
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Component provenance tracing through
blockchain-based, trackable data exchange
for safety critical industrial supply chains

Sangeeta Joseph

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Component provenance tracing through
blockchain-based, trackable data exchange
for safety critical industrial supply chains

Rückverfolgung der Komponenten
Herkunft in sicherheitskritischen

industriellen Lieferketten durch einen
blockchainbasierten, trackbaren

Datenaustausch

Author: Sangeeta Joseph
Supervisor: Prof. Dr. Florian Matthes
Advisor: M.Sc. Dian Balta (fortiss)

M.Sc. Ulrich Gallersdörfer
Submission Date: November 15, 2020

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, November, 15, 2020 Sangeeta Joseph

Acknowledgements

I would like to begin by thanking Prof. Dr. Florian Matthes for allowing me to engage
in such an exciting topic for this thesis at his chair for Software Engineering for Business
Information Systems, for which I am deeply grateful.

I also want to thank my advisors Dian Balta and Ulrich Gallersdörfer, for helping
me find this topic and quickstart my work. I then want to express my gratitude to
Anastasios Kalogeropoulos and Matthias Buchinger for having been present during
every step of this development to support my queries and push me in the right direction.

Finally, I thank my boyfriend Maik and my friends for their emotional support and
infinite patience throughout this journey. My endless appreciation goes to my family,
who has made this opportunity a reality for me through their sacrifice and unrelenting
support for my choices.

Abstract

Traditional business relations between members in a supply chain context involve
lengthy and error prone processes of communication with little reliability and safety,
which result in low trust environments where product and document tampering is
hard to avoid. This is a fatal condition for high risk manufacture industries where
product history must be reliable beyond doubt to ensure the end result is to be trusted.
In this dissertation we introduce the concepts of blockchain as the best tamper proof
network for transactions, we show how such technology could benefit private supply
chain scenarios by delivering a transparent data flow from raw material supplier all the
way to the end customer while guaranteeing efficient traceability, trust among peers
and privacy.

iv

Contents

Acknowledgments iii

Abstract iv

List of Figures vii

List of Tables viii

List of Abbreviations ix

1 Introduction 1
1.1 Motivation . 1
1.2 Purpose and Research Questions . 2
1.3 Outline . 3

2 Theoretical Background and Related work 5
2.1 Blockchain Technology . 5

2.1.1 Public and Private blockchain . 6
2.1.2 Bitcoin . 6
2.1.3 Ethereum . 7
2.1.4 Corda . 8

2.2 Hyperledger Fabric . 8
2.2.1 Architecture . 8
2.2.2 Steps to setup a basic hyperledger network 10

2.3 Comparison between Ethereum, Corda and Hyperledger Fabric 12
2.4 IPFS . 12
2.5 Related projects . 14

2.5.1 Everledger . 14
2.5.2 Origintrail . 14

3 Research Approach 15
3.1 Context . 15

v

Contents

3.2 Design Science Research Methodology . 19
3.2.1 Problem Identification and motivation 20
3.2.2 Define the objectives for a solution 20
3.2.3 Design and Development . 20
3.2.4 Demonstration . 20
3.2.5 Evaluation . 21
3.2.6 Communication . 21

4 Requirement and System Analysis 22
4.1 Stakeholder Analysis . 22
4.2 Use case Analysis . 24

4.2.1 System Requirements . 25
4.2.2 Business Requirements . 25

4.3 System Analysis . 27

5 System Design 30
5.1 4 + 1 Architectural Views . 30

5.1.1 Logical View . 30
5.1.2 Process View . 32
5.1.3 Development View . 36
5.1.4 Physical View . 39

5.2 How to retrieve the Product History . 40

6 Prototypical Implementation and Evaluation 42
6.1 Tools and Technologies . 42

6.1.1 Hyperledger Fabric . 42
6.1.2 Docker . 42
6.1.3 React.js . 43
6.1.4 IPFS . 43
6.1.5 Node.js . 43

6.2 Hyperledger Network Description . 43
6.3 Evaluation based on reference architecture 45
6.4 Evaluation based on the prototype implementation 49

7 Conclusion 56
7.1 Limitations . 56
7.2 Future Work: . 57

8 Bibliography 58

vi

List of Figures

2.1 Hyperledger Fabric network [28] . 11

3.1 IBO’s supply chain process flow . 15
3.2 Process flow showing the inefficient audit 17
3.3 Process flow illustrating a dispute scenario 19
3.4 DSRM process model . 19

4.1 Interactions and dependencies between stakeholders 23
4.2 Use case diagram for Blockchain-based Supply Chain System 26

5.1 4+1 View Model . 31
5.2 UML class diagram for Transparent data flow 33
5.3 UML class diagram for Product Tracking module 34
5.4 UML Sequence diagram for new order creation 35
5.5 BPMN diagram for transparent data flow module 37
5.6 UML component diagram for blockchain-based supply-chain system . . 38
5.7 UML deployment diagram for blockchain-based supply-chain system . 39

6.1 Hyperledger Fabric Network for Blockchain-based Supply Chains . . . 45
6.2 Screenshot for order creation . 51
6.3 Screenshot for order status approval . 53

vii

List of Tables

2.1 Difference between public, private and hybrid blockchains 7
2.2 Difference between Ethereum, Corda and Hyperledger Fabric 13

4.1 Requirements of a blockchain-based supply chain system 28
4.2 Difference between traditional supply chains and block-chain based

supply chains . 29

6.1 Evaluation of the system architecture based on the system requirements 46
6.2 Evaluation of the system architecture based on the Business requirements

of the Transparent Product History module 48
6.3 Evaluation of the system architecture based on the requirements of the

Product Tracking module . 49

viii

List of Abbreviations

SCM Supply Chain Management

SME Small Medium-Sized Enterprise

IPFS InterPlanetary File System

SME Small Medium-Sized Enterprise

IOT Internet of Things

DSRM Design Science Research Methodology

ERP Enterprise Resource Planning

CAD Computer-aided Design

GDPR General Data Protection Regulation

BPMN Business Process Model and Notation

SDK Software Development Kit

UML Unified Modeling Language

DOM Document Object Model

UI User Interface

API Application Programming Interface

ix

1 Introduction

1.1 Motivation

A supply chain is a network of organizations that share the goal of creating and dis-
tributing high-quality products or services [1]. Before the First Industrial Revolution,
the supply chain was reasonably straightforward, where resources were extracted and
transported to skilled artisans who manufactured finished products later sold in the
markets [2]. Today’s supply chains are much more complicated, where the system
consists of not only manufacturers and suppliers but also assemblers, warehouse man-
agers, logistics companies for transportation, distributors, retailers, and also consumers
[3]. Often, the stakeholders involved have no knowledge of other participants in the
supply chain [4], especially the consumer who might not be aware of where, when, or
under which conditions the products have been manufactured.

As defined by the Council of Supply chain management professionals, "Supply Chain
Management (SCM) encompasses the planning and management of all activities in-
volved in sourcing and procurement, conversion, and all logistics management ac-
tivities. Importantly, it also includes coordination and collaboration with channel
partners, which can be suppliers, intermediaries, third-party service providers, and
customers." [31]. In short, supply chain management involves the management of
products, information, and funds.

Because of globalization, SCM is now prone to risks due to the various interconnected
parties, and a minor fault could result in negative consequences for all members [5].
Risks include theft, counterfeit, raw material price fluctuations, natural disaster, logistic
delays, environmental hazards, economic instability, and supplier inconsistency [6]. Out
of these, counterfeit and fraud account for 11% of the total risks [6]. A study conducted
found that around 33% of 1215 fish samples collected were mislabeled [7].

An example of a company relying on the supply chain is IBO. IBO GmbH is a Small
Medium-Sized Enterprise (SME) manufacturing roller bearings mostly used in safety-
critical domains such as aerospace, robotics, medical and transportation. Because of this,
the products have to be thoroughly tested and certified following strict safety standards.

1

1 Introduction

A counterfeit sold as an IBO product is a massive risk to the company’s liability, and,
at present, it’s difficult to prove the authenticity of their product. The consequences of
using counterfeit products could result in a considerable reputation, financial, material,
and, in the worst case, life loss. This could be minimized by delivering a Traceable
Product History without disclosing business secrets. A Traceable Product History is the
chronological sequence of steps taken in a supply chain. The steps are actions taken by
a member in the supply chain that change the state of the product, including submitting
an order, acquiring a raw natural resource (materializing as a product), testing, altering
a component, combining two or more products into a single one, transfer in ownership
or responsibility. This product becomes now an asset and each step is to be considered
as a transaction on this asset with data (information) associated with it.

Transactions and relevant information are traditionally stored in volatile documents that
can be lost, un/intentionally omitted, or tampered with and need to be continuously
duplicated and manually synced between parties. A client’s inquiry on a product can
take weeks to be consolidated because data needs to be gathered from multiple sources
and parties via the mentioned inefficient data flow. Data flow occurs during a transfer
of ownership or change of status between the two parties. In worse cases, disputes
between parties can lead to third parties’ involvement to resolve a claim.

These problems can be solved by a transparent data flow, which can be achieved by
having a tamper-proof single data source such as a distributed ledger technology, a
blockchain-based system that keeps track of records, product information, and history.
Such system treats the asset and transactions as digital ones. A client accessing data
from a blockchain can easily verify a product’s authenticity and detect counterfeit
products. Depending on the blockchain used, systems can be implemented to provide
different access levels for their users. In addition to transparency, the blockchain-
based system offers accountability and scalability through multiple organizations and
locations. Adopting blockchain could help the supply chain industry reduce risks,
improve management, and increase consumer and manufacturer trust.

1.2 Purpose and Research Questions

The goal of this master’s thesis is to design and implement a blockchain-based supply
chain system for IBO GmbH that provides transparent data flow, traceable product
history without disclosing business secrets. Based on the Design Science Research
methodology [8], the focus of this thesis is summarized in the following three research
questions:

2

1 Introduction

1. What are the requirements for a blockchain-based supply chain system to re-
duce fraud and improve supply chain management?
The goal is to analyze IBO GmbH’s needs and desires and agree on a set of
requirements.
Methodology Followed: The first step is gathering requirements from the neces-
sary stakeholders by conducting a meeting or interviews, examining the existing
system, and studying the supply chain documentation. The next step is analyzing
these requirements and modeling them using diagrams and flowcharts.
Expected Results: A Requirement Specification Document that serves as a base
for the future architecture design and implementation phase.

2. What is the architecture of a blockchain-based system for fraud reduction and
supply chain management?
Based on the requirements specified, the architecture of a system needs to be
designed and evaluated.
Methodology Followed:Examine existing blockchain systems for supply chain,
research on the available frameworks and tools, design the components of the
system based on the requirements, define process level diagrams to explain the
system, and eventually perform an architectural evaluation.
Expected Results: A reference architecture using the 4+1 view model architecture
[9].

