts will be presented and
explained in more detail.

1typescriptlang.org
2dynatrace.com
3graphql.org
4nodejs.org
5mongodb.com
6developers.google.com/web/tools/puppeteer
7google.com/chrome
8reactjs.org
9yworks.com/products/yfiles-for-html

10products.office.com/excel

15

3. Implementation

Implementation Environment

Proposed Solution

Backend

Frontend

Monitoring Server

Manual
Documentation

Database

Microservice

Monitoring
Agent

Discovery Component

Visualizations

Figure 3.1.: Proposed Solution - Overview

16

3. Implementation

3.2. Implementation Environment

As mentioned before, this thesis was conducted in cooperation with a large German enterprise
in the automotive industry. To offer their products and services, this enterprise contains a
division responsible for all IT-related concerns. This thesis was conducted at the department
for vehicle data connectivity, which is mainly responsible for a variety of IT products and
applications necessary to provide the backend for multiple services in the context of connected
cars.

3.2.1. Requirements Analysis

In order to identify what requirements the proposed solution approach should fulfill (i.e.
which IT artifacts should be documented in an automated fashion), the advisors at our
industry partner were questioned by means of a questionnaire in which they should rate
various IT artifacts along several criteria, which are presented hereinafter.

• Relevance

How relevant is the documentation of the IT artifact?

This question aims at determining how important it is to document a given artifact.
IT artifacts that are not perceived as very relevant also do not necessarily need to be
documented automatically.

• Completeness

How complete is the current documentation of the IT artifact?

This question aims at identifying how complete the already existing documentation of
a given artifact is. Already completely documented IT artifacts have a lower need for
automated documentation than incompletely documented ones.

• Rate of Change

How often does the IT artifact change?

This question aims at determining how often an artifact is subject to change and therefore
how often its documentation needs to be updated accordingly. More frequently changing
IT artifacts have a higher need for automated documentation since the documentation
also needs to be updated more frequently whereas less frequently changing IT artifacts
might as well be documented manually since the effort to keep the documentation
up-to-date is not as high.

• Actuality

How current (up-to-date) is the documentation of the IT artifact?

This question aims at identifying the actuality of the documentation of a given artifact.
An already up-to-date documentation would signify that the current documentation
process is sufficient and the need for automation is low.

17

3. Implementation

• Degree of Automation

How high is the degree of automation regarding the current documentation of the IT
artifact?

This question aims at identifying to what extent the documentation of a given artifact is
already automated. Should there already be a functioning automated documentation
process in place, the need for automation would obviously not be as high as for IT
artifacts without automated documentation.

The underlying idea of the questionnaire is to identify which IT artifacts would benefit most
from being documented automatically and should therefore be prioritized first during the
prototypical implementation. The higher a given IT artifact scored within a category the
higher the need for automated documentation is perceived to be. The overall score of a specific
IT artifact was determined by summarizing the scores for each category and each participant
and then dividing it by the number of participants who answered the questionnaire. Table 3.1
shows the top ten requirements that have the highest need for automated documentation.

Rank Requirement Score
1 Data flow and dependencies between applications 18
2 Interfaces / APIs 18
3 Mapping and associations within application layer 18
4 Application Components (logical unit) 17
5 Communication technology (protocols) 17
6 Business Processes 15
7 Mapping and associations within technology layer 15
8 Physical IT resources 14
9 Mapping and associations within business layer 13

10 Use Cases / Scenarios 13

Table 3.1.: Requirements Analysis

The top three identified requirements share the same score and mutually pertain to the
application layer. They also collectively share the similarity that they concern themselves with
some aspect of interrelationships between microservices, being it the actual data flow and
dependencies, the targeted interfaces or the mapping between components in general. Due to
their importance, these requirements will be addressed with the highest priority.

18

3. Implementation

3.3. Monitoring - Dynatrace AppMon

The IT applications of our industry partner mostly consist of microservices, which are
monitored by Dynatrace Application Monitoring (AppMon). AppMon is an Application
Performance Monitoring tool offered by Dynatrace. The version in use during the conduction
of this thesis was AppMon 2018 April.

3.3.1. AppMon Overview

A typical AppMon deployment in a live environment includes the following core compo-
nents:11

• AppMon Server

The AppMon Server is a backend process and functions as central administration unit. It
is responsible for correlating data received from Agents through the AppMon Collector
and storing it in the file system together with memory dumps.

• Frontend Server

The Frontend Server handles requests received from clients and needs to run on the
same machine as the AppMon Server.

• Memory Analysis Server

The Memory Analysis Server is responsible for processing memory snapshots that
would otherwise put too much load on the Frontend Server. It can run on a different
machine than the previous two components.

• Collector

AppMon Collectors receive and combine data from their associated Agents and send it
to the AppMon server. They need to be close to their Agents in the network but do not
need to be close to the server.

• Performance Warehouse database

The AppMon Performance Warehouse is a SQL database server responsible for time-
series data gathered by the Agents. This data is stored separately from the rest that is
stored in the file system.

• Client

The AppMon Client is a frontend component and serves as user interface to access
the relevant information collected and stored by the backend services. The client can
either be installed on a user’s machine or accessed directly through a web interface by a
browser.

11dynatrace.com/support/doc/appmon/getting-started/architecture/

19

3. Implementation

• Application Agents

An Agent is a software that is either running on the host or injected into the application
process. It gathers performance data and sends them to the AppMon server.12 Agent
Groups are logical groupings of multiple Agents. In the context of our implementation
environment, one Agent Group roughly represents one microservice.

In a nutshell: The most important aspects of the monitoring tool concerning our solution
approach can be summarized as follows. Agents are injected into application processes
thereby collecting information and sending them to collectors. The AppMon server collects
all sorts of relevant information about the monitored microservices through the collectors
and stores them in its database that can be queried by the users.

3.3.2. Metamodel & Data Structures

To the best of the author’s knowledge, no officially documented AppMon metamodel could
be found, therefore the author created one as perceived by himself after using the tool for a
prolonged time, hence there is no claim to completeness and correctness.

- name: String

Application

- name: String
- agentRef: String
- technologyInfo: Object

Process (Agent)

- name: String
- hostGroup: String
- site: String
- os: String
- ipAddress: String

Host

- name: String
- description: String

Agent Group

*

*

1 1..*

1

*
runsOn

- targetURL: String
- async: String

PurePath

- source: Agent
- target: Agent
- targetURL: String

Transaction Flow

source

target
1..* *

1..* *

1..*

*

0..1 0..1

Figure 3.2.: AppMon Metamodel

As seen in Figure 3.2, AppMon’s metamodel is kept rather simple. AppMon applications are
logical groupings of an arbitrary amount of Agents whereas Agents and processes are used
interchangeably in this context due to the Agent being injected into the process. Every Agent

12dynatrace.com/support/doc/appmon/appmon-reference/glossary/agent/

20

3. Implementation

is part of exactly one Agent Group and runs on exactly one host whereby hosts are physical
or virtual machines that belong to a host group and are assigned to a site. Hosts can also
represent containers or run in the cloud. Additionally, Agents communicate with each other,
which is captured by AppMon as PurePaths where they appear as source or target of the
communication. An arbitrary amount of PurePaths is represented as Transaction flow that
can be assigned to an AppMon application.

For the purposes of our solution approach, Transaction flows and PurePaths were identified
as relevant data structures provided by AppMon and shall be presented hereafter in more
detail.

• Transaction flow

Transaction flows contain information on monitored Agents for a specific timeframe
including information about the assigned hosts and calls between Agents. The informa-
tion about communication between Agents is rather limited and does not include which
interfaces were targeted. Furthermore, if communication took place asynchronously by
means of a messaging queue, this message queue is abstracted from the Transaction
flow, i.e. if Agent A communicated with Agent C over message queue B, the Transaction
flow will show this as "A communicated with C" without mentioning the message queue.
Consequently, all communication appears as synchronous (direct) communication in
Transaction flows. In terms of data structures, Transaction flows are realized as arrays
of JSON objects, where each entry represents one Agent with all its metadata.

• PurePath

PurePaths are traces of requests as perceived by the monitored system whereas each
PurePath represents one unique request and its way through the system. Multiple
Agents can participate in a single PurePath. Unlike Transaction flows, PurePaths do
capture targeted interfaces and include asynchronous communication over message
queues. In terms of data structures, they are realized as data trees with arbitrary width
and depth whereby each node represents an Agent and each edge represents a call
between the connecting nodes (Agents).

3.3.3. Limitations & Workarounds

Unfortunately, AppMon exhibits a few limitations that also restrict the effectiveness of the
proposed solution approach. These limitations and the applied workarounds will be presented
and discussed hereinafter.

• Lack of "useful" APIs

AppMon provides a variety of different REST APIs which are documented in the official
AppMon documentation13. However, none of the openly available REST APIs for the
AppMon version in use are useful in the context of our purposes.

13dynatrace.com/support/doc/appmon/appmon-reference/rest-interfaces/server-rest-interfaces/

21

3. Implementation

AppMon provides its services in two ways: a web interface accessed through any
common browser application and a dedicated JAVA client. To retrieve the requested
information from AppMon through the web interface, the browser uses a REST API that
is not openly available and therefore not officially documented. This REST API, however,
does provide information considered useful for our purposes. In order to fully exploit
these undocumented APIs, several useful URLs including their necessary parameters
were identified by using Google Chrome to navigate the web interface and observe the
network traffic between the browser and the AppMon server through Chrome’s built-in
developer tools.

This approach creates a new obstacle. Since these undocumented APIs are not designed
to be freely used by developers, they require specific security credentials that need to be
included in every HTTP request header in order for the AppMon server to reply with
the expected response. Otherwise, it replies with a HTTP 401 Unauthorized response. In
a trial and error approach, two parameters were identified as absolutely necessary to
successfully retrieve the required information.

First, a so-called WEBUIJSESSIONID needs to be included in the cookie of each request.
This session ID is sufficient to successfully perform HTTP-GET-Requests and retrieve
Transaction flows.

Second, a CSRF-Token needs to be added as a X-XSRF-Header in each request. These
tokens serve as security mechanism designed to prevent CSRF attacks. (Note: Explaining
this type of attacks in further detail is not within the scope of this thesis.) This header,
in addition to the session ID, is necessary to successfully perform HTTP-POST-Requests
and retrieve PurePaths.

Note: While a HTTP-POST-Request is required to retrieve PurePaths, the data on the
server side is not altered in any way. The HTTP-POST-Request merely serves the
purpose of including a filter which is applied to the PurePaths to filter them by category.
None of the available filters are useful for our purposes and therefore only an empty
array ("categories":[]) as filter is included in our HTTP-POST-Requests.

• Automation

One aspect of the proposed solution approach is to extract relevant information in
an automated fashion without requiring further manual user input. As described in
the previous section, there are no openly available APIs that can be used and the
undocumented APIs, which serve as an alternative for our approach, require specific
security credentials that can only be retrieved from the server after manually logging in.

In order to circumvent this issue and automate the process of logging in, our approach
makes use of Puppeteer14, a JS library that provides an API which enables us to
control a headless instance of Google Chrome. This way, our solution can automatically
navigate to the URL where the deployed AppMon server instance resides and submit
the login form with valid login credentials provided within the source code. The

14developers.google.com/web/tools/puppeteer

22

3. Implementation

received response from the server is used to extract the necessary WEBUIJSESSIONID
and X-XSRF-Header from the included cookies. Afterwards, Puppeteer is no longer
required and can be closed. All further requests to the AppMon server can now be
performed through the standard JS fetch API.

• Lack of applicable filters

Exploiting the undocumented APIs as in the approach described above is further limited
by the lack of applicable filters.

Regarding Transaction flows, there are two options. One can either choose to request all
Transaction flows of the entire monitored system for a specific timeframe (i.e. no filter)
or filter them by AppMon application. Since filtered data can always be combined to
match the unfiltered data, the latter option was chosen to request Transaction flows.

PurePaths, on the other hand, can either be requested unfiltered or be filtered either by
AppMon application or by Agent. While the last option provided the most thorough
results, it also took a heavy toll on the discovery algorithm’s runtime. To put a figure
on it, it took a little bit over 24 hours to process the data for a timeframe of six hours,
which is beyond feasible. Further test runs using AppMon applications as filter yielded
an acceptable tradeoff between retrieved amount of data and overall runtime, hence this
filter was chosen for the final run.

• Naming convention

For the purposes of our solution approach, information on individual Agents is not
regarded as relevant as information on the Agent Groups and therefore all applicable
data is aggregated on Agent Group level.

When looking at Transaction flows, Agents include a reference to their respective Agent
Group. PurePaths, however, only contain references to the participating Agents. Since
Transaction flows and PurePaths are requested separately by the discovery algorithm
and information on individual Agents is only stored in an aggregated form on Agent
Group level, it is not possible to relate received PurePaths to the according Agent
Groups. AppMon does not provide a distinct naming convention to match Agents to
Agent Groups.

To solve this issue, every time an Agent is discovered through a Transaction flow, an
entry containing the Agent and its corresponding Agent Group is added to a list which
serves as dictionary when processing PurePaths to look up Agents and match them to
their respective Agent Group. For the sake of simplicity, this dictionary is also added to
our database even though it serves no further purpose in the grander scheme of our
solution approach.

• Timeframe restrictions

Timeframes serve as filter for the monitoring data and can either be defined relative
to the current point in time or between two specific points in time. AppMon provides
a set of predefined timeframes (e.g. last 24 hours), but also supports the functionality

23

3. Implementation

to define custom timeframes in a very finegrained manner. Specific points in time
are referenced through Unix timestamps in milliseconds. While custom timeframes
are very helpful in the context of our solution approach, it was observed during the
execution of the discovery algorithm that the further back in time data was requested,
the longer AppMon needed to respond to the request. Additionally, PurePaths could
only be retrieved for roughly the last ten days relative to the point in time the discovery
algorithm was initiated. From that point on backwards, only Transaction flows could be
retrieved.

• Completeness of data

When requesting Transaction flows for a specific timeframe, AppMon provides a
complete data set for that specific timeframe. When requesting PurePaths, however, the
result is limited to the 100 most recent PurePaths. As a result, depending on how busy
certain microservices are, requesting PurePaths for a timeframe of, e.g. one hour, might
effectively retrieve data pertaining only to the last few minutes of that timeframe.

This could be countered by minimizing the requested timeframe, but in turn, the
overall runtime of the algorithm would increase. At some point, the duration of the
algorithm exceeds the requested timeframe thereby rendering the solution approach
practically infeasible. In various tests, setting the requested timeframe to six hours
proved to provide an acceptable tradeoff between accuracy of individual timeframes
and overall runtime of the discovery algorithm. Ideally, since there exists a finite set of
possible PurePaths to be observed, running the discovery algorithm for a sufficiently
long period of time would eventually lead to discovering each unique PurePath at least
once. Further research is required to test this hypothesis and further optimize the span
of the timeframes.

• Parameters in requests

This limitation ties in with the last one and again only affects PurePaths. AppMon does
not recognize which parts of observed URLs within communications between Agents
are fixed and which parts are variable, hence, every PurePath is identified as unique
even if multiple PurePaths represent the same requests where technically the same
interfaces were called but with different parameters. This creates two issues.

First, a lot of redundancy is introduced into the system. To give a specific example,
when music is requested from a large database, each requested track is identified as
unique request since each track has its own unique ID associated with it, while from a
logical perspective all these requests represent the same type of request.

Second, since parameters are not identified as such, they are also not masked. Conse-
quently, possibly data protection sensitive information is shown in plaintext thereby
infringing prevailing data protection law.

In order to tackle both of these issues, a multitude of regular expressions were created
for the context of the implementation environment (see section 3.2) to identify all sorts
of redundancy and sensitive information and mask them with asterisks. Due to the

24

3. Implementation

diverse nature of possible parameters, no guarantee can be made that all redundancy
and especially all sensitive information could be found and masked accordingly. This,
however, is primarily a fault on the side of the monitoring tool and beside the mentioned
regular expressions no further measures will be taken to tackle these issues within the
scope of this prototypical implementation.

• No distinction regarding origin of requests

AppMon lacks the capability to distinguish the origin of requests. Therefore it is not
possible to differentiate between requests that were sent to the system from, e.g. a web
browser or a mobile application.

• Overly strained AppMon instance

This is technically a pseudo limitation since it is not inherently a limitation of AppMon
but shall still be mentioned for the sake of completeness. The deployed instance of
AppMon in the implementation environment is reportedly running close to full capacity,
therefore our industry partner asked us not to put too much workload on the server.
For this reason, all requests directed at the server were performed in a sequential
manner, which evidently increased the overall runtime of the discovery algorithm. As a
positive side effect, requesting information only sequentially reduced the complexity of
synchronizing access to the database when storing relevant information.

25

3. Implementation

3.4. Data Model

This section will cover the data models as used in the solution approach and explain how
information is mapped from the monitoring tool to our data model. In order to generalize the
proposed solution approach and abstract the data model from specifics used in a particular
monitoring tool, a generalized data model was used that allows extending the solution to
support a multitude of different APM tools, each with their own unique data model in the
future. To this effect, the ArchiMate notation is used as introduced in subsection 2.1.2.

3.4.1. Logical Data Model

The logical data model as seen in Figure 3.3 is used to describe the IT architecture elements.
It is based on the ArchiMate framework described in 2.1.2. The individual entities of the data
model will be explained in more detail hereinafter.

• Business Layer

– Domain

Domains are the elements placed highest in the hierarchy and can contain an
arbitrary amount of subdomains. Subdomains, however, can only belong to one
overlying domain. Technically, domains do not exist in the ArchiMate notation
and were therefore adapted from business functions.

– Product

Products are nested within the domain they belong to and in turn can contain an
arbitrary amount of subproducts. Subproducts, however, can only belong to one
overlying product.

– Business Service

Business services belong to exactly one (sub)product and represent business ap-
plications that expose a certain business functionality. They use and depend on
microservices to deliver their capabilities. In that regard, they are modeled as
logical groupings of application components (microservices).

• Application Layer

– Application Component

Application components are the central unit of the application layer within this
model. They represent microservices and belong to at most one business service.

– Application Service

Application services represent the functionality of application components (mi-
croservices) which is exposed through their interfaces. Communication takes place
between application components by calling their respective application services
with a well-defined URL. Each Application Service is assigned to exactly one

26

3. Implementation

application component and an arbitrary amount of application services (but at
least two) can be part of an application interaction.

– Application Interaction

Application interactions represent requests that are directed at the system and
are processed by a set of application components represented as application
collaborations. They may realize an arbitrary amount of application services.

– Application Collaboration

Application collaborations represent logical groupings of application components
that jointly perform some collective task which is represented as application
interaction. Therefore an arbitrary amount of application components (but at
least two) can be part of an application collaboration which collectively fulfill an
arbitrary amount of application interactions.

• Technology Layer

– Node

Nodes represent hosts on which the application components run. They are the
technical infrastructure that is necessary to operate the application components
and provide their functionality. An arbitrary amount of application components
can be assigned to one node. Nodes can either be physical or virtual and can be
situated on-premises or in the cloud. Containerization is also supported.

– Facility

Facilities represent the data centers in which nodes are situated. They form the
physical and logical grouping of hosts whereby an arbitrary amount of nodes can
be assigned to one facility. Facilities are placed lowest in the hierarchy of the data
model and can be considered the technical foundation for the entire IT landscape.

Note: The logical data model also contains an entity called "Device". Originally, this was
intended to be used for modeling client devices such as browsers or mobile devices that
issue the requests to the monitored systems by calling the application services of application
components. Since AppMon does not provide this kind of information, it is not used in the
prototypical implementation and is therefore greyed out in the figure. It was chosen to be left
as stub in the data model for possible future extensions supporting other APM tools that do
provide this information.

27

3. Implementation

Application
Collaboration

Node

Application
Interaction

Application
Component

Business
Service

Application
Service

Facility

Product

Domain

Device

0..1

*

0..1

*

0..1

*

2..*

*

2..*

*

*

*
calls

1

*

1..*

*

1..*

1

1..*

*

calls

*

*

subProduct *

1

subDomain *

1

Figure 3.3.: Logical Data Model

28

3. Implementation

3.4.2. Mapping

Figure 3.4 shows how runtime data from the APM tool, in this case AppMon, is mapped to
the logical data model presented in the previous section.

Application Layer

The most important elements are the Agent Groups which represent our microservices. They
are modeled as application components. This information is extracted from the Transaction
flows where individual Agents are aggregated to Agent Groups and the total amount of
Agents is stored as attribute of the respective application component.

Application services are not directly monitored as separate entities by AppMon, which is
different from other APM tools that do keep track of individual application services. To keep
the data model as general as possible and allow for conformance with other APM tools in
the future, every time an Agent Group is discovered, two application services are created
automatically. One application service represents an interface for incoming requests and
the other for outgoing requests. They strictly follow a naming convention where "_IN" or
"_OUT" is added to the ID of the respective application component to signify the incoming
and outgoing interface. The actually targeted URLs are modeled as attributes of the incoming
and outgoing communication calls.

Application collaborations represent the AppMon applications. These are logical groupings
of Agent Groups as perceived by AppMon. Unfortunately, these AppMon applications do not
necessarily always match an actual application as defined and referred to as by our industry
partner. This data can be queried directly from the monitoring server and extracted from
the associated response. Application collaborations are also used as filter when querying
Transaction flows and PurePaths.

Application interactions directly represent PurePaths. Every unique root PurePath is
mapped to an application interaction and assigned to its respective application collaboration.
Since PurePaths are composed of an arbitrary amount of communication calls (requests)
between application components, each individual request is stored separately as relationship
between two application services whereby the targeted URL is assigned as attribute to the
relationship, all while keeping track of the association between the individual requests and
the root PurePath. This way, it is possible to identify and show individual communication
between application components (through their application services), but also shift the focus
to individual root requests and their path through the system, thereby enabling multiple
perspectives on communication relationships within our model.

Technology Layer

AppMon hosts are represented as nodes. Associated information like operating system and
IP address, among others, are stored as individual attributes of the node. This information
is extracted from the Transaction flows, which also contain the hierarchical relationships
between hosts and Agent Groups. Every time a new host is discovered, a separate query is
sent to the server to request further information about the host to gain insight into whether

29

3. Implementation

the host is a physical or a virtual machine and whether the host runs on-premises or in the
cloud, among other things.

AppMon hosts are also grouped into host groups and assigned to sites within the data
model of AppMon. Originally, the intention was to map either host groups or sites to
facilities within our data model. AppMon, however, reported the site and host group of every
discovered host to be either "local" or "default". Since neither of these pieces of information
is particularly useful, the name of the hub to which all monitored applications and hosts
belong was used as facility. This information was extracted from AppMon’s system profile.
Since access to the APM tool was limited to one hub during the conduction of this thesis,
there is also only one facility that could be "discovered". It is not clear whether the trivial
information ("local" and "default") are a configuration issue on the side of our industry
partner or a discovery issue on the side of AppMon, therefore it is not listed as limitation of
AppMon in subsection 3.3.3. In any case, this does not limit the proposed solution approach
in general, since some information that can be used to describe and represent facilites could
automatically be extracted.

