
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

A Social and Interactive Tool to Support
Pattern Communities in Large-Scale Agile

Development

Murat Güner

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

A Social and Interactive Tool to Support Pattern
Communities in Large-Scale Agile Development

Ein soziales und interaktives Werkzeug zur
Unterstützung von Mustergemeinschaften bei der

skalierten agilen Softwareentwicklung

Author: Murat Güner
Supervisor: Prof. Dr. Florian Matthes
Advisor: Ömer Uludağ
Submission Date: 15.04.2021

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 15.04.2021 Murat Güner

Acknowledgments

First and foremost, I would like to thank my supervisor Ömer Uludağ for his support
during this research project. I learned many important things from you and always
enjoyed our close collaboration.

Also, I would like to thank Professor Dr. Florian Matthes for the opportunity to write
my thesis at his chair for Software Engineering for Business Information Systems
(SEBIS).

Last but not least, I would like to thank my family and all my friends for their
unconditional support during this exciting time.

Abstract

Today’s business environment is very dynamic, and traditional software development
methodologies cannot cope with unpredictable business environments and changing
customer demands. To address these challenges, the agile movement emerged in
the 1990s, leading to the development of Agile Manifesto and many agile software
development methods, such as Extreme Programming and Scrum. Agile methods
brought unprecedented changes to the software engineering field by accentuating
change tolerance, customer involvement, and team collaboration. The success of agile
methods for small, co-located teams has inspired companies to apply agile methods
to large-scale projects. Since those methods are initially designed for small teams,
novel challenges occur when introducing them at a larger scale, such as inter-team
coordination and communication, dependencies with other organizational units, or
general resistance to changes.

Since patterns provide structured solutions to recurring concerns, we aim to support
pattern communities’ establishment in large-scale agile development by addressing
typical challenges of pattern languages.

iv

List of Figures

1.1 Overview of the research approach [24] 4

2.1 Design phase composition between waterfall and agile development [32] 8
2.2 Overview of the Scrum Framework [37] 10
2.3 Burn Down Chart [42] . 11
2.4 Conceptual overview of the Large-scale Agile Development Pattern Lan-

guage . 16
2.5 Conceptual model of the Large-Scale Agile Development Pattern Lan-

guage [20] . 18

4.1 Hybrid-Wiki data model in the context of Enterprise Architecture Man-
agement [71] . 27

4.2 Overview of all basic types of MxL in form of an UML class diagram [72] 28
4.3 Overall structure for the React application 36
4.4 Overall structure for the NodeJS application 44
4.5 High-level overview of the system architecture 45
4.6 Landing page of the application . 46
4.7 Sign Up Page of the application . 47
4.8 Sign In Page of the application . 48
4.9 Dialog for creating a new pattern . 49
4.10 Dialog for creating a new visualization pattern 50
4.11 Edit pattern view . 50
4.12 Add feedback view . 51
4.13 Pattern feedback view . 52
4.14 Reply feedback view . 52
4.15 Profile page view . 53
4.16 Activity feed view . 54
4.17 Stakeholder selection view . 55
4.18 Large-Scale Agile Development Pattern Graph 55
4.19 Highlighted pattern graph . 56
4.20 V-1 pattern view (Visualization pattern - Iteration Dependency Matrix) 57
4.21 V-1 Information view (Visualization pattern - Iteration Dependency Matrix) 57

v

List of Figures

4.22 Expanded information view (Visualization pattern - Iteration Depen-
dency Matrix) . 58

4.23 Full catalog download view . 59

5.1 User count and engagement time view 61
5.2 User count and engagement time view 62
5.3 Detailed demographic view . 63
5.4 Page view . 64
5.5 Event view . 65

vi

List of Tables

2.1 Principles behind the Agile Manifesto by Beck et al. [8] 7
2.2 Benefits of applying Kanban [44] . 12
2.3 Overview of scaling agile frameworks [5] 15

vii

Contents

Acknowledgments iii

Abstract iv

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Introduction . 1
1.2 Research Objectives . 2
1.3 Research Approach . 3

2 Foundations 6
2.1 Agile Software Development . 6

2.1.1 Agile Manifesto . 6
2.1.2 Scrum Process Framework . 8
2.1.3 Kanban in Software Development 12

2.2 Large-Scale Agile Development . 13
2.2.1 Scaling Agile Frameworks . 14
2.2.2 Large-Scale Agile Development Patterns 16

2.3 Social Design Principles . 19

3 Related Work 20

4 Implementation 24
4.1 Motivation for a Web Application . 24
4.2 Technical Requirements, Technology selection, and Usage 25

4.2.1 SocioCortex . 26
4.2.2 React . 32
4.2.3 NodeJS . 37

4.3 System architecture . 44
4.4 Main views and core features . 46

4.4.1 User Access Management . 47

viii

Contents

4.4.2 Badge System . 53
4.4.3 Activity Feed . 54
4.4.4 Pattern visualization . 55
4.4.5 PDF Export . 59

5 Evaluation 60
5.1 User Count and Engagement Time View 60
5.2 Demographic View . 62
5.3 Page View . 64
5.4 Event View . 65

6 Discussion 66
6.1 Key Findings . 66
6.2 Limitations . 67

7 Conclusion and Future Work 68
7.1 Summary . 68
7.2 Future Work . 69

Bibliography 70

ix

1 Introduction

This chapter presents the motivation for this master’s thesis by revealing the necessity
of supporting the creation of a pattern community in the field of large-scale agile
development by a social and interactive tool in Section 1.1. Following this, the objectives
and the corresponding research questions of the thesis are highlighted in Section 1.2.
The succeeding Section 1.3 describes the underlying research approach of the thesis.

1.1 Introduction

Indeed, one of my major complaints about the computer field is that
whereas Newton could say, "If I have seen a little farther than others, it is
because I have stood on the shoulders of giants," I am forced to say, "Today
we stand on each other’s feet." Perhaps the central problem we face in all of
computer science is how we are to get to the situation where we build on
top of the work of others rather than redoing so much of it in a trivially
different way. Science is supposed to be cumulative, not almost endless
duplication of the same kind of things.

Richard Hamming
1968 Turning Award Lecture

In contemporary’s digital world, organizations face unprecedented challenges in
complex and dynamic market environments, such as volatile customer demands, in-
creasing market dynamics, and the continuous emergence of new advancements in
information technology [1, 2, 3, 4]. Software development projects in such environments
face changes either directly or indirectly [5]. These changes also affect approaches that
are used for software development [6]. Traditional software development approaches
are considered insufficient for addressing organizational needs as they are not designed
to detect relevant changes and respond in a timely and effective manner [7]. Conse-
quently, a movement sparked by various software development practitioners emerged
in the 1990s with new software development approaches to address the aforementioned
hurdles, culminating in the creation of the Agile Manifesto [8] and many agile software
development methods [9], including eXtreme Programming (XP) [10], Kanban [11], and
Scrum [12].

1

1 Introduction

The initial application of these methods has targeted small, co-located, and self-
organizing teams that develop software in close collaboration with business customers,
relying on regular feedback and rapid development iterations [13]. The successful
implementation of agile methods in small projects has inspired organizations to apply
them outside of their sweet spot in complex and large projects [14]. Thus, the popularity
of using agile methods in large-scale projects has increased in both practice and
academia over the past decade [15, 16]. This trend is also confirmed by Uludağ et al.
[17] stating that 47.79% of all related research on large-scale agile development was
published in 2018 and 2019, making the relevance of this research field even more
important than ever. From a practical perspective, adopting agile methods at scale also
entails unprecedented challenges, such as inter-team coordination and communication
[18]. Thus, large organizations are engrossed in enhancing agile methods to incorporate
larger teams and tackle related challenges [18]. From a scientific perspective, the
literature about large-scale agile development is still maturing compared to the literature
regarding agile software development having a profound body of knowledge [17].
Similar to challenges and best practices in agile software development [19], researchers
aim to identify challenges and best practices regarding the adoption of agile methods
at large-scale [20]. However, solely documenting and identifying challenges and
patterns in large-scale agile development is insufficient as they have to be presented
to their adopters understandably and appropriately [21]. Against this backdrop, this
master’s thesis’s main objective is to identify requirements for establishing online
pattern communities in large-scale agile development and implement the identified
requirements by extending a prototypical web implementation.

1.2 Research Objectives

Resulting from the motivation in Section 1, the main objective of this master’s is
to investigate the challenges of establishing pattern communities and support the
establishment of such communities. Based on this objective, three research questions
(RQs) were formulated.

Research question 1: What are the challenges of establishing pattern communities?

The first research question’s objective is to identify literature on large-scale agile
development, pattern communities, and the interplay between these areas with the help
of a literature review.

Research question 2: How can a prototypical web implementation support the
establishment of pattern communities?

2

1 Introduction

The second research question’s objective is to map derived challenges for building
pattern communities as requirements and features for the web implementation. Since
the prototypical web implementation aims to create a platform that enables sociability
and interactivity, this research question aims to identify and implement the social
design guidelines recommended by Kraut and Resnick [22].

Research question 3: How can the prototypical web implementation be improved in
the future?

The third research question aims to compare the prototypical web implementation with
existing pattern communities and literature to provide suggestions for future work.

1.3 Research Approach

The following section gives an overview of the overall research methodology applied in
this thesis.

In this thesis, design science research was chosen as a research approach to answer
the RQs defined in Section 1.2. The design science research approach was introduced
by Hevner et al. [23] and further developed by Peffers et al. [24]. The design science
research approach is an adequate research methodology to answer the RQs of this
thesis as it centers around generating and evaluating new and innovative artifacts
inward a problem domain, intending to solve identified problems. We aim to find
the right balance between ensuring practical connection and applicability. Design
science research provides the connection, whereas the literature review and related
work contribute to the necessary rigor of the conducted research.

As shown in Figure 1.1, the design science approach consists of six phases explained
in the following. In the first phase, the existing literature is reviewed to understand
the state of the problem. Goals and requirements are formulated at the end of this
phase. In the second phase, the research questions and the objectives of the potential
solution are defined. Also, in this phase, requirements for the prototype are elicited. In
the third phase, the prototype to address the requirements is designed and developed.
In the fourth phase, the prototype is demonstrated to its potential users to provide
proof of concept and show that the designed prototype is consistent with successfully
undertaken design science research. In the fifth phase, the analytic data of the platform
is assessed to evaluate the platform. Finally, in the sixth phase, the results of this
research are being published in this thesis.

3

1 Introduction

Figure 1.1: Overview of the research approach [24]

4

1 Introduction

The remainder of this thesis is structured as follows. In Chapter 2, fundamental ter-
minologies, such as agile and large-scale agile development, are defined and described.
In Chapter 3, an overview of relevant related work is presented. In Chapter 4, the
solution artifact, namely the prototypical web implementation is presented. In Chapter
5, the evaluation of the prototypical web implementation is demonstrated by providing
an overview of related analytics data. In Chapter 6, the key findings and limitations of
this thesis are presented before concluding the thesis with a summary of results and
remarks on future research in Chapter 7.

5

2 Foundations

This chapter is dedicated to describing the theoretical foundations of this thesis. First,
in Section 2.1, the ideas behind agile software development are presented. Based on
this, in Section 2.2, the term large-scale agile development is further explored. Finally, a
brief outline on social design aspects that are used later in the thesis is given in Section
2.3.

2.1 Agile Software Development

This section aims to create a unified view of agile software development. First, the Agile
Manifesto is introduced by presenting the values and principles behind it. Afterward,
two of the most popular agile and lean software development methods, namely Scrum
and Kanban, are presented.

2.1.1 Agile Manifesto

In 2001, seventeen professionals formulated the manifesto to identify and describe an
alternative approach to traditional software development processes by defining values
and basic principles for better software development [25]. The word "agile" was chosen
to construe the attributes of this different approach [26]. All the participants signed
the Agile Manifesto to indicate the consensus on the principles and values it contains
[27]. The manifesto is commonly introduced whenever developers aim at developing
software based on the following values and principles [19]:

“We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change o over following a plan

That is, while there is value in the items on the right, we value the items on
the left more."