3. What is the prototypical implementation for a Blockchain-Based Supply Chain
system for fraud reduction and supply chain management?
Methodology Followed: Implementing the various architectural components
designed in the previous research question and the evaluation of the system
concerning the requirements.
Expected Results: A functionally working prototype that helps IBO and other
SMEs to detect any fraud and minimize the time spend during audits.

1.3 Outline

Chapter 2 introduces state of the art blockchain technology and relevant comparisons
followed by descriptions of related blockchain-based system. Chapter 3 focuses on
introducing the Design Science Research Methodology and describing the research
approach followed. Chapter 4 presents the requirements analysis consisting of the use-
case diagrams, system analysis, functional and non-functional requirements established
for the thesis. In Chapter 5, the system design and architecture are presented using 4+1
view model. Furthermore, the evaluation of the requirements concerning architecture

3

1 Introduction

and prototypical implementation is reported in Chapter 6. The thesis is concluded in
Chapter 7, covering the limitations and the future works in this field.

4

2 Theoretical Background and Related
work

This chapter provides description of the state of the art in blockchain technology and
a comparison of the relevant systems. Additionally, details about the existing system
using blockchains in supply chains are also discussed.

2.1 Blockchain Technology

In financial terms, a ledger is a record-keeping system containing all business trans-
actions [10]. Similarly, a distributed ledger is a unique database controlled by a set of
participants in a distributed environment [11]. The data can be accessed or updated
across different sites or geographic locations and by multiple people. The network
participants own an identical copy of the ledger, and any update to it is reflected in all
copies, making the ledger safe from external attacks.

Although used as synonyms, the blockchain is a type of distributed ledger technology.
A blockchain is an immutable peer-to-peer ledger consisting of ordered units known as
cryptographically secure blocks. The block consists of a timestamp, set of transactions,
and the hash of the previous block. A transaction is an order that updates the current
ledger and is validated by a consensus mechanism and grouped with other transactions
into blocks appended to every participant’s ledger. Given the hash of the last block, it’s
possible to traverse all the way to the first block in the ledger.

Blockchain inherently provides advantages over centralized systems. Some of the
features include:

1. Transparency: As each node on the blockchain network owns a copy of the ledger,
all the participants have access to the transactions and data, and hence the system
is transparent.

2. Immutability: Once the transactions are added to the blockchain, it is nearly
impossible to change it, making the ledger immutable.

5

2 Theoretical Background and Related work

3. Decentralized: The blockchain is not governed by a single authority but it’s
maintained by the nodes in the network.

4. Increased Security: With the blockchain being decentralized, there is no single
point of failure. A copy of the ledger is stored on each node, and the consensus
mechanism is used to ensure each copy’s integrity.

2.1.1 Public and Private blockchain

Blockchain is classified into three major types: public, private, and hybrid [32] and
Table 2.1 describes the difference between them.

1. Public Blockchain: Allows any participant to join the network as the blockchain
has no single central governance. All nodes in the network have the authority to
receive a copy of the ledger and submit transactions to the blockchain [12][13]. It
is nearly impossible to corrupt the ledger and it’s extremely secure. Bitcoin and
Ethereum fall into this category[14].

2. Private Blockchains: They are also referred to as permissioned blockchains. The
network can be partially or entirely centralized, i.e., the owner of the network is
responsible for providing access to participants to view and update the ledger
[12][13]. Private blockchains develop solutions for enterprise systems where
entities need to be verified before entering the network. Examples of this include
Hyperledger Fabric and Hyperledger Sawtooth [14].

3. Hybrid Blockchains: Also introduced as Consortium blockchains, it is a com-
bination of public and private blockchains. The chain is governed by a group
of equally powerful parties [14]. The network is partly decentralized because
the copies of the ledger are distributed only to authorized entities [12]. Hybrid
blockchains could help cases where various organizations in a field who don’t
trust each other want to share information by carrying out transactions [15].

2.1.2 Bitcoin

One of the very first recognized implementations of blockchain technology is Bitcoin.
Launched in 2009, Bitcoin was introduced as a digital currency that would allow online
payments from one party to another without a central authority like banks or the
government (for this reason called cryptocurrency) [16]. Unlike fiat currency, bitcoins
don’t have a physical existence; they are created, stored, and traded with blockchain

6

2 Theoretical Background and Related work

Public Private Hybrid

Requires Permis-
sion?

No No Yes

Central Author-
ity?

No Single Organiza-
tion

Multiple Organi-
zations

Decentralized Yes Partial or Com-
pletely Central-
ized

Partially

Performance Slow Fast Fast

Scalability Low High High

Energy Consump-
tions

High Low Low

Transaction Data
Privacy

None Controlled Controlled

User Anonymity Yes No No

Table 2.1: Difference between public, private and hybrid blockchains

technology. Bitcoin is quite popular as a cryptocurrency paved the way for launching
many other cryptocurrencies called Altcoins.

The Bitcoin network consists of nodes called miners responsible for curing the network
by processing transactions by solving complex math problems using high powered
computers. Miners are rewarded for adding a block to the blockchain and the form
transaction fees is paid in bitcoin. Since the success of Bitcoin, several applications have
tried to leverage the benefits of distributed ledger technologies.

2.1.3 Ethereum

Ethereum, another cryptocurrency, introduced a new feature not present in Bitcoin.
By introducing the concept of smart contracts, Ethereum stood out as a platform to
develop decentralized applications [17]. According to Szabo [18], "a smart contract is a
set of promises, specified in digital form, including protocols within which the parties
perform on these promises.” In simple terms, Smart contracts are computer programs

7

2 Theoretical Background and Related work

running on Ethereum network that contain business logic [19].

2.1.4 Corda

Corda is a distributed ledger technology developed by the R3 Consortium [20]. The
consortium consists of more than 100 well-known banks that focused on developing
solutions for the financial sector. Data privacy is one of the main features address in
the Corda blockchain, i.e., data is shared amongst relevant parties [20]. CorDapps
are applications developed on the Corda and use a virtual machine, i.e., Java Virtual
Machine, and the contracts are written in Java [21].

2.2 Hyperledger Fabric

Hyperledger fabric is an enterprise-grade, open-source, Distributed Ledger Technology
(DLT) platform used to develop enterprise applications leveraging the features of
distributed ledgers and blockchain technology. Fabric is a permissioned blockchain [22]
with a modular and configurable architecture, allowing developers to adopt different
components depending on the use-case.

The core components of the Hyperledger Fabric protocol are as follows [23]:

• the assets, which are the element of exchange and can be monetary, physical/dig-
ital property, or anything defined by the participants

• the distributed ledger, which decentralizes the network data by storing a copy of
the current state and transaction history in each member of the blockchain

• the smart contract (aka chaincode), which acts as a strict protocol to gate the
access and addition of data in the blockchain

• the consensus, which is the mechanism by which the participating members
approve transactions on the blockchain

2.2.1 Architecture

The hyperledger blockchain is the infrastructure of the ledger and chaincode. Usually, a
blockchain network is initiated by an administrator organization that issues the network
policies (Network Configuration) and the Ordering Service [23].

8

2 Theoretical Background and Related work

An Ordering service is used to maintain the order of the transactions in the blocks.
There can be multiple Ordering Services associated with different Network Configura-
tion, depending on the network structure [24].

A certificate authority is issued for the network, which dispenses certificates used
to identify components belonging to the organizations [25]. The mapping between
the certificates to the member organizations is achieved via the Membership Service
Provider, accessed by the Network Configuration [25]. The Network Configuration can
be updated to add and remove administrators to the network, which will share the
administrative rights to the associated Ordering Service.

When new organizations are added to the network, each has its own Certificate Au-
thority, and the administrators can group two or more organizations into a consortium,
which is the set of organizations that need to perform a transaction among each other.
Members of a consortium communicate via Channels, which are private mechanisms
to exchange data. Channels have their own configuration called Channel Configuration,
with their own policies, independent of the Network Configuration, and only members
of the consortium have power over the configuration [23]. A channel is attached to an
Ordering Service. Each channel hosts the ledger, which is physically stored into a Peer
Node.

A Client Application, external to the network, communicates with the network via
the channel by following the Channel Configuration rules and having a valid identity.
The application cannot directly access the ledger of the channel, and the only way it
can query or update it is by using the chaincode [23]. A Chaincode definition must
always be approved by most consortium members before being associated with the
channel and installed on the peers. Part of the chaincode definition is the Endorsement
policy, which describes which organizations must approve transactions. Once the
chaincode is installed on the peer, a client application can be invoked by sending a
transaction proposal, which triggers the endorsement policy and responds to the client
application.

Peer nodes are the essential building blocks of the blockchain. A peer contains one or
more instances of a ledger and has installed one or more smart contracts [26]. Client
applications interact with peers to perform a query or update of the ledger. The
connection to a peer, the invocation of a chaincode, and the proposal submission are
performed via an API call. A query request sent to the peer results in an invocation
of the ledger’s local instance, and the result immediately returned to the application.
In general, there is no need for the peer node to interact with other nodes for query
requests unless the local instance of the ledger is out of date. In case of an update
transaction, the peer would invoke only its ledger’s local instance; however, it would

9

2 Theoretical Background and Related work

invoke all other peers in the network for the consensus process. This returns a proposed
update from the consensus of all nodes, which is returned to the application. At the
same time, the consensus invokes the Orderer to packages the transactions into a
block, which then is distributed to all peers for them to perform a local update to
the ledger. At the end of this asynchronous operation, the application is notified
(asynchronously).

Assets in the ledger are represented as key/value pairs, where the value is a binary
or JSON description and are modifiable only through chaincode transactions [23].
The chaincode defines the rules that the actors involved must obey to update the
key/ledger’s value pairs, effectively defining how the business is conducted towards
the asset. The transaction history or sequence of tamper-resistant records of all state
changes performed via chaincode is stored in the blockchain, combined with the
ledger’s assets’ current state. The scope of a ledger is limited to a channel that can
be public (visible to all participants in the network) or private between a subset of
actors.

Data stored in the ledger can be accessed by all the peers in the channel. To exchange
private data on the channel, one can create a new channel and add the organizations
that need to access the data. However, adding a new channel for each use case is
inefficient; hence hyperledger offers the ability to create private data collections [27].
The collection consists of two elements, the private data and the hash to the private
data. The private data hash is then uploaded on the ledger, which can be accessed by
all the parties in the channel to validate its state [27].

2.2.2 Steps to setup a basic hyperledger network

This section explains how the organizations collaborate with different components and
describes the steps to setup up a basic hyperledger network. Figure 2.1 illustrates the
basic hyperledger fabric network referred from the official documentation [28].

1. Create a Network: A hyperledger network N is created when the orderer is up
and running. Organization R4 is the initial admin who sets up the network by
adding orderer O4, configured using the network configuration NC4. Certifi-
cate Authority CA4 is responsible for dispensing identities to nodes of the C4
organization.

2. Add R1 as a network admin: Update the network configuration NC4 to make R1
the admin. Orderer O4 runs on organization R4’s infrastructure, and R1 shares
the admin rights over it.