Business Layer

The entities of our data model pertaining to the business layer are not directly monitored
within the AppMon environment. This data would normally be extracted from the JSON
configuration files. Since these could not be implemented as part of the proposed solution
approach as explained in section 2.4, a workaround is used to gap the bridge between
application and business layer and provide a complete picture of the IT landscape.

Every time an Agent Group (application component) is discovered, its ID is normalized
(spaces, special characters, etc. are removed) and compared with the manual documentation
of our industry partner. The manual documentation is a collection of various information
from different sources (CMDB and other federated systems) and was provided by our industry
partner in the form of a Microsoft Excel sheet. This sheet contains a column with microservice
IDs, which are also normalized in the same way as the IDs of the discovered microservices.
The normalized IDs are then compared and if a match is found, various information from the
associated columns are mapped to the business layer entities within our data model including
domains, (sub)products and business services and their corresponding associations within the
business layer but also to the application layer. Additionally, relevant attributes (e.g. product
owner) are added to their respective entities.

Note that business services in this context represent applications as defined by our industry
partner. Ideally, these would match the application collaborations discovered by AppMon but
this is not always the case as mentioned before.

30

3. Implementation

AppMon
Application

Host

PurePath

Agent Group
(Microservice)

Application

Interface

Site

Product

Domain

Client (n/a)

0..1

*

0..1

*

0..1

*

2..*

*

2..*

*

*

*
calls

1

*

1..*

*

1..*

1

1..*

*

calls

*

*

subProduct *

1

subDomain *

1

Manual
Documentation

Figure 3.4.: Mapping of Data Model

31

3. Implementation

3.4.3. Physical Data Model

The logical data model presented in subsection 3.4.1 is realized within the database as
depicted in Figure 3.5.

Since the logical data model tends to change quite frequently during prototyping, which was
also the case here, a simple yet flexible physical data model was chosen for the prototypical
implementation. This way, changes in the logical data model did not necessarily always result
in having to drop the database and start from scratch to accommodate for the change.

The physical data model consists of three tables, or in this case, collections, which shall be
explained in further detail hereinafter.

• ArchitectureModel

Every entity from the logical data model is stored as architecture model in the database
whereby all models possess the same attributes and are only distinguished by their
type. The type attribute is modeled as enumeration where all distinct types from the
logical model are available. It follows that each object is assigned the same type from
the corresponding logical entity with the exception that subdomains and subproducts
are treated as domains and products respectively.

In addition to the unique ObjectId ("_id") automatically assigned by MongoDB (see
subsection 3.5.2), each object is also associated with its ID and name extracted from
AppMon or the manual documentation.

The attributes "validFrom" and "validTo" denote the timespan in which a particular
architecture model is considered to be active and therefore relevant. The former is
initialized with the timestamp of the element’s first discovery and the latter with
positive infinity, a special number that will always be bigger when compared to any
valid timestamp. This is important for queries that request architecture models that
were valid at a certain point in time tq. These queries will receive all architecture models
as response for which the following condition applies: "validFrom" ≤ tq ≤ "validTo".

Additionally, the attributes "validFrom" and "validTo" are necessary for the historization
of elements. Every time an architecture model changes, "validTo" is updated with
the timestamp of that change and a new data object is inserted into the database that
is assigned a new "_id" but otherwise carries over all attributes from the previous
version whereby "validFrom" is set to the value of "validTo" of the previous version and
"validTo" is initialized again with positive infinity.

The attribute "lastSeen" simply denotes the point in time in which the particular element
was last detected within the runtime data. The following condition needs to always
hold true: "validFrom" ≤ "lastSeen" ≤ "validTo".

An architecture model can have an arbitrary amount of relationships but needs to have
at least one. This ensures that there is no element in the database that is not connected
to at least one other element in some way.

32

3. Implementation

• Relationship

Every edge from the logical data model is stored as relationship in the database. Three
different types of relationships are distinguished: hierarchy, grouping and communi-
cation. These represent the compositions, aggregations and associations of the logical
data model respectively. The remaining attributes are the same as for the architecture
models and are used for the same reasons and purposes.

A relationship always establishes a link between exactly two architecture models which
are referenced by ID through "source" and "target". The attribute "owner" additionally
allows to group multiple relationships which logically belong together. This is used for
application interactions (PurePaths) that contain multiple individual communication
relationships. While these communication relationships connect two application services
with each other, they are also part of the overlying root request and need to be designated
as such.

• Annotation

Annotations basically represent key-value pairs. They are also assigned a unique
ObjectId from the database, but additionally possess a reference to the ObjectId of
either an architecture model or a relationship, which serves as foreign key. This way,
each version of an architecture model or relationship can have its own set of distinct
annotations. An annotation is always associated with exactly one architecture model
or relationship whereas architecture models and relationships can have an arbitrary
amount of annotations.

Annotations are used to store any type of attribute that the associated architecture
model or relationship might have. Since it was not clear during the prototyping phase
which attributes extracted from the runtime data are relevant and should therefore
be stored in the database, using annotations as an universal means to represent any
possible attribute, allowed the physical data model to remain flexible and allow for
adjustments later on without having to constantly update the data model to add or
remove fixed attributes.

33

3. Implementation

+ _id: ObjectId
+ refID: String
+ key: String
+ value: Any

Annotation

+ _id: ObjectId
+ id: String
+ name: String
+ type: ArchitectureModelType
+ validFrom: Number
+ validTo: Number
+ lastSeen: Number

ArchitectureModel

*

1..*

1

2

+ _id: ObjectId
+ owner: String
+ source: String
+ target: String
+ type: RelationshipType
+ validFrom: Number
+ validTo: Number
+ lastSeen: Number

Relationship

Domain
Product
Business Service
Device
Application Component
Application Service
Application Collaboration
Application Interaction
Node
Facility

<<enumeration>>
ArchitectureModelType

1

*

Hierarchy
Grouping
Communication

<<enumeration>>
RelationshipType

Figure 3.5.: Database Data Model

34

3. Implementation

3.5. Backend

This section will cover the most important implementation decisions and details regarding the
backend including a comprehensive explanation of the discovery algorithm that represents a
crucial element of the proposed solution approach.

3.5.1. GraphQL

GraphQL is an open source data query language originally developed by Facebook and
represents an alternative to the commonly used REST architecture.15 It was chosen as query
language for the proposed solution for the following reasons.

Advantages of GraphQL

• No over- or under-fetching

REST-based interfaces typically suffer from over- and under-fetching. Over-fetching is
when a request returns too much data because the addressed endpoint returned fixed
data structures including data which is not needed. Under-fetching, on the other hand,
is when an addressed endpoint returns not enough data requiring the client to send
one or more additional requests to other endpoints to acquire the desired results.

GraphQL solves this problem by exposing all of the data from a single endpoint, thereby
enabling the client to request precisely the data that is required with a single query.
This not only reduces the complexity of creating queries, but also minimizes the amount
of data transferred.

• Strong typing

Due to its strongly-typed type system, GraphQL is able to check queries for syntactic
correctness and validity before execution, thereby allowing the server to make certain
guarantees about what response to expect.

• Documentation

With the aid of certain tooling, GraphQL is able to automatically generate a basic
documentation derived from the defined schema, which reduces the need for manual
documentation, and is therefore considered self-documenting.

The logical data model as presented in 3.4.1 was mapped directly one-to-one to a GraphQL
schema.

For the purposes of the proposed solution, two GraphQL resolvers were implemented.
Resolvers are functions that resolve values for corresponding queries. Incoming queries are
parsed, validated against the schema and executed. The result is a JSON Object where all
requested values have been resolved.

15graphql.org

35

3. Implementation

In this regard, queries are used for data fetching and are therefore read-only, they do not
change the underlying data set. To modify the data set, so-called mutations should be used,
which are basically a special type of query.

• Database Resolver

The Database Resolver serves as central endpoint for all queries aiming at fetching data
from the database. It contains no mutations and therefore it is not possible to alter
the data set in any way. The main purpose of this resolver is to provide access to the
database so that the frontend is able to extract the information necessary for its various
visualizations, which will be addressed in more detail in section 3.6.

• AppMon Resolver

The AppMon Resolver represents the central endpoint for all AppMon-related matters.
It provides real-time data fetching from an available AppMon server and contains the
logic for the automated architecture discovery algorithm, which is implemented as
GraphQL mutation since it modifies the data set. The latter part will be explained in
more detail in subsection 3.5.3.

3.5.2. Database - MongoDB

MongoDB is a scalable and flexible document database which stores data in JSON-like
documents and can be used free of charge.16 Since data models tend to change a lot during
prototypical implementations, a document-oriented database was chosen because of its
flexibility to allow the developers to accommodate changes as they occur.

Note: While the built prototype does use a document-oriented database for the above reasons,
this is not a requirement for the proposed solution to function correctly. The data model as
presented in section 3.4 can alternatively be mapped to and used with a relational database.

16mongodb.com/what-is-mongodb

36

3. Implementation

3.5.3. Automated Architecture Discovery Algorithm

The implemented Automated Architecture Discovery Algorithm (AADA) is based on the
backwards and forwards discovery algorithms presented in subsection 2.2.3, which were
adapted to the implementation environment.

The basic procedure of AADA consists of initiating the discovery at a specific point in time,
iteratively going back in time by custom timeframes up until a specified point in the past,
then continuing from the initial point in time moving forward again by custom timeframes
up until a specified point and then terminating.

In order to understand the discovery algorithm, a few parameters need to be introduced
and explained first.

• currentTimestamp

The currentTimestamp denotes an arbitrary point in time in the form of a unix timestamp
in milliseconds. It is used as iterator variable to keep track of the point in time which
represents the current "present" for the algorithm.

• pastTimestamp

The pastTimestamp denotes an arbitrary point in time in the past in the form of a unix
timestamp in milliseconds.

The following must always apply: pastTimestamp ≤ currentTimestamp.

• futureTimestamp

The futureTimestamp denotes an arbitrary point in time in the future in the form of a
unix timestamp in milliseconds.

The following must always apply: futureTimestamp ≥ currentTimestamp.

• startTimestamp & endTimestamp

The startTimestamp and endTimestamp both denote an arbitrary point in time in the
form of a unix timestamp in milliseconds.

The following must always apply: startTimestamp < endTimestamp.

• timeInterval

The timeInterval denotes a timespan in milliseconds. It is used to set the timeframes by
which the algorithm iterates through time.

Conceptually, AADA can be divided into two parts. One part serves as controller and handles
the iterative function calling while the other handles the actual discovery of architecture
elements.

37

3. Implementation

Implementation Environment

Automated Architecture Discovery Algorithm (AADA)

Monitoring Server

Manual
Documentation

Microservice

Monitoring
Agent

continueAutoArchDiscovery

Entry Point / Controller
Data Extraction & Processing

backwards
Discovery

Recursive Controllers

forwards
Discovery

startAutoArchDiscovery

handle
PurePaths

saveArchitectureToDB
FilteredByApplications

saveBusinessLayer
Information

1 2

3
4

5

Database

Figure 3.6.: Automated Architecture Discovery Algorithm

The actual implementation, however, follows the divide and conquer design pattern and is
divided into six (seven) functions as seen in Figure 3.61718192021.

• startAutoArchDiscovery(currentTimestamp, pastTimestamp, futureTimestamp, timeIn-
terval)

This function serves as entry point that can be triggered as mutation from the GraphQL
backend and accepts up to four parameters to provide maximum flexibility. Since most
APM solutions including AppMon offer custom timeframes for which monitoring data
can be queried, AADA also allows to start the architecture discovery at an arbitrary point
in time. The time interval is optional and defaults to six hours for reasons discussed
earlier but can be overridden by passing the desired value to the function. The current
and future timestamp are also optional and default to "now" should no other value be
specified. In most cases, AADA will be configured to start at the "present time", thereby
rendering the specification of a current and future timestamp unnecessary. However,
additionally providing this option allows for more use cases, e.g. executing AADA at
the same point in time with different time intervals to check which interval provides the
best results. The only required parameter is the past timestamp so that AADA knows

17dynatrace.com
18developers.google.com/web/tools/puppeteer
19google.com
20mongodb.com
21products.office.com/excel

38

3. Implementation

how far back in time (limited only by the capabilities of the APM solution in use) it
should discover the architecture.

• backwardsDiscovery(currentTimestamp, pastTimestamp, timeInterval)

This function is an implementation of the backward discovery algortihm formally de-
scribed in subsection 2.2.3. It is responsible for controlling the discovery of architecture
information into the past. To this effect, it takes the provided timestamps, calculates
new timestamps that designate the next timeframe relevant for the discovery according
to the provided timeInterval and recursively calls itself with parameters necessary to
continue the traversal back through time.

• forwardsDiscovery(currentTimestamp, futureTimestamp, timeInterval)

This function is an implementation of the forward discovery algortihm formally de-
scribed in subsection 2.2.3. It is responsible for controlling the discovery of architecture
information into the future. To this effect, it takes the provided timestamps, calculates
new timestamps that designate the next timeframe relevant for the discovery according
to the provided timeInterval and recursively calls itself with parameters necessary to
continue the traversal forward through time.

• saveArchitectureToDBFilteredByApplications(startTimestamp, endTimestamp)

This is the main function for the actual discovery of architecture elements and is
provided with a start timestamp and an end timestamp from the calling controllers
(forwardsDiscovery and backwardsDiscovery) which together define the timeframe that
shall be queried. In its first phase it retrieves Transaction flows for all monitored appli-
cations which are processed to identify structural architecture elements like application
components (web servers, databases, etc.) and their corresponding infrastructure (nodes,
facilities, etc.). Once all relevant structural information has been processed for the given
timeframe, the second phase starts and requests PurePaths for each application. These
highly detailed traces of requests containing communication relationships between
application components are handled by the function “handlePurePaths".

• handlePurePaths(path, appInteraction, appName, timestamp)

This function is a recursive helper function that processes PurePaths to extract relevant
communication relationships. It is provided with one PurePath at a time and since
PurePaths are represented as data trees of arbitrary depth, it recursively calls itself once
for every edge in the tree in order to traverse the entire PurePath. In every execution
it checks whether the source (parent node) and target (child node) belong to different
microservices (Agent Groups) to exclude internal communication of microservices and
if so, extracts the targeted URL and whether the communication was synchronous or
asynchronous. Should the child node also have child nodes, the function recursively
calls itself with the previous child node as new parent and the previous child’s child
node as new child node. This process is repeated for every PurePath and all its contained
edges until all PurePaths have been processed in their entirety.

39

3. Implementation

• saveBusinessLayerInformation()

This function is called once the discovery of architecture models has been completed
for a given timeframe and tries to extend the discovered elements with further static
information pertaining to the business layer according to ArchiMate. This step is
necessary because it was not possible to implement the JSON configuration files which
would normally contain this kind of information. For this reason, a workaround was
implemented consisting of looking up the relevant information within the manual
documentation as explained in subsection 3.4.2.

• [QoL addition] continueAutoArchDiscovery(timeInterval)

This function is technically not necessary to provide the full functionality of AADA and
represents only a Quality of Life addition. Similar to startAutoArchDiscovery, it serves as
wrapper and entry point for the underlying functionality and is intended to be used
after having executed startAutoArchDiscovery at least once. It requires no parameters
and continues the discovery from the most recent point in time where AADA has left
off by querying the most recent timestamp from the database. The time interval can
optionally be overridden should one wish to do so.

40

3. Implementation

3.6. Frontend - Visualizations

Various vizualizations were designed and built to leverage the full potential of having EA-
related information stored in a model-based approach to provide different views with a
different focus for different stakeholders. They all take full advantage of the GraphQL
backend and its database by issuing GraphQL queries to the corresponding resolvers thereby
only requesting the information necessary for providing the respective view.

All views were built using yFiles for HTML, a JS library for diagramming and graph
visualization provided by yWorks22, which were embedded into a frontend written in React, a
JS library for creating user interfaces originally developed and maintained by Facebook.23 To
generalize the displayed entities and abstract from the monitoring tool in use, the ArchiMate
notation and colors were used as explained in section 2.1.2.

In the following, the different views will be presented and explained in more detail. They
will later be evaluated in chapter 4.

Note: Throughout the remainder of this thesis, the terms visualization and view will be used
interchangeably.

3.6.1. Business Landscape View

The Business Landscape view shows a hierarchical representation of the business layer.
Application components are grouped according to their business services, which in turn are
grouped by the products or subproducts they belong to. Products are nested within their
respective domains. The nested groups can be closed and opened at will to show exactly
what information is deemed relevant at any given time. Clicking on an element, opens a
sidebar with multiple tabs that display additional information about the selected entity. This
view is primarily intended to give an overview of business layer related elements directed at
stakeholders who are not interested in the technical infrastructure. An example of this view
can be seen in Figure 3.7.

3.6.2. Application Landscape View

The Application Landscape view shows a hierarchical representation of the application and
infrastructure layer. To avoid congesting the view with too many elements, this view can be
filtered by application collaborations. In this regard, this view is layouted as hierarchic tree
with the selected application collaboration at the top, the associated application components
in the second layer, the corresponding nodes they are running on in the third layer and the
respective facilities at the bottom. Application components are grouped according to their
technology and nodes according to their operating system. An example of this view can be
seen in Figure 3.8.

22yworks.com/products/yfiles-for-html
23reactjs.org

41

3. Implementation

Figure 3.7.: Business Landscape View

Figure 3.8.: Application Landscape View

42

3. Implementation

3.6.3. Table View

The Table view provides a tabular representation of the underlying data set. Distinct tabs
show elements according to their type and data can be sorted ascending or descending. Since
all elements are somehow connected hierarchically with each other according to our data
model as described in section 3.4, selecting one element will filter all data to show only the
elements that are associated with the selected element (directly and transitively). This view
uses pagination to limit the amount of elements per page. An example of this view can be
seen in Figure 3.9.

Figure 3.9.: Table View

43

3. Implementation

3.6.4. Communications View

The Communications view shows all recorded communication between individual architecture
elements. The communication relationships can be drilled up or down within the hierarchy
to reflect the desired level of abstraction. (Note: The prototypical frontend only supports
viewing communication on application component and business service level for now but
the backend already supports drillups and drilldowns to any level in the hierarchy.) An
example of this view can be seen in Figure 3.10 where communication between application
components is shown.

Figure 3.10.: Communications View

44

3. Implementation

3.6.5. Application Interaction View

The Application Interaction view is similar to the Communications view and shows commu-
nication between application components. The difference is that it adds another layer of detail
by allowing the selection of individual application interactions which represent requests
directed at the monitored system. Selecting one of these application interactions highlights
the path the request took through the system in the visualization and shows which interfaces
were called and whether the communication occurred synchronously or asynchronously. An
example of this view can be seen in Figure 3.11.

Figure 3.11.: Application Interaction View

45

3. Implementation

3.6.6. Comparison View

The Comparison view shows two visualizations side by side at the same time. As the name
suggests, this view is intended to be used when comparing two states. One can choose
to compare the same IT artifact at different points in time or two different IT artifacts at
the same point in time (or a mixture of both). Differences are highlighted in green when
elements were added or red when elements were removed. Since the proposed solution
approach is primarily designed to document the as-is landscape, the prototype does not
offer the capability to compare the as-is landscape with planned (future) states, this could
however be added in future work. (Note: The prototypical frontend only supports viewing
comparisons on application component and business service level for now but the backend
already supports drillups and drilldowns to any level in the hierarchy.) An example of this
view can be seen in Figure 3.12.

Figure 3.12.: Comparison View

46

3. Implementation

3.6.7. GraphQL View

While this view does not technically qualify as visualization, for the sake of completeness it
shall still be mentioned. This view basically provides a direct link to the GraphQL backend.
The left side serves as live editor where GraphQL queries can be written and issued to the
corresponding resolvers. Since GraphQL is self-documenting, it is possible to display and
explore the underlying GraphQL schema whereas the editor assists the user in writing queries
by highlighting syntax errors and providing available valid options at any point inside the
query. Query results are displayed on the right side. This view is primarily directed at
developers to test their queries, e.g. when extending existing views or implementing new
ones, and technology-affine stakeholders who are not interested in the visualizations and
want to work with the underlying data set directly. An example of this view can be seen in
Figure 3.13.

Figure 3.13.: GraphQL View

47

4. Evaluation

The previous chapter presented the proposed solution approach and explained the imple-
mentation details. This chapter will focus on the evaluation of the implemented solution
approach.

The evaluation is separated into two sections, a quantitative and a qualitative analysis. The
quantitative analysis will evaluate the implemented solution approach quantitatively on basis
of statistical data that was gathered during the execution of the trial discovery run while the
qualitative analysis will evaluate the solution approach on basis of multiple expert interviews
that were conducted with EA practitioners from our industry partner.

4.1. Quantitative Analysis

In this section, the proposed solution approach will be evaluated on the basis of data gathered
during the trial discovery run of the implemented Automated Architecture Discovery Algo-
rithm (AADA). Every time AADA completed an iteration, a function was called that queried
the database for relevant metadata including how many new elements were discovered during
the particular iteration, which was stored in a local log file for further analysis later on.

4.1.1. Discovery Run

After multiple test runs that were used to test and debug AADA, a final discovery run was
started on September 12th, 2019, which collected all the data used for the evaluation.

The discovery run was performed on a physical machine with moderate hardware and the
connection to the monitoring server, which is only available within the internal network of
our industry partner, was established through a VPN connection.

A total of 174 iterations were completed successfully starting September 12th and ending
September 27th, thereby covering a time window from August 15th (00:00) up until September
27th (12:00). The algorithm did not run continuously but was stopped and resumed various
times due to network failures and the fact that the machine running the algorithm was needed
for other purposes as well.

The individual timeframes that were used to iterate through time were set to 6 hours,
simply for the reason that they provided an acceptable tradeoff between runtime of the
algorithm and data coverage from the monitoring server, which was established during the
initial test runs. Further research is required to optimize the timeframe setting.

One iteration took roughly one to two hours to complete. Keep in mind though, that
since our industry partner asked not to put too much load on the monitoring server, all
requests were executed sequentially. Executing some requests in parallel would have most

48

4. Evaluation

likely reduced the duration of the discovery algorithm per iteration, but it is impossible to
conclusively say by how much.