6

2 Foundations

Principle Quotation

P1 Our highest priority is to satisfy the customer through early and continuous delivery
of valuable software.

P2 Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.

P3 Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

P4 Business people and developers must work together daily throughout the project.

P5 Build projects around motivated individuals. Give them the environment and support
they need, and trust them to get the job done.

P6 The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

P7 Working software is the primary measure of progress.

P8 Agile processes promote sustainable development. The sponsors, developers, and users
should be able to maintain a constant pace indefinitely.

P9 Continuous attention to technical excellence and good design enhances agility.

P10 Simplicity–the art of maximizing the amount of work not done–is essential.

P11 The best architectures, requirements, and designs emerge from self-organizing teams.

P12 At regular intervals, the team reflects on how to become more effective, then tunes and
adjusts its behavior accordingly.

Table 2.1: Principles behind the Agile Manifesto by Beck et al. [8]

In a virtual workshop on agile methodologies organized by the Centre of Experimen-
tal Software Engineering, the participants specified agile methodologies as iterative,
incremental, self-organizing, and emergent. In addition, they declared that all agile
methodologies follow the four values and twelve principles of the Agile Manifesto (see
Table 2.1) [28]. In the following, the four values are extended by an interpretation by
Stellman and Greene [29]:

• "Individuals and interactions over processes and tools" means that it is more
important for agile teams to focus on the team members and their communication
than to pay attention to the tools and practices used.

• "Working software over comprehensive documentation" states that software which
satisfies a user’s need is more valuable than a specification describing the need.

• "Customer collaboration over contract negotiation" means that from now on,
customers will be seen as team members.

7

2 Foundations

• "Responding to change over following a plan" means that plans rarely come true
and that it is, therefore, more important to deliver software than to work on a
plan.

While agile methodologies provide benefits over traditional software development
methodologies, such as waterfall, in terms of responding to changes in objectives,
resources, materials, techniques, and tools, a remarkable amount of work is usually
done before the project starts to use the agile methodologies effectively [30, 31].

Requirements
Change

PlanAnalyze Design Build Test Deploy

Waterfall

Agile

Project Timeline

Customer
Turnover

Technology
Innovation

Analyze

Build

Test

Design

Plan Deploy Analyze

Build

Test

Design

Plan Deploy Analyze

Build

Test

Design

Plan Deploy

Figure 2.1: Design phase composition between waterfall and agile development [32]

2.1.2 Scrum Process Framework

One of the charms of the Rugby Union game is the infinite variety of its
possible tactics. [. . .] with the ball in its hands, a team is in a position to
dictate tactics which will make the best use of its own particular talents, at
the same time probing for and exposing weaknesses in the opposing team.
The ideal team [. . .] will make sure that the possession won by the forwards
is employed to the maximum embarrassment of the opposing team.

Takeuchi and Nonaka
The new product development game [33]

Scrum is defined as a framework within which people can address complex adaptive

8

2 Foundations

problems while productively and creatively delivering products of the highest possible
value [34]. The framework was named after the Scrum formed in rugby sports [35].
Ken Schwaber and Jeff Sutherland are the co-creators of the Scrum process framework
inspired by the revolutionary work of Takeuchi and Nonaka [33]. Figure 2.2 provides
an overview of Scrum. The three essential components of the Scrum framework are
roles, process, and artifacts [36]. These components are described in detail below.

Roles

In Scrum, the project duties are delegated to the three roles: Developer, Product Owner,
and Scrum Master [38]. An essential characteristic of Scrum is that each team member
can individually determine how to address the tasks assigned to ensure that the Scrum
mechanism can not be interfered with by anyone [38, 39]. In direct and consistent
collaboration with clients, users, and other stakeholders, the Product Owner of a Scrum
project identifies the product specifications and then communicates them to the team
that implements the requirements [40]. The Product Owner is also responsible for the
project’s success and therefore for ensuring that the product satisfies the expectations
of the consumer [40]. The Scrum team’s main objective is to fulfill the specifications
identified by the Product Owner[38]. Scrum teams share the following aspects: they
are cross-functional, self-organizing, and consist of five to ten participants [36]. The
Scrum Master’s role is to build the Scrum practices and values and eliminate obstacles
to make a smooth Scrum process [36, 40]. The Scrum Master fulfills a support role for
the process and is responsible for its effectiveness [41].

Artifacts

The three core components included in Scrum are the Product Backlog, Sprint Backlog,
and Burndown Charts. The agile project specifications are documented, allocated, and
prioritized using both the Product Backlog and the Sprint Backlog [38]. The third
artifact, the Burndown Chart, is a method that enables the prediction of how much
time a project takes until the product satisfies all consumer needs, depending on the
specifications [38].

The Product Backlog is a list of all project specifications that is continually changing
as it adapts to the modifications faced by the project [38]. The Product Backlog is no
longer be used if the project lacks funds [38]. The Product Owner is responsible for
ensuring that the Product Backlog is available and ensuring the consistency of all its
submissions [38]. The Product Backlog can be modified at the time of the project kickoff
and concurrent Sprint preparation sessions, recurring in line with the project cycle, [36].

Backlogs can be interpreted as a collection of requirements. The Sprint Backlog is the

9

2 Foundations

Pr
od

uc
t

Ba
ck

lo
g

Sp
rin

t
Pl

an
ni

ng

Sp
rin

t
Re

tr
os

pe
ct

iv
e

Sp
rin

t
Ba

ck
lo

g
In

cr
em

en
t

D
ai

ly
Sc

ru
m

Sp
rin

t
Re

vi
ew

1
Sc

ru
m

 T
ea

m

Sc
ru

m
 F

ra
m

ew
or

k
©

 2
02

0
Sc

ru
m

.o
rg

SC
R

U
M

 F
RA

M
EW

O
RK

Figure 2.2: Overview of the Scrum Framework [37]

10

2 Foundations

subset of the Product Backlog that includes exactly as many requirements as the team
can accomplish in one Sprint by the team [36]. The fact that the number of requirements
correlates to the team’s estimated capacities is an essential feature of Scrum, which
allows only the team to determine the requirements moved to the Sprint Backlog from
the Product Backlog [36, 40].

The Burndown Chart is the last artifact in Scrum, which represents the time left
before the project finishes [38]. An example project Burndown Chart is shown in Figure
2.3. In this example, remaining story points are illustrated over time.

CMU/SEI-2013-TN-029 | 1 3

In this fictional case, the ‘back-story’ could be this is a new team, finding their way in a self-
directed mode. During the first few sprints, some members were learning how to work with sto-
ries, and the process of testing against the “definition of done.” A bit of cross-training occurred—
where those with more experience in testing coached novices in writing test cases. In addition, the
use of the collaboration tools evolved as they experimented with preferences in the interface set-
tings. The graph illustrates a concept called “velocity lag” which is discussed later in section
4.2.1.2.

The definition of velocity seems deceptively like a productivity measure, and many mistake it for
that. However, the traditional uses of productivity measures are left wanting when velocity is con-
sidered—as the motivation to standardize the calculation (fixing the basis of estimates and stand-
ardizing across teams) runs counter to tenets of Agile methods. Velocity is a local measure, used
by an individual development team to gauge the realism of commitments they make. The velocity
metric is logically tied to the sprint burn-down chart, discussed next.

4.1.2 Sprint Burn-Down Chart

This graphical technique provides a means of displaying progress for the development team dur-
ing a sprint. As items in the backlog of work are completed, the chart displays the rate and the
amount of progress. This chart is typically provided for viewing on a team’s common wall, or
electronic dashboard. Many elaborations and alternative implementations are seen in practice, but,
again – first the basics.

Figure 5: Sample Sprint Burn-Down Chart

Typically a line graph like the one in Figure 5, showing a decline in the remaining backlog items
to be completed, is used. The workload chosen for that sprint (often called the sprint backlog) is
reflected on the vertical axis—in story points for this example. A line sloping downward from left
to right—with time depicted (in days) on the horizontal axis—shows the pace of work being com-
pleted. The dotted line shows the “ideal line” against which the thicker line can be compared. It is

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

Story Points
Remaining in

the Sprint
Backlog

Days in the Sprint

Sprint Burn-Down Chart

Figure 2.3: Burn Down Chart [42]

Process

Scrum embraces a concept in which all its activities are centered to include products
with the ultimate possible value [38]. Every Scrum project has a vision about the system
built through the project [38]. First, the Product Owner must draw from this vision all
the required criteria for the execution of the vision. Second, the Product Owner must
ensure that the implementation is structured to optimize the return on investment of
the project’s funding investors [38]. The iterative and incremental mechanism used
to implement the Product Backlog specifications is the fundamental building block
of Scrum [38]. Every iteration starts after the Sprint Planning. In tight collaboration
with the Product Owner and the team members, the Product Backlog’s highest priority
criteria are defined and passed to the Sprint Backlog [38]. The team works on the
Sprint Backlog items during a Sprint and gathers every day to hold a Daily Scrum to
synchronize the team members’ work [38]. The Scrum Master invites all team members
to participate in an event called the Scrum Retrospective held after the Sprint review
meeting. The Scrum Retrospective is the last event of the iteration and seeks to make
the team focus on the previous Sprint and determine steps that allows for a successful

11

2 Foundations

and pleasant next Sprint [38]. The Scrum retrospective continues with the next Sprint
planning meeting as it starts the next iteration [38].

2.1.3 Kanban in Software Development

Kanban was first applied successfully at Toyota, a corporation operating in the Japanese
automotive industry, in the 1950s [43, 44]. Sixty-four years later, Kanban was brought
by David J. Anderson into the software development business at Microsoft, who led
an under-performing software team back to a promising path with Kanban [43, 44].
Although Kanban has been important in the software industry, the first attempts have
been made to merge Kanban with Scrum, a well-established agile software development
methodology [45]. While Scrum practices incremental and iterative methods to create
products of the maximum possible value, Kanban focuses on enhancing the workflow,
minimizing a work item’s total production time, and restricting work in progress [46,
47]. Table 2.2 shows the benefits of applying Kanban.

Number Benefit

N1 Better understanding of whole processes

N2 Improved software quality

N3 Improved meeting of customer needs and customer satisfaction

N4 Increased motivation of engineers

N5 Improved communication/coordination between stakeholders/ in team

N6 Bugs were fixed more quickly, work in progress made it easier to handle blocking in
work

N7 Increased software productivity

N8 Problem solving (easy detection and removal of bugs)

N9 Reduced batch size

N10 Decreased time to delivery

N11 Increased release frequency

N12 Efficiently controlled software projects

N13 Changes to requirements made welcome

N14 Early feedback on features, without delays

N15 No massive documents (limited to customer request)

N16 Task approval from management not needed – approval gotten from customer in demos

Table 2.2: Benefits of applying Kanban [44]

In the literature, a combination composed of Kanban and Scrum elements is also

12

2 Foundations

called Scrumban [ladas2009scrumban nikitina2012scrum, 48, 49, 50]. The purpose of
Scrumban is to help enterprises who are continuously subjected to evolving consumer
needs and recurrent coding issues [48]. Kanban is a depiction of a pull mechanism
to manage the workflow used in software development projects [51]. Workflow man-
agement is achieved by setting a work in progress threshold, defining constraints, and
organizing team activity [51]. The work in progress limit is set based on the work
capacity of the team. This allows a balance to be established between the demand and
results [44]. This balance encourages sustainable growth, which can, on the one hand,
contribute to increased team success and, on the other hand, increase the consistency
of the products developed [44]. Kanban board, which is the visual representation of a
value stream, helps implement the Kanban in software projects [52]. This value stream
is split into columns reflecting the work’s current status and the work objects flow [52].
However, only a predefined number of items is permitted in any of these columns,
which means that the work in progress is constrained [52]. As soon as predefined
conditions are fulfilled, an item leaves one column and transfers to the next [52]. Finally,
a value stream can be noticed by viewing objects’ roaming through their working states
[52].