10

2 Theoretical Background and Related work

Figure 2.1: Hyperledger Fabric network [28]

3. Define a Consortium: A consortium is defined as a group with a common goal.
The network admin creates a consortium X1 and adds organization R1 and R2
with respective certificate authorities CA1 and CA2 to it.

4. Create a Channel for the Consortium: Channel C1 is created for the consortium
X1 and is configured by the channel configuration CC1 managed by R1 and R2.

5. Add Peers and Ledgers: Peer P1 of Organization R1 joins the channel C1. P1 hosts
the ledger L1 and can communicate with the orderer O4 through the channel.

6. Install Chaincode and Client Application: Smart contract chaincode S5 is installed
on the peer P1. And client application A1 of organization R1 updates the ledger
L1 with the help of the smart contracts.

7. Adding new Peers: Similarly, peer P2 joins the channel C1 and holds the copy of
the ledger L1 and deployed smart contract S5. Client application A1 and A2 can
access the ledger L1 by invoking the intelligent contracts on either of the peers P1
or P2.

11

2 Theoretical Background and Related work

2.3 Comparison between Ethereum, Corda and Hyperledger
Fabric

This section provides a brief analysis of the different characteristics of Ethereum, Corda,
and Hyperledger fabric that helps determine a DLT technology for implementing
the prototype. Ethereum was created to provide a platform to build distributed
applications; on the other hand, Corda’s use cases focused on solutions only for
financial industries, while the modular nature of hyperledger provides solutions to
multiple industries.

Ethereum is a public-based blockchain and, therefore, not suitable to store confidential
data, while Corda and Hyperledger can be used as a permissioned or a private
blockchain and have mechanisms to store private data.

In Ethereum, all parties in the network need to reach a consensus on the transactions’
order to keep the ledger’s state consistent. This is achieved by mining based on the
Proof-of-work consensus scheme. In contrast, Corda and hyperledger have subsets of
peers involved in the transaction process and the consensus algorithm is chosen based
on the application’s requirements. This results in Ethereum having a low-performance
compared to hyperledger and Corda.

Smart contracts are just business logic written using a programming language. The
smart contracts can be implemented using Solidity for Ethereum, Go, and Java for
Hyperledger Fabric and Kotlin and Java for Corda.

Tokenization of assets can be quickly done in Ethereum using the ERC20 token stan-
dards, and similarly can be done in Corda using its token sdk. Hyperledger, on the
other hand, needs to implement custom solutions to tokenize an asset. Table 2.2
summarizes the differences between these blockchain technologies.

2.4 IPFS

InterPlanetary File System (IPFS) is a distributed peer-to-peer file system for blockchain-
based content [29]. The content is split into different parts and stored on multiple
nodes, and can be accessed using the hash of the content.

In traditional location-based addressing, such as HTTP, data can be addressed using
the server’s hostname. On the other hand, IPFS is based on content-addressing which
utilizes the content to address the data from the network [29]. By using the hash of

12

2 Theoretical Background and Related work

Ethereum Corda Hyperledger Fabric

Purpose Platform to build
distributed apps

Solutions for Finan-
cial Industries

Modular platform to
build enterprise so-
lutions

Permissions? Public blockchain Permissioned
blockchain

Permissioned
blockchain

Consensus Mining based on
proof-of-work

Parties involved in
the transaction make
the decision

Pluggable consensus
mechanism

Transaction
rate and
Performance

Slow Fast Fast

Smart contract
language

Solidity Java and Kotlin Go, Node.js and Java

Tokenization Using ERC20 token
standard

Using token sdk Custom implementa-
tion

Table 2.2: Difference between Ethereum, Corda and Hyperledger Fabric

the data, the user can access the content, and the network will always return the same
content irrespective of who uploads it [29].

Limitations of IPFS

Data stored on the network is not persistent, i.e., the nodes in the network decide if it
is convenient to keep the content [30]. To ensure the storage of content, the user needs
to pin the files to the node to avoid garbage collection. Pinning services run multiple
nodes that allow the user to pin their file for a small fee. Examples of pinning services
are Infura, pinata, and Temporal [30].

Another challenge concerning IPFS is privacy related. Files in IPFS can be accessed if
one possess the hash of the content, hence uploading sensitive files on the network is not
the right approach. One of the solutions involves encrypting the file with the recipient’s
public key, and the recipient can access the file and decrypt it using their private key.
With this approach, only the recipient can access the file on the network.

13

2 Theoretical Background and Related work

2.5 Related projects

2.5.1 Everledger

Everledger is an independent technology company aiming to provide blockchain-based
solutions in luxury goods, wine, and diamonds. These industries are facing challenges
related to authenticity and sustainability. Using blockchain technology, they aim to
provide solutions that help their clients verify a product’s authenticity. For the diamond
industry, Everledger uses blockchain, AI, nanotechnology, and Internet of Things (IOT)
to create a digital record of each diamond to provide transparency for ethical sourcing
[31].

This digital record represents the final product (the diamond) from beginning to end
of the supply chain, which is useful for luxury brands aiming at fighting counterfeit
products, but results in a traceable history composed of just ownership transfers.
For a company like IBEO, a ball bearing is a made of multiple components and raw
materials from several different sources, which are processed and combined, potentially
by multiple manufacturers, so it cannot be limited to ownership transfer. Moreover,
the final product comes into existence only at a certain step of the chain, while the
predecessor products (raw material or intermediate component) cease to exist. This kind
of digital record won’t help ensuring the authenticity of every step in the manufacturing
process, therefore Everledger is not suitable for safety.

2.5.2 Origintrail

Origintrail is a blockchain-based ecosystem aimed at connecting legacy supply chain IT
systems to ensure data immutability. The Origintrail protocol solves three significant
issues: poor interoperability, inefficient data storage, reluctance to share data [32].
It is an Ethereum based system and uses ERC20 based tokens as incentives to track
goods.

Like Everledger, Origintrail provides specialized solutions to track products and also,
given Ethereum’s weak points, in this thesis we decided to focus on a more generalized
solution, not based on Ethereum, which can be applicable to various SMEs in the
supply chain networ.

14

3 Research Approach

This chapter provides a detailed description of the supply chain process in IBO GmbH
and relevant use-case scenarios, followed by the research methodology used to conduct
this thesis.

3.1 Context

Figure 3.1: IBO’s supply chain process flow

IBO GmbH is a German company based in Munich dealing with manufacturing ball
bearings from small to large bearings for high dynamic movements and complex
environments [33]. They aim to provide services over their product’s lifecycle - from
manufacturing to maintenance [34]. Figure 3.1 describes the supply chain process in
IBO.

IBO’s sales team acquires the Customer orders through cold acquisition, networking,
research, or support of existing customers and records the sales opportunity in the

15

3 Research Approach

Enterprise Resource Planning (ERP) system. The confirmation, along with the Require-
ments, CAD models, and terms & conditions documents, is dispatched to the Customer
once the order is confirmed.

IBO initiates the requirements planning phase for raw material units, components,
tools, equipment and assesses risks and opportunities. Once it finalizes the Suppliers,
IBO places an order for the raw materials and the components. Both parties need to
agree on the order specification details, including the price, expected delivery date,
quality, etc. At this point, the Component Supplier orders the raw materials as well.
Once the raw materials and components are ready, the Supplier ships them to IBO,
including quality documents and additional material on request.

Upon receiving the materials, IBO reviews the quality of the shipment and verifies
the documents. All details are saved in the ERP system, and, in case of incongruity, a
complaint is raised to the Supplier.

IBO uses the raw materials and components to manufacture the ball bearings and tests
using in-house, fully automated test machines. The details of the manufacturing and
the results of the testing are also stored in the ERP system.

Once the order is ready, IBO labels the shipment, attaches the agreed documents, and
dispatches it. The logistics company involved in the shipment is notified in case of
special delivery conditions.

Upon receiving the shipment, the Customer inspects the product and the documents,
and if satisfied, they initiate the payment; otherwise, a complaint is raised.

This thesis concentrates on using blockchain-based solutions for SMEs similar to IBO
in safety-critical supply chains to provide traceable product history and transparent
data flow without disclosing business secrets.

Transparent data flow

Figure 3.2 illustrates the inefficient audit process. Data transfer between the parties in
the supply chain mostly occurs through emails and paper documents. In some cases
one party might not save the documents sent with the shipment.

In the case of claims raised by the Customer, e.g., low quality of raw materials, IBO
tries to resolve it by consolidating the data from various sources, including contacting
other parties, which takes weeks. If the claims are not internally resolved, both parties
need to agree on appointing a third-party auditor to settle the claims.

16

3 Research Approach

Figure 3.2: Process flow showing the inefficient audit

This problem is caused by the lack of standards, the absence of a platform to share
data, or by privacy issues, where the company does not want to disclose too much
information. It becomes quite challenging for the Auditors and the Partner Companies
to track, manage, and verify the data’s authenticity because it might be distributed
throughout various storages.

Blockchain-based technology allows data to be stored in a secure, distributed, tamper-
proof system, where it becomes easy for partner companies to contribute, audit, and
verify the authenticity of the data. It can act as an interoperable storage for supply
chain data for parties with no mutual trust. The verification can be done quickly as
the blockchain is accessible by all the parties having access rights, and the data is also
secure from fraud as the ledger is immutable.

For this project, we represent a supply chain step as an "Order" which is a collection
of data with an Order ID, stored in the ledger. An example of an Order is a purchase
order placed by the Customer to the Manufacturer, with the data composed by the
requirements, quotations, terms and condition documents, and the contract.

Product Tracking

A final product is the result of multiple steps in a supply chain, starting from raw
materials to the finished assembled and certified piece. Because of several processes

17

3 Research Approach

and parties involved, the supply chain is susceptible to fraud. In the scenario illustrated
in Figure 3.3, the Distributor ends up selling a counterfeit product disguised as an
IBO product. Because the counterfeit bearing is of lower quality than IBO´s, it results
in a failure in the Customer’s system, which is blamed on IBO. These false claims
could result in tremendous reputation loss which can lead to other Customers and
Distributors in the system to lose faith in IBO.

In the blockchain network, all the related parties approve the data uploaded and
eventual updates, preventing data tampering. The relevant parties can securely track
the product using the traceable product history of the supply chain. For a ball bearing
product the ideal traceable product history will be:

1. Ball bearing ordered to Manufacturer by Customer

2. Raw materials ordered to Supplier 1 by Manufacturer

3. Component ordered to Supplier 2 by Manufacturer

4. Raw materials extracted by Supplier 1

5. Raw materials shipped to Manufacturer by Supplier 1

6. Raw materials quality check by Manufacturer

7. Manufacturer pays Supplier 1

8. Component manufactured by Supplier 2

9. Components shipped to Manufacturer by Supplier 2

10. Components quality check by Manufacturer

11. Manufacturer pays Supplier 2

12. Ball bearing manufactured using raw materials and components by Manufacturer

13. Ball bearings quality tested by Manufacturer

14. Ball bearings shipped to Customer by Manufacturer

15. Ball bearings quality tested by Customer

16. Customer pays Manufacturer

This history is immutable and each step is legally bound to a contract between parties,
so this ensures that the ball bearing is produced in the legitimate advertised way.