Metadata Discovery Run - Summary:

• Start: September 12th

• End: September 27th

• Timeframe Size: 6 hours

• Completed Iterations: 174

• Iterations backwards: 112 (28 days)

• Iterations forwards: 62 (15.5 days)

• Duration per iteration: ~60 - 120 minutes

4.1.2. Findings

Observations about the data extraction process

• High robustness and reliability

AADA proved to be very robust and reliable during its execution. Encountered issues
such as not receiving a response from the server for a certain query or longer response
times from the server were handled accordingly and did not result in the termination of
the discovery process. At one point, AADA ran for almost 24 hours straight without
any issue but had to be terminated due to a forced shutdown of the VPN connection
initiated by security protocols from our industry partner. Still, the discovery process
could unproblematically be resumed from where it had left off.

• Incomplete data after a while

Once AADA had traversed roughly 10 days into the past, the monitoring server stopped
responding with PurePaths. This is most likely because of storage limitations on the
side of the AppMon instance deployed by our industry partner. Transaction flows,
however, could still be requested even more than a month back into the past. By the
time AADA completed the backwards discovery, data was still available that could be
requested but due to time restrictions regarding the conduction of this thesis and the
limitation described next, it was decided to conclude the backwards discovery after 112
successful backwards iterations.

• Increasing response times further back in time

The further back in time data was requested, the longer the monitoring server needed
to respond to the request. In addition to the increasingly higher response times, the
responses became unreliable meaning that for some requests the server timed out and

49

4. Evaluation

did not respond at all or returned an empty data set. Again, this is most likely due to
storage limitations from AppMon and an increased performance effort to accumulate
data further back into the past.

• Feasibility

Thanks to the observed high robustness and reliability of AADA, the acceptable tradeoff
between algorithm runtime and timeframe coverage (up to 2 hours runtime to cover
a timeframe of 6 hours), the ability to trigger the discovery algorithm automatically
without further manual input once it is implemented and the fact that the discovery
process can be executed on moderately equipped hardware, it can be claimed that
extracting information from runtime data is a feasible approach for EA-related purposes.

Analysis of discovered elements

Table 4.1 shows an overview of all discovered elements during the discovery run distinguished
by the types defined for the data models. The most important elements are the application
components which represent our microservices, the nodes on which they run and the
application interactions and their corresponding communication relationships.

Architecture Models Amount
Application Components 221
Application Services 442
Application Collaborations 73
Application Interactions 1141
Nodes 5805
Facilities 1
Domains 4
(Sub)Products 46
Business Services 79

Relationships Amount
Hierarchy 12544
Grouping 3086
Communication 2250

Annotations 15432

Table 4.1.: Discovered Architecture Elements

50

4. Evaluation

• Application Layer

A total of 221 application components were discovered over the course of the entire
discovery run covering 43.5 days. The interesting part is that 196 of these 221 components
(~88.7%) were identified during the first iteration covering merely a timeframe of 6
hours. Within the first day of discovery (4 iterations), the total rised to 211 (~95%). The
remaining 10 application components were discovered dispersed over the remainder of
the discovery run duration.

The discovery of these components is visualized in Figure 4.1 where the amount of
discovered elements was plotted against the iterations of the algorithm. To interpret
the graph correctly, one needs to understand that the numbers on the x-axis represent
iterations where the numbers themselves are continuously rising and the algebraic sign
denotes whether it was an iteration during the backwards discovery (negative sign) or
the forwards discovery (positive sign). Because of this, it appears like the amount of
discovered elements declined and then increased again which does not make sense in
this context. The graph was designed like this to better visualize how the amount of
discovered elements is distributed over the backwards and forwards discovery. To this
effect, one should read the data from right to left starting at iteration -1 up to iteration
-112 (backwards discovery) and then continue from iteration 113 going from left to right
up to iteration 174 (forwards discovery).

Since application services were added automatically to each application component as
explained in subsection 3.4.2, they are directly dependent on the discovery of application
components and therefore trivial for the analysis.

Application collaborations represent AppMon applications. The total of identified
application collaborations amounts to 73, which was observed during the first iteration
and did not change at all over the course of the discovery run. Since some of these col-
laborations do not include any further architecture elements and hence, only represent
empty containers that might at some point have encompassed multiple Agent Groups
and their interrelationships, there is reason to believe that these elements maintained by
AppMon are never updated by the APM tool.

Additionally, these application collaborations were of no particular interest to the
advisors from our industry partner because they do not directly represent applications
as perceived by and maintained within the federated information systems of our
industry partner. Therefore the amount of identified application collaborations bears no
expressiveness.

Given an application landscape in which AppMon applications are configured to directly
match an IT application as perceived by the organization, these might become more
relevant and should probably entail a change of the underlying data model where they
replace or are merged into the business services.

Application Interactions represent PurePaths, i.e. requests directed at the monitored
systems originating from external sources such as browsers or mobile devices. Over

51

4. Evaluation

the course of the discovery run, a total of 1141 unique application interactions were
identified.

The observed application interactions were plotted in Figure 4.3 in conjunction with
their corresponding communication relationships. (The graph is interpreted the same
way as explained for the graph about application components.)

Considering that a few days into the past, no further PurePaths could be retrieved and
the majority of the discovered ones were identified during the beginning phase of the
backwards discovery and during the later ensuing forwards discovery, which was still
detecting new PurePaths even in its final iteration, it can be suspected that there are
still a lot of application interactions that were not observed.

In addition to the lack of received PurePaths further back in time, the amount of
identified PurePaths is heavily limited by the AppMon constraint to only respond with
the 100 most recent PurePaths for the given timeframe of the request. Depending on
how busy the monitored system is, the requested timeframe of 6 hours may effectively
only cover the last few minutes (or even less).

This is even further exacerbated by AppMon’s design choice to not mask parameters (i.e.
the variable part) within request URLs. In the worst case, this can result in requesting
PurePaths and receiving 100 entries that essentially represent the same request just with
different parameters. This was the case for the initial test runs, which resulted in a lot
of redundant entries in the database. This was solved through a multitude of regular
expressions that identified the variable part of request URLs and reduced the storage of
essentially duplicates within the database significantly. Despite that, some redundancy
still remains as the regular expressions already in place are not sufficient to detect all
occurring parameters within request URLs caused by the inherent diverse nature of
requests. To improve the detection rate, machine learning could be utilized but this is
beyond the scope of the prototypical implementation presented in this thesis.

Ideally, observing the runtime data over a sufficiently long enough period of time, the
received application interactions should be eventually consistent. Because of the pre-
sented limitations, as another possibility to improve the coverage of unique requests, one
could implement different timeframes for requesting Transaction flows and PurePaths,
e.g. one request with a 6 hour timeframe to receive a complete Transaction flow and
six requests with a 1 hour timeframe to (hopefully) receive a more complete set of
PurePaths. Further research is needed to tweak the approach and optimize the received
results.

• Technology Layer

Nodes represent hosts on which the application components run. Surprisingly, quite
a lot of nodes were identified during the discovery process (a total of 5805), which
appears to be somewhat disproportionate considering only 221 application components
were discovered during the same time span, especially since there are multiple spikes
arising suddenly during the backwards discovery.

52

4. Evaluation

This can be observed in Figure 4.2. (The graph needs to be interpreted the same way as
explained for the graph about application components.) These observed spikes do not
match the discovery behavior of the application components when comparing the two
graphs.

In order to comprehend why so many nodes were discovered in sudden bursts, EA
practitioners were asked about this during the conduction of the interviews for the
qualitative evaluation. According to them, this phenomenon is accounted for by the
usage of pods.

A pod is a concept of Kubernetes.1 It represents a deployable unit that is used to run
a single instance of an application by encapsulating and managing its container. Our
industry partner uses OpenShift technology, which leverages the concept of pods.2

The sudden rise of nodes as observed by the discovery algorithm can be explained
through the lifecycle of pods. Since pods can not be modified while running, they are
terminated and recreated with adjusted configuration to reflect the changes. The pods
do not maintain state during this process, which is most likely why AppMon is unable
to recognize that essentially the same node (host) was redeployed.

Therefore, AppMon identifies the host as new and treats it as such. Subsequently, since
AADA directly depends on the information provided by AppMon which presents the
essentially same node with a new ID, it is stored as new node within our database
without removing the old one.

From AADA’s perspective an application component appears to be running on a new
node whereas the old node is not observed during that timeframe. Since not observing
the old node in the runtime data is insufficient to conclude that the node does not exist
any longer as defined by the overall solution approach, the change goes unnoticed.

Eventually, the "lastSeen" value of the old node, which would no longer get updated,
would indicate that the old node is most likely no longer available, but until a reasonable
amount of time has passed to justify such assumptions, the nodes could have been
redeployed multiple times, which in the long run poses a problem because the database
gets flooded with outdated data that is not recognized as such. This issue definitely
needs to be addressed in future research.

Since there is only one facility available for discovery due to reasons explained in
subsection 3.4.2, a further analysis regarding facilities does not provide any additional
insight and is therefore omitted.

1kubernetes.io/docs/concepts/workloads/pods/pod-overview/
2docs.openshift.com/enterprise/3.0/architecture/core_concepts/pods_and_services.html

53

4. Evaluation

180

185

190

195

200

205

210

215

220

225

-1
1

2

-1
0

9

-1
0

6

-1
0

3

-1
0

0

-9
7

-9
4

-9
1

-8
8

-8
5

-8
2

-7
9

-7
6

-7
3

-7
0

-6
7

-6
4

-6
1

-5
8

-5
5

-5
2

-4
9

-4
6

-4
3

-4
0

-3
7

-3
4

-3
1

-2
8

-2
5

-2
2

-1
9

-1
6

-1
3

-1
0 -7 -4 -1

1
1

5

1
1

8

1
2

1

1
2

4

1
2

7

1
3

0

1
3

3

1
3

6

1
3

9

1
4

2

1
4

5

1
4

8

1
5

1

1
5

4

1
5

7

1
6

0

1
6

3

1
6

6

1
6

9

1
7

2

A
m

o
u

n
t

Iteration

Discovered Application Components

Figure 4.1.: Discovered Application Components

0

1000

2000

3000

4000

5000

6000

7000

-1
1

2

-1
0

9

-1
0

6

-1
0

3

-1
0

0

-9
7

-9
4

-9
1

-8
8

-8
5

-8
2

-7
9

-7
6

-7
3

-7
0

-6
7

-6
4

-6
1

-5
8

-5
5

-5
2

-4
9

-4
6

-4
3

-4
0

-3
7

-3
4

-3
1

-2
8

-2
5

-2
2

-1
9

-1
6

-1
3

-1
0 -7 -4 -1

1
15

1
18

1
21

1
24

1
27

1
30

1
33

1
36

1
39

1
42

1
45

1
48

1
51

1
54

1
57

1
60

1
63

1
66

1
69

1
72

A
m

o
u

n
t

Iteration

Discovered Nodes

Figure 4.2.: Discovered Nodes

54

4. Evaluation

0

500

1000

1500

2000

2500

-1
1

2

-1
0

9

-1
0

6

-1
0

3

-1
0

0

-9
7

-9
4

-9
1

-8
8

-8
5

-8
2

-7
9

-7
6

-7
3

-7
0

-6
7

-6
4

-6
1

-5
8

-5
5

-5
2

-4
9

-4
6

-4
3

-4
0

-3
7

-3
4

-3
1

-2
8

-2
5

-2
2

-1
9

-1
6

-1
3

-1
0 -7 -4 -1

1
1

5

1
1

8

1
2

1

1
2

4

1
2

7

1
3

0

1
3

3

1
3

6

1
3

9

1
4

2

1
4

5

1
4

8

1
5

1

1
5

4

1
5

7

1
6

0

1
6

3

1
6

6

1
6

9

1
7

2

A
m

o
u

n
t

Iteration

Discovered Application Interactions and Communication Relationships

Application Interactions Communication Relationships

Figure 4.3.: Discovered Application Interactions and Communication Relationships

• Business Layer

As explained before, none of the business layer elements are directly monitored by the
APM tool and therefore, technically speaking, one can not claim to have "discovered"
such elements.

The elements were extracted from the provided manual documentation by looking
up the microservice ID each time a microservice was actually discovered within the
runtime data and associating the hereby found information with said microservice.

This resulted in the "discovery" of 4 domains, 46 products and subproducts and 79
business services, which represent the IT applications as defined by our industry partner.

55

4. Evaluation

Coverage and Accuracy

To determine how well the discovery algorithm performed in reconstructing the IT landscape,
it is important to compare the automatically extracted information against the manual
documentation.

Since our industry partner considers microservices too small of a unit and too large in
numbers to justify documenting them within the centralized, federated information systems,
a comparison against such a single source of truth is not possible.

As an alternative, the manual documentation which is a manual collection of information
from different sources in the form of a Microsoft Excel sheet, the same manual documentation
that was used to look up and extract information from the business layer, will be used to
compare the discovered data against.

Since this manual documentation contains a lot of information including data from different
hubs that are not part of the monitored landscape which embodied the discovery environment
for AADA, it would obviously not make for a fair comparison to compare the discovered
data against data that was technically impossible to discover.

Thus, to allow for a reasonable comparison the author proceeded as follows:

1. All actually discovered application components were looked up manually and marked
within the manual documentation. The difficulty hereby was that there is no uniform
naming convention in place to unambiguously match the AppMon IDs with the manu-
ally documented IDs. The IDs were therefore normalized as described in subsection 3.4.2
and matched to the author’s best knowledge.

2. All remaining entries in the manual documentation not marked during the previous
step were examined in order to identify whether they were supposed to be monitored
within the application landscape that AADA run on by looking for an entry in the
respective AppMon agent field. If there was no agent specified, the entry was removed
from the documentation.

Note: Some of the remaining entries were declared as "retired". These entries were not
removed, since part of the proposed solution approach is to request runtime data from
the past and therefore, these elements could still have been discovered even if they are not
considered relevant anymore.

56

4. Evaluation

The remaining entries in the documentation were used for the comparison and the results are
presented hereinafter.

• Application components

After adjusting the manual documentation as described above, a total of 167 microser-
vices remained that are considered discoverable. AADA discovered 159 of these 167
microservices (~95%). One might even argue that 159 of 164 (~97%) were automatically
discovered because three of the manually documented microservices are reported as
"retired".

In any case, while both these numbers represent a high coverage and exceedingly
satisfying accuracy, the even more interesting observation is that AADA discovered 221
application components, which is a lot more than the 159 that could be matched.

Further analysis revealed that 8 of the 221 discovered application components represent
databases which are treated as Agent Groups by AppMon but not as microservices by
our industry partner. The remaining 44 surplus application components could not be
matched to any of the manually documented microservices.

Some application components share common naming patterns with already marked
microservices from the manual documentation which could indicate that they are one
of the cases where multiple Agent Groups jointly form one microservice. Should
this be indeed the case, it would have no effect on the achieved coverage since the
manually documented microservice was already discovered, only the amount of surplus
application components would decrease.

Another possibility is that the manual documentation is outdated or incomplete or
simply erroneous (which ironically would verify the problem description stated in
section 1.1). Indication that this might actually be the case, is the fact that a lot of
the microservices that could be matched are reported as "in planning" and/or do not
have an associated AppMon agent specified in the manual documentation, which is
obviously false.

• Business services

AADA "discovered" 79 of 92 (~86%) possibly discoverable business services that repre-
sent IT applications as defined by our industry partner.

While this can be regarded as a decent to good coverage, manually comparing the indi-
vidual elements revealed that the manual effort of matching the discovered application
components with the manually documented microservices undertaken by the author
as described above resulted in more matches than AADA achieved automatically. This
can be explained by the lack of a uniform naming convention. The normalization of
IDs that is utilized to programmatically match the microservice IDs is not sufficient to
achieve the same coverage as when matched manually.

Assuming a standardized naming convention was in place, AADA would have auto-
matically detected 88 of 92 (~96%) business services or 88 of 90 (~98%) when the retired
microservices are neglected.

57

4. Evaluation

• Products and Subproducts

A total of 17 products were "discovered" by AADA after automatically matching the
application components to microservices. Even without accounting for the inaccuracy
caused by the error-prone matching explained above, this results in a coverage of
100% since the manual documentation contains exactly 17 products that are considered
discoverable.

When it comes to subproducts, 29 of 31 (~94%) possible ones were detected. When
accounting for the matching inaccuracy, all 31 of these subproducts would have been
detected, which again results in a coverage of 100%.

• Domains

AADA was able to identify 4 out of 4 possible domains resulting in a coverage of 100%.

• Remaining Elements

The remaining elements of the presented data model can not be compared to the manual
documentation because it does not contain the necessary information. To that effect, all
provided information discovered by AADA regarding these elements can be considered
added value.

4.1.3. Conclusion of the quantitative analysis

Taking into consideration all the findings of the quantitative analysis, it can be claimed that
the proposed solution approach shows more than promising results.

From a technical standpoint it is simple to execute and requires no further manual input
once implemented. Furthermore, its execution does not require many computational resources
but still exhibits a high robustness.

Additionally, the achieved coverage and accuracy are exceedingly satisfying and even if the
results might be slightly skewed due to the manual adjustments to the manual documentation
to allow for a reasonable comparison, which might not have been perfectly accurate, the auto-
matically discovered elements, which came at no further cost since the monitoring tool was
already in use before, still provide additional value. The discovered application interactions
alone, for example, even if incomplete (but eventually consistent) contain information which
is not documented at all so far.

All in all, it can be concluded that the implemented solution approach provides valuable
information at no additional cost and therefore no argument can be presented against having
it run in the background gathering data that can assist the documentation process, among
other applicable use cases.

58

4. Evaluation

4.2. Qualitative Analysis

In this section, the proposed solution approach will be evaluated on the basis of multiple
interviews which were conducted with EA practitioners from our industry partner.

All interviews were conducted face-to-face on the basis of a predefined questionnaire and
took roughly an hour to one and a half hour depending on how familiar the respective inter-
viewee already was with the solution approach and how much he had to say. The interviews
were recorded (with the explicit permission of the interviewees) and later transcribed. The
used interview questionnaire and part of the transcribed interviews can be found in the
appendix under appendix A.1 and A.2 respectively.

The interviews were structured as follows:

1. The proposed solution approach was presented and explained on the basis of a digital
presentation.

2. The first set of questions related to the concept of the solution approach were asked.

3. The prototypical implementation was demonstrated with the data set gathered during
the trial discovery run.

4. The second set of questions related to the implementation of the solution approach were
asked.

A total of seven interviews were conducted and build the basis for the following evaluation.
It will be structured as follows:

1. Question: The question will be presented. (Denoted as "Q".)

2. Feedback: Feedback from the interviewees will be summarized. (Denoted as "F".)

3. Assessment: The author will critically assess the presented feedback. (Denoted as "A".)

59

4. Evaluation

4.2.1. Relevance of problem description

Q: To what extent do you accept the stated problem description? Do you differ in opinion?

F: Agreement:

– fully support the problem description

– time and budget restrictions apply

– documentation is not a priority

– data outdated and incomplete indeed true

Disagreement:

– lack of clear responsibilities for documentation not true

– uncertainty whether problem is caused by lack of appropriate tools, lack of interest
or lack of responsibility

– doubt that manual documentation is actually that time-consuming

– compared to other activities manual documentation does not take that much time
relatively seen

A: This question aims at scrutinizing the problem statement which was primarily derived
from research literature (see section 1.1). Since it is used as motivation behind conducting
this thesis, it is important to put it to the test and verify if practitioners from the field
will confirm or disprove it.

In this case, all interviewees generally agreed with the stated problem description. It
was mentioned that documentation is often not a priority and that there is neither an
extrinsic motivation to do so nor any sort of penalty for not doing so. One person
described this as "lack of carrot and stick". Due to time and budget restrictions the
teams focus mostly on getting the work done first and only then take care of the doc-
umentation, if at all. Therefore, technical debt is amassed in the organization which
gets increasingly more difficult to cut down on over time. While all interviewees agreed
that the documented data is indeed outdated and incomplete, there was a disagree-
ment whether the stated reasons actually hold true. A lack of clear responsibilities
regarding the documentation was reported as false which is in direct contradiction
to [10]. Additionally, there was uncertainty whether the documentation problem is
caused by a lack of appropriate documentation tooling or something else like lack of
interest. Also, one person questioned the statement that manual documentation is
actually that time-consuming. Relatively seen, it only takes up a negligible amount of
time considering that the majority of the work is the actual implementation. While the
causes can’t be confirmed conclusively, the stated problem description does hold true in
general and is therefore a relevant foundation for research in this field.

60

4. Evaluation

4.2.2. Solution Approach

Q: How do you rate the approach of extracting architecture information from runtime data
in order to assist the IT landscape documentation?

What advantages and disadvantages do you see?

How do you rate the approach on a scale from 1 (very good) to 5 (very bad)?

F: Benefits/Affirmations:

– usage of runtime data extremely important

– medium to long-term no other way

– depiction of reality

– automatable

– collection of data en passant

Limitations/Concerns:

– certain inaccuracy always present

– important but insufficient

– lack of explanation

– understanding of architecture not possible

– connection to source code missing

– validation necessary

– focus on as-is landscape

– too technical and finegrained

– (only partial view if not everything is monitored)

Mean Grade (∅Grade[n = 7]): 1.86

61

4. Evaluation

1 2 3 4 5
0

1

2

3

4

5

3

2 2

0 0

Grade [1 (very good) - 5 (very bad)]

n

Grade for Runtime Data Extraction [n=7]

Figure 4.4.: Grade for Runtime Data Extraction

A: This question aims at evaluating the usage of runtime data to identify relevant informa-
tion independent of the JSON configuration file extension.

In general, extracting architecture information from runtime data was perceived as an
useful and extremely important approach. One interviewee went as far as calling it
the only feasible approach in the long run, especially because it can be automated and
relevant data can be gathered en passant without requiring a lot of resources as verified
by the prototypical implementation of this thesis.

Also, automating the approach is viewed as absolutely necessary due to microservices
being deployed and utilized in such large numbers that documenting them manually is
regarded as infeasible and not scalable for the future.

Another key advantage identified by the practitioners is the fact that runtime data
represents the truth. However, while runtime data is a genuine depiction of reality,
it was argued that there is also always a certain inaccuracy present. The reasoning
behind this is that runtime data will always show the presence and therefore existence
of certain elements because they were observed within a specific timeframe but can
never conclusively prove the absence of elements because not having observed an
element within the timeframe can always be attributed to lack of activity or failure in
observation.

Furthermore, while runtime data can show that a communication took place between
two elements it can not explain why these elements communicated with each other.
Therefore, it was argued that an actual understanding of the underlying architecture is
not possible.

62

4. Evaluation

Additionally, the longer the discovery process is executed, the more elements will be
discovered over time but no element will ever be removed automatically due to the
aforementioned reasons. Thus, at some point it is no longer possible to unambiguously
assert that the extracted information is still relevant.