2.2 Large-Scale Agile Development

My dear, here we must run as fast as we can, just to stay in place. And if
you wish to go anywhere you must run twice as fast as that.

Lewis Carroll
Alice in Wonderland

The effectiveness of agile methodologies in small, co-located teams and their widespread
use promoted their usages in new domains [53, 54]. Dingsøyr et al. [53, 54] defines
the term "large-scale agile development" as a development effort with "more than two
teams" and "very large-scale agile development" efforts with "more than ten teams". Also,
a distinction can be made between "large-scale agile development" and "enterprise agile"
which refers to the implementation of agile development methodologies, principles, and
values for the whole organization and not just software development activities [54]. A
case study revealed that agile practices’ implementation leads to increased recognition
of initiatives, increased exchange of information, and stronger collaboration on a large
scale [55]. On the other hand, when attempting to scale agile techniques, there are
many documented drawbacks and obstacles. An analysis of three large-scale agile
development cases illustrated serious problems, especially the lack of guidance on agile
approaches related to team-to-team dependencies and inter-team coordination [56]. It

13

2 Foundations

takes a lot of management effort to get all the agile teams collaborating towards a shared
goal [57]. In large-scale applications, information sharing is quite significant since
expertise might be distributed to different locations and teams [58]. Agile approaches
are highly troublesome in large-scale system architectures and applications when in-
tegrating current and emerging software architectures [59]. According to Leffingwell
and his peers, some architectural planning and governance are necessary to produce
and maintain such systems reliably. Individuals teams, products, and programs may
not even have the visibility necessary to see how the larger enterprise system needs to
evolve [60].

2.2.1 Scaling Agile Frameworks

Based on a structured literature review, Uludağ et al. [5] identified twenty scaling agile
frameworks (see Table 2.3). Most frameworks are based on traditional agile approaches
such as XP and Scrum and have been tailored to modern standards for large projects in
which multiple teams operate. Also, Uludağ et al. [5] calculated maturity scores for the
frameworks. Large Scale Scrum, Scaled Agile Framework, and Disciplined Agile 2.0
are the three frameworks with the best maturity ratings.

14

2 Foundations

Sc
al

in
g

ag
ile

fr
am

ew
or

k
A

ut
ho

r
O

rg
an

iz
at

io
n

Pu
bl

ic
at

io
n

ye
ar

C
ry

st
al

Fa
m

ily
A

lis
ta

ir
C

oc
kb

ur
n

N
/A

19
92

D
yn

am
ic

Sy
st

em
s

D
ev

el
op

m
en

t
M

et
ho

d
A

gi
le

Pr
oj

ec
t

Fr
am

ew
or

k
fo

r
Sc

ru
m

A
ri

e
va

n
Be

nn
ek

um
D

SD
M

C
on

so
rt

iu
m

19
94

Sc
ru

m
-o

f-
Sc

ru
m

s
Je

ff
Su

th
er

la
nd

an
d

K
en

Sc
hw

ab
er

Sc
ru

m
In

c.
20

01

En
te

rp
ri

se
Sc

ru
m

M
ik

e
Be

ed
le

En
te

rp
ri

se
Sc

ru
m

In
c.

20
02

A
gi

le
So

ft
w

ar
e

So
lu

ti
on

Fr
am

ew
or

k
A

si
f

Q
um

er
an

d
Br

ia
n

H
en

de
rs

on
-S

el
le

rs
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy
20

07

La
rg

e
Sc

al
e

Sc
ru

m
C

ra
ig

La
rm

an
an

d
Ba

s
Vo

dd
e

Le
SS

C
om

pa
ny

B.
V.

20
08

Sc
al

ed
A

gi
le

Fr
am

ew
or

k
D

ea
n

Le
ffi

ng
w

el
l

Sc
al

ed
A

gi
le

In
c.

20
11

D
is

ci
pl

in
ed

A
gi

le
2.

0
Sc

ro
tt

A
m

bl
er

D
is

ci
pl

in
ed

A
gi

le
C

on
so

rt
iu

m
20

12

Sp
ot

if
y

M
od

el
H

en
ri

k
K

ni
be

rg
,A

nd
er

s
Iv

ar
ss

on
,a

nd
Jo

ak
im

Su
nd

én
Sp

ot
if

y
20

12

M
eg

a
Fr

am
ew

or
k

R
af

ae
lM

ar
an

za
to

,M
ar

de
n

N
eu

be
rt

,a
nd

Pa
ul

a
H

ec
ul

an
o

U
ni

ve
rs

o
O

nl
in

e
S.

A
20

12

E
nt

er
p

ri
se

A
gi

le
D

el
iv

er
y

an
d

A
gi

le
G

ov
er

-
na

nc
e

Pr
ac

ti
ce

Er
ik

M
ar

ks
A

gi
le

Pa
th

20
12

R
ec

ip
es

fo
r

A
gi

le
G

ov
er

na
nc

e
in

th
e

En
te

rp
ri

se
K

ev
in

Th
om

ps
on

C
pr

im
e

20
13

C
on

ti
nu

ou
s

A
gi

le
Fr

am
ew

or
k

A
nd

y
Si

ng
le

to
n

M
ax

os
LL

C
20

14

Sc
ru

m
at

Sc
al

e
Je

ff
Su

th
er

la
nd

an
d

A
le

x
Br

ow
Sc

ru
m

In
c.

20
14

En
te

rp
ri

se
Tr

an
si

ti
on

Fr
am

ew
or

k
N

/A
ag

ile
42

20
14

Sc
A

Le
D

A
gi

le
Le

an
D

ev
el

op
m

en
t

Pe
te

r
Be

ck
,M

ar
ku

s
G

är
tn

er
,C

hr
is

to
ph

M
at

hi
s,

St
ef

an
R

oo
ck

an
d

A
nd

re
as

Sc
hl

ie
p

N
/A

20
14

eX
p

on
en

ti
al

Si
m

p
le

C
on

ti
nu

ou
s

A
u

to
no

m
ou

s
Le

ar
ni

ng
Ec

os
ys

te
m

Pe
te

r
M

er
el

X
sc

al
e

A
lli

an
ce

20
14

Le
an

En
te

rp
ri

se
A

gi
le

Fr
am

ew
or

k
N

/A
Le

an
Pi

tc
h

Te
ch

no
lo

gi
es

20
15

N
ex

us
K

en
Sc

hw
ab

er
Sc

ru
m

.o
rg

20
15

FA
ST

A
gi

le
R

on
Q

ua
rt

el
C

ro
n

Te
ch

no
lo

gi
es

20
15

Ta
bl

e
2.

3:
O

ve
rv

ie
w

of
sc

al
in

g
ag

ile
fr

am
ew

or
ks

[5
]

15

2 Foundations

2.2.2 Large-Scale Agile Development Patterns

The implementation of agile approaches on a large scale raises particular problems and
challenges [61] such as coordination complexity, difficult architectural integration and
increased stakeholder numbers [62]. Addressing these challenges is the path to reach
the maximum advantages of agility in large-scale environments [63]. The identification
of recurring concerns and documentation of best practices gives the impression to
be effective [64]. Thus, Uludağ et al. [20], introduced a conceptual pattern language
for large-scale agile development which forms the basis for documenting of recurring
concerns and patterns (see Figure 2.4).

Documenting Recurring Concerns and Pa�erns in Large-Scale Agile Development • 3

Table 1. Overview of Related Pa�ern Languages

Source Scope & goal Focus on agile
development

Number of
patterns Pattern categories Pattern examples

[Coplien 1995]
Collection of patterns for
shaping a new organization
and its development processes

Partially 42 (1) Process patterns;
(2) Organizational patterns

- C��� O��������
- G���������
- F��� W����

[Harrison 1996]
Collection of patterns for
creating e�ective software
development teams

No 4 –
- U���� �� P������
- D�������� �� M���������
- L��� ’E� U� T�������

[Beedle et al. 1999] Collection of Scrum patterns Yes 3 –
- S�����
- B������
- S���� M�������

[Taylor 2000]
Collection of patterns for
creating product software
development environments

No 9
(1) Establishing a Production Potential;
(2) Maintaining a Production Potential;
(3) Preserving a Production Potential

- D����������� �� G�
- P����
- B������������

[Coplien and Harrison 2004]

Collection of organizational
patterns that are combined
into a collection of four
pattern languages

Yes 94

(1) Project Management;
(2) Piecemeal Growth;
(3) Organizational Style;
(4) People and Code

- S���� M��
- D��� P���
- F�� R����

[Elssamadisy 2008]
Collection of patterns for
successfully adopting
agile practices

Yes 38
(1) Feedback Practices; (2) Technical
Practices; (3) Supporting Practices;
(4) The Clusters

- R����������
- C��������� I����������
- S����� D�����

[Beedle et al. 2010]
Collection of the most
essential best practices
of Scrum

Yes 11 –
- D���� S����
- S����� B������
- S����� R�����

[Välimäki 2011]

Enhancing performance
of project management
work through improved
global software project
management practice

Partially 18

(1) Directing a Project; (2) Starting
up a Project; (3) Initiating a Project;
(4) Controlling a Stage; (5) Managing
Stage Boundaries; (6) Closing a Project;
(7) Managing Product Delivery; (8) Planning

- C��������� K����O��
- C����� R���� �� S����
- I�������� P�������

[Mitchell 2016]
Collection of patterns to
address agile transformation
problems

Yes 54
(1) Patterns of Method; (2) Patterns of
Responsibility; (3) Patterns of
Representation; (4) Anti-Patterns

- L������ WIP
- K����� S�������
- C��������� F������

[ScrumPLoP 2019]
Body of pattern literature
around agile and Scrum
communities

Yes 234 (10)

(1) Value Stream; (2) Team; (3) Sprint;
(4) Process Improvement; (5) Product
Organization; (6) Distributed Scrum;
(7) Scaling Scrum; (8) Scrum Core; (9) Misc

- S���� M�����
- S���� �� S�����
- P�������� S������

structure of our pattern language (see Fig. 2). The pattern language
distinguishes between three di�erent types of patterns:

• Coordination Patterns (CO-Patterns) de�ne coordination
mechanisms to address recurring coordination concerns, i.e.,
managing dependencies between activities, tasks or resources.

• Methodology Patterns (M-Patterns) de�ne concrete steps
to be taken to address given concerns.

• Viewpoint Patterns (V-Patterns) de�ne proven ways to
visualize information in form of documents, boards, metrics,
models, and reports in order to address recurring concerns.

In addition, the pattern language includes four additional concepts:

• Stakeholders (in our context) are all persons who are ac-
tively involved in, have an interest in or are in some way
a�ected by large-scale agile development [Uludağ et al. 2018].

• Concerns can manifest themselves in many forms, e.g., goals,
responsibilities, risks or other issues [42010:2011(E) 2011].

• Principles are enduring and general guidelines that address
given concerns by providing a common direction for action.

• Anti-Patterns describe typical mistakes and present revised
solutions, which help pattern users to prevent these pitfalls.

Fig. 3 depicts the current version of our large-scale agile develop-
ment pattern language, which can also be found on our prototypical

Stakeholders

Concerns

e.g., agile team,
enterprise architect,
product owner

e.g., reduce team dependencies,
building an evolvable architecture

S3 S4S2

Viewpoint Patterns
e.g., sprint dependency matrix,

context map,
cost of delay

Coordination Patterns
Methodology Patterns
Principles

e.g., community of practice,
weighted shortest job first,
strictly separate build and run stagesCO1

e.g., ivory tower,
agile as a golden hammer,
adopting all agile practices in one go

P1
!

Anti-Patterns

C4
?

C3
?

C1
?

Ant1

M1

V3 V4V1 V2

Report

S1

C2
?