18

3 Research Approach

Figure 3.3: Process flow illustrating a dispute scenario

3.2 Design Science Research Methodology

Design Science Research Methodology (DSRM) is a research approach that comprises
policies, methods, and procedures and consists of six steps: problem identification and
motivation, defining the objectives for a solution, design and development, demonstra-
tion, evaluation, and communication [35]. Figure 3.4 below depicts the process model
consisting of the six steps described later in this section.

Figure 3.4: DSRM process model

19

3 Research Approach

3.2.1 Problem Identification and motivation

Counterfeit products are often of a lower quality standard, and when distributed,
can result in safety risks ranging from severe to mild, reputation, and financial loss.
At the moment, there is no way to trace the authenticity of a product. Another
challenge is related to a transparent data flow. When the Customer reach out to the
Manufacturer with claims regarding the products, e.g., the quality of the raw materials
used, manufacturing tools, etc. verification and validation of such claims, if even
possible, can take weeks, as most of the data needs to be consolidated from various
sources, which are not fraud-proof.

3.2.2 Define the objectives for a solution

The objective is to build a blockchain-based single source, a fraud-proof traceable
solution that enables users to track and trace their products and have a transparent
data flow to help with faster and reliable claim processing. In a blockchain-based
system, the transactions and the data states are transparent and available to all parties.
One of the challenges in designing and implementing smart contracts considering the
confidentiality and privacy of sensitive data. The first research question focuses on
gathering and analyzing the requirements. The requirements are formulated using the
template proposed by Pohl and Rupp, which is covered in the next chapter. Chapter 4
also includes the use-case scenarios and dependency diagrams.

3.2.3 Design and Development

The architecture for this thesis is defined using the 4+1 view modes considering different
stakeholders’ points of view. The models include the following views: (1) logical view
consisting of the class diagram, (2) process view consisting of sequence and activity
diagrams, (3) implementation view consisting of the package and component diagram,
(4) deployment view consisting of deployment diagram and (5) scenario view consisting
of user stories.

3.2.4 Demonstration

A prototype was implemented using Hyperledger fabric technology. It allows users
to enter their product data that is confidential to their organization, share data with
a different organization, and agree on the data shared between them. The user of
an organization can access the history of a given product and request access to sen-
sitive information that is not visible. The data stored in the private data collection

20

3 Research Approach

is confidential and private to its own organization and cannot be accessed by other
organizations in the system unless granted access. No private information is stored
on the blockchain. Sensitive information can be shared between organizations using
private data channels.

3.2.5 Evaluation

The architecture is evaluated against requirements and the prototype implemented.
Assessed scenarios are related to traceable product history and transparent data
flow.

3.2.6 Communication

The activity is not discussed here, as it has not been published in a paper or any
academic journal yet.

21

4 Requirement and System Analysis

This chapter tackles the first research question. The first section consists of the stake-
holder requirement described for the supply chain system, followed by the detailed
use-case analysis. The chapter concludes with the comparison between a traditional
supply chain system and a blockchain-based system.

4.1 Stakeholder Analysis

This section focuses on identifying stakeholders and defining the relationship between
them. Edward Freeman defines stakeholders as any group or individual who can affect
the organization by achieving its objectives or be affected in the process [36]. The
goal here is to identify the stakeholders and their dependencies by analyzing different
parties in IBO’s supply chain.

The main stakeholders identified for this thesis are as follows: Customers, Manufactur-
ers, Raw Material Suppliers, Component Suppliers, and Distributors. Customers are the
catalysts for most of the activities in the supply chain network. There would be no need
for a supply chain if there was no customer demand. Manufacturers are the producers
of goods and services that are useful to end-users, and they help transform components
and raw materials supplied by Suppliers into beneficial products [37]. Suppliers can
be cataloged into a wide range of categories known as tiers, including raw materials
producers or extractors, Components Suppliers, Components Assembler, and various
other entities. Tier 1 supplier, e.g., Component Suppliers, cater to the Manufacturers’
needs, and Tier 2 Suppliers, e.g., Raw Material Suppliers, support the Tier 1 Suppliers
[38]. Distributors pay an important role in the supply chain by acting as a mediator
between the Customers and the Manufacturers.

Dependencies between the stakeholders are a way to understand the actors’ behavior
in the given context [39]. Figure 4.1 above depicts the dependency network diagram,
which helps identify the resources required by the stakeholders and their dependencies.
Using the approach mentioned in the study of Balta, Greger, Wolf, and Krcmar (2015)
[39], five main actors are identified. Each actor is represented by his activities and goals,

22

4 Requirement and System Analysis

Figure 4.1: Interactions and dependencies between stakeholders

23

4 Requirement and System Analysis

and a dependency is depicted using a directional arrow starting at the dependent actor
and ending at an independent actor [39]. The concept of power is shown as a circle
on the dependency arrow, and it represents the control of the resource, which could
be of two types: symmetric and asymmetric [39]. In Figure 3.1, five actors and six
dependencies are illustrated, one of which is asymmetric, and another one represented
by a dashed arrow is a secondary dependency.

The Customer has to agree with the requirements (activity A1 of Customer) and the
terms and conditions while placing an order for a product with the Manufacturer or
the Distributor. To track the progress or the authenticity of the product (goal G2 of
Customer), the Customer depends directly or indirectly - through the Distributor - on
the Manufacturer for the order details (dependency 3 "order details"). Similarly, the
Raw Material and Component Supplier need to agree on requirements and terms &
conditions (activity A1 of the Raw material and component supplier) while accepting
an order by the Manufacturer.

In the case of an issue, the Customer creates a claim, e.g., regarding the quality of raw
materials used to the Manufacturer and expects fast processing (goal G1 Customer). To
provide a fast claim verification process (goal G1 of Manufacturer), the Manufacturer is
dependent on the supplier data and documents (dependency 5 and 6 "Supplier data &
docs") coming from the Raw Material and Component Supplier. The documents pro-
vided by the Component supplier (dependency 6 "Supplier docs") could be generated
by the component supplier itself or could be provided by the Raw Material Supplier
(dependency 7 "Supplier docs").

Since most stakeholders have similar goals and perform analogous actions, we abstract
them into two roles: Consumers and Producers. An organization in the network at each
step of the supply chain assumes either role. In a simple supply chain consisting of a
Customer, a Manufacturer, and a Supplier, during the transaction between the Customer
and the Manufacturer, the Customer acts as the Consumer, and the Manufacturer serves
as the Producer. During the transaction between the Manufacturer and the Supplier for
the Raw Materials, the Manufacturer acts as the Consumer, and the supplier acts as the
Producer.

4.2 Use case Analysis

In this section, we cover the detailed use-case analysis for system and business require-
ments, which are summarized in Table 4.1.

24

4 Requirement and System Analysis

4.2.1 System Requirements

The system developed for this project is blockchain based and should maintain an
immutable list of past transactions. Transactions are records of events that occur in the
blockchain with a given timestamp and are generated using smart contracts. Smart
contracts are business code that can modify the state of the ledger. Only authorized
parties in the network can access the ledger and execute the smart contracts using API
calls.

4.2.2 Business Requirements

The Supply chain system is divided into two modules, the Transparent Data Flow
module and the Product Tracking module. Both modules have their own ledger and
smart contracts.

Transparent Data Flow

This module deals with Orders and operations on those. Such module is required to be
transparent, trusted, and fraud-proof in order to guarantee a fast and efficient audit.
Its ledger stores the details, the reviews and approval of the order. Consumers can
upload the order details and tag the Producer for approval. At any given time, the
Producer can choose to update the order details or approve them. In case the Producer
updates the order details, the Consumer needs to approve the changes as well. Figure
4.2 illustrates the use-case diagram for this module.

External members of the network can request access which, if granted, allows them to
view the Order details of a certain step in the supply chain. This ties to the requirement
for data privacy and confidentiality in the context of data protection and security, which
is concerned with business secrets and how data is shared with third parties.

Moreover the module is required to follow GDPR , which deals with the rights of an
individual or organization to have control over confidential information. General Data
Protection Regulation (GDPR) is Europe’s privacy and security laws passed by the
European Union (EU) with the intent to protect EU organizations and citizen’s private
information. Organizations that don’t comply with the policies are heavily fined, which
could be up to 4% or the annual global turnover or 20 million euros, whichever is higher
[40]. There have been many discussions related to the effects of GDPR on Blockchain.
The GDPR policy states that the data controller is a natural or legal person that should
comply with the regulations [41]. However, blockchain is distributed and does not have
a responsible central authority. Secondly, Article 17 of the GDPR policies states, "Right

25

4 Requirement and System Analysis

Figure 4.2: Use case diagram for Blockchain-based Supply Chain System

26

4 Requirement and System Analysis

to erasure (Right to be forgotten)," i.e., the data can be erased whenever necessary [41].
However, once the transaction is uploaded on a blockchain, it cannot be modified or
deleted.

In this thesis, the organizations that upload the data are considered data controllers,
which means they have the right to update and share data with any other organization in
the network (upon Access Request) and, if necessary, delete it from the network.

Product Tracking

This module is responsible for creating and maintaining the Traceable Product History.
Products can be single items or batches of items which are traceable by an ID. The
Consumer can access the Product History of any product in the blockchain network
using such id. This is achieved by inspecting the connections between orders. Since
an order is associated to a Producer and a Consumer, a connection is a link between
two orders where the Producer of Order 1 is the Consumer of Order 2. For example,
given Order 1 "Manufacturer orders component by Supplier " and Order 2 "Supplier
orders raw material by Extractor" then a Connection 1 can be made between Order 1
and Order 2 by the Supplier. If the Order does not involve a partner, the single agent
participating in the Order is both Producer and Consumer. Starting from the Order ID
the module extracts all connections to build the Product History.

Due to the privacy regulations mentioned before, only a subset of manufacturing details
stored in the blockchain of the Transparent Data Flow module are reflected (copied) in
the blockchain of this module.

4.3 System Analysis

The goal of System analysis is to create a new and improved system by examining
current processes and workflows [42]. The requirements mentioned above are compared
with traditional supply chain system and the differences listed in Table 4.2.

In a traditional supply chain system, each organization in the chain stores the data
in its Enterprise Resource Planning (ERP) system. The data communicated between
both parties is duplicated in their respective ERP systems and could be inconsistent.
Moreover, the tracking data needs to be consolidated from various sources.

27

4 Requirement and System Analysis

As a. . . Id I want/need to ...

System
Requirements

System

R1 Record user actions and store them in the ledger

R2 Maintain an immutable list of transactions in
the ledger

R3 Add mechanism to limit access to the ledger

R4 Expose the smart contracts using APIs

R5 Authorize users to execute smart contracts

Transparent
data flow
Requirements

Consumer

R6 Create new order

R7 Update order details

R8 Tag the Producer for approval

R9 Approve/Reject order details changes from the
Producer

R10 View a list of all orders

R11 Restrict access to the order uploaded only to
the Producer

R12 Restrict access to the order shared only to the
authorized organizations

R13 Delete the order.