To that extent, some means of validation is necessary. One suggestion was to include
more information at runtime like the source code itself to validate the observed runtime
data and be able to, e.g. identify which elements can (and should) be discovered
since they are defined in the source code and subsequently be able to analyze why
something was not discovered. This linkage of additional information as extension
to the runtime data extraction approach is covered in the next question regarding the
JSON configuration files.

Another issue that was mentioned is that runtime data can only ever provide information
on the as-is landscape, never on planned (future) states. It was claimed however, that
for many EA stakeholders it is very important to be able to see how the IT landscape
will look like after the next deployment (n+1 analysis). Consequently, it is only possible
to react and not act proactively. This is indeed an issue that can not be solved by the
usage of runtime data and represents a limitation of the proposed solution approach.

Also, runtime data is naturally very technical and finegrained and therefore not suitable
to be used as a basis when communicating with stakeholders outside the technical
domain (e.g. management). It needs to be abstracted and translated into terms and
KPIs appropriate for the stakeholders that the information is directed at.

A final concern was that the approach only works as intended when all relevant
systems are monitored, which is not the case for our industry partner, e.g. some legacy
systems simply do not support that functionality. This results in receiving only a partial
view of the IT landscape. While this is indeed true and a problem, it also conflicts
with the prerequisites described in subsection 2.2.2 that clearly state that all relevant
microservices need to be monitored to receive a full picture.

All in all, it can be concluded that while the runtime data extraction approach is
perceived as valuable and promising (mean grade 1.86), it is also deemed insufficient
for reasons explained above.

63

4. Evaluation

Q: How do you rate the approach of maintaining further relationship information within
JSON configuration files?

What advantages and disadvantages do you see?

How do you rate the approach on a scale from 1 (very good) to 5 (very bad)?

F: Benefits/Affirmations:

– necessary

– good approach in relation to other approaches

– JSON preferable to other formats due to simplicity and validation ability

Limitations/Concerns:

– every bit of contained information needs to add value

– should not contain unnecessary information to minimize maintenance effort

– handling of unclear or unknown information possibly an issue

– needs to be enforced

– anti-pattern

– decentralized approach might not be ideal

– technology affinity required

– standardized structure required

Mean Grade (∅Grade[n = 7]): 2.14

1 2 3 4 5
0

1

2

3

4

5

3

2

1

0

1

Grade [1 (very good) - 5 (very bad)]

n

Grade for JSON Configuration Files [n=7]

Figure 4.5.: Grade for JSON Configuration Files

64

4. Evaluation

A: This question aims at evaluating the usage of JSON configuration files to enrich the
dynamic information from runtime data with static information from federated infor-
mation systems thereby bridging the gap between the application layer and the business
layer.

The approach of adding JSON configuration files to the microservices was considered a
good approach in relation to other approaches and also deemed necessary.

Some argued that it does not necessarily need to be the JSON format and that other
formats would suffice as well, but in general JSON was considered preferable to other
formats because of its simplicity and the ability to automatically validate it.

While the JSON configuration files were received mostly positively by the practitioners,
a concern was raised that the amount of contained information should be kept to a
minimum of only the most important references. In order to minimize the manual
maintenance effort, no unnecessary information should be added and therefore every
piece of contained information needs to represent added value.

Another issue that was mentioned is that despite its simplicity, some not technology
affine people might still have problems with JSON, this should however not be a big
issue since the responsibility to create and maintain the configuration file is assigned
to a whole team so even if some people might still have issues, others would be there
to assist them. Alternatively, there is always the possibility of providing workshops to
teach the correct handling of these files, therefore this is not considered an issue by the
author.

To prevent the potential issue of different teams using different notation for the configu-
ration files, a standardized structure needs to be defined by the responsible authority
which constitutes a necessary effort but is only required once when integrating the
approach into the organization and therefore should not pose much of a challenge.

Additionally, some practitioners expressed uncertainty about what should be done if
necessary information for the configuration files is unclear or unknown at the time of
creation. Regarding this issue, one interviewee suggested centralizing the approach, i.e.
instead of maintaining one configuration file for each microservice, there should be one
configuration file for all microservices where each team is responsible for their part and
unknown information could be filled out by other teams. This would however most
likely create the issue that no one feels responsible anymore since so many people could
potentially fill in the required fields now. Also, validating the file which is covered by
the next question is made more complex by this. Since the JSON configuration files
could not be implemented during the conduction of this thesis, it is difficult to say how
this issue should be handled.

In any case, the one concern raised by most of the interviewees was that such an
approach requires people to do something and no one does anything that requires extra
effort if it is not considered beneficial. One person went as far as calling the approach of
manually maintaining configuration files an anti-pattern because no one would adhere
to it. Other practitioners stated that the creation and maintenance of the configuration

65

4. Evaluation

files need to be enforced by the governance team, ideally by also convincing the teams
responsible for the files of the achieved benefits of the approach.

In general, the JSON configuration files approach was deemed valuable and necessary
even though it raised a few concerns about its feasibility due to the manual effort
required. However, no better alternative could be identified by the practitioners (mean
grade 2.14).

66

4. Evaluation

Q: How do you rate the approach of ensuring the maintenance of the configuration files
through JSON Schema validation?

What advantages and disadvantages do you see?

How do you rate the approach on a scale from 1 (very good) to 5 (very bad)?

F: Benefits/Affirmations:

– indispensable

– no alternative

Limitations/Concerns:

– contingency plan required

Mean Grade (∅Grade[n = 7]): 1.57

1 2 3 4 5
0

1

2

3

4

5

4

2

1

0 0

Grade [1 (very good) - 5 (very bad)]

n

Grade for JSON Schema Validation [n=7]

Figure 4.6.: Grade for JSON Schema Validation

A: This question aims at evaluating the usage of JSON schema to validate the JSON
configuration files.

The interviewees unanimously agreed with the usage of JSON schema. JSON is per-
ceived as a state-of-the-art format and should there ever be a better format, one can
consider switching to the new format, but until then validating the configuration files
with a JSON schema was perceived as indispensable and an absolute necessity. The
validation was also seen as a necessary step to enforce the adherence to the manual
maintenance of the configuration files.

67

4. Evaluation

However, a need for a contingency plan was proposed. In cases where certain key
attributes are unknown or unclear and therefore omitted, ultimately resulting in failing
the validation within the pipeline, some measure needs to be in place so that the
validation constraint can be bypassed temporarily in order to ensure deployment in
critical situations. This, of course, opens up the possibility to bypass the validation step
more often than actually necessary, but can be kept in check by establishing very strict
conditions for bypassing the validation.

Overall, the JSON schema validation was received very positively. The practitioners
were convinced that there is no alternative and therefore it is a must for the proposed
solution approach (mean grade 1.57).

Q: To what extent does the solution approach contribute in general to improving the EA
documentation?

F: – depiction of reality

– revelation of differences and problems

– validation of manual documentation

– support for root-cause-analysis, triage analysis

– every bit of information that can be extracted automatically represents an improve-
ment

A: This question aims at identifying important contributions of the solution approach
regarding the EA documentation.

The perceived contributions of the proposed solution approach are manyfold. Many of
these were already mentioned in previous questions, which is why the interviewees did
not have much to add when answering this question.

The most important aspects are that since the approach processes monitoring data which
provides a representation of reality as explained earlier, it is able to reveal differences
and problems regarding the manual documentation. In this regard, the automatically
extracted data can be used to validate the manual documentation and thereby assist the
documentation process in general.

But it is not limited to mere validation. It also supports different types of analyses such
as root-cause-analysis and triage analysis. Some argued that these analyses are even
more important than the documentation itself.

In general, it was stated that every piece of information that can be extracted automati-
cally is considered an improvement compared to the manual processes prevailing at
the moment. An example was mentioned where in order to assess if certain elements
or attributes are still relevant, people will go around the departments asking other
teams if they use these elements in any way, which was reported to be an extremely
time-consuming and cost-intensive process. This information could be identified auto-
matically by the implementation of the solution approach.

68

4. Evaluation

4.2.3. Technical Integration

Q: What barriers do you recognize regarding the technical integration of the approach,
especially with respect to the technical requirements that need to be met?

F: – mostly no or only minor technical barriers

– trivial

– usage of different monitoring tools

– monitoring tool limitations

– cloud migration

– needs to be seamless

– UX considerations

– security / privacy

– regulations forbidding data to leave the site

– real-time performance considerations

A: This question tries to gauge the feasibility of the solution approach with respect to the
efforts that need to be undertaken on the technical side in order to implement it.

All interviewees regarded the technical integration as technically feasible without
any major obstacles, some even going as far as calling it trivial. JSON is considered a
standard and therefore not an issue. The usage of monitoring tools is already widespread
within the organization and does therefore not require additional effort to set up. The
biggest concern that was raised though, is the integration of multiple APM tools. This
is indeed an issue, since as of now combining multiple APM solutions is not supported
by the proposed solution approach. There was a disagreement however, whether this
represents a technical issue that needs to be solved by extending the solution approach
or an issue within the organization that should be solved by uniformly adapting one
APM tool throughout the organization.

Additionally, in environments where microservices are partially deployed on-premises
and partially migrated to the cloud, uncertainty was expressed as to how well the
monitoring approach can handle this distribution. Since most APM solutions including
AppMon provide support for both on-premises and cloud deployments this should not
constitute an issue.

Furthermore, it was mentioned that the technical integration needs to be seamless and
involve as little effort as possible. People using the implemented solution should not be
required to have profound knowledge in how the tool works but simply be able to use
it. To that effect, it needs to be intuitive and provide different levels of abstraction so
that different stakeholders can access the information at a level of detail appropriate for
them. This, of course, makes the implementation effort more complex as more views
and QoL features need to be implemented, but this would be taken care of by the team

69

4. Evaluation

integrating the solution into the organization and should not pose an insurmountable
technical barrier.

Another concern that was raised is that of security and privacy. Since the solution
approach processes and stores sensible information, appropriate measures need to be
taken to ensure compliance with prevailing laws and regulations. While this does
not have to be a barrier per se, it does require additional implementation effort. One
example was that some countries do not allow sensible information to leave the country
and be stored elsewhere. Considering that many organizations operate data centers in
different parts of the world, this is indeed an issue that needs to be addressed.

One possible solution would be to store the collected data locally within the allowed
boundaries and aggregate them on demand thereby querying them from their respective
storage locations. This does in turn affect the complexity of the solution approach
regarding real-time performance of queries since data needs to be accumulated from
different sources. Also, when the network is unreliable or a data source is not available
it is no longer possible to achieve a complete view of the underlying IT landscape.
Further research is required to determine how these issues can be addresses as they go
beyond the scope of the prototypical implementation presented in this thesis.

Overall, all practitioners agreed that the technical integration is manageable as no
identified barrier is perceived as insuperable and therefore should not prevent the
proposed solution approach from gaining acceptance and being approved from a
technical point of view.

70

4. Evaluation

Q: To what extent do you perceive the integration of the approach into a CI/CD pipeline
as useful?

What advantages and disadvantages do you see?

How do you rate the approach on a scale from 1 (very good) to 5 (very bad)?

F: Benefits/Affirmations:

– best approach to force people to do something

– useful

– no alternative

– validation

– automation

– Infrastructure as Code (IaC)

Limitations/Concerns:

– reliability an absolute requirement

– possibility to arouse hatred

– additional effort

– enforcement of adherence

Mean Grade (∅Grade[n = 7]): 1.57

1 2 3 4 5
0

1

2

3

4

5

3

4

0 0 0

Grade [1 (very good) - 5 (very bad)]

n

Grade for Pipeline Integration [n=7]

Figure 4.7.: Grade for Pipeline Integration

71

4. Evaluation

A: This question aims at evaluating the integration of the solution approach into a CI/CD
pipeline by assessing advantages and possible limitations.

Pipeline integration is seen as very useful and reportedly the best way to get people
to comply with the overall approach. Infrastructure as Code was mentioned in this
regard and it was argued that pipeline integration enables automation and adds the
ability for further validation. Not just the validation of the JSON configuration file that
was covered in a previous question but also validation of the source code in general or
compliance with governance regulations.

Therefore, the usage of a pipeline is perceived as necessary and that there is no alterna-
tive, but reliability of the approach needs to be ensured at all times to avoid arousing
hatred from developers who for example need to roll out a hotfix in the middle of the
night and can not because of the validation or the pipeline in general malfunctioning.
This, however, is only hypothetically seen as an issue and should usually not be a
problem due to the simplicity of JSON schema validation and vast experience with
CI/CD pipelines in today’s commonly applied development environments.

Another mentioned issue was that pipeline integration requires additional effort which
can lead to some teams trying to circumvent this. To that effect, adherence to the
approach needs to be enforced so that all teams stick to it and do not implement
their own solutions outside of a pipeline or possibly within a pipeline without the
necessary validation step. Since organizations have departments in place however that
are responsible for such matters, this should not be regarded as a critical issue.

All in all, it can be concluded that pipeline integration is deemed a necessary require-
ment for the proposed solution to function as intended for which no alternative could
be identified by the practitioners (mean grade: 1.57).

72

4. Evaluation

4.2.4. Organizational Integration

Q: How do you rate the approach of shifting the documentation responsibility towards
developer teams?

What advantages and disadvantages do you see?

How do you rate the approach on a scale from 1 (very good) to 5 (very bad)?

F: Benefits/Affirmations:

– absolute necessity

– already a reality within the organization

– assign responsibility closest to the source

Limitations/Concerns:

– decentralized approach possibly inadequate

– motivation necessary

Mean Grade (∅Grade[n = 6]): 2.0

1 2 3 4 5
0

1

2

3

4

5

1

4

1

0 0

Grade [1 (very good) - 5 (very bad)]

n

Grade for Responsibility Shift to Agile Teams [n=6]

Figure 4.8.: Grade for Responsibility Shift to Agile Teams

A: This question tries to identify if shifting the responsibility of documentation to the agile
teams is considered the right approach or if this should be handled differently.

The interviewees mostly agreed with this shift of responsibility as it was mentioned
that this is already a reality within the organization of our industry partner. The
documentation should be done by those who are closest to the source and therefore

73

4. Evaluation

the truth. They possess the necessary information to comprehensively document the
implemented IT artifacts, which is reportedly not necessarily the case for EA architects
that were not involved in the development process.

Some argued that documentation which is performed in a decentralized way by the
responsible teams might be more complicated to keep consistent to each other since not
every team might use the same notation and structure. Also, the teams need motivation
to actually fulfill their responsibility for documentation, otherwise they might neglect
it. This should however not be an issue as there are measures in place to enforce a
standardized structure and adherence to it which were covered in previous questions.

Overall, shifting the documentation responsibility to the agile teams was perceived as a
necessary measure to improve overall documentation quality and is already a reality in
the context of our industry partner (mean grade: 2.0).

Q: Which persons do you need to involve in order to integrate the approach into the
existing organization?

Which role do these persons hold?

Which persons do you see as drivers/supporters and which as blockers?

F: Drivers:

– architecture department

– top management

– senior management

– main department manager

– possibly everyone who might benefit from the solution

Neutral:

– agile team

– product owner

– operations management

Blockers:

– data protection team

– IT security

– possibly everyone who needs to adapt to the changes

A: This question aims at identifying which persons or roles need to be taken into consider-
ation when integrating the solution approach into an organization so that the respective
persons can be addressed appropriately depending on whether they are more likely to
be in favor of the solution or more likely to be in conflict with it.

A variety of people and roles were mentioned that need to be involved. Architecture
departments and management positions were identified as drivers since they either

74

4. Evaluation

profit most from the integration of the solution approach or do not necessarily need
to take much action in actually implementing the solution besides approving and
overseeing it.

Possible blockers would be persons and departments responsible for data protection
and security related concerns. As the proposed solution approach accesses and pro-
cesses possibly sensible information and on top of that grants insight into the data to
different stakeholders, a variety of measures such as access management need to be
put in place in order to ensure compliance with applicable laws and regulations. This
represents additional effort and might limit the acceptance of the solution approach by
the responsible people.

Tying in to the last statement, it was argued in general that the integration of the
solution approach represents additional effort and therefore the most important aspect
for determining whether a certain person would act as a driver or a blocker are
the benefits achieved by implementing and using the solution and how well these
benefits can be communicated to the respective people. This is also the reason why the
agile teams and product owners but also the operations management team who were
identified as the people responsible for the integration and therefore the bulk of the
necessary implementation work, were described as neutral to the approach. Depending
on the perceived benefits in relation to the necessary effort, they could either be in favor
or against the solution approach.

All in all, it can be concluded that in general everybody who would potentially benefit
from the solution would act as a driver and everybody that would foremost perceive
additional effort for adapting to the changes would act as a blocker. This is why the
solution approach needs to be communicated to the respective people in a way that
convinces them of the benefits they would achieve when using the solution in order to
gain broad approval for its integration.

75

4. Evaluation

4.2.5. Usability

Q: How do you rate the cost-benefit ratio of the solution approach in general?

F: Benefits/Affirmations:

– estimated costs relatively low

– estimated benefits tremendous

Limitations/Concerns:

– big bang integration difficult

– focus on mission critical elements

– benefits difficult to quantify

– costs differ depending on organization

A: This question aims at assessing the value proposition of the solution approach by
contrasting the estimated costs with the expected benefits.

All interviewees estimate that the costs are relatively low. APM tools are already in
place and therefore would not create additional cost. Creating and maintaining a JSON
configuration file is also not perceived as a huge effort even for external contractors.
Still, it is advised to keep the content of the configuration files as minimal as possible.
No information should be added just for the purpose of adding additional information,
every piece of information needs to add value.

Furthermore, it was argued that the integration needs to be conducted incrementally
and not all at once (big bang). While this minimizes risks in general, it also requires
multiple procedures for documentation to be used in parallel while integrating all
microservices into the proposed solution approach, which could negatively impact its
adoption.

One person argued that only mission critical microservices should be incorporated into
the solution approach in order to save costs and because they are the sole elements that
profit the organization most. While this brings the most important elements of the IT
landscape into focus, it also eliminates the ability to provide a complete view of the
enterprise architecture and therefore conflicts with one of the goals of the proposed
solution, which is to provide a holistic approach.

While some interviewees considered the benefits to be difficult to quantify, the consensus
was that the benefits are tremendous. One person put a figure on it by estimating that
for a root-cause-analysis alone the value can reach six to seven figures.

In general, it was argued that costs and benefits strongly depend on the organization in
question. In case of our industry partner, where APM tools are already in widespread
usage and therefore do not represent additional costs, the perceived benefits clearly
outweighed the overall cost estimations.

76

4. Evaluation

But even if monitoring tools would need to be integrated from scratch, it was stated
that the automatically extracted runtime information in combination with the static
information from the JSON configuration files represents a tremendous benefit which
the organization can capitalize on when used correctly.

Overall, it was asserted that the solution approach represents an improvement regarding
all the mentioned dimensions in comparison to the processes and solutions currently in
use.

Q: How would you rate the improvement of the IT landscape documentation regarding
the dimensions (data) completeness, actuality, consistency and reliability?

F: Benefits/Affirmations:

– improvements along all dimensions

– huge improvements regarding actuality and consistency

Limitations/Concerns:

– completeness not necessarily improved

– reliability not necessarily improved

– uncertainty regarding benefits of using proposed solution approach instead of
APM tool

A: This questions aims at identifying to what extent various dimensions are improved after
integrating the proposed solution approach.

The practitioners were in general agreement that all stated dimensions seem to improve
through the usage of the solution approach.

Actuality and consistency are considered to profit most since data is collected au-
tomatically from a source that observes reality. Also, it was claimed that manual
documentation, in the worst case, becomes outdated the moment it is created.

When it comes to actuality, however, there was also uncertainty whether the solution
approach provides any benefit compared to directly using the APM tool in use, since
it represents the primary source for the information and is therefore even more up to
date. While the APM tool contains the most recent information, it does not associate
that information with the information from the JSON configuration file and therefore
the author argues that there is some benefit for using the proposed solution approach.

But in general, the goal of the solution approach is not to replace monitoring tools. There
will still be use cases for which directly consulting the APM tool will be beneficial and
preferable, but for others, especially regarding documentation purposes, the proposed
solution approach should provide additional benefits.

On another note, some concerns were raised regarding completeness and reliability and
mentioned that they do not necessarily experience improvements. Since it can not be

77

4. Evaluation

guaranteed that the solution discovers all relevant elements during a specific timeframe,
no claim can be made that the extracted data is actually complete. (Another reason that
was mentioned in this regard was that data from microservices and legacy systems that
are not monitored is not included in the result and therefore it is incomplete but this
again contrasts with the prerequisites described in subsection 2.2.2, which is why it
shall only be mentioned for the sake of completeness here.)

In addition to not necessarily being complete, there is also some uncertainty as to
whether the observed data is still relevant or if it is already outdated, which is why it
was argued that the data in question is not necessarily reliable, one person even called
it dangerous for that reason.

If the responsible teams adhere to the maintenance of the configuration files and
the extraction and interpretation of runtime data is implemented correctly, then the
provided information should be very reliable, and for critical decisions it is still advised
to double check the information, but further research is required to assess how complete
and reliable the collected data actually is in the long run and how the situation can be
improved.

78

4. Evaluation

4.2.6. Visualizations

Business Landscape View

Q: What is your feedback for the Business Landscape view and and how do you rate the
visualization on a scale from 1 (very good) to 5 (very bad)?

F: – valuable content

– good overview, but no added value because of missing dependencies

– useful for reorganizations, otherwise limited usefulness

– uncertainty whether hierarchic nested grouping is ideal representation, suggested
alternative: hierarchic tree

Mean Grade (∅Grade[n = 7]): 2.86

1 2 3 4 5
0

1

2

3

4

5

0

3 3

0

1

Grade [1 (very good) - 5 (very bad)]

n

Grade for Business Landscape View[n=7]

Figure 4.9.: Grade for Business Landscape View

A: This question aims at assessing the perceived usefulness of the Business Landscape
view presented in Figure 3.7 and identifying suggestions for improvement.

The Business Landscape view received mostly mediocre feedback and ratings. While it
contains valuable information, it was not perceived as very useful as a visualization.
Its usefulness is reportedly limited to specific use cases such as providing an overview
when a company goes through a reorganization, but even then does it not add any
value to already existing visualizations. Since this type of data (mostly pertaining
to the business layer) does not change that often, it does also not suffer from the

79

4. Evaluation

actuality problem as other more frequently changing data and therefore the manual
documentation of such overviews is usually sufficient.

Furthermore, it was argued that the hierarchic nested grouping approach for this
visualization does not provide any additional benefit in comparison to a hierarchic tree.

Some even preferred a purely tabular view of this kind of information and considered a
visualization completely useless.

Overall, this view did not make a good impression on the EA practitioners, but at the
same time it does no harm having it available for those specific use cases when it does
come in handy (mean grade: 2.86). Still, the Business Landscape view should probably
not be prioritized when further developing and extending the visualizations.