Fig. 2. Conceptual overview of the proposed pa�ern language

web application2. The four highlighted nodes in Fig. 3 represent the
four patterns that will be presented in Section 5. A detailed listing
of the large-scale agile development patterns and concepts can be
found in Appendix B.
Popular pattern forms include, among others, the Alexandrian Form,
Gang of Four Form, Coplien Form, and Fowler Form [Ernst 2010;
Fowler 2006]. All have speci�c bene�ts and limitations depending
on the context [Ernst 2010]. Since there is no ideal pattern form, the

2https://scaling-agile-hub.sebis.in.tum.de/#/patterns

, Vol. 1, No. 1, Article . Publication date: June 2019.

Figure 2.4: Conceptual overview of the Large-scale Agile Development Pattern Lan-
guage

[20]

The pattern language consists of three types of patterns and four concepts [20]:

• Stakeholders are all persons who are actively involved in, have an interest in, or
are in some way affected by large-scale agile development.

• Concerns can manifest themselves in many forms, e.g., expectations, goals, needs
or responsibilities.

• Principles are general rules and guidelines that address given concerns by pro-
viding a common direction for action. In comparison to patterns, they do not
provide any descriptions on ’how’ to address concerns.

16

2 Foundations

• Coordination Patterns (CO-Patterns) document proven coordination mecha-
nisms to address recurring coordination concerns, i.e., managing dependencies
between activities, resources or tasks.

• Methodology Patterns (M-Patterns) document concrete steps to be taken to
address given concerns.

• Viewpoint Patterns (V-Patterns) document proven ways to visualize information
in form of boards, documents, metrics, models, and reports to address recurring
concerns.

• Anti-Patterns document typical mistakes and present revised solutions, which
help pattern users to prevent these pitfalls.

17

2 Foundations

Figure 2.5 depicts the conceptual model and the core elements used to document the
concepts and patterns of the pattern language.

4 • Uludağ, Ö. et al

Fig. 3. Current version of the large-scale agile development pa�ern language *

author must consider his / her experience, the intention, and target
audience when selecting either an existing form or creating a new
one [Buschmann et al. 2007b; Ernst 2010]. According to [Fowler
2006], this choice is a personal decision and should also consider
one’s writing style and the ideas to be conveyed. Large-scale agile
development patterns follow a template similar to [Buschmann et al.
1996; Ernst 2010]. Fig. 4 depicts the conceptual model and the key

CO-Pattern V-Pattern
type
data collection

M-Pattern

LSAD Pattern
identifier
name
alias
summary
example
context
problem
forces
solution
variants
consequences
other standards
known uses

Concern
identifier
name
category
scaling level

Principle
identifier
name
alias
summary
type
binding nature
example
context
problem
forces
variants
consequences
other standards
known uses

LSAD Anti-Pattern
identifier
name
alias
summary
example
context
problem
forces
general form
consequences
revised solution
other standards

Stakeholder
identifier
name
alias

see also
* *

see also
* *

see also

*

*
see also

*

*
see also

*

*

is addressed by

*
*
is addressed by
*
*is addressed by

*
*

has
*

*

Fig. 4. Conceptual model of the proposed pa�ern language

elements used to document the concepts and patterns of the pattern
language. All elements have an identi�er and name which simplify
referencing. A stakeholder has an additional section called alias
that contains a list of synonyms and related role names. A concern

has two additional sections called category and scaling level which
denote the category and at which organizational level a concern
occurs. Besides identi�ers and names, principles, patterns, and anti-
patterns consist of eight common sections: the problem and context
sections describe problems and situations to or in which they apply.
The forces section describes why the problem is di�cult to solve.
summary shortly recapitulates the solution. The consequences sec-
tion contains associated bene�ts and liabilities, while the optional
other standards and see also sections provide references to other
solutions and frameworks. The alias section provides a list of syn-
onyms. The example section illustrates the problem to be addressed.
Principles and patterns consist of variants and known uses sections
showing variants and alternatives as well as proven applications in
practice. The type and binding nature sections are unique to princi-
ples and indicate their topic and whether they are recommended or
mandatory. The solution section explains the recommended solution
for a pattern. Speci�c to anti-patterns, the general form and revised
solution sections include the recurring, not working solution and
a revised solution presented. V-Patterns have type and data collec-
tion sections which show the visualization concept and collection
processes required for their creation. Similar to [Buschmann et al.
2007a], we label our patterns with the star notation to denote our
level of con�dence in the pattern’s maturity. Two stars mean that
the pattern e�ectively addresses a genuine problem in its current
form. One star denotes that the pattern addresses a real problem
but needs to mature. No stars indicate that the pattern is a useful
solution to an observed problem but requires signi�cant revision.
We will showcase in the following four patterns in order to highlight
the di�erences between the presented pattern types and concepts,
namely S������� S������� B���� ��� R�� S����� (representing
Principles), C�������� �� P������� (showing CO-Patterns), I�����
���� D��������� M����� (demonstrating (V-Patterns), and D��’�
U�� A���� �� � G����� H����� (illustrating Anti-Patterns).

, Vol. 1, No. 1, Article . Publication date: June 2019.

Figure 2.5: Conceptual model of the Large-Scale Agile Development Pattern Language
[20]

18

2 Foundations

2.3 Social Design Principles

Based on social science and psychology studies, desirable behaviors can be promoted
through certain design concepts in communities [22]. Kraut and Resnick [22] listed
design claims in the chapter "Encouraging Contribution to Online Communities". Not
only are these design concepts applicable to an online community, but many of them
come from research in the social psychology experiments and general social science
findings, which also make them important to a community approach in general. In this
thesis, the detailed design principles with relevance and implementation are described
in detail in Chapter 4.

19

3 Related Work

This chapter summarizes primary publications that are relevant for this thesis in the
areas of large-scale agile software development and software pattern communities. The
presented related work further extends and elaborates on the foundations presented in
the last chapter.

Henninger et al. (2007)

Henninger et al. [21] performed initial research to reveal problems associated with
the use of patterns among a set of pattern collections. Henninger et al. [21] identified
six challenges through the empirical work to federate the currently separate realm of
pattern collections into a more integrated and interconnected body of knowledge to
build online pattern communities. The identified challenges are strongly biased towards
uniting heterogeneous patterns using web technologies in a distributed electronic
format.

Challenges for federating software patterns:

• Electronic accessibility

• Lack of standard pattern forms

• Inter-pattern relationships

• Software pattern validation

• Tracking software pattern variants and duplicates

• Updating software pattern knowledge

Dikert et al. (2016)

A systematic literature review was conducted by Dikert et al. [61] to reveal challenges
and factors that are influencing the success of at large-scale agile transformations. Thus,
52 papers describing 42 different organizations were analyzed. The authors stated that
the identified success factors and challenges are significantly important. Management

20

3 Related Work

support, communication, and transparency, mindset, and alignment, as well as team
autonomy, are some of the success factors that were identified by the literature review.
On the other hand, resistance to change and the coordination of multiple teams in a
large-scale environment are a few of the identified challenges.

Uludağ et al. (2018)

Uludağ et al. [65] aimed to identify typical challenges of stakeholders in the area of
large-scale agile development by analyzing 73 relevant sources. As a consequence,
79 challenges were reported by 14 distinguished stakeholders and divided into 11
categories.

Stakeholders:

• Agile coach

• Business analyst

• Development team

• Enterprise architect

• Portfolio manager

• Product manager

• Product owner

• Program manager

• Scrum master

• Software architect

• Solution architect

• Support engineer

• Test team

• UX expert

21

3 Related Work

Categories:

• Culture and mindset

• Communication and coordination

• Enterprise architecture

• Geographical distribution

• Knowledge management

• Methodology

• Project management

• Quality assurance

• Requirements engineering

• Software architecture

• Tooling

The research by Uludağ et al. [65] revealed a lack of literature addressing challenges
and best practices in large-scale agile development. Thus, the Large-Scale Agile
Development Pattern Language was created based on this research by Uludag et al.
[20].

Uludağ et al. (2019)

Agile coaches and scrum master are confronted with a number of unprecedented
concerns in large-scale agile development. Uludağ et al. [66] conducted 13 interviews
with agile coaches and scrum masters to identify the concerns and best practices. As a
result, 57 recurring concerns and 15 best practices were identified.

Uludağ and Matthes (2020)

Based on 13 expert interviews and 45 case study interviews, Uludağ and Matthes [67]
identified a total of 43 patterns for addressing recurring concerns of enterprise and
solution architects. In addition, they revealed 35 recurring concerns, of which 16 have
already been identified in the structured literature review.

22

3 Related Work

ScrumPLoP

All the presented patterns at ScrumPLoP conferences [68] are assembled on the Scrum-
PLoP website which currently contains 234 patterns. James Coplien, Neil Harrison,
and Mike Beedle are important authors who contributed to the collection. Each pattern
includes a picture, context, force, ’therefore’, examples, related patterns, and references.
Since there is no guiding structure, the identification of related patterns is difficult.
Some of the patterns are also related to large-scale agile development.

23

4 Implementation

This section describes the prototypical implementation of a web application aiming to
support the establishment of pattern communities at large-scale agile development. Its
features are designed to solve the observed problems of pattern communities [21], such
as:

• Electronic accessibility

• Lack of standard pattern forms

• Pattern validation

• Updating pattern knowledge

• Lack of feedback

The aim is to enhance the prototypical web application with certain social design
concepts that promote desirable behaviors. The main focus is making the prototypical
web application interactive while addressing the identified challenges.

In the beginning of this chapter, Section 4.1 explains the motivation and rationale for
developing a web application. Subsequently, Section 4.2 briefly outlines the technical
requirements and technology selection. Section 4.3 shows the system architecture.
Finally, the main views and core features are presented in Section 4.4.

4.1 Motivation for a Web Application

To tackle the described challenges and achieve the solution goals and improvements,
using a web application is only one possible answer. While there might be other
solutions to address the identified challenges, the decision for a web application made
because of the following arguments:

• Scalability, because a web application can better support larger communities.

• Accessibility and portability to access the information on patterns from any
location and different devices.

24

4 Implementation

• The interactivity and possible implementation and usage of social design princi-
ples to encourage contribution and participation and other desirable behavior.

• The possibility of a web application to communicate with other tools, development
platforms, and databases for data analysis, e.g., to improve the tool by analyzing
collected data.

• The ease of adding and updating patterns so that new patterns can be easily
added to the platform.

4.2 Technical Requirements, Technology selection, and Usage

The technical requirements for the prototype are straightforward. The application can
be easily deployed to the chair’s infrastructure. Also, it should use the technologies
that are suggested by the chair which are SocioCortex1 for the backend system, React2

framework for the frontend and NodeJS3 for external functionalities. As the UI compo-
nent library, material-ui4 and for the version control system, Git5 is used. To manage
Git repositories in a better way, GitHub6 is selected which is a cloud-based hosting
service.

1https://sociocortex.com/, last accessed on: 04-09-2021.
2https://reactjs.org/, last accessed on: 04-09-2021.
3https://nodejs.org/, last accessed on: 04-09-2021.
4https://material-ui.com/, last accessed on: 04-09-2021.
5https://git-scm.com/, last accessed on: 04-09-2021.
6https://github.com/, last accessed on: 04-09-2021.

25

https://sociocortex.com/
https://reactjs.org/
https://nodejs.org/
https://material-ui.com/
https://git-scm.com/
https://github.com/

4 Implementation

4.2.1 SocioCortex

This prototype uses SocioCortex as the technical environment. SocioCortex is an
information system to organize semi-structured data within Enterprise Architecture
Management, employing a dynamic and collaborative Wiki-based approach developed
by the chair of Software Engineering for Business Information Systems (SEBIS) of
the Technische Universität München [69]. It is based on the modeling framework of
a former tool called Tricia [70]. The data model is depicted in Figure 4.1. Data is
structured and presented as interconnected Wiki pages. While SocioCortex implements
Wiki pages features, it also brings a standardized REST-API to enable access to all
features. Furthermore, the platform provides a Model-based Expression Language
(MxL) which is a powerful query language to access the data in the system. Data in the
SocioCortex system has to be queried to fill in the parameters with values. The Model-
Based Language expression is used for this purpose. MxL is a domain-specific language
developed on SocioCortex’s data model. The following characteristics characterize MxL
[71]:

1. Functional
The language is characterized by invoking functions. As a consequence of a typical
query operation, like "select", a corresponding function gets called (select-function,
where-function, etc.)