R14 Approve order access request

R15 View list of order access requests that need ap-
proval

Producer

R16 Approve/Reject order details agreement

R17 Update the order details

R18 View a list of orders that need approval

Organization
R19 Raise an access request to view the details of an

order.

R20 View the list of raised access requests.
Product
Tracking
Requirements

Organization
R21 Access the product history using the order id.

R22 Upload order connections

Table 4.1: Requirements of a blockchain-based supply chain system

28

4 Requirement and System Analysis

Traditional Supply chain Blockchain-based supply chain

Data Storage Each party stores its own data
and the data that is shared by
the other parties.

Each data record is stored on
the ledger upon which the par-
ties had previously agreed.

Data Sharing Data is shared through emails,
paper-documents.

Any party can access the data
only if granted authorization by
the owner of the data.

Audit Time The process can be lengthy
(up to several weeks) because
the validation is done on each
party’s data copies.

The validation can be quickly
performed by accessing the
ledger as the parties agree upon
the data stored.

Product Tracking To track each phase in the sup-
ply chain, partial data from all
party members must be pro-
cessed and assembled into a
product history. As more mem-
bers are added to the supply
chain, the time to complete this
process increases exponentially.

The product history can be
built by traversing the product
connections in the ledger.

Fraud Party members can compro-
mise their own data and update
history leading to a false prod-
uct history.

The data update history is
stored on the ledger, which is
tamper-proof by design.

Security Traditional supply chains are
vulnerable to data breaches and
cyber attacks.

As the blockchain is replicated
on all the nodes in the network,
the consensus mechanism and
the cryptographic techniques,
cyber attacks are almost impos-
sible.

Table 4.2: Difference between traditional supply chains and block-chain based supply
chains

29

5 System Design

This chapter describe the architecture in the first section followed by a detailed expla-
nation on how to retrieve Product History.

5.1 4 + 1 Architectural Views

Architecture and design play an essential role in shaping the system. They comprise
components, their relationship with each other, the guidelines governing their design
and evolution over time [43]. A multi view architecture is a model composed of multiple
perspectives allowing us to address the concerns of various stakeholders in the system.
One such modeling technique is the 4 +1 architectural view model [9], and it provides
four essential views, each addressing a specific stakeholder concern and is illustrated
in Figure 5.1.

5.1.1 Logical View

The Logical view describes the functional requirements of the system. The system is
decomposed into classes and objects, which are abstractions taken from the problem
domain [9]. UML class diagrams are used to describe the logical architecture. System
analysts and designers are the stakeholders who are interested in the logical view of
the system.

The system’s architecture is divided into two main modules: the Transparent Data Flow
module and the Product Tracking module.

Transparent data flow

Figure 5.2 illustrates the class diagram for the smart contracts of the Transparent Data
Flow module and is responsible for creating, updating and accessing orders entered
by the organization. Described below is a detailed explanation of the different classes
used in the order details module.

30

5 System Design

Figure 5.1: 4+1 View Model

1. OrderStatus: represent the status of the order created by the organization.
When an organization creates a new order, the status is set to PENDING or
NOT_NEEDED, depending on the approverOrganization. The status of the order
can be updated using the approveOrderStatus function in the smart contract,
which changes the order to APPROVED or REJECTED.

2. File: represents the file uploaded by the organization that is tied to an order. The
File contains the content’s hash, the name of the file, and the timestamp. An
Organization can upload multiple files in a single order.

3. Comment: represents the comments added by the organization while creating,
updating, or approving the order. It consists of the comment string, timestamp,
username, and organization name. Similar to the File, an order can have multiple
comments.

4. Order: represents the order created by the organization, which describes a process
step in the supply chain, e.g., Sales Order, Manufacturing process, Purchase order,
etc. When an organization creates a new order, it needs to mention the order id,
type, and order date. If an order has the approver organization name stated, then
the approver organization can access and update this order too.

5. OrderContract: represents the smart contract responsible for creating, updating,

31

5 System Design

viewing, and deleting the order details. The smart contracts are developed using
the fabric-contract-API in Java.

6. AccessRequestState: represents the state of the request, which could be PEND-
ING, APPROVED, or REJECTED.

7. AccessRequest: represents a request raised by a user from an organization to
access the details of a particular order.

8. AccessRequestContract: is the smart contract responsible for creating, viewing,
updating, or deleting these access requests.

9. PrivateDataCollection: is a data class representing the private data between
two organizations, identified by the policy field which contains the name of the
organizations.

10. PrivateDataCollectionUtils: helper class for PrivateDataCollection.

Product Tracking:

The Product Tracking history module is responsible for providing product track and
trace to the end-user. The product history is created based on the Connections and is
displayed to the user as a set of Orders consisting of minimal data such as the date or
the organizations names that handled the Order.

Figure 5.3 depicts the class diagram for the product history module, followed by a
detailed description of the classes presented.

1. OrderDetails: represents a step that would be presented when the user accesses
a product’s history. The data displayed to the user includes the order id, type,
name of the publishing organization, and the date.

2. ProductHistoryConnection: represents the connection between two orders.

3. ProductHistoryContract: represents the smart contract that handles the creation
and deletion of these connections and the viewing of the product history.

5.1.2 Process View

The system’s process view represents the dynamic aspect that takes the non-functional
requirements into account, e.g. performance [9]. The architecture can be described
using several abstraction levels, each addressing a different interest [9]. This can range
from high level independent logical networks to basic jobs running in one process. UML

32

5 System Design

Figure 5.2: UML class diagram for Transparent data flow

33

5 System Design

Figure 5.3: UML class diagram for Product Tracking module

sequence, activity, or communication diagram are used to represent the architecture in
the process view. Sequence diagrams illustrate the interactions in sequential order, and
Business Process Model and Notation (BPMN) helps to specify business processes in a
graphical representation [44]. Section 5.2.1 describes the sequence diagrams designed
for this thesis, and section 5.2.2 focuses on the BPMN diagrams.

Sequence Diagram

The sequence diagrams for the order creation is illustrated in Figure 5.4. The com-
ponents involved in creating a new order are the organization (e.g., Manufacturer),
the app, a distributed file storage, the smart contracts, smart contracts’ APIs, and the
distributed ledger. The order id mentioned in the connection’s list is used to create the
product history.

1. Step 1: The user from a supply chain organization provides the necessary details,
files, and the connection meta-data (containing order id mapping to another order
in the system)

2. Step 2-3: All the files provided by the user are added to the distributed file
storage, and the hash is returned.

34

5 System Design

3. Step 4-6: The order ids mentioned in the connections list are evaluated to check
if they exist in the system.

4. Step 7-9: For all the valid order ids, create a connection in the product history
ledger using the smart contract.

5. Step 10-12: Combining all the details acquired in the previous steps, the system
submits a request to create an order using the smart contract.

6. Step 13: On successful response, display the newly created order details.

The sequence diagram for the other uses cases is similar and contains the same compo-
nents therefore are not illustrated.

Figure 5.4: UML Sequence diagram for new order creation

Business Process Model and Notation (BPMN)

BPMN’s goal is to provide notations easily understandable by all project stakeholders,
from requirement analysts to developers [44]. The diagram consists of Flow objects,

35

5 System Design

connecting objects, swimlanes, and artifacts:

1. Flow objects contain activities, events, and gateways [44]

2. Swimlanes are graphical containers that group the participant’s actions

3. Connecting object are used to connect Flow objects

4. Artifacts consist of data objects, annotations, and groups and are not illustrated
in the diagrams [44]

Figure 5.5 illustrates the business process diagram for a Transparent Data Flow scenario
between three supply chain parties. The events in orange boxes represent the actions
taken out of the system.

The Customer places an order for the roller bearings by contacting the Manufac-
turer. Upon receiving the order request, the Manufacturer creates a new order in the
blockchain and simultaneously places an order for raw materials. After adding all the
details and the required documents in the newly created order, the Manufacturer adds
the Customer to review it. The Customer can access the order by viewing it on the list
of orders to approve.

The Raw Material Supplier also creates a new order by adding all the necessary details
and tags for the Manufacturer to approve. In the order approval process, which takes
place between the Manufacturer and the Raw Material Supplier, the Manufacturer
reviews the order. If everything is as promised, it approves the order or updates it and
sends it back to the raw material Supplier to approve the changes. The Supplier follows
the order approval process as well.

Upon receiving the Supplier order, the Manufacturer links it to the Customer order.
This step helps in retrieving the details related to product history for the Product
Tracking module.

5.1.3 Development View

The development view of the architecture comprises components and interfaces used
to assemble a system. The system is packaged into small elements, e.g., libraries,
extensions, or sub-systems that can be developed and tested by the independent
development team. Component diagrams are implementation views that describe
the components and their interactions with one another. Components are defined
as independent units in a system. Figure 5.6 depicts the component diagram for a
blockchain-based supply chain system.

36

5 System Design

Figure 5.5: BPMN diagram for transparent data flow module

37

5 System Design

Listed below is the list of components with a detailed explanation of their interfaces
and dependencies.

Figure 5.6: UML component diagram for blockchain-based supply-chain system

1. User Interface: The user interface is web-based and the user interacts using a
web browser. The web interface provides various functionalities to the user to
communicate with the blockchain network. The module depends on the Web
backend REST API to request or update the data. The front end depends on the
Distributed File System module to upload the files and retrieve the files’ hash.

2. Web Backend: The Web backend provides APIs which allow the User Interface
to communicate with the smart contracts. This component uses the fabric-client
SDK to interact with the hyperledger fabric network. The user can perform API
calls after obtaining an authorization token.

3. Blockchain: Blockchain contains three modules: the smart contracts, the dis-
tributed ledger, and the private data collections. We use hyperledger fabric to
implement the blockchain module.

4. Smart contracts: The smart contracts are deployed on the nodes in the hyper-
ledger network. It is the core of the project that handles most of the business logic.
The private, confidential data in the network are stored in Private data collection,
and the rest is stored in the world state of the distributed ledger.

5. Distributed Ledger: The distributed ledger is a journal of transactions that take
place in the network. The ledger has two parts: the world state and the blockchain.
The world state is a key-value pair database and is implemented using CouchDB.
The blockchain here is a transaction log, and it records all events leading to the
current world state.

6. Private Data Collections: Private data collections are used for confidential data
and cannot be stored on the public chain. It consists of the actual data and the

38

5 System Design

hash of the data, which is stored on every organization’s ledger, and it is used for
state validation.

7. Distributed File System (IPFS): This component is responsible to upload the
files on multiple nodes.

5.1.4 Physical View

In simple terms, the physical view can be described as the mapping from software to
hardware [9] with the goal to deliver a deployable system. The physical view focuses
on non-functional requirements such as availability, scalability, reliability, etc. Figure
5.7 illustrates the physical view in the form of a deployment diagram.