Application Landscape View

Q: What is your feedback for the Application Landscape view and and how do you rate
the visualization on a scale from 1 (very good) to 5 (very bad)?

F: – valuable for technical users

– too much information

– too many edges

– grouping of technologies not useful

– focus on individual systems necessary

Mean Grade (∅Grade[n = 7]): 2.71

1 2 3 4 5
0

1

2

3

4

5

1

3

1 1 1

Grade [1 (very good) - 5 (very bad)]

n

Grade for Application Landscape View [n=7]

Figure 4.10.: Grade for Application Landscape View

80

4. Evaluation

A: This question aims at assessing the perceived usefulness of the Application Landscape
view presented in Figure 3.8 and identifying suggestions for improvement.

The Application Landscape view was mostly criticized for its level of complexity. Since
it is filtered by AppMon applications, depending on how many microservices are
associated with the application, the resulting view can become quite large with too
many edges and too much information in general. Also, grouping microservices by
their technology and nodes by their operating systems was perceived as confusing and
unnecessary by some practitioners.

The view was deemed useful for technical users who are responsible for deployments
and more interested in the underlying IT infrastructure.

Otherwise, to provide additional value, it was argued that the view needs the ability to
focus individual systems.

Overall, the view received mostly mediocre feedback and ratings (mean grade: 2.71)
and needs to be improved during future development of the solution. More levels of
abstraction need to be added and the displayed information needs to be further reduced
in order to provide valuable information.

81

4. Evaluation

Table View

Q: What is your feedback for the Table view and and how do you rate the visualization on
a scale from 1 (very good) to 5 (very bad)?

F: – important information

– no added value

– more analysis functionality required

Mean Grade (∅Grade[n = 7]): 2.57

1 2 3 4 5
0

1

2

3

4

5

0

4

2

1

0

Grade [1 (very good) - 5 (very bad)]

n

Grade for Table View [n=7]

Figure 4.11.: Grade for Table View

A: This question aims at assessing the perceived usefulness of the Table view presented in
Figure 3.9 and identifying suggestions for improvement.

The Table view was considered an important view for quickly accessing information
when actual visualizations are not required but at the same time it does not provide
any additional value compared to an ordinary tabular file format.

It was argued that more analysis functionality is required in order to be actually useful.
One person mentioned extending the view to represent a service catalog including
available interfaces, descriptions and responsible persons of contact in order to provide
additional value and be eligible for a rating of 1 (very good), which is what should be
taken into consideration when extending the view in the feature.

Otherwise, it received mostly mediocre ratings (mean grade: 2.57).

82

4. Evaluation

Communications View

Q: What is your feedback for the Communications view and and how do you rate the
visualization on a scale from 1 (very good) to 5 (very bad)?

F: – added value

– information about complexity

– interrelationships visible

– more metrics required

– highlighting of hotspots

– different levels of abstraction necessary

Mean Grade (∅Grade[n = 7]): 1.71

1 2 3 4 5
0

2

4

6

5

0

1 1

0

Grade [1 (very good) - 5 (very bad)]

n

Grade for Communications View [n=7]

Figure 4.12.: Grade for Communications View

A: This question aims at assessing the perceived usefulness of the Communications view
presented in Figure 3.10 and identifying suggestions for improvement.

The Communications view made mostly a good impression on the practitioners. It pro-
vides an overview of the IT landscape including interrelationships between individual
elements which allows the respective users to gauge its complexity .

While this is perceived as added value, it was argued that more metrics should be
included and hotspots should be highlighted, i.e. elements with many incoming and
outgoing edges should be placed and visualized more prominently. Also, additional
functionality is deemed necessary to drill the information up and down to the desired

83

4. Evaluation

level of aggregation. This is already supported by the backend, but was not implemented
in the frontend due to time restrictions.

Overall, the Communications view received mostly good to very good ratings and was
considered one of the most valuable visualizations (mean grade: 1.71).

Application Interaction View

Q: What is your feedback for the Application Interaction view and and how do you rate
the visualization on a scale from 1 (very good) to 5 (very bad)?

F: – exceptional additional value

– targeted interfaces visible

– removal of application collaborations suggested

Mean Grade (∅Grade[n = 6]): 1.0

1 2 3 4 5
0

2

4

6
6

0 0 0 0

Grade [1 (very good) - 5 (very bad)]

n

Grade for Application Interaction View [n=6]

Figure 4.13.: Grade for Application Interaction View

A: This question aims at assessing the perceived usefulness of the Application Interaction
view presented in Figure 3.11 and identifying suggestions for improvement.

The Application Interaction view made an exceptional impression on the EA practition-
ers. It was praised for providing information which reportedly no other tool provided
in this manner by not only visualizing the interrelationships between elements but also
exposing the targeted interfaces.

84

4. Evaluation

The possibility to select an individual request (PurePath) and view its way through
the system including the called interfaces was perceived as one of the most important
added values by the tool in general.

In order to further improve the view, it was suggested to remove the application
collaboration from the visualization since it does not provide any additional information
and therefore only unnecessarily complicates the view.

All in all, the Application Interaction view received a perfect rating with everybody
giving it a 1 (mean grade: 1.0).

Huge further potential was identified by associating the extracted requests with business
use cases and scenarios to create a link between these elements and be able to compre-
hend what happens on a technical level when a certain use case or scenario is triggered.
This could be accomplished by adding this information to the JSON configuration file
and should be addressed when extending the solution in the future.

85

4. Evaluation

Comparison View

Q: What is your feedback for the Comparison view and and how do you rate the visualiza-
tion on a scale from 1 (very good) to 5 (very bad)?

F: – useful functionality

– filter by deployment, instead of date

– future missing

– false positives

Mean Grade (∅Grade[n = 7]): 1.86

1 2 3 4 5
0

1

2

3

4

5

4

0

3

0 0

Grade [1 (very good) - 5 (very bad)]

n

Grade for Comparison View [n=7]

Figure 4.14.: Grade for Comparison View

A: This question aims at assessing the perceived usefulness of the Comparison view
presented in Figure 3.12 and identifying suggestions for improvement.

Comparing different states within the Comparison view was generally considered
useful. The implemented highlighting of added and removed elements was identified
as a necessary feature. It was mentioned, however, that filtering states by date should
be replaced or supplemented by the ability to filter by deployment since those are the
triggers responsible for changes.

Furthermore, it was argued that future (planned) states need to be included in the
comparison but this is difficult to implement since the primary focus of the tool is to
extract and visualize runtime data which can obviously only contain information on the
as-is landscape. This could be added, however, by extending the data model in order to

86

4. Evaluation

support planned states of elements which could be manually stored in the database and
then retrieved to be compared against automatically generated as-is graphs. It would
require a manual effort to model the planned states though.

Another concern that was raised was that of reliability. Since runtime data does not
necessarily provide a complete data set as discussed in previous questions, the compari-
son view can contain false positives where differences are detected and visualized but
in reality they only came to existence because the data was incomplete. It was argued
that this leads to reduced reliability and can potentially even be dangerous. Also, it
requires manual effort to double check if a difference is actually true or not which to
some extent tarnishes the proposed value of this view in general.

Overall, the Comparison view received mostly good feedback and ratings (mean grade:
1.86), but multiple concerns were identified that need to be addressed in order to achieve
the view’s full potential.

GraphQL View

Q: What is your feedback for the GraphQL view and and how do you rate the visualization
on a scale from 1 (very good) to 5 (very bad)?

F: – useful for developers

– suggestion for direct visualization functionality

A: This question aims at assessing the perceived usefulness of the GraphQL view presented
in Figure 3.13 and identifying suggestions for improvement.

Most interviewees had nothing to say about the GraphQL view besides that it is useful
for developers to create their own queries. It was added to the evaluation for the sake
of completeness, but the author refrained from asking for a rating in the end.

It was suggested, however, to add the ability to directly visualize the results from
individual queries, which is probably easier said than done since queries can become
quite complex, but the suggestion represents interesting food for thought for possible
future extensions.

4.2.7. General Remarks & Feedback regarding the visualizations

Q: Do you have any general remarks or feedback regarding the visualizations?

F: – different color schemes

– search / filter functionality

– export functionality

– more analysis features / KPIs

– more context required

87

4. Evaluation

A: This questions aims at collecting additional feedback for the visualizations in general
which applies to multiple views and not just a particular one.

From the feedback to this question, multiple features could be identified that were
requested time and time again. It was mentioned that the color scheme could be more
pleasant to the eye and also more colors should be used in general to visualize the
information in more useful ways. As explained before, in order to provide a generalized
view of architecture models, the color scheme in use was based on ArchiMate which
provides guidelines for color coding various elements. During the conduction of
the interviews, however, it turned out that most interviewees were not familiar with
ArchiMate and therefore, it might be advisable to discontinue the usage of its color
scheme and switch to a different one or maybe even design a custom one.

Additionally, many interviewees asked for more search and filter capabilities to better
limit the views to only contain the information that is deemed valuable and necessary
for any given time. Furthermore, the provided information should not only be visual-
ized but there should also be various export features available to extract the relevant
information and import it in other tools, especially the Microsoft Office product family
was mentioned in that regard.

Finally, the tool should offer more analysis features included in the visualizations which
highlight KPIs and generate reports.

As a last note, it was mentioned that the visualizations do not provide enough context
to be understood intuitively. Most visualizations only make sense to people who created
or have worked with them, or people who are familiar with the underlying data set, but
otherwise they do not contain enough meta information to be understood by ordinary
users.

4.2.8. Use Cases

Q: Do you recognize further use cases besides EA documentation, which can be assisted
by the usage of the proposed solution approach?

F: – guideline compliance

– anomaly detection

– failure / fault analysis

– incident management

– cloud migration analysis

– comparison of states

A: This questions tries to identify further use cases for which the proposed solution
approach can be utilized.

The mentioned use cases can be found above and do not require any further assessment.
It shall be noted, however, that it was argued that all the identified use cases can be

88

4. Evaluation

assisted by a good documentation in general, which is why documentation is perceived
as the most valuable use case the solution approach contributes to.

4.2.9. General Remarks & Feedback regarding the overall solution approach

Q: Do you have any general remarks or feedback regarding the overall solution approach?

F: – integration of monoliths and legacy systems

– differentiation from APM tools

A: This question is the last one and aims at gathering final feedback for the overall solution
approach that did not fit anywhere else.

Multiple practitioners expressed uncertainty as to how the presented solution approach
can be integrated into organizations that already possess a variety of monoliths and
legacy systems next to the increasing amount of microservices. Since the presented
solution approach is primarily scoped for the usage of microservices, this is indeed an
issue and further research is required to determine if and how this integration could be
accomplished.

On another note, one practitioner suggested that the proposed solution approach needs
to stronger differentiate itself from common APM tools and better work out its unique
value propositions. While the presented solution approach does heavily rely on an
APM tool to provide its functionality, it offers multiple features that common APM
tools do not. It provides a standardized query language to retrieve data, it enables the
historization of extracted data, and it assists the documentation process in an automated
manner, to name a few. Another thing that might not have been as apparent caused
by the prototypical implementation, is that in the long run it is planned to support a
multitude of different APM tools and provide unified access to their collective data
which is mapped to one standardized data model.

4.2.10. Conclusion of the qualitative analysis

Taking into consideration all the findings of the qualitative analysis, one can assert that the
proposed solution approach seems promising.

Many concerns were raised and discussed that need to be addressed in future research and
when extending the IT artifact. Other than that, the overall solution approach was perceived
as useful and from a technical as well as from an organizational perspective feasible in its
integration. The estimated costs are reportedly outweighed by the expected benefits and
therefore, it can be concluded that all in all, the proposed solution approach is relevant and
should definitely be further developed.

89

4. Evaluation

4.3. Before-and-After Analysis

In this section, the state of the implementation environment prior to the implementation of
the proposed solution approach will be compared with its state after the implementation.
Differences will be presented and discussed.

4.3.1. Requirements Analysis - Revisited

Table 3.1 listed requirements identified prior to the implementation that should be fulfilled by
the solution approach. In the following, these requirements are checked whether they were
indeed fulfilled or not and the results are presented in Table 4.2.

Rank Requirement Fulfilled
1 Data flow and dependencies between applications X
2 Interfaces / APIs X
3 Mapping and associations within application layer X
4 Application Components (logical unit) X
5 Communication technology (protocols) X
6 Business Processes 7

7 Mapping and associations within technology layer X
8 Physical IT resources X
9 Mapping and associations within business layer (X)
10 Use Cases / Scenarios 7

Table 4.2.: Requirements Analysis - Fulfillment

As can be seen in the table, 7 of 10 requirements could be fulfilled. All of these fulfilled
requirements correspond to the application and technology layer. It comes as no surprise
that the three not fulfilled requirements pertain to the business layer and could therefore
not be fulfilled because runtime data does not cover elements from this layer. Note that the
ninth requirement shows a checkmark in parentheses since it was technically fulfilled but the
information was matched through looking up the information in the manual documentation
and was not identified automatically, which was actually the purpose of fulfilling these
requirements.

The not fulfilled requirements of the business layer could semi-automatically be fulfilled by
the implementation of the JSON configuration files. Despite that, the requirements analysis
comparison still reveals satisfying results since the top three requirements, which were
assigned the same score and were considered the most important, could be fulfilled to full
extent.

90

4. Evaluation

4.3.2. Documentation Process - Comparison

Before moving on to the conclusion of this thesis, it is important to assess the possible im-
provements regarding the EA documentation which can actually be achieved by implementing
the solution approach within the environment of our industry partner.

Figure 4.15 depicts how the elements from our data model are documented before and after
the implementation of the proposed solution approach. The red outlines indicate that the
documentation process is conducted manually or semi-automatically whereas the green lines
indicate that the elements are documented automatically. Grey elements are not documented
at all.

Type of documentation:

red: manual
(semi-automated)

green: automated

grey: not documented

AppMon
Application

Host

PurePath

Agent Group
(Microservice)

Application

Interface

Site

Product

Domain

Client (n/a)

0..1

*

0..1

*

0..1

*

2..*

*

*

1

*

1..*

*

1..*

1

1..*

*

subProduct *

1

subDomain *

1

2..*

*

*

AppMon
Application

Host

PurePath

Agent Group
(Microservice)

Application

Interface

Site

Product

Domain

Client (n/a)

0..1

*

0..1

*

0..1

*

2..*

*

*

1

*

1..*

*

1..*

1

1..*

*

*

subProduct *

1

subDomain *

1

2..*

*

*
*

*
calls

*

Before: After:

calls

Figure 4.15.: Before-and-After Documentation

Before the implementation (left) the entire hierarchy from domains to sites (facilities) was
documented completely manually whereas elements like interfaces and requests (PurePaths)
were not documented at all. Furthermore, microservices are considered too small of a unit to
justify documenting them in a centralized repository, therefore the manually documented
information is spread across multiple repositories, which makes it difficult to locate and
access the required data.

The implementation of the proposed solution approach (right) shows that all elements from
the application and the technology layer can be documented automatically and especially
the requests and interfaces which were not documented at all before provide crucial added
value. Additionally, all information is stored centrally in one repository where it can easily

91

4. Evaluation

be retrieved from. The elements of the business layer still have to be documented manually,
but this could be semi-automated by implementing the JSON configuration files.

Note that clients could also be documented automatically by using a different APM tool that
offers the capability to monitor such elements, but since this is not the case for AppMon this
element remains greyed out in the figure and could alternatively be documented manually
(or added to the JSON configuration files).

92

5. Conclusion

This chapter will summarize the findings of the previous chapters, conclusively answer the
stated research questions and give an outlook on possible future research.

5.1. Summary

In order to facilitate the practice of Enterprise Architecture Documentation (EAD), which
faces various challenges such as widespread usage of manual documentation that is costly
and time-consuming and results in low quality data to base decisions on, this thesis built
upon a novel approach called Microlyze that is being developed at the SEBIS chair of the TUM
and that combines dynamic information from runtime data extracted from an Application
Performance Monitoring (APM) tool with static information contained in JSON configuration
files to reconstruct the EA landscape.

The solution approach was implemented and tested in a real world environment situated
in the automotive industry. A thorough quantitative and qualitative analysis were conducted,
comprising multiple expert interviews with EA practitioners from our industry partner. The
implemented IT artifact was thereby evaluated and its benefits and limitations critically
assessed. The findings described in full detail during the previous chapters will be used to
answer the stated research questions hereinafter.

5.2. Findings

5.2.1. RQ1: Runtime Data Discovery

Part of this thesis was the identification of IT artifacts and their communication relationships
that can be discovered and extracted from runtime data. The proposed solution approach
managed to extract fully automated all relevant IT artifacts pertaining to the application
layer and the technology layer as defined by ArchiMate. This includes communication and
dependency relationships as well as finegrained information such as called interfaces (APIs).
Business layer elements, however, could not be extracted automatically due to not being
directly monitored. This information needs to be included from other sources such as JSON
configuration files or manual documentations.

93

5. Conclusion

5.2.2. RQ2: Requirements

A variety of requirements have been identified during the implementation and evaluation of
the solution approach that need to be fulfilled in order for the proposed solution approach to
work as intended.

• Accessible APIs

One of the most important requirements that needs to be fulfilled in order to automat-
ically extract relevant information is the availability of one or more accessible APIs
that provide the necessary information. The implementation of the proposed solution
approach almost failed due to the APM tool in use within the implementation envi-
ronment not exposing an useful interface from which to query and retrieve data. This
also heavily impacts the performance of the implemented solution. Since data needs to
be queried and processed accordingly, the whole process becomes much easier when
the data is already retrieved in an immediately usable format. It can be concluded that
an available API is all the better, the more finegrained it allows queries to be so that
data can be queried in exactly the amount necessary and does not need to be heavily
post-processed to extract relevant information.

• Naming Convention (Mapping)

In order to correctly identify architecture elements and their interrelationships, it is
of utmost importance to be able to map the information accordingly. Different APM
tools use different data models and notations which do not necessarily coincide with
the notation used within an organization. Sometimes the naming of elements does not
coincide even within the APM tool’s own data model as seen with AppMon where
different names exist to denote the same agent. This poses a huge challenge that needs
to be overcome in order to associate information of the respective elements correctly
to each other. Ideally, elements are named unambiguously and consistently through
all stages of the data flow. The terminology used within the APM tool (source) should
distinctly match the terminology used within the organization (target) and therefore
also the one used in the proposed solution approach (middleware). At the very least,
there should be clear rules how to map elements to each other should they not follow a
strict naming convention.

• Domain Knowledge

One issue that was encountered while implementing the proposed solution approach
was that no one could fully explain all the data and information that could be seen
within the APM tool. As a consequence, it was difficult to identify which information
needed to be extracted in the first place and how this information could be mapped
correctly to logical entities. Therefore it is claimed that it is absolutely necessary to know
beforehand which information is relevant and how it can be retrieved and mapped
before implementing the solution approach in order for it to actually work as intended
afterwards.

94

5. Conclusion

• Holistic Approach

In order to maximize the perceived value of extracting EA information from runtime
data, all relevant microservices need to be included in the monitoring environment,
otherwise the achieved data coverage is incomplete by design.

• Adherence to Regulations

Taking security and data protection regulations into consideration is crucial to the
successful execution of the proposed solution approach. Since failing to adhere to
important regulations might prevent the solution from being approved for productive
environments. This constitutes more of an organizational requirement as a technical
one.

5.2.3. RQ3: Benefits & Limitations

Part of this thesis was to identify and assess benefits and limitations of the implemented
solution approach. This was done meticulously throughout the thesis but the most important
findings shall be summarized once again hereinafter.

Benefits

• Depiction of Reality

One of the most important perceived benefits is that runtime data represents a genuine
depiction of reality. The information shows exactly what happened and is therefore
considered a source of truth. Since the data can be queried in real-time the information
is current and consistent.

• Automation

The proposed solution approach is able to automatically gather relevant information
while not requiring many resources for its execution or any manual input once imple-
mented. The data can be collected en passant, which realizes an enormous time-saving
potential as it eliminates any manual effort.

• High Coverage & Accuracy

As seen in the quantitative analysis, the solution approach showed promising results
when it comes to coverage and accuracy of identified elements. While not being perfect,
it was still considered to be better than all manual documentation processes that are
currently being used.

• Model-based Approach

Since the proposed solution approach represents a model-based approach, i.e. data is
stored in an universal data format that can be processed to match any requirements, it
provides a high degree of flexibility to be used for many applicable use cases.

95

5. Conclusion

• Historization

Storing extracted information centrally in a database enables the solution approach to
provide information from far into the past as it is not limited by the storage restrictions
of common APM tools.

• Unique Value Proposition

As reported by EA practitioners, the solution approach offers unique additional value
that no other tool can provide with its ability to display individual requests and their
way through the monitored system.

Limitations

• Application Performance Monitoring Tool

Referring back to all the limitations described in subsection 3.3.3 that are specific to the
APM tool in use at our industry partner, which served as a basis for the prototypical
implementation of this thesis, it comes as no surprise that the APM tool in use is a
crucial component for the successful operation of the proposed solution approach and
can be considered its single biggest limitation in general. The reasoning behind this is
that since the proposed solution approach strongly depends on extracting data provided
by the APM tool in use, it is directly affected by the capabilities and limitations of said
APM tool.

• Lack of Explanation

While the proposed solution approach shows promising results in reconstructing the
as-is landscape including dependency relationships from runtime data, it is not capable
of providing an explanation as to why a dependency relationship exists, it can only
show that the relationship exists. A complete understanding of the underlying Enter-
prise Architecture is therefore not possible and the approach of reconstructing the IT
landscape from runtime data can be considered insufficient. Extending the proposed
solution approach with the JSON configuration files explained in section 2.2 could
resolve this, but the configuration files could not be implemented during the conduction
of this thesis in the implementation environment. This approach, however, would
require the people responsible for the creation and maintenance of said configuration
files to fully know all the details of their IT artifacts including the reasons why these
artifacts communicate with certain other artifacts, which is not necessarily always the
case in a heterogeneous business environment where agile teams independently develop
and integrate their microservices and applications into an existing IT landscape. Even
if that was the case, there would still be no explanation for communication between
microservices that is happening out of the ordinary. The APM tool would detect it, but
even the JSON configuration file would not be able to explain why it happened, since
the communication occurred unexpectedly (most likely due to some error) and it is
impossible to provide an explanation beforehand to something that is not anticipated to
happen.

96

5. Conclusion

• Focus on As-Is Landscape

Enterprise Architecture Management does not concern itself solely with the as-is land-
scape but also takes planned (future) states into consideration in order to derive plans
for realizing the transformations necessary to get there. The proposed solution approach
in its current form does not support planned states since runtime data can only provide
information on what is being observed and obviously it is impossible for APM tools to
observe the future. Planned states could be integrated into the JSON configuration files
but validating them within the CI/CD pipeline appears to be a complex undertaking
for which further research is required to evaluate its feasibility.