2. Sequence oriented
MxL concentrates on the usage of sequences (ordered sets) and supplies various
functions to support these.

3. Object oriented
SocioCortex entities are considered as objects and entityTypes as classes. Therefore
data-model can be queried.

4. Statically type safe
The static semantics is validated as soon as the user enters a query. By analyzing
semantic dependencies, automated refactoring is possible.

26

4 Implementation

Figure 4.1: Hybrid-Wiki data model in the context of Enterprise Architecture Manage-
ment [71]

27

4 Implementation

Simple and complex attribute types are part of the type-system of MxL. The types
depicted in Figure 4.2 are supported.

Figure 4.2: Overview of all basic types of MxL in form of an UML class diagram [72]

Accessing SocioCortex

MxL is used to query a SocioCortex data model. But also, a function of creating and
editing entities is necessary. Thus, SocioCortex also serves as a repository to store
the created artifacts. Furthermore, an authentication mechanism also is needed. A
REST-API is provided for this purpose by SocioCortex. Listing 4.1 and Listing 4.2 show
most crucial operations for the application provided by SocioCortex.

28

4 Implementation

1 static sendPost(url, body, headers) {
2 const fetchData = {
3 method: 'POST',
4 ...body && { body: JSON.stringify(body) },
5 ...headers && { headers: headers },
6 }
7

8 return fetch(url, fetchData)
9 .then(response => {

10 if (!response.ok) {
11 throw Error(response.statusText)
12 }
13 return response
14 })
15 .then(response => response.json())
16 .then(data => data)
17 }
18

19 static sendPut(url, body, headers) {
20 const fetchData = {
21 method: 'PUT',
22 ...body && { body: JSON.stringify(body) },
23 ...headers && { headers: headers },
24 }
25

26 return fetch(url, fetchData)
27 .then(response => {
28 if (!response.ok) {
29 throw Error(response.statusText)
30 }
31 return response
32 })
33 .then(response => response.json())
34 .then(data => data)
35 }

Listing 4.1: POST and PUT requests of the SocioCortex REST-API

29

4 Implementation

1 static sendGet(url, headers) {
2 const fetchData = {
3 method: 'GET',
4 ...headers && { headers: headers },
5 }
6

7 return fetch(url, fetchData)
8 .then(response => {
9 if (!response.ok) {

10 throw Error(response.statusText)
11 }
12 return response
13 })
14 .then(response => response.json())
15 .then(data => data)
16 }
17

18 static sendDelete(url, headers) {
19 const fetchData = {
20 method: 'DELETE',
21 ...headers && { headers: headers },
22 }
23

24 return fetch(url, fetchData)
25 .then(response => {
26 if (!response.ok) {
27 throw Error(response.statusText)
28 }
29 return response
30 })
31 .then(response => response.json())
32 .then(data => data)
33 }

Listing 4.2: GET and DELETE requests of the SocioCortex REST-API

30

4 Implementation

Furthermore, example usage of SocioCortex’s REST-API is illustrated in Listing 4.3.

1 static getFeedbackQuery() {
2 return (
3 "find('Feedback').select({" +
4 "id: id," +
5 "name: Name," +
6 "comment: comment," +
7 "isSubCommentOf: isSubCommentOf," +
8 "pattern: pattern," +
9 "patternName: patternName," +

10 "star: star," +
11 "timestamp: timestamp," +
12 "upvotes: upvotes," +
13 "userid: userid," +
14 "username: username" +
15 "})"
16);
17 }
18 static getFeedback() {
19 return {
20 promise: FetchService.sendPost(FEEDBACK_MXL_URL, {
21 expression: this.getFeedbackQuery(),
22 }),
23 };
24 }

Listing 4.3: Example implementation of SocioCortex REST-API

31

4 Implementation

4.2.2 React

React is an open-source library developed by Facebook to implement user interfaces
[73]. React facilitates the development of single-page applications. The core of React are
components and their compositions which are being realized as JSX files. According
to Chinnathambi [74], visuals can be defined in JSX files with a syntax similar to
HTML but still getting the power and flexibility from JavaScript. Chinnathambi [74]
introduces React components as reusable chunks of JavaScript that output (via JSX)
HTML elements. They contain both the control and the view. Since component logic
is written in JavaScript instead of templates, it is easy to pass rich data through the
app and keep the state out of the Document Object Model (DOM). React components
implement a render method that takes input data and returns what to display. An
example is shown in Listing 4.4, which uses an XML-like syntax called JSX.

1 class HelloMessage extends React.Component {
2 render() {
3 return (
4 <div>
5 Hello {this.props.name}
6 </div>
7);
8 }
9 }

10

11 ReactDOM.render(
12 <HelloMessage name="Taylor" />,
13 document.getElementById('hello-example')
14);

Listing 4.4: An example React component

When views are designed for each state in the application, React will efficiently
update and render just the right components when the data changes. Declarative views
make the code more predictable and easier to debug. For the application, encapsulated
components are built, which manage their state, and then those components are
composed to make complex user interfaces. Example usage is shown in Listing 4.5.

32

4 Implementation

1 import React from "react";
2

3 import HomeViewComponent from "../components/Home/HomeViewComponent";
4 import Header from "../components/Header";
5 import Footer from "../components/Footer";
6 import CircularProgress from "@material-ui/core/CircularProgress";
7

8 const HomeView = (props) => {
9 const { history } = props;

10 const [allData, setAllData] = React.useState();
11 const [isLoading, setIsLoading] = React.useState(true);
12

13 const handleSetData = (data) => {
14 setAllData(data);
15 };
16

17 if (isLoading) {
18 return (
19 <CircularProgress size={75} thickness={4} />
20);
21 }
22

23 return (
24 <div>
25 <Header history={history}/>
26 <HomeViewComponent
27 allData={allData}
28 />
29 <Footer />
30 </div>
31);
32 };
33

34 export default HomeView;

Listing 4.5: Example usage of multiple components

33

4 Implementation

Furthermore, the firebase-analytics7 package is used to keep track of analytics data
for the application. For this reason firebase.js is implemented which can be seen in
Listing 4.6.

1 import firebase from "firebase";
2 import "firebase/analytics";
3

4 const firebaseConfig = {
5 apiKey: process.env.API_KEY,
6 authDomain: process.env.AUTH_DOMAIN,
7 databaseURL: process.env.DATABASE_URL,
8 projectId: process.env.PROJECT_ID,
9 storageBucket: process.env.STORAGE_BUCKET,

10 messagingSenderId: process.env.MESSAGING_SENDER_ID,
11 appId: process.env.APP_ID,
12 measurementId: process.env.MESASUREMENT_ID,
13 };
14

15 // Check that `window` is in scope for the analytics module!
16 if (typeof window !== "undefined" && !firebase.apps.length) {
17 firebase.initializeApp(firebaseConfig);
18 if ("measurementId" in firebaseConfig) firebase.analytics();
19 }
20

21 export default firebase;

Listing 4.6: firebase.js file for the application

7https://github.com/firebase/firebase-js-sdk, last accessed on: 04-09-2021.

34

https://github.com/firebase/firebase-js-sdk

4 Implementation

The file is imported into app.js file. With this implementation, it is possible to see
default analytics data reported by the frontend application. However, it is aimed to
keep track of some specific events, such as pattern catalog downloads. To achieve this,
firebase-analytics package logEvent functionality is used. Example implementation for
logging events can be seen in Listing 4.7.

1 onClick={() => {
2 if (firebase.apps.length) {
3 firebase.app(); // if already initialized, use that one
4 }
5 if ("measurementId" in firebaseConfig) {
6 firebase.analytics();
7 firebase.analytics().logEvent("full_catalog");
8 console.log("logged");
9 }

Listing 4.7: Example usage of the logEvent function

35

4 Implementation

Moreover, Figure 4.3 shows the overall folder structure for the React application.

Figure 4.3: Overall structure for the React application

36

4 Implementation

4.2.3 NodeJS

NodeJS, an asynchronous event-driven JavaScript runtime, is designed to build scalable
network applications [75]. It enables running JavaScript code on any machine where
NodeJS can be installed. Thread-based networking is relatively inefficient and very
difficult to use [75]. NodeJS is single-threaded, which means that it executes one line
of code at a time. Satheesh et al. [76] describe the goal that NodeJS tries to solve as
follows: "It tries to do asynchronous processing on a single thread to provide more
performance and scalability for applications that are supposed to handle too much web
traffic." Thus, it is asynchronous, which means it does not execute the lines of code
chronologically from top to bottom but can do multiple operations simultaneously.
Furthermore, users of NodeJS are free from the worries of dead-locking the process
since there are no locks. Almost no function in NodeJS directly performs I/O, so
the process never blocks [75]. Because nothing blocks, scalable systems are very
reasonable to develop in NodeJS. It also comes with a built-in package manager, which
is Node Package Manager (NPM) 8. NPM allows installing packages easily with a
command. Directories of Node applications contain the folder node_ modules where
the application is using all packages. Packages are organized in the package.json file
by listing all dependencies that are necessary to run the application. The package.json
file is important when downloading NodeJS applications from the Internet that do
not contain the node_modules folder. The required packages can then be installed by
running npm install in this directory. Express9 is one of the most popular packages
installed with NPM. It is a minimal and flexible NodeJS web application framework
that provides a robust set of features for web and mobile applications [77]. With
Express creating a robust API is quick and easy [77]. An Express application contains
at least two files. Firstly, the previously mentioned package.json. Secondly, an Express
application also contains a server.js file which is the entry point for the application [76].
Listing 4.8 shows the server.js file for the application.

8npmjs.com/, last accessed on: 04-09-2021.
9expressjs.com, last accessed on: 04-09-2021.

37

npmjs.com/
expressjs.com

4 Implementation

1 import express from 'express';
2 import 'babel-polyfill';
3 import cors from 'cors';
4 import env from './env';
5 import latexRoute from './app/routes/latexRoute';
6 import analyticsRoute from './app/routes/analyticsRoute';
7

8 const app = express();
9

10 // Add middleware for parsing URL encoded bodies
11 app.use(cors());
12 // Add middleware for parsing JSON and urlencoded data
13 app.use(express.urlencoded({ extended: false }));
14 app.use(express.json());
15

16 app.use('/api/v1', latexRoute);
17 app.use('/api/v1', analyticsRoute);
18

19

20 app.listen(env.port).on('listening', () => {
21 console.log(`Application is live on ${env.port}`);
22 });
23

24

25 export default app;

Listing 4.8: server.js file for the application

38

4 Implementation

Two different routes have been defined for the application (see lines 16 and 17).
The first route is latexRoute.js which includes two end-points. Listing 4.9 shows the
end-points.

1 import express from 'express';
2

3 import { createPDF } from '../controllers/latexController';
4

5 const router = express.Router();
6

7 // latex Routes
8 router.post('/latex', createPDF);
9 router.get('/latex/download', (req, res) => res.download('./output.pdf'));

10

11

Listing 4.9: latexRoute.js file for the application

The first end-point (see line 8) calls the createPDF function, which is implemented in
latexController.js. The function is responsible for generating a PDF file based on the
client request parameters under the root folder. It uses node-latex10 package which is a
wrapper for generating PDFs with LaTeX11 in NodeJS. Afterward, the generated PDF
file is served with the end-point in line 9. Use case examples are given in Section 4.3.

10https://github.com/saadq/node-latex, last accessed on: 04-09-2021.
11https://www.latex-project.org/, last accessed on: 04-09-2021.

39

https://github.com/saadq/node-latex
https://www.latex-project.org/

4 Implementation

The second route is analyticsRoute.js which includes two end-points. Listing 4.10
shows the end-points.