The User Interface is available via the Browser and it depends on the Web Frontend
server to display the content. The Web Backend component is deployed on a server
and communicates with the Blockchain node. The Smart Contracts, the Distributed
Ledger and the Private Data Collections are deployed on the Blockchain Node and each
organization in the network runs its own Blockchain Node.

Figure 5.7: UML deployment diagram for blockchain-based supply-chain system

39

5 System Design

5.2 How to retrieve the Product History

In blockchain systems where the end-product is the only asset (see 2.5.1) retrieving a
product history is trivial because the only state change is the ownership of the product,
which means the product history is simply the list of owners in time. However in our
system the Orders are distributed among several Private Data Collection which are only
accessible by authorized organizations, which are a subset of the parties in the network.
Because the end product is not necessarily the only asset, it is necessary to inspect the
data present in all organizations involved in that product. Because of this from the
point of view of each party, the Order information is always incomplete. In this thesis
we tackled this problem in the following way. The ledger of the Product History stores
a Connection, which builds a bridge between related orders in different organizations,
even if these organizations do not share private data or don’t even know each other.
For example, the Customer places an order to the Manufacturer who then places an
order to the Supplier, which is not visible to the Customer. It is the Manufacturer’s
duty the link the Customer order to the Supplier order in a connection and store it in
the ledger. The complete Using the connections we adopt the following algorithm to
build a list of chronological Orders describing the Product History.

40

5 System Design

Algorithm 1 Retrieve Product History

1: procedure GetProductHistory(orderId)
2: Create empty list analyzedConnections
3: Create empty list productHistory
4: Retrieve all connections in the ledger with orderId and store them in

tempConnections
5: for connections in tempConnections do
6: if connections not present in analyzedConnections then
7: Add connection to analyzedConnections
8: Get order1 from connection
9: if order1 not present in productHistory then

10: Add to productHistory
11: Goto step 4 for orderId of order1

12: Get Order2 from connection
13: if orde21notpresentinproductHistory then
14: Add to productHistory
15: Goto step 4 for orderId of order2

16: Sort productHistory by timestamp
17: if orderId 6= productHistory[0] then
18: Delete all records younger than the record with orderId

19: Retrun productHistory

41

6 Prototypical Implementation and
Evaluation

This chapter describes the technology stack used to implement the prototype for this
thesis followed by the evaluation of the prototype based on the requirements and the
reference architecture.

6.1 Tools and Technologies

6.1.1 Hyperledger Fabric

Hyperledger is an open-source community focused on creating frameworks, tools, and
libraries for enterprise blockchain developments [45]. It includes various distributed
ledger frameworks such as Fabric, Indy, Iroha, Sawtooth Burrow, etc. [45]. Founded
in 2015, Hyperledger Fabric is a blockchain technology consisting of ledgers, smart
contracts, and tools to help users manage transactions [22]. It has a modular architecture
and allows the components to be used in a plug and play fashion. This feature covers
a wide range of industry use cases. Fabric is private and permissioned. The smart
contracts can be developed in Go, Java, or node.js programming languages. Fabric uses
dockers to store images for the containers for various fabric components.

6.1.2 Docker

Docker is an open-source container technology that allows developers to package
applications with the dependent libraries [46]. The docker tools are designed to help
developers create, run, and deploy applications quickly. The developers need not worry
about the system environment that the project would run on. Docker containers can
be deployed anywhere, e.g., virtual machines, cloud, etc. A docker image is a file
consisting of instructions to execute the entire application, including the code, the
environment variables, libraries, and configuration files. When the docker image is
deployed to an environment, it is implemented as a container. A docker image can be

42

6 Prototypical Implementation and Evaluation

instantiated into multiple containers. For this thesis, docker images for various fabric
components published in the docker hub are used [46].

6.1.3 React.js

React.js is an open-source JavaScript library used to implement UI components for web
apps developed and maintained by Facebook. Some of the distinguishing features are
Virtual DOM, Unidirectional data flow and is light-weight. Traditional frameworks
were based on DOM for UI rendering. For every change on the page, the DOM needs
to re-render the page, which is not ideal for complex applications. The Virtual DOM
creates a copy of the previous DOM, which compares with the new DOM to determine
the current changes, and only these changes are rendered rather than the entire DOM.
The learning curve is also low as developers can get started with basic knowledge of
JavaScript, HTML, and CSS.

6.1.4 IPFS

IPFS is a peer-to-peer distributed file sharing system. In a traditional file storage system,
addressing a file is IP based, and it can be downloaded from a single server at a time
[47], causing the process to consume a lot of bandwidth. The owner of the server can
also prevent and restrict access to the file. IPFS does not suffer from this limitations as
the files on the IPFS network are addressed using a unique cryptographic hash of the
contents. When the user request access to the file, the node closest to him hosting the
file will respond. Once the user downloads the file, he becomes a host himself.

6.1.5 Node.js

Node.js is an open-source JavaScript runtime environment build of Chrome’s V8 JS
engine [48]. Rather than having multiple languages to implement the front end and
backend for a web app, node.js unifies the development into one language. For this
thesis, we use Node.js as a backend technology to run the server hosting the APIs that
communicate with the hyperledger network.

6.2 Hyperledger Network Description

This section describes the structure of the hyperledger blockchain network implemented
in this thesis and is illustrated in Figure 6.1.

43

6 Prototypical Implementation and Evaluation

The network consists of four organizations called Customer (R1), Manufacturer (R2),
Raw Material Supplier (R3) and Component Supplier (R4), and an ordering service.
Each organization has its own certificate authority (CA*) to issue the identities to its
administrators and nodes and two peers. Peer 1 (P1) hosts the copy of smart contract
S1 related to Transparent Data Flow, while Peer 2 (P2) hosts the copy of S2 related to
Product Tracking. For better modularity, two channels are used: Channel 1 contains the
ledger (L1) for Transparent Data Flow and the P0s of all organizations are attached to it;
Channel 2 contains the ledger (L2) for the Product History and all P1s are attached to
it.

The Ledger consists of the blockchain and the World State (WS), which is a CouchDB
database. L1 holds the list of Order hashes and Order Access requests, L2 holds the list
of connections.

For confidential data, the information exchanged between peers communicating through
channel 1 is stored in Private Data Collections (PDC). These PDC contain the Orders
whose hash is stored in the WS and each peer has 4 PDC, one for itself and three for
communication with the other organizations. The total number of shared PDCs is
10.

For example, P0 of Customer contains those four private data collections;

PDC1 - Customer data only
PDC2 - Customer and Manufacturer data
PDC3 - Customer and Raw Material Supplier data
PDC4 - Customer and Component Supplier data.

P0 of Manufacturer contains
PDC5 - Manufacturer data only
PDC6 - Manufacturer and Raw Material Supplier data
PDC7 - Manufacturer and Component Supplier data.
PDC2 - shared with Customer

The client application (A*) can access the smart contracts using P0 and P1 node.
It is implemented using Hyperledger Fabric SDK for node.js that provides APIs to
communicate with the blockchain network.

The client application is hosted on a node server and provides simplified REST APIs to
the front end component. The front end is agnostic to the blockchain network because
it is abstracted out on the API side. It is implemented using react js.

44

6 Prototypical Implementation and Evaluation

Figure 6.1: Hyperledger Fabric Network for Blockchain-based Supply Chains

6.3 Evaluation based on reference architecture

One of the goals for this thesis is to develop a reference architecture based on the require-
ments described in chapter 4. The architecture is component-based and is decomposed
into logical and functional components. This section describes the requirements and
how the architecture fulfills them.

System Requirements

For this thesis, user actions such as creating, updating and deleting the data are
recorded as transactions, grouped into blocks and stored in the blockchain. As all
nodes in the network have the copy of the blockchain and are synchronized using
the consensus mechanism, the blockchain is immutable. Table 6.1 summarizes the
evaluation for system requirements with respect to the architecture.

45

6 Prototypical Implementation and Evaluation

The . . . should... Fulfilment

System

R1 Record user actions and store
them in the ledger.

Events are recorded as transactions and
grouped into blocks and are appended
into the blockchain.

R2 Maintain an immutable list of
transactions in the ledger

Consensus mechanism in the blockchain-
based system help to maintain an im-
mutable ledger

R3 Add mechanism to limit ac-
cess to the ledger

Confidential data is stored in Private Data
collections and the hash of the collection
is stored in the ledger, which can be later
used to validate the authenticity of the
the private data by any other party in the
network.

R4 Expose the smart contracts us-
ing APIs

The Web backend component provides an
API which helps in communicating with
the smart contracts.

R5 Grant authorization users to
execute smart contract

The user needs to be authorized before
communicating with the smart contracts
via the API. This APIs can be only ac-
cessed using the authorization token.

Table 6.1: Evaluation of the system architecture based on the system requirements

Transparent Order Details

Each step in the supply chain is stored in the ledger in the form of an order object. Both
parties involved in the process need to approve the details stored on the blockchain to
avoid data related disputes. The files are stored on a distributed file system, and the
hash used to access the file is stored in the order details. The order details are stored
in private data collections, and the hash of the data is stored in the ledger. The hash
is used for data validation and serves as evidence for audit process. Only authorized
parties can have access to the uploaded orders.

46

6 Prototypical Implementation and Evaluation

As a. . . Id I want/need to ... Fulfilment

Consumer

R6 Create new order Files are uploaded in IPFS, the order de-
tails are stored in the private data collec-
tions, and the hash of the data is stored
in the ledger.

R7 Update order details The authorized parties can update the
order details, and the approval status is
set to PENDING.

R8 Tag the Producer for
approval

The Consumer links the Producer to the
order details to approve them, at which
point the Producer is authorized to view,
update, and approve/reject the order.

R9 Approve/Reject or-
der details changes
from Producer

The Consumer approves or rejects the or-
der details only if the Producer updates
them.

R10 View list of all or-
ders

The Consumer accesses the list of all the
orders uploaded in the private data col-
lections.

R11 Restrict access to the
order uploaded only
to the Producer

The uploaded data is stored in private
data collections, and no other organiza-
tion has access to the uploaded data.

R12 Restrict access to the
order shared only to
the authorized orga-
nizations

The Consumer can provide authorization
to another organization in the network to
access the data.

R13 Delete an order The data can be deleted from the private
data collections, and only the hash of the
data remains on the ledger.

R14 Approve order ac-
cess request

The Consumer approves/rejects the order
access request

R15 View list of order
access requests that
need approval

The Consumer accesses the list of all ac-
cess requests

47

6 Prototypical Implementation and Evaluation

As a. . . Id I want/need to ... Fulfilment

Producer

R16 Approve/Reject or-
der details agree-
ment

If the Producer is tagged in the order, it
can approve or reject the order details
uploaded on the private data collection.

R17 Update order details If the Producer is tagged in the order, it
can update the order details, and the or-
der’s approval status is set to PENDING.