• Reliability

Since it was shown that runtime data does not necessarily provide complete information
on the underlying EA landscape it can also not be considered reliable without a
doubt. This can potentially be even dangerous when unreliable data is used to base
decisions upon which is why further measures need to be taken to validate the extracted
information and ensure its reliability.

5.2.4. Final Assessment

All in all, combining the findings from the quantitative analysis, the qualitative analysis and
the before-and-after analysis presented in chapter 4, it can be concluded that the proposed
solution approach is highly valuable as it shows promising results in reducing the manual
effort necessary for documentation. While some concerns could be identified, the achieved
benefits still outweigh the estimated costs as reported by the EA practitioners. Therefore,
further research should be conducted in order to address these concerns and further optimize
the proposed solution approach so that one day it might achieve its full potential and possibly
be used in productive environments.

97

5. Conclusion

5.3. Outlook

While this thesis presented a successful implementation of the proposed solution approach, it
also revealed multiple relevant concerns that need to be addressed in future research.

• Extension of the proposed solution approach

Despite the successful implementation of the prototype, there are still many features and
improvements in general that can be added to the existing tool which can build the basis
for future research endeavors where the solution approach is extended and evaluated
anew, possibly in different sectors of the industry including new requirements.

Also, the JSON configuration files, which are part of the overall solution apporach could
not be implemented and were only simulated for evaluation purposes. This could be
substance of another thesis where distributed tracing and JSON configuration files are
implemented and evaluated collectively.

• Integration into existing (heterogeneous) EA landscapes

One issue that demands further attention is the question of how to integrate the
presented solution approach into organizations that already utilize a multitude of EAM
tools and repositories and that consist of more than just microservices. Monoliths and
legacy systems are not covered by the solution approach but are still widespread across
environments of today’s industry.

Further research is required as to how these systems can be incorporated into the
approach or how they can be operated effectively in parallel.

• Integration of multiple APM tools

The implementation of the solution approach at our industry partner revealed that
different departments use different APM tools to monitor their microservices. Further
research is needed on how these APM tools can be utilized to extract data and acquire
information that transcends the borders of the individual tools and provides a holistic
view of the entire landscape.

One possible solution could be the implementation of OpenTelemetry1, an open standard
for distributed tracing that could facilitate the extraction of runtime data across different
tools. Dynatrace already announced its support of the standard in the future.2

1https://opentelemetry.io/
2dynatrace.com/news/blog/dynatrace-joins-the-opentelemetry-project/

98

A. Appendix

A.1. Interview Questionnaire

The following questionnaire was used to evaluate the proposed solution approach.

Q1: How do you rate the approach of extracting architecture information from runtime data
in order to assist the IT landscape documentation?

What advantages and disadvantages do you see?

How do you rate the approach on a scale from 1 (very good) to 5 (very bad)?

Q2: How do you rate the approach of extracting architecture information from runtime data
in order to assist the IT landscape documentation?

What advantages and disadvantages do you see?

How do you rate the approach on a scale from 1 (very good) to 5 (very bad)?

Q3: How do you rate the approach of maintaining further relationship information within
JSON configuration files?

What advantages and disadvantages do you see?

How do you rate the approach on a scale from 1 (very good) to 5 (very bad)?

Q4: How do you rate the approach of ensuring the maintenance of the configuration files
through JSON Schema validation?

What advantages and disadvantages do you see?

How do you rate the approach on a scale from 1 (very good) to 5 (very bad)?

Q5: To what extent does the solution approach contribute in general to improving the EA
documentation?

Q6: What barriers do you recognize regarding the technical integration of the approach,
especially with respect to the technical requirements that need to be met?

Q7: To what extent do you perceive the integration of the approach into a CI/CD pipeline
as useful?

What advantages and disadvantages do you see?

How do you rate the approach on a scale from 1 (very good) to 5 (very bad)?

99

A. Appendix

Q8: How do you rate the approach of shifting the documentation responsibility towards
developer teams?

What advantages and disadvantages do you see?

How do you rate the approach on a scale from 1 (very good) to 5 (very bad)?

Q9: Which persons do you need to involve in order to integrate the approach into the
existing organization?

Which role do these persons hold?

Which persons do you see as drivers/supporters and which as blockers?

Q10: How do you rate the cost-benefit ratio of the solution approach in general?

Q11: How would you rate the improvement of the IT landscape documentation regarding
the dimensions (data) completeness, actuality, consistency and reliability?

Q12: What is your feedback for the Business Landscape view and and how do you rate the
visualization on a scale from 1 (very good) to 5 (very bad)?

Q13: What is your feedback for the Application Landscape view and and how do you rate
the visualization on a scale from 1 (very good) to 5 (very bad)?

Q14: What is your feedback for the Table view and and how do you rate the visualization on
a scale from 1 (very good) to 5 (very bad)?

Q15: What is your feedback for the Communications view and and how do you rate the
visualization on a scale from 1 (very good) to 5 (very bad)?

Q16: What is your feedback for the Application Interaction view and and how do you rate
the visualization on a scale from 1 (very good) to 5 (very bad)?

Q17: What is your feedback for the Comparison view and and how do you rate the visualiza-
tion on a scale from 1 (very good) to 5 (very bad)?

Q18: What is your feedback for the GraphQL view and and how do you rate the visualization
on a scale from 1 (very good) to 5 (very bad)?

Q19: Do you have any general remarks or feedback regarding the visualizations?

Q20: Do you recognize further use cases besides EA documentation, which can be assisted
by the usage of the proposed solution approach?

Q21: Do you have any general remarks or feedback regarding the overall solution approach?

A.2. Transcripts

Please note: The interviews were conducted in German. To avoid falsification of the actual
statements, all interviews were transcribed in their original language.

100

A. Appendix

A.2.1. Transcript 1

Q: Wie lange arbeiten Sie im EA-Bereich und was gehört zu Ihren täglichen Aufgaben?

A: In dem Architekturbereich bin ich jetzt seit 5 Jahren und mein aktuelles Aufgabenfeld
ist dort im Wesentlichen das Thema Produktportfoliomanagement, wo wir bei uns
im Unternehmen ja den Produktkatalog oder alles nach IT-Produkten strukturieren,
was dann aber auch die Basis für sagen wir mal auch die technische Architektur ist,
weil nach diesem Produktkatalog strukturieren wir alles. Das ist so momentan meine
Haupttätigkeit.

Q: Inwiefern akzeptieren Sie die genannte Problembeschreibung? Sind Sie anderer Mein-
ung?

A: Die kann ich so voll unterstützen. Die ist definitiv so, weil – vielleicht um ein bisschen
auszuweiten – im Zweifelsfall ist ja immer alles unter Zeit- und auch Budgetanspan-
nungen und dann wird so etwas wie Dokumentation, im Zweifelsfall fällt das dann
immer hinten runter, weil der Code halt wichtiger ist, dass er fertig wird, bevor noch
groß dokumentiert wird und es ist schon etwas wo wir sehr damit kämpfen.

Q: Haben Sie Microservice-basierte Architekturen im Einsatz?

A: Ja.

Q: Haben Sie bereits einen Ansatz zur automatisierten EA-Dokumentation entwickelt?

A: Wir nutzen eine Jenkins-Pipeline, womit wir dann auch Informationen automatisiert
auslesen können. Wir haben da auch so Programmier-Guidelines erstellt, die wir
eigentlich auch unseren Dienstleistern immer mitgeben, was sie zu dokumentieren
haben, damit wir das eben automatisiert auch auslesen können, was aber eben aus den
genannten Gründen auch oftmals leider nicht getan wird, aber eigentlich geben wir es
vor, was ja dann die Basis dafür ist, aber wie gesagt passiert dann leider oftmals dann
doch nicht.

Q: Wie bewerten Sie den Ansatz, Architekturinformationen aus Laufzeitdaten zu ex-
trahieren, um somit die IT-Landschaftsdokumentation zu unterstützen? Welche Vor-
und Nachteile sehen Sie? Wie bewerten Sie den Ansatz auf einer Skala von 1-5?

A: Ich würde dem Ansatz eine 1 geben, weil es aus meiner Sicht eigentlich der einzig
sinnvolle Weg ist, weil manuell gepflegte Informationen, haben wir in der Vergangenheit
gesehen, das funktioniert nicht aus den Gründen, was wir vorhin schon hatten und man
muss dazu hinkommen, zum einen, Entwickler dazu zu bewegen, diese Informationen
zu pflegen und wenn es eben nur über den Zwang ist, dass sie dann nur durch die
Pipeline kommen und dann möglichst viele Informationen automatisiert auslesbar zu
bekommen. Ich sehe eigentlich in der Zukunft keinen Weg daran vorbei. Es ist am
Anfang erstmal eine Umstellung, aber die muss halt gemacht werden, das ist immer so
bei einer Veränderung, aber sonst fallen mir aktuell keine Nachteile ein.

101

A. Appendix

Q: Wie bewerten Sie den Ansatz, weitere Beziehungsinformationen in Konfigurations-
dateien zu verwalten? Welche Vor- und Nachteile sehen Sie? Wie bewerten Sie den
Ansatz auf einer Skala von 1-5?

A: Immer wenn wir diese Meta-Informationen erweitern, sie müssen halt definitiv sauber
begründet sein, weil man sollte aus meiner Sicht auch den Aufwand so gering wie
möglich halten, weil wenn ich diese Meta-Informationen jetzt unnötig aufblähe, fördert
das natürlich wieder das Interesse das Ganze zu umgehen und an der Pipeline vor-
beizugehen, um das zu vermeiden. Es muss, alles was wir dort pflegen wollen, sauber
begründet sein unn auch wirklich einen Mehrwert stiften, aber ich würde versuchen, das
so gering wie möglich zu halten. Da fällt mir doch noch ein Nachteil ein: Wenn wir eben
diesen Zwang einführen dieser Dokumentation, wir müssen halt dafür sorgen, dass es
keine Umwege um diese Pipeline gibt, sodass einzelne Produkte wieder auf die Idee
kommen eine eigene Pipeline irgendwie sich zu bauen, um diesem Zwang zu entgehen,
aber das ist eine Governance-Aufgabe das wirklich so konsequent einzufordern. Für die
JSON-Configfile würde ich auch eine 1 geben, weil ohne das funktioniert es halt nicht.

Q: Wie bewerten Sie den Ansatz, die Pflege der Konfigurationsdatei mit Hilfe von JSON
Schema sicherzustellen? Welche Vor- und Nachteile sehen Sie? Wie bewerten Sie den
Ansatz auf einer Skala von 1-5?

A: Was wäre die Alterative, ich sehe grad keine Alternative. Das ist ja nur das Format. In
irgendeiner Form muss ich es ja vorgeben, also ich glaube JSON-Schema ist da jetzt
momentan state-of-the-art. Wenn es dann irgendwann mal in der Zukunft ein neues
Format gibt, was besser geeignet ist, ja, dann sollte man vielleicht das nutzen, aber
momentan sehe ich das JSON-Schema da definitiv angebracht.

Q: Inwiefern trägt der Lösungsansatz im Allgemeinen zur Verbesserung der EA Dokumen-
tation bei?

A: Trägt definitiv dazu bei, weil alles, was ich automatisiert auslesen kann, ist deutlich
besser als das, was wir heute haben.

Q: Welche Barrieren erkennen Sie bei der technischen Integration des Ansatzes? Insbeson-
dere in Anbetracht der technischen Voraussetzungen, die erfüllt werden müssen.

A: Das ist für mich halt eben, dass heute schon bei uns und selbst in kleineren Bere-
ichen unterschiedliche Monitoring-Tools einfach heute im Einsatz sind, vielleicht auch
berechtigt unterschiedliche Monitoring-Tools im Einsatz sind, weil sie unterschiedliche
Anforderungen besser bedienen können. Da ist halt die Frage, wenn ich dann Bereiche
zwinge, auf ein definiertes Monitoring-Tool zu gehen, ob ich dort halt Widerstände
habe oder dadurch Kosten verursache. Dann ist halt bei uns, wir sind momentan in
einer Transformation zwischen einer On-Premise-Welt und einer Cloud-Welt, also wie
das dann zusammen spielt. In der Cloud habe ich ja auch wieder andere Möglichkeiten,
auch Monitoring-Tool-technisch, wie das dann zusammen funktionieren kann oder ob

102

A. Appendix

es dann wirklich ein Ansatz ist, der dann erst zu 100% trägt, wenn wir zu 100% auch
in der Cloud sind, das weiß ich heute einfach noch nicht. Ansonten JSON ist ja ein
gesetzter Standard und sollte eigentlich kein Hindernis sein. Und zum letzten Punkt
„Delegation Richtung agiler Teams“, das hat jetzt damit eigentlich nichts zu tun, das ist
grundsätzlich so, dass die agilen Teams jetzt mehr Verantwortung bekommen und diese
auch nehmen müssen, aber das ist ja im Zuge der Umstellung auf ein agiles Arbeiten.
Das wäre jetzt sagen wir mal eine Grundvoraussetzung.

Q: Inwiefern halten Sie die Integration des Ansatzes in eine CI/CD Pipeline für sinnvoll?
Welche Vor- und Nachteile sehen Sie? Wie bewerten Sie den Ansatz auf einer Skala von
1-5?

A: Ich kriege immer wieder die Diskussionen: Kann es eine Pipeline für alle geben? Da gibt
es halt auch immer wieder Argumente dagegen, aber wir kommen an der Pipeline aus
meiner Sicht auch nicht vorbei. Das ist für mich auch dann zwingende Voraussetzung.
Pipeline-Integration würde ich auch eine 1 geben.

Q: Wie bewerten Sie den Ansatz, die Dokumentationspflicht in Richtung Entwicklerteams
zu verlagern? Welche Vor- und Nachteile sehen Sie? Wie bewerten Sie den Ansatz auf
einer Skala von 1-5?

A: Die Verantwortung muss dorthin.

Q: Welche Personen müssen Sie involvieren, um den Ansatz in die bestehende Organisation
zu integrieren? Welche Rolle spielen die Personen? Welche Personen sehen Sie als
Treiber/Unterstützer und welche als Blockierer?

A: Als Treiber würde ich definitiv, also von der Organisation her gesehen, wir haben
jetzt eine Gruppe, die sich um Operations Management kümmert, die würde ich dort
definitiv als Treiber sehen, weil die für mich solche Standards eben definieren müssen,
auch bezüglich welches Monitoring-Tool wir einsetzen wollen. Dann kommt jetzt bald
eine Architekturgruppe, die dort auch massiv solche Standards dann definieren und
auch treiben müssen. Widerstände wird es wahrscheinlich immer irgendwo geben,
auch auf Produktebene dann, weil es eben auch eine gewisse Veränderung einfach
bedeutet oder auch Aufwände verursacht und wird es auch auf Produktebene erstmal
Widerstände geben, weil dadurch generiere ich nicht eine neue Business-Funktionalität,
sondern das ist halt zum Teil wahrscheinlich erstmal technische Schulden aufarbeiten
und da wird es auch erstmal Widerstände geben.

Q: Wie bewerten Sie im Allgemeinen das Kosten-Nutzen-Verhältnis des Ansatzes?

A: Ich würde halt schauen, dass in den Configfiles wirklich nur das Nötigste dokumentiert
werden muss, um den Aufwand so gering wie möglich für die Entwicklerteams oder
den Product Owner zu halten, dass das nicht immer eine ewige Dokumentation ist
nur des Dokumentationswillens. Da muss halt dann definitiv auch eben der Nutzen
überwiegen. Deswegen muss für mich alles was dort dokumentiert werden muss,

103

A. Appendix

muss transparent aufgezeigt werden, welchen Nutzen haben wir davon. In diesem Fall
überwiegt der Nutzen definitiv, weil wir einfach eine bessere Dokumentation haben,
Abhängigkeiten zwischen Produkten, Wirkketten, alles das wirklich sauber und aktuell,
also v.a. aktuell darstellen können.

Q: Wie würden Sie die Verbesserung der IT-Landschaftsdokumentation bewerten innerhalb
der Dimensionen (Daten-) Vollständigkeit, Aktualität, Konsistenz und Zuverlässigkeit?

A: Da sehe ich eine Verbesserung in allen genannten Dimensionen. Die manuelle Doku-
mentation ist im Zweifelsfall kurz nachdem sie erstellt wurde veraltet und wenn wir
hier deutlich aktuellere Daten haben, sehe ich da definitiv einen Nutzen.

Q: Wie bewerten Sie die einzelnen Darstellungen auf einer Skala von 1-5?

A: Business Landscape View:

Das ist für mich auch primär eine Visualisierung der Architektur, um gewisse Ab-
hängigkeiten herauszufinden, aber im Fehlerfall muss ich eben dann in das Monitoring-
Tool schauen. Ich würde speziell dieser Visualisierung eine 2 geben, sie gibt schon mal
einen sehr guten Überblick aber ich sehe den wirklichen Mehrwert erst in weiterführen-
den Visualisierungen, wo ich Abhängigkeiten habe, wo ich eben nicht nur sehe, dass
eine entsprechende Applikation aufgerufen wird, sondern eben z.B. in einer Wirkkette,
wer wen aufruft und ob da irgendwelche Zirkelbezüge oder Mehrfachaufrufe existieren,
das ist dann wirklich der architekturelle Mehrwert, wo ich dann auf irgendwelche
Missstände aufmerksam werde, um auch die Architektur zu optimieren.

Application Landscape View:

Für mich persönlich ist diese Darstellung nicht so relevant, weil ich mich eher mit der
fachlichen Ebene befasse, aber für die Kollegen in der technischen Architektur und im
Operations Management ist die glaube ich sehr hilfreich, da würde ich eine 1 geben.
Wobei ich unter dem Begriff Application Landscape hätte ich das nicht erwartet. Im
EAM haben wir die Business-Architektur, die Applikationsarchitektur, die Informations-
und die technische Architektur. Das wäre jetzt für mich die technische Architektur.
Unter Applikationsarchitektur hätte ich dann eher Abhängigkeiten unter, jetzt in dem
Fall, Business-Applikationen erwartet. Aber das ist nur eine Naming-Angelegenheit,
sonst passt.

Table View:

Die rein tabellarische Darstellung, die habe ich im Repository auch, dort haben wir den
Master für den Produktkatalog, dort haben wir eigentlich auch alles dokumentiert, bis
auf die Microservices. Würde ich jetzt mal eine 3 geben, es ist vielleicht gut zu haben,
aber da sehe ich jetzt nicht so den massiven Mehrwert.

Communications – Business Services:

Das ist wirklich die interessante Information, wie ist die Informationsbebauung geschnit-
ten, habe ich irgendwelche Zirkelbezüge oder habe ich irgendwelche Ketten, dass die

104

A. Appendix

unterschiedlich aufrufen, aber Daten wieder weiterverarbeiten und damit eigentlich
nicht die Originaldaten mehr haben und solche Informationen, ja. Kann man das hoch
aggregieren, z.B. auf Produkte, sodass ich Abhängigkeiten zwischen Produkten, also
dass ich sehe, folgendes Produkt wird von x Produkten aufgerufen und dann kann ich
reindrillen welche Applikationen oder Microservices das im Einzelnen sind? Das fände
ich z.B. noch hilfreich, dass man das wirklich auch auf Domäne oder Produkte hoch
aggregieren kann.

Communications – Application Components:

Die ist glaub ich sehr hilfreich, die ist dann halt schon wirklich im Detail, aber konkret
im Bsp. „Web-API“: Wenn ich jetzt sagen will, ich will die Web-API abschalten, dann
möchte ich ja z.B. herausfinden, welche Schnittstellen wurden erkannt, mit wem muss
ich jetzt alles reden oder wer wäre betroffen, wenn ich die Web-API abschalten will.
Und dann wäre es halt hilfreich, wenn ich sehe, ich habe drei Produkte, die auf die
Web-API zugreifen, dann kann ich mit den Product Owners darüber sprechen und dann
ins Detail gehen. Kommunikationsansicht würde ich in beiden Fällen eine 1 geben.

Application Interactions View:

Diese Ansicht halte ich für besonders interessant. Da wäre noch interessant, das hoch
zu aggregieren, einerseits auf unsere IT-Produkte, aber auch auf Endkundenprodukte,
wie z.B. ein RTTI, dass man eben sieht welche Aufrufe müssen im gesamten Backend
bei uns erfolgen, um eben diesen Dienst RTTI für Endkunden erbringen zu können
und dann die Wirkkette darzustellen, um dann eben im Fehlerfall schneller suchen zu
können. Das sehe ich auch als sehr hilfreich, dem würde ich auch eine 1 geben. Ist
glaub ich auch einer der größten Mehrwerte, die wir dadurch erzielen.

Comparison View:

Ist definitiv auch interessant, würde ich auch eine 1 geben. Ich würde vielleicht nicht
nach Datum gehen, sondern nach Deployment, weil bei einem Deployment ändert sich
ja etwas. So müsste ich halt wissen, wann sich etwas geändert hat. Im Zweifelsfall ist so
eine Ansicht ja relevant, wenn ich z.B. im Feld auf einen Fehler stoße oder wenn Kunden
Fehler melden, da würde mich vielleicht interessieren, wer hat in diesem Zeitraum
neu deployed und was hat sich dann verändert. Dann kann man es natürlich über
Datum machen oder ob man es dann nach Deployment macht, aber dann müsste man
ja natürlich wissen, wer was deployed hat wann. Dass man eben auch über die Pipeline
abfrägt, wer hat dann in diesem Zeitraum vielleicht deployed, welches Produkt. Also es
ist auf jeden Fall auch sehr hilfreich, dass man nachschauen kann, was hat sich denn
geändert, wenn irgendwelche Fehler auftreten.

GraphQL View:

-

Q: Würden Sie das Tool einsetzen?

A: Ja, definitiv.

105

A. Appendix

Q: Haben Sie allgemeine Verbesserungsvorschläge?

A: Es sollte natürlich möglichst intuitiv sein, für jeden anwendbar. Man müsste halt
schauen, wer alles Zugriff darauf bekommt, also es muss dann halt Rollen-Rechte-
Konzepte berücksichtigt sein. Ansonsten gefällt es mir eigentlich sehr gut.

Q: Welche weiteren Anwendungsfälle erkennen Sie neben der IT-Landschaftsdokumentation?