1 import express from 'express';
2

3 import { runReport, runDownloadReport }
4 from '../controllers/analyticsController';
5

6 const router = express.Router();
7

8 // latex Routes
9 router.get('/report', runReport);

10 router.get('/report/events', runEventReport);
11

12

13 export default router;
14

15

Listing 4.10: analyricsRoute.js file for the application

The first end-point (see line 9) is calling runReport function, which is implemented in
the analyticsController.js. The end-point returns a JSON object. An example response
can be seen in Listing 4.11.

1 [
2 {
3 pageTitle: "Recommender System for Scaling Agile Frameworks",
4 screenPageViews: "1792",
5 userEngagementDuration: "22492",
6 },
7 {
8 pageTitle: "Scaling Agile Hub",
9 screenPageViews: "90",

10 userEngagementDuration: "352",
11 },
12 {
13 pageTitle: "Visualization Pattern Speed to Market",
14 screenPageViews: "10",
15 userEngagementDuration: "13919",
16 },

40

4 Implementation

17 {
18 pageTitle: "Stakeholders Development Team",
19 screenPageViews: "2",
20 userEngagementDuration: "1",
21 },
22 {
23 pageTitle:
24 "Concerns Ensuring that the development phases are clearly
25 separated and executed in an iterative fashion",
26 screenPageViews: "1",
27 userEngagementDuration: "70",
28 },
29 {
30 pageTitle: "Evolution of Scaling Agile Frameworks",
31 screenPageViews: "1",
32 userEngagementDuration: "6",
33 },
34 {
35 pageTitle: "Large Scale Agile Development Patterns",
36 screenPageViews: "1",
37 userEngagementDuration: "4938",
38 },
39 {
40 pageTitle: "Principles Strictly separate build and run stages",
41 screenPageViews: "1",
42 userEngagementDuration: "47",
43 },
44];
45

46

Listing 4.11: An example JSON response for the report end-point

41

4 Implementation

The second end-point in Listing 4.10 (see line 10) is calling runEventReport function
which is implemented in the analyticsController.js. The end-points provide the events
that the frontend application has logged. An example response for the end-point can
be seen in Listing 4.12.

1 [
2 { eventName: "page_view", eventCount: "1888" },
3 { eventName: "user_engagement", eventCount: "1202" },
4 { eventName: "session_start", eventCount: "174" },
5 { eventName: "first_visit", eventCount: "32" },
6 { eventName: "screen_view", eventCount: "10" },
7 { eventName: "full_catalog", eventCount: "5" },
8];
9

10

Listing 4.12: An example JSON response for the report/events end-point

The analyticsController.js is using google-analytics12 package to retrieve the data
which is reported by the frontend application. Listing 4.13 shows the implementation
of the runEventReport function.

1 import { errorMessage, successMessage, status } from "../helpers/status";
2

3 const propertyId = process.env.PROPERTY_ID;
4 const { AlphaAnalyticsDataClient } = require("@google-analytics/data");
5

6 const runEventReport = async (req, res) => {
7 // Creates a client
8 const client = new AlphaAnalyticsDataClient();
9 const [response] = await client.runReport({

10 entity: {
11 propertyId: propertyId,
12 },
13 dateRanges: [
14 {
15 startDate: "2020-03-31",
16 endDate: "today",
17 },
18],

12https://github.com/googleapis/nodejs-analytics-data, last accessed on: 04-09-2021.

42

https://github.com/googleapis/nodejs-analytics-data

4 Implementation

19 dimensions: [
20 {
21 name: "eventName",
22 },
23],
24 metrics: [
25 {
26 name: "eventCount",
27 },
28],
29 });
30 let data = [];
31

32 response.rows.forEach((row) => {
33 let child = {};
34 data.push(
35 new Promise((resolve, reject) => {
36 child["eventName"] = row.dimensionValues[0].value;
37 child["eventCount"] = row.metricValues[0].value;
38 resolve(child);
39 })
40);
41 });
42

43 return res.status(status.success).send(await Promise.all(data));
44 };
45

46 export { runEventReport };
47

Listing 4.13: runEventReport function

Moreover, Figure 4.4 shows the overall folder structure for the NodeJS application.

43

4 Implementation

Figure 4.4: Overall structure for the NodeJS application

4.3 System architecture

The following section provides a brief insight into the technical architecture of the
application. The system architecture is kept simple. It consists of the React single-page
application serving as the frontend for the user, which is communicating with the
SocioCortex and NodeJS REST-APIs via HTTP calls. Figure 4.5 illustrates a high-level
overview of the architecture.

44

4 Implementation

Figure 4.5: High-level overview of the system architecture

45

4 Implementation

4.4 Main views and core features

This section includes the core features of the application based on the main views
in which they are used within the application. The features were carefully designed
and implemented based on the challenges identified in Chapter 4 and continuously
discussed, adjusted, and extended over the course of the prototype implementation.
Social design principles are also taken into account that Kraut and Resnick introduced
in chapter "Encouraging Contribution to Online Communities" [22] when designing
the application. The landing page of the application can be seen in Figure 4.6. The
application includes the following core features as well as other supportive features:

• User access management

• Badge system

• Activity feed

• Pattern visualization

• PDF export

Figure 4.6: Landing page of the application

46

4 Implementation

4.4.1 User Access Management

User access management feature is implemented to address the following challenges
that are identified by Henninger et al. [21]:

• Software pattern validation

• Tracking software pattern variants and duplicates

• Updating software pattern knowledge

To be able to address the challenges, the following functionalities were implemented.

Register and Login

The user registration screen can be seen in Figure 4.7. After the registration, the system
automatically enables the user by using a magic link that SocioCortex generates.

Figure 4.7: Sign Up Page of the application

47

4 Implementation

Figure 4.8: Sign In Page of the application

48

4 Implementation

Create and Edit Pattern

The pattern creation feature allows admins to easily add new patterns, as shown in
Figure 4.9.

Figure 4.9: Dialog for creating a new pattern

After selecting the type of pattern, the user is prompted to provide information
regarding the pattern. Figure 4.10 shows a dialog for creating a new visualization
pattern.

The edit pattern feature addresses the "updating software pattern knowledge" chal-
lenge mentioned by Henninger et al. [21]. Figure 4.11 shows the edit pattern view.
When there is a change regarding the patterns, it can easily be updated by admins.

49

4 Implementation

Figure 4.10: Dialog for creating a new visualization pattern

Figure 4.11: Edit pattern view

50

4 Implementation

Add and Up-vote Feedback

The adding feedback feature enables pattern assessment. Users can state their opinions
freely using this feature which can be seen in Figure 4.12. It is also possible to up-vote
feedback, which makes feedback differentiated from each other. Figure 4.13 shows
the feedback view for a pattern. Users can reply to the feedback given by other users,
which can be seen in Figure 4.14. This also enables a feedback assessment.

Figure 4.12: Add feedback view

51

4 Implementation

Figure 4.13: Pattern feedback view

Figure 4.14: Reply feedback view

52

4 Implementation

4.4.2 Badge System

Since the value of the application is dependent on the active usage and contribution of
its users, we incorporate insights from social science into the design of our features. The
badge system feature is inspired by the following design claim by Kraut and Resnick
[21]:

Rewards, whether in the form of status, privileges or material benefits - motivate
contributions. (Design claim #23 in [21])

Achieving a new, higher badge can already be seen as a sort of status. Three types of
badges are defined for the application as bronze, silver, and gold. Badges are given
based on the user’s reputation points, and the points are earned based on the user
activities on the platform. For example, getting an up-vote for the feedback which the
user gives. Figure 4.15 shows a profile page that has a golden badge.

Figure 4.15: Profile page view

53

4 Implementation

4.4.3 Activity Feed

The latest activities from the users are shown on the landing page. The activity feed
feature is inspired by the following design claim by Kraut and Resnick [21] which can
be seen in Figure 4.16:

Motivate contributions by showing social similarities (Design claim #11 in [21])

This design claim fits well with the landing page’s activity feed since social similarities
such as affiliation and role are displayed.

Figure 4.16: Activity feed view

54

4 Implementation

4.4.4 Pattern visualization

Lack of standard pattern form is another challenge identified by Henninger et al. [21].
Pattern visualization features are implemented to be able to address this challenge. On
the patterns page, shown in Figure 4.17, users can select stakeholders to see the related
pattern graph.

Figure 4.17: Stakeholder selection view

After the selection, the Large-Scale Agile Development Pattern Graph is presented,
as shown in Figure 4.18.

Figure 4.18: Large-Scale Agile Development Pattern Graph

55

4 Implementation

It is also possible to see a related pattern graph based on the highlighted stakeholder,
shown in Figure 4.19.

Figure 4.19: Highlighted pattern graph

With this feature, the selected stakeholder’s general overview can be visualized,
and even further, each node can be visualized specifically to get more insight. E.g.
Figure 4.20 represents the view when "V-1 (Visualization pattern - Iteration Dependency
Matrix)" is selected from the pattern graph.

On this page, below the pattern graph, all the necessary information can be found
regarding the selected pattern. Figure 4.21 shows the Iteration Dependency Matrix’s
information view representing a visualization pattern.

Once the tabs are expanded by clicking on the arrow button, which is on the right
side of the labels, detailed information can be seen. Figure 4.22 shows an example view
for expanded tabs.

56

4 Implementation

Figure 4.20: V-1 pattern view (Visualization pattern - Iteration Dependency Matrix)

Figure 4.21: V-1 Information view (Visualization pattern - Iteration Dependency Matrix)

57

4 Implementation

Figure 4.22: Expanded information view (Visualization pattern - Iteration Dependency
Matrix)

58

4 Implementation

4.4.5 PDF Export

The PDF export functionality is implemented to address the "Electronic Accessibility"
challenge identified by Henninger et al. [21]. It is aimed to make the information
available even offline. Thus, three types of download options are provided:

• Full catalog download which can be seen in Figure 4.23

• Stakeholder catalog download which can be seen in Figure 4.19

• Pattern catalog download which can be seen in Figure 4.22

The full catalog download option enables users to download all the pattern-related
information included in the platform. It is also possible to download the data based
on the selected stakeholders and patterns, which means that other information will be
excluded.

Figure 4.23: Full catalog download view

59

5 Evaluation

In this chapter, we share the analytics results of the prototype. Detailed evaluation is
difficult since the platform lacks patterns data. Thus, it is prioritized to increase the
amount of pattern data on the platform. It is possible to see how potential users are
behaving on the platform. There are four types of data visualizations in terms of the
analytics data:

• User count and engagement time view

• Demographic view

• Page view

• Event view

5.1 User Count and Engagement Time View

The user count and engagement time view shows the total number of users that are
interacting with the platform, new users count, and average engagement time within a
given time. The related data for the platform can be seen in Figure 5.1.

60

5 Evaluation

Figure 5.1: User count and engagement time view

61

5 Evaluation

5.2 Demographic View

The demographic view presents the location of the users that they connect to the
platform. Figure 5.2 shows the demographic data for the platform.

Figure 5.2: User count and engagement time view

Further, it is possible to see detailed information on the demographic data such as
new users and the users’ average engagement time based on the countries. Detailed
demographic information can be seen in Figure 5.3.

62

5 Evaluation

Figure 5.3: Detailed demographic view

63

5 Evaluation

5.3 Page View

The page view presents views based on the page title. It is possible to get further details
such as unique user scrolls on the pages, event counts, and average engagement time.
Figure 5.4 shows the page view for the platform.

Figure 5.4: Page view

64

5 Evaluation

5.4 Event View

The event view shows event-based data such as session start information, first visit
information, and many more events that have been reported. The event view can be
seen in Figure 5.5 for the application.

Figure 5.5: Event view

65

6 Discussion

This chapter summarizes key findings and provides a critical reflection that discusses
this master’s thesis’s potential limitations.

6.1 Key Findings

In the following, we describe and summarize the key findings of this master’s thesis.