R18 View list of orders
that need approval

The list of all the orders that need ap-
proval is presented to the user.

Organization
R19 Raise an access re-

quest to view the de-
tails of an order.

The Organization, which is not tagged in
the order and cannot access the private
Order details, raises an access request

R20 View the list of
raised access re-
quests

The Organizations can view the list of
access requests that they have raised

Table 6.2: Evaluation of the system architecture based on the Business requirements of
the Transparent Product History module

Product Tracking

A traceable product history is retrieved with the help of connections or links stored
between any two orders. The product history consists of supply chain process steps
with minimum information visible to any user in the network. The data related to
the connections is stored on the ledger which can be accessed by all the parties in the
network. If the user needs more information regarding a process, they need to raise an
access request to view the details.

48

6 Prototypical Implementation and Evaluation

As an. . . Id I want/need to ... Fulfilment

Organization
R21 Access the product

history using the or-
der id.

Any party in the network can access the
product history as a list of processes using
the product id. Each step displays the
type of process, the organization name,
and the date.

R22 Upload order con-
nections.

The Organization uses a smart contract
function to upload the order connection

Table 6.3: Evaluation of the system architecture based on the requirements of the
Product Tracking module

6.4 Evaluation based on the prototype implementation

To verify if the designed architecture suits the analyzed requirements, we evaluated it
using the prototypical implementation, and the results are summarized below with the
requirement, its fulfillment and screenshots.

R1 The system should record user actions and store them in the ledger.
All the user actions in the fabric network are stored as transactions in the hy-
perledger network’s ledger. As mentioned in section 6.2, the network has two
ledger

R2 The system should maintain an immutable list of transactions in the ledger.
Each node in the hyperledger network holds an identical copy of the blockchain
achieved by a consensus mechanism. Endorsement policies govern smart contracts’
execution and define the list of peers that need to agree on the transaction before
adding it to the ledger.

R3 The system should able to add a mechanism to limit access to the ledger.
Channels and Private data collections in the fabric network help achieve the
confidentiality of private data.

R4 The system should expose the smart contracts using APIs.
Hyperledger Fabric SDK includes the fabric-ca-client, which allows applications
to communicate with the hyperledger network. We use node.js to implement
APIs that interact with the smart contract.

R5 The system should allow authorized users to execute smart contracts.

49

6 Prototypical Implementation and Evaluation

Identity management is implemented using the basic authentication mechanism
provided by Fabric Certificate authority. The Membership service provider, a
pluggable component provided by Fabric, could be used to abstracts all the
cryptographic protocols to provide additional permissions.

R6 As a Consumer, I want to create an order.
After logging in, the Customer can navigate to the ’create order page’ and enter the
details illustrated in Figure 6.2. On successfully creating the order, the Customer
is redirected to the ’order details page’. The user can can add text details, upload
a file and link another order as connections and in the end review the order before
submitting.

50

6 Prototypical Implementation and Evaluation

Figure 6.2: Screenshot for order creation

51

6 Prototypical Implementation and Evaluation

R7 As a Consumer, I want to update the order.
The Customer can click on the update button available on the ’order details page’
and update the order details.

R8 As a Consumer, I want to tag the Producer for approval.
The Customer can tag a Producer while updating the order using the feature in
R7.

R9 As a Consumer, I want to approve/Reject order details changes from the Producer.
The Customer can click the button Approve or Reject, and an option to add
comments is provided. The button is only visible if the Consumer needs to
approve an order. Refer Figure 6.3. The user is registered as Manufacturer and it
needs to approve or reject the order by using the ’Change Status’ button.

52

6 Prototypical Implementation and Evaluation

Figure 6.3: Screenshot for order status approval

53

6 Prototypical Implementation and Evaluation

R10 As a Consumer, I want to view a list of all orders.
The Consumer can navigate to view the list of all the orders using the navigation
menu.

R11 As a Consumer, I want to restrict access to the order uploaded only to the Producer.
An unauthorized Organization cannot access the order details, instead it will
receive an error message.

R12 As a Consumer, I want to restrict access to the order shared only to the authorized
organizations.
Same as R11.

R13 As a Consumer, I want to delete an order.
The Consumer can delete the order by clicking the Delete button on the ’view
order details’ page.

R14 As a Consumer, I want to approve order access request.
The private data is copied from one private data collection to the one shared with
the requesting Organization. To verify the authenticity of the data, the hash is
used for comparison.

R15 As a Consumer, I want to view list of order access requests that need approval.
The Consumer can view the list of access requests received.

R16 As a Producer, I want to approve/Reject the order details agreement.
Same UI as R9. The button is only visible if the Producer needs to approve the
order.

R17 As a Producer, I want to update the order details.
Same UI as R7.

R18 As a Producer, I want to view a list of orders that need approval.
The Producer can navigate to view the list through the navigation menu.

R19 As an Organization, I want to raise an access request to view the details of an order.
The Consumer needs to click the Request Access button and add comments. The
Consumer can raise only one request per process step.

R20 As an Organization, I want to view the list of raised access request.
The Organization can view the list of raised access requests via the option in the
menu.

R21 As a Consumer, I want to access the product history using the product id.
The product history can be view as process steps after entering the product id.

54

6 Prototypical Implementation and Evaluation

R22 As a Consumer, I want to upload order connections
Order connections are created when the user adds the another order id while
creating the order. In Figure 6.1, illustrates the order creation UI and the page
contains a section to add the connections.

55

7 Conclusion

All the contributions in this thesis aim to solve transparent data flow issues and provide
traceable product history with three research questions mentioned in section 1.2.

The integration of blockchain can help improve the supply chain in many factors. The
proposed architecture allows various parties in the network to share private data by
keeping business secrets confidential. The immutable property of the blockchain makes
it easy to verify the authenticity of the data ledger, helping in quickly resolving claims
in the case of a dispute between parties. The immediate availability of the data is also
a plus compared to standard practices involving slow communication of documents
between parties.

The first research question was concluded by conducting a stakeholder analysis, fol-
lowed by a system and requirement analysis. The system analysis helped design
the requirements by analyzing the flaws in the current system. Furthermore, the
architecture was designed using Kruchten (1995) "4+1 view model". The prototype
was developed using the hyperledger fabric as a blockchain platform by referring the
designed architectures. In the last step, the artifacts of the thesis, i.e., the architecture,
is evaluated against the requirements using the developed prototype and the results
conclude that the architecture satisfies the requirements for a DLT based supply chain
system.

7.1 Limitations

This thesis suffered from a methodological and a technical limitation. Methodological
limitations concern actions taken during this thesis to account for the limited time and
resources. The methodological restriction was due to the focus on IBO’s problems,
which means the requirements are confined to the manufacturer’s side. A more com-
plete and robust solution would be reached by analyzing the other parties’ requirements
in the supply chain.

From a technical limitation, IPFS was used as a file storage system. IPFS is a distributed
peer-to-peer protocol and is based on the concept of content-addressing, i.e., the content

56

7 Conclusion

uploaded on IPFS can be accessed using its cryptographic hash. The hash of the file
is stored on the ledger and can be accessed only by authorized parties. However, any
entity in possession of the hash can access the file on the network, rendering uploading
of sensitive files unsafe. The only solution is to encrypt the file before uploading it and
have decrypting measures for both parties.

7.2 Future Work:

The prototype implemented during this thesis is demonstrative and can be extended in
many ways. This includes the following updates:

1. Gathering requirements by interviewing other SMEs and parties in the supply
chain.

2. Researching more on the data that needs to be uploaded on the ledger.

3. Implementing encryption and decryption logic for private files uploaded on IPFS.

4. Implementing authorization logic for users in each supply chain organization.

57

8 Bibliography

[1] Supply Chain and Logistics Management: Concepts, Methodologies, Tools, and Applica-
tions. IGI Global, 2020. isbn: 9781799809456. doi: 10.4018/978-1-7998-0945-6.
url: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.
4018/978-1-7998-0945-6.

[2] J. Thangaraj and R. Lakshmi Narayanan. “INDUSTRY 1.0 TO 4.0: THE EVOLU-
TION OF SMART FACTORIES.” In: (October 2018).

[3] S. Chopra and P. Meindl. Supply Chain Management: Strategy, Planning, and Opera-
tion. English (US). 6th. Pearson Education, 2016. isbn: 97812920093567.

[4] S. S. Pettersen and B. E. Asbjørnslett. “Assessing the Vulnerability of Supply
Chains: Advances from Engineering Systems.” In: Revisiting Supply Chain Risk.
Ed. by G. A. Zsidisin and M. Henke. Cham: Springer International Publishing,
2019, pp. 15–35. isbn: 978-3-030-03813-7. doi: 10.1007/978-3-030-03813-7_2.
url: https://doi.org/10.1007/978-3-030-03813-7_2.

[5] W. Donald. Supply Chain Risk Management : Vulnerability and Resilience in Logistics.
Vol. 2nd ed. Kogan Page, 2011, pp. 99–128. isbn: 9780749463939. url: http:
//search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=395740&
site=ehost-live.

[6] P. Yang, J. Tang, and C. Yan. “A Case Study of Global Supply Chain Risk Man-
agement.” In: 2012 24th Chinese Control and Decision Conference (CCDC). 2012,
pp. 1996–2000. doi: 10.1109/CCDC.2012.6243026.

[7] S. GIBBENS. What is seafood fraud? Dangerous—and running rampant, report finds.
2019. url: https://www.nationalgeographic.com/environment/2019/03/
study-finds-seafood-mislabeled-illegal/.

[8] K. PEFFERS, T. TUUNANEN, M. A. ROTHENBERGER, and S. CHATTERJEE.
“A Design Science Research Methodology for Information Systems Research.” In:
Journal of Management Information Systems 24.3 (2007), pp. 45–77. issn: 07421222.
url: http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=
28843849&site=ehost-live.

58

https://doi.org/10.4018/978-1-7998-0945-6
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-0945-6
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-0945-6
https://doi.org/10.1007/978-3-030-03813-7_2
https://doi.org/10.1007/978-3-030-03813-7_2
http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=395740&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=395740&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=395740&site=ehost-live
https://doi.org/10.1109/CCDC.2012.6243026
https://www.nationalgeographic.com/environment/2019/03/study-finds-seafood-mislabeled-illegal/
https://www.nationalgeographic.com/environment/2019/03/study-finds-seafood-mislabeled-illegal/
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=28843849&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=28843849&site=ehost-live

8 Bibliography

[9] P. Kruchten. “Architecture Blueprints—the “4+1” View Model of Software Ar-
chitecture.” In: Tutorial Proceedings on TRI-Ada ’91: Ada’s Role in Global Markets:
Solutions for a Changing Complex World. TRI-Ada ’95. Anaheim, California, USA:
Association for Computing Machinery, 1995, pp. 540–555. isbn: 0897917057. doi:
10.1145/216591.216611. url: https://doi.org/10.1145/216591.216611.

[10] W. Kenton. How General Ledgers Work. September 2020. url: https : / / www .
investopedia.com/terms/g/generalledger.asp.