A: Ja, nicht nur Dokumentation, sondern wirklich auch für Analyse im Fehlerfall und
grundsätzlich eben Aufzeigen von Schwächen in der Architektur, irgendwelche Zirkel-
bezüge, sind irgendwelche Daten unnötigerweise durch drei Microservices geschleust
bevor sie zum Empfänger kommen wenn er sich es auch direkt von der Quelle holen
könnte, solche Themen und für mich, weil ich viel im Produktkatalog unterwegs bin,
Dartstellung von Abhängigkeiten von Produkten, dass ich vielleicht auch Produkte auf
Basis dieser Informationen anders schneiden würde, weil eben Themen aufgrund ihrer
Abhängigkeiten doch näher zusammengehören als wir sie heute so im Produktkatalog
dargestellt haben. Vielleicht könnte man auch visualisieren, z.B. farbig darstellt, was
schon alles in der Cloud ist und was ist noch on-premise. Weil die Frage kommt auch
immer wieder. Um einfach mal was an die Wand werfen zu können, um ein Gefühl zu
geben, ok , wir sind 50% on-premise und 50% in der Cloud. Neben der Visualisierung
sollte alles auch tabellarisch auswertbar sein, z.B. wie viele Microservices haben wir im
Einsatz, wie viele sind in der Cloud, wie viele on-premise, damit man das auch mit
Zahlen belegen kann.

Q: Haben Sie weitere Anmerkungen oder Anregungen?

A: Grundsätzlich ist das für mich auch bzgl. Forschung die Zukunft der Dokumentation
von Architektur. Wir müssen von dem manuellen Prozess wegkommen, weil er nicht
funktioniert oder im Zweifelsfall eben veraltet ist. Von dem her finde ich das auch
super, dass ihr euch da forschungstechnisch damit beschäftigt. Da ist es natürlich auch
interessant, wie machen das andere Unternehmen oder was haben die noch für gute
Ideen, dass man da noch einen übergreifenden Blick darauf hat.

A.2.2. Transcripts 2 & 3

Note: The following transcript represents an interview that was conducted with two inter-
viewees at the same time. Since some of the answers build upon each other and can only
be fully understood within the context of the full discussion, it was decided to transcribe
the interview as a whole, the answers, however, were taken into consideration separately
regarding the evaluation.

Q: Wie lange arbeiten Sie im EA-Bereich und was gehört zu Ihren täglichen Aufgaben?

A1: Ich arbeite 7 Jahre für das Unternehmen, in den letzten Jahren waren das vor allem
Architekturtätigkeiten. Wir hatten eine Struktur mit Abteilungsarchitekten, d.h. wir

106

A. Appendix

sind noch in Projekte involviert gewesen und haben die Kollegen beraten beim Einsatz
von Technologien, beim Design von Architekturen und auch Applikationen, wenn
wir gefragt wurden und hatten dann eben einen abteilungsübergreifenden Austausch
aber die Architekten gehörten immer noch zu den eigentlichen Abteilungen. Dieses
Jahr hatten wir eine Reorganisation, jetzt gehöre ich nicht mehr offiziell zur Offboard-
Architektur, zur Gesamt-ConnectedCompany-Architektur.

A2: Ich bin 2,5 Jahre hier, als Abteilungsarchitekt tätig und wirke in der Beratung von
Projekten mit. Architekturentscheidungen sind eines der wichtigsten Themen, aber
für mich ist eines der wichtigsten Themen auch die Dokumentation der Backend-
Landschaft. Von daher ist das für mich natürlich besonders relevant und ich arbeite ja
im Prinzip an einer ähnlichen Idee, auch schon seit fast 2 Jahren, wo wir auch Dynatrace
hergenommen haben und auch schon mal visualisiert haben, von daher ist es vom
Konzept her relativ ähnlich zu dem was ich auch schon gemacht habe bisher, was
natürlich nicht schlecht ist, weil wenn mehrere auf die gleiche Idee kommen, dann
scheint die Idee wohl nicht so schlecht zu sein.

Q: Inwiefern akzeptieren Sie die genannte Problembeschreibung? Sind Sie anderer Mein-
ung?

A2: Ja, ich sehe das Problem ähnlich. Wenn man so Tools nimmt aus dem Enterprise Archi-
tecture Management, wo die Idee ist, dass man die Lanschaft rein dokumentiert, sieht
man, es funktioniert nicht. Jetzt ist die Frage: Woran liegt das? Was ist die Ursache? Ist
das einfach ein Tool-Problem, ist es ein Problem, weil es keinen interessiert oder einfach
keiner reinschaut, weil sich keiner verantwortlich fühlt? Das ist mir nicht so 100% klar
an der Stelle. Deswegen ist die Frage, ist das einfach nur, weil es manuell ist, ist das
das Problem, ist das wirklich so time-consuming, weil aus meiner Sicht, im Endeffekt,
wenn man die Landschaft beschreibt, was macht man da, man beschreibt Microser-
vices, Schnittstellen und Beziehungen zwischen den Schnittstellen, das ist eigentlich
nicht besonders viel Arbeit, wenn man es sich genau anschaut. Eigentlich könnte man
es von der Arbeit her machen, deswegen würde ich diesen „time-consuming task“
ehrlich gesagt ein bisschen in Frage stellen, finde ich nicht, dass es time-consuming
ist, wenn man es im Vergleich mit den ganzen anderen Dingen, die man macht, z.B.
eine Schnittstelle anzubinden an ein anderes System, was da an Arbeit anfällt, die
Dokumentation darüber zu schreiben ist jetzt von der Menge her eigentlich relativ
wenig. Dass die ganzen Modelle outdated und incomplete sind, ja, da gebe ich auf jeden
Fall Recht, das stimmt, ist bei uns aktuell auch so und deswegen, dass Entscheidungen
auf schlechter Qualität basiert sind, stimmt auch. Dass es keine klare Verantwortlichkeit
für die Dokumentation gibt, das glaube ich nicht, eigentlich gibt es eine klare Verant-
wortlichkeiten. (A1: Sehr klare Verantwortlichkeit, ist klar definiert.) Das würde ich
sagen, ist bei uns nicht der Fall. Manche Teams machen es halt für sich lokal, sodass die
Dokumentation lokal ist. Da ist eher das Problem, dass die Dokumentation verstreut ist.
Die einzelnen Systeme sind dokumentiert, teilweise sehr gut dokumentiert, teilweise
vielleicht weniger gut, aber Dokumentation ist im Prinzip da, nur sie ist nicht in sich

107

A. Appendix

zentral in einem Modell, sondern sie ist verteilt in Dokumenten wie PowerPoint-Slides
oder Visio-Diagrammen, die man schlecht miteinander auch verknüpfen kann. Dass die
IT-Landschaft sich zu schnell ändert, zu schnell für manuelle Dokumentation, würde
ich auch nicht sagen, weil wenn ich einen neuen Microservice einführe oder eine neue
Schnittstelle, brauche ich da für die Implementierung schon mehrere Wochen, die
Dokumentation dazu ist eigentlich fast vernachlässigbar. Deswegen würde ich den
Punkt auch nicht so unterschreiben.

A1: Ich habe eine etwas abweichende Sicht. Zu der Zeit, wenn man die JSON-File anlegt, die
dann die Fachlichkeit beschreibt und die Verknüpfung zu dem AppMon anlegt und ein
AppMon einzurichten dauert auch, kommt auf ungefähr das Gleiche raus. Was mir fehlt
als Punkt 5 ist: Es fehlen Carrot Stick, und/oder. Es gibt keine Motivation für die Leute,
es passiert nichts im Sinne von einer Bestrafung oder im Sinne von etwas Positivem.
Wenn du das machst, das zentral dokumentierst, dann passiert irgendwas Gutes für
dich. Das ist heute einfach nicht so. Das große Problem, was ich sehe, ist die Legacy.
Unsere Platform dürfte in Amerika Alkohol trinken, ist 21 Jahre alt. Natürlich keine
der Applikationen, die damals live war, ist heute noch live, aber es war eine Evolution,
ging immer weiter und jedes Mal hat man irgendwelche Dependencies wieder aufs
Alte mitgeschleppt und niemand weiß das heute mehr. Den Ist-Stand wirklich zu
dokumentieren geht doch gar nicht.

A2: Das ist auf jeden Fall ein guter Punkt, ja.

Q: Wie bewerten Sie den Ansatz, Architekturinformationen aus Laufzeitdaten zu ex-
trahieren, um somit die IT-Landschaftsdokumentation zu unterstützen? Welche Vor-
und Nachteile sehen Sie? Wie bewerten Sie den Ansatz auf einer Skala von 1-5?

A1: Sagen wir mal 2+ mit Potenzial. Was auf jeden Fall noch reinmuss ist die Verknüpfung
mit dem Code. In der Betrachtung bei dir in der Präsentation hat man ja auch gesehen,
dass je länger du das System betrachtet hast, desto mehr hast du dazu gelernt. Und
dieses Delta kann man natürlich durch eine lange Betrachtung klein halten oder wenn
man in den Code reinguckt und sieht, da sind so und so viele REST-Endpunkte definiert,
selbst wenn ich die in meiner Laufzeitanalyse noch nicht gesehen hab, irgendwann
werde ich sie wahrscheinlich sehen, um auch solche Deltas aufzeigen zu können, dass
zwar irgendein Endpunkt gepflegt wird, weiterentwickelt wird und er ist im Code drin
aber man könnte ihn eigentlich schon längst killen. Das wäre dann der Schritt zur 1.

A2: Also ich sehe da eine 3, aus mehreren Punkten. Ich beschäftige mich ja schon lange mit
dem Thema und habe da mittlerweile auch eine relativ klare Meinung dazu gebildet.
Ich glaube, Laufzeitinformationen zu verwenden für die Architektur ist auf jeden Fall
extrem wichtig, dass man es macht, aber ich glaube, es ist einfach nicht ausreichend.
Das hat mehrere Gründe. Das Schöne ist, du hast die Realität, du hast eine Abbildung
der Realität, d.h. du weißt wirklich, was passiert zu einem bestimmten Zeitpunkt.
Du hast aber das Problem, z.B. du gehst drei Monate zurück, dann weißt du nicht,
was du vor drei Monaten gesehen hast, ob das jetzt noch relevant ist. Es kann sein,

108

A. Appendix

dass das System zwischenzeitlich abgebaut wurde. Das heißt, du arbeitest wieder mit
Information, die vielleicht schon wieder veraltet ist. Das Fenster muss aber eine gewisse
Größe haben, sonst siehst du vielleicht bestimmte Interaktionen nicht, weil sie vielleicht
selten passieren. Das heißt, du hast immer eine gewisse Ungenauigkeit. Deswegen
glaube ich, dass es nicht komplett ausreicht. Das ist der eine Punkt. Der zweite Punkt
ist, du siehst zwar, dass was passiert, aber du siehst nicht, warum es passiert, du kannst
es nicht erklären. Du hast zwar ein Bild mit vielen Abhängigkeiten, das hilft natürlich
schon mal unglaublich viel, das ist sehr hilfreich, aber du kannst nicht sagen, warum
System A jetzt System B aufruft, du hast keine Begründung dahinter. Es reicht nicht
aus als eine Beschreibung, um wirklich die Architektur zu verstehen.

A1: Dafür gibt es ja die JSONs, um die anzureichern.

A2: Da kriegst du eine gewisse Verknüpfung, ja. Deswegen glaube ich, es ist sehr hilfreich,
aber nicht koplett ausreichend. Dann gibt es noch einen dritten Punkt, der für mich auch
entscheidend ist. Wir haben in unserer Landschaft nicht alle Systeme in Dynatrace drin.
Wenn wir wirklich alles in Dynatrace drin hätten, dann hätte ich auch ein komplettes
Bild, aber so ist immer Dynatrace auch nur ein Ausschnitt von unserer Landschaft.
Wir haben Legacy-Systeme, die kein Dynatrace drin haben, wir haben Fahrzeuge, die
kein Dynatrace drin haben, wir haben verschiedene andere Komponenten, die kein
Dynatrace drin haben, d.h. auch Dynatrace gibt auch nur einen Ausschnitt aus unserer
Landschaft wieder, deswegen ist es auch aus dem Grund nicht ausreichend. Dynatrace
ist sehr wichtig, um zu sehen, was wirklich passiert, aber ich glaube, es ist nicht komplett
ausreichend, um wirklich eine vollständige Architekturbeschreibung zu haben.

Q: Wie bewerten Sie den Ansatz, weitere Beziehungsinformationen in Konfigurations-
dateien zu verwalten? Welche Vor- und Nachteile sehen Sie? Wie bewerten Sie den
Ansatz auf einer Skala von 1-5?

A2: Das braucht man im Prinzip auch. Ob man das mit einer JSON-Datei macht oder ein
Excel-Sheet.

A1: Die JSON kannst du direkt ins Git reinpacken und prüfen lassen, ob die Pflichtattribute
befüllt sind, sonst kann er nicht mehr bauen, dann haben wir wieder einen Stick, die
Excel-Datei hat jetzt wieder keinen Stick.

A2: Klar, wenn es Mal so gemacht werden kann, ist es natürlich ideal, aber auch da ist so
ein bisschen das Problem, du musst alle wieder dazu bringen, das zu machen. Wenn
wir alle dazu bringen, das zu machen, passt.

A1: Du brauchst ja nur einmal Top-Level Approval, dass die Datei eine Pflichtdatei wird im
Build-Prozess und fertig.

A2: Dann müssten wir auch alle erstmal in die gleiche Pipeline reinkriegen, das ist auch
schon nicht der Fall. Aber ja, grundsätzlich finde ich das auch eine gute Idee. Da haben

109

A. Appendix

wir auch schon darüber nachgedacht. Das ist vom Ansatz her glaube ich schon auch
der richtige Ansatz.

A1: Ich würde sagen eine 3, ist neutral, ist halt notwendig, es ist aber auch keine revolu-
tionäre Idee.

A2: Wenn man es mit anderen Ansätzen vergleicht, ist es schon ein guter Ansatz, also eine
2 sage ich Mal. Mir fällt jetzt auch nichts Besseres ein.

Q: Wie bewerten Sie den Ansatz, die Pflege der Konfigurationsdatei mit Hilfe von JSON
Schema sicherzustellen? Welche Vor- und Nachteile sehen Sie? Wie bewerten Sie den
Ansatz auf einer Skala von 1-5?

A2: Finde ich Pflicht, muss man machen.

A2: Das muss man machen, damit keine Pflichtattribute fehlen.

Q: Inwiefern trägt der Lösungsansatz im Allgemeinen zur Verbesserung der EA-Dokumentation
bei?

A1: Zeigt definitiv große Unterschiede auf und Probleme. Man wird keine EA-Dokumentation
approven, die gar nicht mit dem hier übereinstimmt. Es macht einfach keinen Sinn, v.a.
wenn Teile aus dem hier in der EA-Doku fehlen. Es kann wiederum andersrum sein,
dass die EA-Doku mehr abdeckt als das hier, weil nicht alles im Monitoring-System drin
ist, z.B. unsere Fahrzeuge. Wenn man das Enterprise Architecture weglässt, als operative
Dokumentation, Root-Cause-Analyse, Triage, etc. Oder auch kurzfristige Entscheidun-
gen zu treffen, ob man überhaupt einen Client-Change-Request annimmt oder welche
Clients muss ich denn betrachten, das geht zwar jetzt in die Richtung von Enterprise
Architecture, da ist viel hilfreicher glaube ich noch als Enterprise Architecture.

Q: Welche Barrieren erkennen Sie bei der technischen Integration des Ansatzes? Insbeson-
dere in Anbetracht der technischen Voraussetzungen, die erfüllt werden müssen.

A1: Genehmigung von der Stelle im Unternehmen, die für Privacy zuständig ist. Weil in
den erfassten PurePaths Kundendaten drin sind und auch bei anderen Firmen sein
könnten und dementsprechend nicht ohne Weiteres gespeichert werden dürfen, aber
sonst, ein technisches Problem sehe ich keins.

A2: Wenn man sich unsere Dynatrace-Installation anschaut, die hat halt keine schöne API,
die man gut abfragen kann, da haben wir im Prinzip ja so einen Workaround gebaut,
den du ja im Wesentlichen gemacht hast.

A1: In Zukunft wird sich die Situation da aber auch verbessern. Sowohl AppDynamics als
auch DataDog und Dynatrace wollen Open Telemetry unterstützen, d.h. die Architektur
wie wir sie heute haben mit Agenten oder einer Applikation, die selber Daten sendet,
einem Kollektor und einem Backend, das dann die Daten empfängt und aufbereitet, Ma-
chine Learning macht und was weiß ich nicht, wird standardisiert an den Schnittstellen

110

A. Appendix

und das, was du dann in Zukunft nur noch implementieren musst, ist die Schnittstelle
hinten Richtung Backend, sodass du die Daten empfangen kannst und fertig. Dann tust
du so als wärst du die Applikation, dann kannst du alles sammeln live.

A2: Ansonsten sehe ich jetzt auch kein technisches Problem.

Q: Inwiefern halten Sie die Integration des Ansatzes in eine CI/CD Pipeline für sinnvoll?
Welche Vor- und Nachteile sehen Sie? Wie bewerten Sie den Ansatz auf einer Skala von
1-5?

A1: Das muss ein Stop-Kriterium sein. Wenn das nicht da ist, die JSON-Datei, darf nicht
gebaut werden.

A2: Das ist der beste Ansatz normalerweise um Leute zu zwingen etwas zu tun. Von daher
glaube ich auch, dass es sinnvoll ist.

A1: Es würde natürlich Hass erzeugen, aber es geht nicht anders.

A2: Es muss zuverlässig sein, sagen wir mal so. Es darf kein Mechanismus in die Pipeline
eingebaut werden, der irgendwann Mal aus irgendeinem Grund vielleicht nicht funk-
tioniert, weil dann hast du ein Problem, wenn du nachst um 2 einen Hotfix ausspielen
willst und dann geht die Pipeline nicht aber ich glaube es ist sehr stabil. Sollte passen.

A1: JSON-Prüfung kriegen wir hin, ja. Note 2.

A2: 2, ja.

Q: Wie bewerten Sie den Ansatz, die Dokumentationspflicht in Richtung Entwicklerteams
zu verlagern? Welche Vor- und Nachteile sehen Sie? Wie bewerten Sie den Ansatz auf
einer Skala von 1-5?

A1: Easy.

A2: Genau so muss es sein.

A1: Es ist Status Quo für uns.

A2: Es ist auch bei uns so, dass die Teams relevant sind, um um die Dokumentation zu
pflegen, es ist nicht die Verantwortung von irgendeinem Enterprise-Architekten.

Q: Welche Personen müssen Sie involvieren, um den Ansatz in die bestehende Organisation
zu integrieren? Welche Rolle spielen die Personen? Welche Personen sehen Sie als
Treiber/Unterstützer und welche als Blockierer?

A2: Wenn ich in der übergreifenden Architekturgruppe bin, kann die Gruppe das definieren
wahrscheinlich.

A1: Top-Management oder Senior Management oder der Hauptabteilungsleiter muss halt
einmal sagen: Ja, ihr dürft das als hartes Kriterium in die Pipeline einbauen und ab jetzt
wird so dokumentiert.

111

A. Appendix

A2: Und dass es dann verpflichtend wird für alle.

Q: Wie bewerten Sie im Allgemeinen das Kosten-Nutzen-Verhältnis des Ansatzes?

A1: Die Kosten schätze ich, ehrlich gesagt, relativ gering ein, das dürften selbst für die
lernresistenten Dienstleister weniger als zwei Tage sein und der Nutzen ist auch gerade
explizit in der Root-Cause-Analyse sechs-, siebenstellig.

A2: Vom Nutzen her würde man schauen, wie man das Tool möglichst sinnvoll einsetzen
kann, das hängt bisschen auch dann vom Tool ab. Die Daten sind ja da, aber ob man
mit den Daten dann auch wirklich arbeiten kann, ist so ein bisschen eine andere Frage.
Von den Kosten her sehe ich es genauso. Da sind keine großen Kosten dahinter. Wenn
man das einmal eingebaut hat in die Pipeline jedes Team, ist eine Datei, ist relativ klein,
Dynatrace ist sowieso schon da bei uns, von daher sind das auch keine Extrakosten.
Was der Nutzen letztendlich ist, ist glaube ich schwer zu beziffern.

A1: Was man jetzt halt noch bräuchte, wäre ein Application Insights-Konnektor und ein
AppDynamics-Konnektor, weil dann hätten wir Stand heute, sagen wir Mal, 90% unserer
Architektur erfasst, unserer Ist-Landschaft.

A2: Für mich die Frage auch: Funktioniert das auch mit mehreren Tools übergreifend? Da
ist man normalerweise eigentlich blind. Außer dass man Produkte findet, aber die
Aufrufe zwischen den Produkten sieht man dann nicht mehr.

A1: Man müsste einen Link herstellen zwischen verschiedenen Monitoring-Tools.

A2: Ich glaube eher, dass der richtige Weg ist, das bei uns zu fixen und ein einheitliches
Tool zu benutzen.

A1: Nach der Reorg ist vor der Reorg. Ich habe inzwischen gelernt dieses Jahr, es gibt sogar
Leute, die nutzen NewRelic bei uns. Kommt die nächste Reorg, zack, hast du das an
der Backe, selbst wenn du hier vereinheitlicht hattest.

Q: Wie würden Sie die Verbesserung der IT-Landschaftsdokumentation bewerten innerhalb
der Dimensionen (Daten-) Vollständigkeit, Aktualität, Konsistenz und Zuverlässigkeit?

A2: Die Daten sind natürlich dann irgendwie aktuell, vollständig sind die nicht unbedingt,
weil das ist nur ein Teilausschnitt unseres Ganzen, ob sie vollständiger werden, als das,
was wir haben, weiß ich nicht, vielleicht. Zuverlässigkeit hast du das Problem, dass du
nie so genau weißt, ob du jetzt alles erwischt hast oder nicht in deinem Zeitfenster bzw.
ob etwas nicht schon wieder veraltet ist. Konsistent ist es wahrscheinlich schon, ja.

A1: Ich glaube, es zahlt auf alle diese Sachen ein. Viele Dinge bzgl. EAM sind in die
Zukunft gerichtet. Bisher betrachten wir in der Diskussion nur die Vergangenheit
bis zum Status Quo, bis heute minus wahrscheinlich sogar ein paar Stunden. Was
jetzt gerade passiert, siehst du auch nicht. Ich glaube trotzdem, dass es die Situation
wesentlich besser beschreibt als alles, was wir heute haben. Beim Live-Zugriff ist

112

A. Appendix

die Frage: Welchen Mehrwert bietet der Einsatz des Tools gegenüber dem direkten
Einsatz des Monitoring-Tools. Die einheitliche Anfragesprache ist nett aber nicht das
Killerargument. Schön wäre es tatsächlich die Datentöpfe verschiedener Monitoring-
Tools zu verbinden. Du hast einen Absprungpunkt vom einen in das andere, da dann
trotzdem noch die Sichtbarkeit zu behalten.

A2: Das würde ich wirklich als Mehrwert sehen, wenn man ein Modell für verschiedene
Lösungen nutzen kann.