A web application addresses typical challenges of traditional pattern formats and
communities
Throughout the empirical work by Henninger et al. [21], a set of challenges identified
for federating pattern collections into a more integrated and interconnected body
of knowledge. The challenges are heavily biased toward combining patterns in a
distributed electronic format utilizing Web technologies. The identified challenges
must be met to achieve this goal, such as electronic accessibility of the patterns, lack
of standard pattern forms, software pattern validation, and updating software pattern
knowledge.

Existing pattern communities
– do not provide patterns regarding large-scale agile development
– exhibit shortcomings related to the creation of online communities
– show limitations related to the effective identification and validation of pat-

terns
We identified throughout our research different pattern communities, such as Scrum-
PLoP [78], EuroPloP [79], Hillside Group [80] and the ILDE (Integrated Learning
Design Environment) [81] which includes both a template for editing patterns and
pattern-based learning design tools. While they all provide pattern knowledge, there
are some problems, such as lack of guidance, finding large-scale development patterns
difficult, lack of design concepts to promote contribution, and lack of interactivity.

66

6 Discussion

Promotion of desirable user behavior is possible through certain design concepts in
online communities
Kraut and Resnick documented design claims based on Social Science and Psychology
researches in the chapter "Encouraging Contribution to Online Communities" [22]. It
is also stated that the promotion of desirable behaviors is possible through certain
design concepts in communities. These design concepts are also applicable to an online
community. Based on these design claims, the badge system and activity feed features
were implemented. One good example is Stack Overflow that makes extensive use of
badges. The use of badge incentives is a new trend in online social websites, and it has
a significant effect on user engagement and participation [82].

A web application can be valuable for supporting pattern communities related to
large-scale agile development
Patterns are available in several publishing mediums, from books to proceedings to Web
sites. Although 31% of the software patterns are locked in book format (proceedings,
journal, book), 69% are electronically accessible on the Web. However, less than half
(44%) of the Web-accessible patterns are represented using structured text such as
HTML (10% of patterns) or XML. The rest is available through PS/PDF/Word files
[21]. Thus, a web application with features presented in the thesis can provide valuable
support for supporting pattern communities at large-scale development. So far, the
proposed web application mainly aims to provide a social and interactive tool and
increase the accessibility of patterns. The prototypical web application also provides the
basis for future enhancements, such as providing deviated patterns that organizations
use.

6.2 Limitations

This section discusses limitations and threats to the validity of the thesis. First of all, a
limitation is the limited time frame of the thesis available for conducting the research,
which does not allow for a longer evaluation and actual usage of the solution artifacts
over multiple months. Another key limitation is the static mapping of the pattern
catalog. Since the pattern catalog is manually created and needs to be updated when
there is a change, some changes regarding the pattern knowledge might not be adopted
immediately to the downloaded pattern catalogs. Another limitation is the lack of user
feedback. We aimed to counteract this limitation by implementing analytics module
into our solution artifacts’ design along with existing literature and related work.

67

7 Conclusion and Future Work

This chapter summarizes the thesis based on the research questions and presents an
outlook for further research.

7.1 Summary

The following section summarizes the answers to the research questions presented in
Section 1.2.

Research question 1: What are the challenges of establishing pattern communities?

Patterns are generally disseminated in dispersed collections through a range of publi-
cation mediums with little to no technical assistance. Potential pattern users are having
trouble learning what patterns are available and where, and how to use them. The
amount of patterns and range of pattern forms continues to increase [21]. Throughout
the existing literature review, six challenges were identified as electronic accessibility of
patterns, lack of standard pattern forms, inter-pattern relationships, pattern validation,
tracking pattern variants, duplicates, and updating pattern knowledge. Additionally,
we have spotted design concepts presented in Building Successful Online Communi-
ties: Evidence-Based Social Design book [22] by Kraut and Resnick promote desirable
behavior in online communities.

Research question 2: How can a prototypical web implementation support the
establishment of pattern communities?

A prototypical web implementation was implemented to address the identified
challenges by the research question 1. The derived challenges and design concepts
are mapped as features for the web implementation, such as user access management,
pattern visualization, PDF export, badge system, and activity feed.

Research question 3: How can the prototypical web implementation be improved in
the future?

We have compared the prototypical web implementation with other online com-
munities such as ScrumPLoP [78], EuroPloP [79], Hillside Group [80] and the ILDE

68

7 Conclusion and Future Work

(Integrated Learning Design Environment) [81]. Based on the literature and comparison
results, we have identified possible future extensions such as enabling users to upload
patterns on the platform by adding a review and approve the process, implementing
pattern deviations feature to know how companies are using the patterns, enhancing
badge system by giving rewards based on the points that are earned on the platform
and integrating other design concepts that might motive users.

7.2 Future Work

Due to this master’s thesis’s limited time frame, surveys to evaluate the protoype could
not be conducted with industry partners. The valuable feedback from the conducted
expert interviews and surveys can be one of the crucial next steps for further work.
Another aspect of future work is the generalization of the results. Firstly, applying and
evaluating the prototypical web implementation after publishing it to the community
could provide helpful insights into further refining and adjusting the approach and
the demonstrated web application. Moreover, the article with the title of Pattern-Based
Design Research – An Iterative Research Method Balancing Rigor and Relevance that is
published by Matthes et al. [83] could be analyzed to determine how pattern variants
can be integrated into the platform that companies use.

69

Bibliography

[1] W. J. Orlikowski. “Improvising Organizational Transformation Over Time: A
Situated Change Perspective.” In: Information Systems Research 7.1 (1996), pp. 63–
92. doi: 10.1287/isre.7.1.63.

[2] C. Fuchs and T. Hess. “Becoming agile in the digital transformation: The pro-
cess of a large-scale agile transformation.” In: 39th International Conference On
Information Systems, San Francisco. 2018.

[3] P. Weill and S. Woerner. “Thriving in an increasingly digital ecosystem.” In: MIT
Sloan Management Review 56.4 (2015), p. 27.

[4] W. K. B. Sherehiy and J. Layer. “A review of enterprise agility: Concepts, frame-
works, and attributes.” In: International Journal of industrial ergonomics 37.5 (2007),
pp. 445–460.

[5] Ö. Uludağ, M. Kleehaus, X. Xu, and F. Matthes. “Investigating the Role of
Architects in Scaling Agile Frameworks.” In: 21st IEEE International Enterprise
Distributed Object Computing Conference, EDOC 2017, Quebec City, QC, Canada,
October 10-13, 2017. 2017, pp. 123–132. doi: 10.1109/EDOC.2017.25.

[6] Factors that impact implementing an agile software development methodology. 2007,
pp. 82–86. doi: 10.1109/SECON.2007.342860.

[7] A. B. E. Overby and V. Sambamurthy. “Enterprise agility and the enabling role of
information technology.” In: European Journal of Information Systems 15.2 (2006),
pp. 120–131.

[8] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, et al. Manifesto for Agile Software
Development. http://agilemanifesto.org. 2001.

[9] C. W. K. Petersen. “The effect of moving from a plan-driven to an incremental
software development approach with agile practices.” In: Empirical Software
Engineering 15.6 (2010), pp. 654–693.

[10] K. Beck. “Extreme Programming Explained: Embrace Change.” In: (1999).

[11] P. Kettunen. “Extending Software Project Agility with New Product Development
Enterprise Agility.” In: Softw. Process. Improv. Pract. 12.6 (2007), pp. 541–548.

70

https://doi.org/10.1287/isre.7.1.63
https://doi.org/10.1109/EDOC.2017.25
https://doi.org/10.1109/SECON.2007.342860
http://agilemanifesto.org

Bibliography

[12] K. Schwaber and M. Beedle. “Agile Software Development with Scrum.” In:
(2002).

[13] P. Kettunen. “Extending Software Project Agility with New Product Development
Enterprise Agility.” In: Softw. Process 12.6 (Nov. 2007), pp. 541–548. issn: 1077-4866.
doi: 10.1002/spip.v12:6.

[14] T. Dingsøyr, N. B. Moe, R. Tonelli, S. Counsell, Ç. Gencel, and K. Petersen, eds.
Agile Methods. Large-Scale Development, Refactoring, Testing, and Estimation - XP
2014 International Workshops, Rome, Italy, May 26-30, 2014, Revised Selected Papers.
Vol. 199. Lecture Notes in Business Information Processing. Springer, 2014. isbn:
978-3-319-14357-6.

[15] T. Dingsøyr and N. B. Moe. “Research challenges in large-scale agile software
development.” In: ACM SIGSOFT Software Engineering Notes 38.5 (2013), pp. 38–39.
doi: 10.1145/2507288.2507322.

[16] N. B. Moe and T. Dingsøyr. “Emerging research themes and updated research
agenda for large-scale agile development: a summary of the 5th international
workshop at XP2017.” In: Proceedings of the XP2017 Scientific Workshops, Cologne,
Germany, May 22 - 26, 2017. ACM. 2017, 14:1–14:4. doi: 10.1145/3120459.3120474.

[17] Ö. Uludag, P. Philipp, A. Putta, M. Paasivaara, C. Lassenius, and F. Matthes.
“Revealing the State-of-the-Art in Large-Scale Agile Development: A Systematic
Mapping Study.” In: CoRR abs/2007.05578 (2020).

[18] M. Alqudah and R. Razali. “A Review of Scaling Agile Methods in Large Soft-
ware Development.” In: International Journal on Advanced Science, Engineering and
Information Technology 6.6 (2016), pp. 828–837. issn: 2088-5334. doi: 10.18517/
ijaseit.6.6.1374.

[19] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin,
S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas. Manifesto for Agile Software
Development. Retrieved April 13, 2016, from http://agilemanifesto.org/. 2001.

[20] Ö. Uludağ, N.-M. Harders, and F. Matthes. “Documenting Recurring Concerns
and Patterns in Large-Scale Agile Development.” In: 24th European Conference on
Pattern Languages of Programs. 2019.

[21] S. Henninger and V. Corrêa. “Software Pattern Communities: Current Practices
and Challenges.” In: Proceedings of the 14th Conference on Pattern Languages of Pro-
grams. PLOP ’07. Monticello, Illinois, USA: Association for Computing Machinery,
2007. isbn: 9781605584119. doi: 10.1145/1772070.1772087.

71

https://doi.org/10.1002/spip.v12:6
https://doi.org/10.1145/2507288.2507322
https://doi.org/10.1145/3120459.3120474
https://doi.org/10.18517/ijaseit.6.6.1374
https://doi.org/10.18517/ijaseit.6.6.1374
https://doi.org/10.1145/1772070.1772087

Bibliography

[22] R. E. Kraut and P. Resnick. Building successful online communities: Evidence-based
social design. Mit Press, 2012.

[23] A. R. Hevner, S. T. March, J. Park, and S. Ram. “Design Science in Information
Systems Research.” In: MIS Quarterly 28.1 (2004), pp. 75–106.

[24] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee. “A Design
Science Research Methodology for Information Systems Research.” In: Journal
of Management Information Systems 24.3 (2007), pp. 45–77. doi: 10.2753/MIS0742-
1222240302.

[25] P. Hohl, J. Klünder, A. van Bennekum, R. Lockard, J. Gifford, J. Münch, M.
Stupperich, and K. Schneider. “Back to the future: origins and directions of the
“Agile Manifesto” – views of the originators.” In: Journal of Software Engineering
Research and Development (2018).

[26] A. Cockburn. Agile Software Development: The Cooperative Game. Agile Software
Development Series. Pearson Education, 2006. isbn: 9780321630070.

[27] P. Runeson and M. Höst. “Guidelines for conducting and reporting case study
research in software engineering.” In: Empirical software engineering 14.2 (2009),
p. 131.

[28] N. Abbas, A. Gravell, and G. Wills. “Historical Roots of Agile Methods: Where
Did “Agile Thinking” Come From?” In: vol. 9. June 2008. isbn: 978-3-540-68254-7.
doi: 10.1007/978-3-540-68255-4_10.