[11] F. M. Benčić and I. Podnar Žarko. “Distributed Ledger Technology: Blockchain
Compared to Directed Acyclic Graph.” In: 2018 IEEE 38th International Conference
on Distributed Computing Systems (ICDCS). 2018, pp. 1569–1570. doi: 10.1109/
ICDCS.2018.00171.

[12] K. Sultan, U. Ruhi, and R. Lakhani. Conceptualizing Blockchains: Characteristics &
Applications. 2018. arXiv: 1806.03693 [cs.CY].

[13] K. Raj. Foundations of Blockchain. 2019. url: https://learning.oreilly.com/
library/view/foundations-of-blockchain/9781789139396/.

[14] N. Subramanian, A. Chaudhuri, and Y. Kayikci. “Basics of Blockchain.” In:
Blockchain and Supply Chain Logistics: Evolutionary Case Studies. Cham: Springer
International Publishing, 2020, pp. 11–19. isbn: 978-3-030-47531-4. doi: 10.1007/
978-3-030-47531-4_2. url: https://doi.org/10.1007/978-3-030-47531-4_2.

[15] B. Academy. Private, Public, and Consortium Blockchains - What’s the Difference?
October 2020. url: https://academy.binance.com/en/articles/private-
public-and-consortium-blockchains-whats-the-difference.

[16] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system,” http://bitcoin.org/bitcoin.pdf.

[17] What is Ethereum? url: https://ethereum.org/en/what-is-ethereum/.

[18] url: https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/
CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_
2.html.

[19] Learn about Ethereum. url: https://ethereum.org/en/learn/#smart-contracts.

[20] Enterprise Blockchain Platform: Corda Platform and Services by R3. url: https :
//www.r3.com/corda-platform/.

[21] R. Brown, J. Carlyle, I. Grigg, and M. Hearn. Corda: An Introduction. September
2016. doi: 10.13140/RG.2.2.30487.37284.

[22] Introduction¶. url: https://hyperledger-fabric.readthedocs.io/en/release-
2.2/whatis.html.

59

https://doi.org/10.1145/216591.216611
https://doi.org/10.1145/216591.216611
https://www.investopedia.com/terms/g/generalledger.asp
https://www.investopedia.com/terms/g/generalledger.asp
https://doi.org/10.1109/ICDCS.2018.00171
https://doi.org/10.1109/ICDCS.2018.00171
https://arxiv.org/abs/1806.03693
https://learning.oreilly.com/library/view/foundations-of-blockchain/9781789139396/
https://learning.oreilly.com/library/view/foundations-of-blockchain/9781789139396/
https://doi.org/10.1007/978-3-030-47531-4_2
https://doi.org/10.1007/978-3-030-47531-4_2
https://doi.org/10.1007/978-3-030-47531-4_2
https://academy.binance.com/en/articles/private-public-and-consortium-blockchains-whats-the-difference
https://academy.binance.com/en/articles/private-public-and-consortium-blockchains-whats-the-difference
https://ethereum.org/en/what-is-ethereum/
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://ethereum.org/en/learn/#smart-contracts
https://www.r3.com/corda-platform/
https://www.r3.com/corda-platform/
https://doi.org/10.13140/RG.2.2.30487.37284
https://hyperledger-fabric.readthedocs.io/en/release-2.2/whatis.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/whatis.html

8 Bibliography

[23] Hyperledger Fabric Model¶. url: https://hyperledger-fabric.readthedocs.io/
en/release-2.2/fabric_model.html.

[24] The Ordering Service¶. url: https://hyperledger-fabric.readthedocs.io/en/
release-2.2/orderer/ordering_service.html.

[25] Identity¶. url: https://hyperledger-fabric.readthedocs.io/en/release-
2.2/identity/identity.html.

[26] Peers¶. url: https : / / hyperledger - fabric . readthedocs . io / en / release -
2.2/peers/peers.html.

[27] Private data¶. url: https://hyperledger-fabric.readthedocs.io/en/release-
2.2/private-data/private-data.html.

[28] Blockchain network¶. url: https://hyperledger-fabric.readthedocs.io/en/
release-2.2/network/network.html.

[29] What is IPFS? September 2020. url: https://docs.ipfs.io/concepts/what-is-
ipfs/.

[30] Persistence. October 2020. url: https://docs.ipfs.io/concepts/persistence/.

[31] Diamonds. October 2020. url: https://www.everledger.io/industry-solutions/
diamonds/.

[32] OriginTrail. Making Supply Chains Work. Together. url: https://tech.origintrail.
io/protocol.

[33] url: https://www.ibo-tec.de/de/produkte/alle-produkte.html.

[34] url: https://www.ibo-tec.de/de/service/unser-service.html.

[35] K. Peffers, T. Tuunanen, M. Rothenberger, and S. Chatterjee. “A Design Science
Research Methodology for Information Systems Research.” In: 24.3 (December
2007), pp. 45–77. issn: 0742-1222. doi: 10.2753/MIS0742-1222240302. url: https:
//doi.org/10.2753/MIS0742-1222240302.

[36] R. Freeman and J. Mcvea. “A Stakeholder Approach to Strategic Management.”
In: SSRN Electronic Journal (January 2001). doi: 10.2139/ssrn.263511.

[37] CSCMP, H. Chen, C. Defee, and B. J. Gibson. Defining the Supply Chain. January
2014. url: https://www.informit.com/articles/article.aspx?p=2166717&
seqNum=3.

[38] D. Silver. The Automotive Supply Chain, Explained. May 2016. url: https://
medium.com/self-driving-cars/the-automotive-supply-chain-explained-
d4e74250106f.

60

https://hyperledger-fabric.readthedocs.io/en/release-2.2/fabric_model.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/fabric_model.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/identity/identity.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/identity/identity.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/peers/peers.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/peers/peers.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/private-data/private-data.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/private-data/private-data.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/network/network.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/network/network.html
https://docs.ipfs.io/concepts/what-is-ipfs/
https://docs.ipfs.io/concepts/what-is-ipfs/
https://docs.ipfs.io/concepts/persistence/
https://www.everledger.io/industry-solutions/diamonds/
https://www.everledger.io/industry-solutions/diamonds/
https://tech.origintrail.io/protocol
https://tech.origintrail.io/protocol
https://www.ibo-tec.de/de/produkte/alle-produkte.html
https://www.ibo-tec.de/de/service/unser-service.html
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2139/ssrn.263511
https://www.informit.com/articles/article.aspx?p=2166717&seqNum=3
https://www.informit.com/articles/article.aspx?p=2166717&seqNum=3
https://medium.com/self-driving-cars/the-automotive-supply-chain-explained-d4e74250106f
https://medium.com/self-driving-cars/the-automotive-supply-chain-explained-d4e74250106f
https://medium.com/self-driving-cars/the-automotive-supply-chain-explained-d4e74250106f

8 Bibliography

[39] D. Balta, V. Greger, P. Wolf, and H. Krcmar. “E-government Stakeholder Anal-
ysis and Management Based on Stakeholder Interactions and Resource Depen-
dencies.” In: 2015 48th Hawaii International Conference on System Sciences. 2015,
pp. 2456–2465. doi: 10.1109/HICSS.2015.294.

[40] Fines / Penalties. July 2020. url: https : / / gdpr - info . eu / issues / fines -
penalties/#:~:text=83(4)%20GDPR%20sets%20forth, to%20that%20used%
20in%20Art.

[41] url: https : / / www . europarl . europa . eu / thinktank / en / document . html ?
reference=EPRS_STU(2019)634445.

[42] G. Alter, Browne, S. Alter, and G. Browne. “A Broad View of Systems Analysis
and Design: Implications for Research.” In: Communications of the Association for
Information Systems 15 (January 2005), pp. 981–999. doi: 10.17705/1CAIS.01650.

[43] D. Garlan and D. Perry. “Introduction to the Special Issue on Software Architec-
ture.” In: IEEE Transactions on Software Engineering 21.4 (April 1995).

[44] S. Yongchareon, C. Liu, X. Zhao, and M. Kowalkiewicz. “BPMN Process Views
Construction.” In: vol. 5981. April 2010, pp. 550–564. doi: 10.1007/978-3-642-
12026-8_42.

[45] Open Source Blockchain Technologies. October 2020. url: https://www.hyperledger.
org/.

[46] url: https://hub.docker.com/u/hyperledger/.

[47] J. Bostoen. A Hands-on Introduction to IPFS. October 2020. url: https://medium.
com/coinmonks/a-hands-on-introduction-to-ipfs-ee65b594937.

[48] Node.js. About Node.js. url: https://nodejs.org/en/about/.

61

https://doi.org/10.1109/HICSS.2015.294
https://gdpr-info.eu/issues/fines-penalties/#:~:text=83(4)%20GDPR%20sets%20forth,to%20that%20used%20in%20Art
https://gdpr-info.eu/issues/fines-penalties/#:~:text=83(4)%20GDPR%20sets%20forth,to%20that%20used%20in%20Art
https://gdpr-info.eu/issues/fines-penalties/#:~:text=83(4)%20GDPR%20sets%20forth,to%20that%20used%20in%20Art
https://www.europarl.europa.eu/thinktank/en/document.html?reference=EPRS_STU(2019)634445
https://www.europarl.europa.eu/thinktank/en/document.html?reference=EPRS_STU(2019)634445
https://doi.org/10.17705/1CAIS.01650
https://doi.org/10.1007/978-3-642-12026-8_42
https://doi.org/10.1007/978-3-642-12026-8_42
https://www.hyperledger.org/
https://www.hyperledger.org/
https://hub.docker.com/u/hyperledger/
https://medium.com/coinmonks/a-hands-on-introduction-to-ipfs-ee65b594937
https://medium.com/coinmonks/a-hands-on-introduction-to-ipfs-ee65b594937
https://nodejs.org/en/about/

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Purpose and Research Questions
	Outline

	Theoretical Background and Related work
	Blockchain Technology
	Public and Private blockchain
	Bitcoin
	Ethereum
	Corda

	Hyperledger Fabric
	Architecture
	Steps to setup a basic hyperledger network

	Comparison between Ethereum, Corda and Hyperledger Fabric
	IPFS
	Related projects
	Everledger
	Origintrail

	Research Approach
	Context
	Design Science Research Methodology
	Problem Identification and motivation
	Define the objectives for a solution
	Design and Development
	Demonstration
	Evaluation
	Communication

	Requirement and System Analysis
	Stakeholder Analysis
	Use case Analysis
	System Requirements
	Business Requirements

	System Analysis

	System Design
	4 + 1 Architectural Views
	Logical View
	Process View
	Development View
	Physical View

	How to retrieve the Product History

	Prototypical Implementation and Evaluation
	Tools and Technologies
	Hyperledger Fabric
	Docker
	React.js
	ipfs
	Node.js

	Hyperledger Network Description
	Evaluation based on reference architecture
	Evaluation based on the prototype implementation

	Conclusion
	Limitations
	Future Work:

	Bibliography