A1: Im Business-Bereich sehe ich noch großes Potenzial, dass man den AppMon PurePath
stärker mit einem Service, einem kundengerichteten Service oder einer Public API, in
Verbindung bringt. Da gibt es verschiedenste Systeme, die notwendig sind, um so einen
Dienst zu erbringen und den erfassen wir als PurePath. Es gibt aber im Moment keine
direkte Beziehung, die irgendwo dokumentiert ist. Dass diese Public API diese und
jene fachliche Funktionalität erbringt, das ist diese Erklärung, die da fehlt im Moment
und welche Applikationen sind denn eigentlich daran beteiligt, den zu erbringen. Diese
beteiligten Applikationen sind eher noch monolithisch gebaut, d.h. sie haben Hunderte
von Schnittstellen und nur zwei davon sind notwendig, um diesen Service zu erbringen.
Das kann dir heute keines von diesen APM Tools geben. Es gibt noch nicht Mal die
Konfigurationsmöglichkeiten, dass du die Metadaten hinzufügst, d.h. mit deinem
externen Tool sind genau da die Möglichkeiten, einen Mehrwert zu schaffen, weil die
anderen haben es nicht.

Q: Wie bewerten Sie die einzelnen Darstellungen auf einer Skala von 1-5?

Business Landscape View:

A1: Während der Reorg-Planung habe ich gelernt, dass so ein Diagramm ganz schön
wertvoll sein kann. Dementsprechend würde ich dem eine 2 geben. Das ist ja auch
recht stabil. Es könnte sein, dass bei einer Snapshot-Betrachtung eine Applikation hier
verschwindet, eher unwahrscheinlich.

A2: Ich sag Mal 3. Ich bin mir nicht so sicher, ob das die beste Darstellung ist, weil im
Prinzip hast du eine Baumdarstellung und ob man es nicht einfach als Baum darstellt.
Die Anordnung im Raum hat eigentlich keine Bedeutung. Vom Inhalt her, ja, es ist
schon interessant.

Application Landscape View:

A2: Wenn du auf ein System fokussieren könntest, dann würde es vielleicht Sinn machen,
aber für die ganze Landschaft, es wird einfach viel zu groß. Ich glaube fast, es ist nicht
hilfreich, wenn man die gesamte Landschaft anzeigt, da siehst du meistens sowieso
nichts, außer du bist irgendwie in der Lage so zu abstrahieren, dass du am Ende nur
noch so zehn Kästen hast oder so, aber sobald du mehr als zehn Kästen hast, wird es
schwierig. Du interessierst dich für ein bestimmtes System und willst auf dieses System
fokussieren und da willst du dann vielleicht sehen, wo deployed das darauf, das macht
dann mehr Sinn. In der Form, wie es aktuell ist, ist es nicht hilfreich, also 5.

113

A. Appendix

A1: Note 2.

Table View:

A2: Finde ich schon wichtig. Note 2.

A1: In den letzten sechs Wochen habe ich auch gelernt: Es ist eine wichtige Liste. Note 2.

Communications View:

A1: Die Grundvoraussetzung dieses Tool zu verwenden ist ein APM Tool zu haben. Die
nennen das hier Transaction View, das ist Butter und Brot, ehrlich gesagt, die View ist
eine 4, weil ich nicht weiß, was der Mehrwert ist. Damit das funktioniert hat jemand
die JSON-Dateien gebaut. Es gibt ja das Konzept der Application in Dynatrace auch
oder auch in AppDynamics. Die Konfiguration kann man auch dort vornehmen.

A2: Note 3. Das hilft dir wenig, weil du siehst vor lauter Bäumen quasi den Wald nicht
mehr. Deswegen glaube ich so Überblicksbilder sind ganz schön, um zu sehen, wie
komplex ist eigentlich unsere Landschaft, aber viel mehr hilft es dir an dieser Stelle
nicht.

Application Interactions View:

A1: Das ist sweet. Das ist nah dran an dem, was ich vorhin meinte mit den Services, noch
nicht ganz da aber im Rahmen von der 1 bis 5 Bewertung ist das für mich eine 1, weil
das ist der Mehrwert, den die anderen so nicht haben, weil das ist viel mehr als die
Transaction view, die Dynatrace bietet.

A2: Würde ich auch eine 1 geben. Man weiß jetzt natürlich immer noch nicht warum,
also man hat keine Erklärung der Dinge. Das finde ich ziemlich cool, weil man hier
einen PurePath auswählen kann und sich anschauen kann. Das ist schon echt nice.
Wenn du oben noch die Erklärung hättest, also was ist da für ein Business Use Case
eigentlich dahinter, wenn wir jetzt ein Mapping hätten von URL auf Erklärung, was
da eigentlich passiert. Das finde ich cool. Was es noch besser machen könnte, ist die
Kanten zur Application Collaboration rauszuschmeißen, die interessieren uns nicht,
weil das Bild kann man dadurch einfacher machen. Die würde ich weglassen für mehr
Übersichtlichkeit.

Comparison View:

A1: Bei einer Root-Cause-Analyse ist es natürlich auch interessant zu wissen, warum geht
jetzt das Feature XYZ nicht mehr, geht man rein, vergleicht, seit letzter Woche haben
sich diese und jene Pfade geändert und dann weiß ich welche drei Applikationen ich
ansprechen muss. Tritt das jetzt häufig auf, wissen die Beteiligten wirklich nicht, wen
sie ansprechen müssen? Hmm. In die Zukunft gerichtet um es mit dem Zielzustand zu
vergleichen, wenn ich dann sagen kann, diese und jene Abweichung, die ist OK, zeig
die gar nicht mehr an, ich will den Wald sehen und nicht die einzelnen Bäume, ja, das
ist nützlich.

114

A. Appendix

A2: Da ist das Problem, dass mir die Begründung fehlt, warum ist das nicht mehr da. Ist das
einfach nur, weil in dem Zeitraum der Aufruf nicht da war oder ist es jetzt wirklich weg?
Das muss man wieder interpretieren, es hilft also nichts darauf zu schauen. Jetzt müsste
man sich jede Kante einzeln anschauen und gucken, warum ist das jetzt eigentlich so.
Dann gibt es doch wieder so eine Fehlerrate, paar false positives. Bei den PurePaths
haben wir sowieso generell das Problem, dass wir da niemals vollständig waren. Gut,
das ist wieder ein Dynatrace-Problem, aber da müsste man schon sehr sehr sicher
sein, ob man da eigentlich vollständig ist. Sonst kriegt man aufgrund verschiedener
Ausschnitte Differenzen angezeigt, die eigentlich irrelevant sind, weil es einfach nur ein
Dynatrace-Ausschnittsproblem ist. Da glaube ich hilft es nicht so viel an der Stelle.

A1: So wie sie jetzt ist eine 3, weil die Zukunft nicht implementiert ist. Wenn die Zukunft
dazu kommt, dann ist es ein Alleinstellungsmerkmal und eine 1.

A2: Ich finde es von der Grundidee ziemlich cool, aber von den Daten her ist es einfach
schwierig. Ich wüsste jetzt keinen Use Case, wo mir das wirklich helfen würde, das
automatisch zu erstellen und angezeigt zu bekommen. Es hat Potenzial, 3.

GraphQL View:

-

Q: Würden Sie das Tool einsetzen?

A1: Ja.

A2: Ja.

[Note: Interview partner A1 had to leave at this point due to time restrictions.]

Q: Haben Sie allgemeine Verbesserungsvorschläge?

A2: Mir fällt ein Use Case ein für die Comparison. Wir haben ja verschiedene Hubs. Was ich
eigentlich ganz cool fände, wäre, wenn man verschiedene Hubs nebeneinander legen
könnte, das wär wirklich hilfreich, um Unterschiede zwischen den Hubs festzustellen.
Das fände ich recht spannend, weil da habe ich schon üfter darüber nachgedacht über
sowas und das wär ein Use Case, mit dem ich viel anfangen könnte, was Dynatrace
auch nicht liefern kann. Dynatrace sieht die einzelnen Hubs getrennt voneinander.
Wenn man das in einem Tool hätte und wäre sogar in der Lage das miteinander zu
vergleichen, wäre das ganz interessant.

Q: Welche weiteren Anwendungsfälle erkennen Sie neben der IT-Landschaftsdokumentation?

A2: Wenn man eine gute IT-Dokumentation hat, kann man das natürlich für verschiedene
Use Cases verwenden, z.B. können Tester das nutzen, um zu verstehen, wie die Systeme
miteinander zusammenhängen, man kann es in Operations verwenden, usw. Cloud-
Ready Analysis oder Guideline Compliance würde ich sehen als Use Case für eine gute
IT-Dokumentation. Daraus kann ich dann viele Dinge tun.

115

A. Appendix

Q: Haben Sie weitere Anmerkungen oder Anregungen?

A2: Ihr müsst glaube ich sehr stark herausarbeiten, was wirklich der Unterschied zu einem
reinen Dynatrace ist, weil da ist ja auch schon alles da, mehr oder weniger. Für mich
gilt: Ich bin im Endeffekt immer noch davon überzeugt, dass man trotzdem noch eine
manuelle Dokumentation braucht, dass du nicht ohne eine manuelle Dokumentatin
auskommst. Das Tool zeigt dir relevante Information, aber da steckt noch so viel mehr
drin hinten dran einfach um das System zu verstehen. Wenn du schon ein ganz gutes
Verständnis hast für die Landschaft, dann kannst du da draufgucken und dann hilft es
dir vielleicht. Wenn du das aber nutzen willst, um die Architektur zu verstehen, dann
kannst du es eigentlich nicht benutzen aus meiner Sicht. Du weißt nur Kasten A ruft
Kasten B auf, du hast den Namen vielleicht noch und das war es. Dann kannst du damit
nichts anfangen. Dafür brauchst du, glaube ich schon, eine manuelle Dokumentation,
da bin ich relativ stark von überzeugt. Die Argumente gegen manuelle Dokumentation
fand ich relativ schwach. Aus meiner Sicht ersetzt das keine manuelle Dokumentation,
es ist eine Ergänzung oder vielleicht zur Validierung kann man es gut nutzen, weil
komplett ersetzen tu ich mich ein bisschen schwer. Ich find das Beste an dem Ganzen ist,
was du am Ende gezeigt hast, die Application Interaction view, weil das echt hilfreich
ist. Im nächsten Schritt, wenn ich jetzt Use Case-Modellierung mache, was ihr habt
ist die statische Sicht, aber was oft fast wichtiger ist, ist die dynamische Sicht. Mit
dynamisch mein ich jetzt nicht zur Laufzeit, sondern einzelne Use Cases. Wenn ich
einen Door Unlock mache als Use Case, was passiert dann in meiner Landschaft, welche
Systeme werden aufgerufen, diese Pfade hier zu zeigen. Vielleicht kann man hier noch
eine Nummer hinzufügen und einblenden, dass man sieht in welcher Reihenfolge das
durchläuft. Da fehlt halt jetzt die Verknüpfung wiederum in die Business-Welt, weil das
ist auf technischer Ebene. Auf Business-Ebene bräuchtest du jetzt noch einen Use Case
oder ein Szenario und eine Verküpfung von diesem PurePath auf dieses Szenario. Das
wäre ziemlich cool, glaube ich. Das hat am meisten Potenzial von allem aktuell. Das
andere ist auch gut und wichtig, solange es übersichtlich bleibt. Wo ich mich schwer tu,
ist wenn man so Strukturen visualisiert, die man vielleicht nicht unbedingt als Graph
visualisieren sollte, so hierarchische Strukturen eigentlich, die man eigentlich besser fast
oft als Tabelle visualisieren kann. Sonst werden die hierarchischen Übersichten einfach
unübersichtlich und dann helfen sie auch nicht viel. Man muss es halt auch irgendwie
für den Benutzer konfigurierbar machen, glaube ich. Je nach Situation, in der man sich
befindet, braucht man Mal was oder man braucht es halt Mal nicht.

116

List of Figures

2.1. ArchiMate Core Framework . 6
2.2. Microlyze Overview . 11

3.1. Proposed Solution - Overview . 16
3.2. AppMon Metamodel . 20
3.3. Logical Data Model . 28
3.4. Mapping of Data Model . 31
3.5. Database Data Model . 34
3.6. Automated Architecture Discovery Algorithm 38
3.7. Business Landscape View . 42
3.8. Application Landscape View . 42
3.9. Table View . 43
3.10. Communications View . 44
3.11. Application Interaction View . 45
3.12. Comparison View . 46
3.13. GraphQL View . 47

4.1. Discovered Application Components . 54
4.2. Discovered Nodes . 54
4.3. Discovered Application Interactions and Communication Relationships 55
4.4. Grade for Runtime Data Extraction . 62
4.5. Grade for JSON Configuration Files . 64
4.6. Grade for JSON Schema Validation . 67
4.7. Grade for Pipeline Integration . 71
4.8. Grade for Responsibility Shift to Agile Teams 73
4.9. Grade for Business Landscape View . 79
4.10. Grade for Application Landscape View . 80
4.11. Grade for Table View . 82
4.12. Grade for Communications View . 83
4.13. Grade for Application Interaction View . 84
4.14. Grade for Comparison View . 86
4.15. Before-and-After Documentation . 91

117

List of Tables

3.1. Requirements Analysis . 18

4.1. Discovered Architecture Elements . 50
4.2. Requirements Analysis - Fulfillment . 90

118

Glossary

Agent Software that gathers performance data and sends it to a collector. 19–21, 23, 24, 29,
119

Agent Group Logical grouping of multiple Agents. 20, 21, 23, 29, 30, 39, 51, 57

ArchiMate An EA-related reference framework and modelling language notation. 6, 88, 93

Dynatrace A software intelligence company that provides several software solutions includ-
ing APM solutions. 19, 98

PurePath Detailed trace of a request directed at a monitored application. 21, 23, 24, 29, 33,
39, 49, 51, 52, 85, 91

Transaction flow Collection of traces for every transaction in a monitored application. 21, 23,
24, 29, 39, 49, 52

TUM A university in Germany, Bavaria, in the city of Munich. 10, 93

119

Acronyms

AADA Automated Architecture Discovery Algorithm. 11, 37, 38, 40, 48–50, 53, 56–58

API Application Programming Interface. 21–23, 93, 94

APM Application Performance Monitoring. iv, 2, 5, 10, 11, 15, 19, 26, 27, 29, 30, 38, 51, 55, 69,
76, 77, 89, 92–94, 96–98, 119

CD Continuous Delivery. 10, 14, 71, 72, 97, 99

CI Continuous Integration. 10, 14, 71, 72, 97, 99

CSRF cross-site request forgery. 22

EA Enterprise Architecture. iv, 1–3, 6, 10, 11, 13, 15, 41, 48, 50, 53, 59, 63, 68, 74, 80, 84, 88, 91,
93, 95–100

EAD Enterprise Architecture Documentation. iv, 1, 93

EAM Enterprise Architecture Management. iv, 1, 3, 13, 97, 98

ESB Enterprise Service Bus. 13

IaC Infrastructure as Code. 71, 72

IS Information Systems. 3

IT Information Technology. 3, 51, 55–57, 61, 63, 70, 81, 83

JS JavaScript. 15, 22, 23, 41

JSON JavaScript Object Notation. 10, 14, 21, 30, 35, 62–69, 72, 76, 77, 85, 90, 92, 93, 96–99

KPI Key Performance Indicator. 63, 87, 88

QoL Quality of Life. 40, 69

REST Representational State Transfer. 21, 22, 35

SQL Structured Query Language. 19

URL Uniform Resource Locator. 22, 24, 26, 29, 39, 52

VPN Virtual Private Network. 48, 49

120

Bibliography

[1] M. Farwick, B. Agreiter, R. Breu, M. Häring, K. Voges, and I. Hanschke. “Towards
Living Landscape Models: Automated Integration of Infrastructure Cloud in Enterprise
Architecture Management”. In: 2010 IEEE 3rd International Conference on Cloud Computing.
July 2010, pp. 35–42.

[2] J. Ross, P. Weill, and D. Robertson. Enterprise Architecture as Strategy — Creating a
Foundation for Business Execution. May 2006. isbn: 1-59139-839-8.

[3] A. Balalaie, A. Heydarnoori, and P. Jamshidi. “Microservices Architecture Enables
DevOps: Migration to a Cloud-Native Architecture”. In: IEEE Software 33.3 (May 2016),
pp. 42–52.

[4] W. Hasselbring and G. Steinacker. “Microservice Architectures for Scalability, Agility
and Reliability in E-Commerce”. In: 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW). Apr. 2017, pp. 243–246.

[5] M. Farwick, B. Agreiter, R. Breu, S. Ryll, K. Voges, and I. Hanschke. “Requirements
for Automated Enterprise Architecture Model Maintenance - A Requirements Analysis
based on a Literature Review and an Exploratory Survey.” In: vol. 4. Jan. 2011, pp. 325–
337.

[6] M. Farwick. “Towards Automation of Enterprise Architecture Model Maintenance”. In:
vol. 863. June 2012.

[7] M. Hauder, F. Matthes, and S. Roth. “Challenges for Automated Enterprise Architecture
Documentation”. In: TEAR/PRET. 2012.

[8] H. Holm, M. Buschle, R. Lagerström, and M. Ekstedt. “Automatic data collection
for enterprise architecture models”. In: Software & Systems Modeling 13.2 (May 2014),
pp. 825–841.

[9] S. Aier, S. Buckl, U. Franke, B. Gleichauf, P. Johnson, P. Närman, C. M. Schweda, and
J. Ullberg. “A survival analysis of application life spans based on enterprise architecture
models”. In: Enterprise modelling and information systems architectures. Ed. by J. Mendling,
S. Rinderle-Ma, and W. Esswein. Bonn: Gesellschaft für Informatik e.V., 2009, pp. 141–
154.

[10] M. Farwick, C. Schweda, R. Breu, and I. Hanschke. “A situational method for semi-
automated Enterprise Architecture Documentation”. In: Software & Systems Modeling
(Apr. 2014).

121

Bibliography

[11] A. R. Hevner, S. T. March, J. Park, and S. Ram. “Design Science in Information Systems
Research”. In: Management Information Systems Quarterly 28.1 (Mar. 2004), pp. 75–105.
issn: 0276-7783.

[12] T. O. Group and V. H. Publishing. ArchiMate R© 3.1 Specification. 1st ed. Zaltbommel,
Netherlands: Van Haren, 2019. isbn: 1-947754-30-0.

[13] M. Kleehaus, M. Hauder, F. Matthes, and Ö. Uludag. “Enterprise Architecture Dis-
covery via Runtime Instrumentation for Automating Enterprise Architecture Model
Maintenance”. In: 25th Americas Conference on Information Systems, AMCIS 2019. Cancún,
Mexico, Aug. 2019.

[14] M. Kleehaus, N. Corpancho, and F. Matthes. “Discovery of Microservice-based IT Land-
scapes at Runtime: Algorithms and Visualizations”. In: Hawaii International Conference
on System Sciences (HICSS). Hawaii, 2020.

[15] M. Buschle, M. Ekstedt, S. Grunow, M. Hauder, F. Matthes, and S. Roth. “Automating
Enterprise Architecture Documentation using an Enterprise Service Bus”. In: AMCIS.
2012.

[16] A. Alegria and A. Vasconcelos. “IT Architecture automatic verification: A network
evidence-based approach”. In: 2010 Fourth International Conference on Research Challenges
in Information Science (RCIS). May 2010, pp. 1–12.

[17] F. Cuadrado, B. García, J. Dueñas, and H. G. “A Case Study on Software Evolution
towards Service-Oriented Architecture”. In: Apr. 2008, pp. 1399–1404.

[18] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller, J. Ehlers, S. Frey, and D. Kieselhorst.
Continuous Monitoring of Software Services: Design and Application of the Kieker Framework.
Tech. rep. 0921. Department of Computer Science, University of Kiel, Germany, 2009,
p. 26.

[19] A. van Hoorn, J. Waller, and W. Hasselbring. “Kieker: A Framework for Applica-
tion Performance Monitoring and Dynamic Software Analysis”. In: Proceedings of the
3rd ACM/SPEC International Conference on Performance Engineering. ICPE ’12. Boston,
Massachusetts, USA: ACM, 2012, pp. 247–248. isbn: 978-1-4503-1202-8.

[20] M. Välja, R. Lagerström, M. Ekstedt, and M. Korman. “A Requirements Based Approach
for Automating Enterprise IT Architecture Modeling Using Multiple Data Sources”.
In: Proceedings of the 2015 IEEE 19th International Enterprise Distributed Object Computing
Workshop. EDOCW ’15. Washington, DC, USA: IEEE Computer Society, 2015, pp. 79–87.
isbn: 978-1-4673-9331-7.

[21] M. Välja, R. Lagerström, U. Franke, and G. Ericsson. “A framework for automatic IT
architecture modeling : applying truth discovery”.

[22] F. Fittkau, S. Roth, and W. Hasselbring. “ExplorViz: Visual Runtime Behavior Analysis
of Enterprise Application Landscapes”. In: ECIS. 2015.

122

	Acknowledgments
	Abstract
	Contents
	Introduction
	Motivation & Problem Description
	Research Questions
	Research Methodology
	Outline

	Concept
	Theoretical Background
	Terminology
	ArchiMate

	Microlyze
	Overview
	Prerequisites
	Theoretical Discovery Algorithms

	Related Work
	Delimitation

	Implementation
	Proposed Solution - Overview
	Implementation Environment
	Requirements Analysis

	Monitoring - Dynatrace AppMon
	AppMon Overview
	Metamodel & Data Structures
	Limitations & Workarounds

	Data Model
	Logical Data Model
	Mapping
	Physical Data Model

	Backend
	GraphQL
	Database - MongoDB
	Automated Architecture Discovery Algorithm

	Frontend - Visualizations
	Business Landscape View
	Application Landscape View
	Table View
	Communications View
	Application Interaction View
	Comparison View
	GraphQL View

	Evaluation
	Quantitative Analysis
	Discovery Run
	Findings
	Conclusion of the quantitative analysis

	Qualitative Analysis
	Relevance of problem description
	Solution Approach
	Technical Integration
	Organizational Integration
	Usability
	Visualizations
	General Remarks & Feedback regarding the visualizations
	Use Cases
	General Remarks & Feedback regarding the overall solution approach
	Conclusion of the qualitative analysis

	Before-and-After Analysis
	Requirements Analysis - Revisited
	Documentation Process - Comparison

	Conclusion
	Summary
	Findings
	RQ1: Runtime Data Discovery
	RQ2: Requirements
	RQ3: Benefits & Limitations
	Final Assessment

	Outlook

	Appendix
	Interview Questionnaire
	Transcripts
	Transcript 1
	Transcripts 2 & 3

	List of Figures
	List of Tables
	Glossary
	Acronyms
	Bibliography