[29] A. Stellman and J. Greene. Learning Agile: Understanding Scrum, XP, Lean, and
Kanban. O’Reilly, 2014. isbn: 9781449331924.

[30] P. Serrador and J. Pinto. “Does Agile work? — A quantitative analysis of agile
project success.” In: International Journal of Project Management 33 (Mar. 2015),
pp. 1040–1051. doi: 10.1016/j.ijproman.2015.01.006.

[31] M. Coram and S. Bohner. “The impact of Agile Methods on software project
management.” In: May 2005, pp. 363–370. isbn: 0-7695-2308-0. doi: 10.1109/ECBS.
2005.68.

[32] A. B. M. Moniruzzaman and S. Hossain. “Comparative Study on Agile software
development methodologies.” In: (July 2013).

[33] H. Takeuchi and I. Nonaka. “The new new product development game.” In:
Harvard business review 64.1 (1986), pp. 137–146.

[34] D. Maximini. The Scrum Culture: Introducing Agile Methods in Organizations. Springer
Publishing Company, Incorporated, 2015. isbn: 3319118269.

72

https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.1007/978-3-540-68255-4_10
https://doi.org/10.1016/j.ijproman.2015.01.006
https://doi.org/10.1109/ECBS.2005.68
https://doi.org/10.1109/ECBS.2005.68

Bibliography

[35] K. Schwaber. “Scrum development process.” In: Business object design and imple-
mentation. Springer, 1997, pp. 117–134.

[36] H. F. Cervone. “Understanding agile project management methods using Scrum.”
In: OCLC Systems Services 27 (Feb. 2011), pp. 18–22. doi: 10.1108/10650751111106528.

[37] Scrumorg Scrum Framework. https://scrumorg-website-prod.s3.amazonaws.
com/drupal/2021-01/Scrumorg-Scrum-Framework-tabloid.pdf. (Accessed on
04/11/2021).

[38] K. Schwaber. Agile Project Management with Scrum. Developer Best Practices.
Pearson Education, 2004. isbn: 9780735637900.

[39] C. Keith. Agile Game Development with Scrum. Addison-Wesley Signature Series
(Cohn). Pearson Education, 2010. isbn: 9780321670281.

[40] K. Rubin. Essential Scrum: A Practical Guide to the Most Popular Agile Process.
Addison-Wesley signature series. Addison-Wesley, 2012. isbn: 9780137043293.

[41] R. Sindhgatta, N. C. Narendra, and B. Sengupta. “Software evolution in agile
development: a case study.” In: Proceedings of the ACM international conference com-
panion on Object oriented programming systems languages and applications companion.
ACM. 2010, pp. 105–114. doi: 10.1145/1869542.1869560.

[42] W. Hayes, S. Miller, M. A. Lapham, E. Wrubel, and T. Chick. Agile metrics:
Progress monitoring of agile contractors. Tech. rep. CARNEGIE-MELLON UNIV
PITTSBURGH PA SOFTWARE ENGINEERING INST, 2014.

[43] D. Anderson. Kanban: Successful Evolutionary Change for Your Technology Business.
Blue Hole Press, 2010. isbn: 9780984521401.

[44] M. O. Ahmad, J. Markkula, and M. Oivo. “Kanban in software development:
A systematic literature review.” In: 2013 39th Euromicro conference on software
engineering and advanced applications. IEEE. 2013, pp. 9–16. doi: 10.1109/SEAA.
2013.28.

[45] M. Ikonen, P. Kettunen, N. Oza, and P. Abrahamsson. “Exploring the sources of
waste in kanban software development projects.” In: 36th EUROMICRO Conference
on Software Engineering and Advanced Applications. IEEE. 2010, pp. 376–381. doi:
10.1109/SEAA.2010.40.

[46] V. Mahnic. “Improving software development through combination of scrum
and kanban.” In: Recent Advances in Computer Engineering, Communications and
Information Technology, Espanha (2014), pp. 281–288.

[47] J. Sutherland and K. Schwaber. The definitive guide to scrum: The rules of the game.
http://www.scrum.org/scrum-guides. 2013 (Accessed on 10/16/2019).

73

https://doi.org/10.1108/10650751111106528
https://scrumorg-website-prod.s3.amazonaws.com/drupal/2021-01/Scrumorg-Scrum-Framework-tabloid.pdf
https://scrumorg-website-prod.s3.amazonaws.com/drupal/2021-01/Scrumorg-Scrum-Framework-tabloid.pdf
https://doi.org/10.1145/1869542.1869560
https://doi.org/10.1109/SEAA.2013.28
https://doi.org/10.1109/SEAA.2013.28
https://doi.org/10.1109/SEAA.2010.40
http://www.scrum.org/scrum-guides

Bibliography

[48] M. Yilmaz and R. V. O’Connor. “A Scrumban integrated gamification approach
to guide software process improvement: a Turkish case study.” In: Tehnički vjesnik
23.1 (2016), pp. 237–245. doi: 10.17559/TV-20140922220409.

[49] A. Reddy. The Scrumban [R]Evolution: Getting the Most Out of Agile, Scrum, and
Lean Kanban. Agile Software Development Series. Pearson Education, 2015. isbn:
9780134077628.

[50] M. Stoica, B. Ghilic-Micu, M. Mircea, and C. Uscatu. “Analyzing Agile Devel-
opment from Waterfall Style to Scrumban.” In: Informatica Economica 20.4 (2016).
doi: 10.12948/issn14531305/20.4.2016.01.

[51] E. Corona and F. E. Pani. “A review of lean-Kanban approaches in the software
development.” In: WSEAS transactions on information science and applications 10.1
(2013), pp. 1–13.

[52] M. Poppendieck and M. A. Cusumano. “Lean software development: A tutorial.”
In: IEEE software 29.5 (2012), pp. 26–32. doi: 10.1109/MS.2012.107.

[53] T. Dingsøyr, T. Fægri, and J. Itkonen. “What Is Large in Large-Scale?A Taxonomy
of Scale for Agile Software Development.” English. In: Product-Focused Software
Process Improvement Lecture Notes in Computer Science. Ed. by A. Jedlitschka, P.
Kuvaja, M. Kuhrmann, T. Männistö, J. Münch, and M. Raatikainen. 8892nd ed.
Springer International Publishing, 2014, pp. 273–276. isbn: 978-3-319-13834-3.

[54] T. Dingsøyr, N. B. Moe, T. E. Fægri, and E. A. Seim. “Exploring software develop-
ment at the very large-scale: a revelatory case study and research agenda for agile
method adaptation.” In: Empirical Software Engineering 23.1 (2018), pp. 490–520.
doi: 10.1007/s10664-017-9524-2.

[55] L. Lagerberg, T. Skude, P. Emanuelsson, K. Sandahl, and D. Ståhl. “The Impact of
Agile Principles and Practices on Large-Scale Software Development Projects: A
Multiple-Case Study of Two Projects at Ericsson.” In: 2013 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement. IEEE. 2013, pp. 348–
356. doi: 10.1109/ESEM.2013.53.

[56] J. Vlietland and H. van Vliet. “Towards a governance framework for chains of
Scrum teams.” English. In: Information and Software Technology 57.1 (2015), pp. 52–
65. issn: 0950-5849. doi: 10.1016/j.infsof.2014.08.008.

[57] K. Petersen and C. Wohlin. “The effect of moving from a plan-driven to an
incremental software development approach with agile practices: An industrial
case study.” In: Empirical Software Engineering 15 (Dec. 2010), pp. 654–693. doi:
10.1007/s10664-010-9136-6.

74

https://doi.org/10.17559/TV-20140922220409
https://doi.org/10.12948/issn14531305/20.4.2016.01
https://doi.org/10.1109/MS.2012.107
https://doi.org/10.1007/s10664-017-9524-2
https://doi.org/10.1109/ESEM.2013.53
https://doi.org/10.1016/j.infsof.2014.08.008
https://doi.org/10.1007/s10664-010-9136-6

Bibliography

[58] N. B. Moe, D. Smite, A. Sablis, A.-L. Börjesson, and P. Andréasson. “Networking
in a large-scale distributed agile project.” In: 2014 ACM-IEEE International Sympo-
sium on Empirical Software Engineering and Measurement, ESEM ’14, Torino, Italy,
September 18-19, 2014. ACM. 2014, 12:1–12:8. doi: 10.1145/2652524.2652584.

[59] M. A. Babar. “An exploratory study of architectural practices and challenges in
using agile software development approaches.” In: 2009 Joint Working IEEE/IFIP
Conference on Software Architecture European Conference on Software Architecture.
2009, pp. 81–90. doi: 10.1109/WICSA.2009.5290794.

[60] D. Leffingwell. Agile Software Requirements: Lean Requirements Practices for Teams,
Programs, and the Enterprise. 1st. Addison-Wesley Professional, 2011. isbn: 0321635841.

[61] K. Dikert, M. Paasivaara, and C. Lassenius. “Challenges and success factors for
large-scale agile transformations: A systematic literature review.” In: Journal of
Systems and Software 119 (2016), pp. 87–108. doi: 10.1016/j.jss.2016.06.013.

[62] D. Badampudi, S. A. Fricker, and A. M. Moreno. “Perspectives on Productivity
and Delays in Large-Scale Agile Projects.” In: International Conference on Agile
Software Development. Springer. 2013, pp. 180–194. doi: 10.1007/978-3-642-
38314-4_13.

[63] P. Kettunen and M. Laanti. “Combining agile software projects and large-scale
organizational agility.” In: Software Process: Improvement and Practice 13.2 (2008),
pp. 183–193. doi: 10.1002/spip.354.

[64] M. Alqudah and R. Razali. “A review of scaling agile methods in large soft-
ware development.” In: International Journal on Advanced Science, Engineering and
Information Technology 6.6 (2016), pp. 828–837. doi: 10.18517/ijaseit.6.6.1374.

[65] Ö. Uludağ, M. Kleehaus, C. Caprano, and F. Matthes. “Identifying and structuring
challenges in large-scale agile development based on a structured literature
review.” In: 2018 IEEE 22nd International Enterprise Distributed Object Computing
Conference (EDOC). IEEE. 2018, pp. 191–197. doi: 10.1109/EDOC.2018.00032.

[66] Ö. Uludağ and F. Matthes. “Identifying and Documenting Recurring Concerns
and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile
Development.” In: 2019.

[67] Ö. Uludağ and F. Matthes. “Large-Scale Agile Development Patterns for Enter-
prise and Solution Architects.” In: Proceedings of the European Conference on Pattern
Languages of Programs 2020. EuroPLoP ’20. Virtual Event, Germany: Association
for Computing Machinery, 2020. isbn: 9781450377690. doi: 10.1145/3424771.
3424895.

75

https://doi.org/10.1145/2652524.2652584
https://doi.org/10.1109/WICSA.2009.5290794
https://doi.org/10.1016/j.jss.2016.06.013
https://doi.org/10.1007/978-3-642-38314-4_13
https://doi.org/10.1007/978-3-642-38314-4_13
https://doi.org/10.1002/spip.354
https://doi.org/10.18517/ijaseit.6.6.1374
https://doi.org/10.1109/EDOC.2018.00032
https://doi.org/10.1145/3424771.3424895
https://doi.org/10.1145/3424771.3424895

Bibliography

[68] Published Patterns. https://sites.google.com/a/scrumplop.org/published-
patterns/home. Accessed: 2020-12-30.

[69] sebis TU München : SocioCortex - Model-Based Collaboration Environment. https:
//wwwmatthes.in.tum.de/pages/13uzffgwlh8z4/SocioCortex. (Accessed on
02/19/2021).

[70] F. Matthes, C. Neubert, and A. Steinhoff. “Hybrid Wikis: Empowering Users to
Collaboratively Structure Information.” In: ICSOFT (1). Ed. by M. J. E. Cuaresma,
B. Shishkov, and J. Cordeiro. SciTePress, 2011, pp. 250–259. isbn: 978-989-8425-76-
8.

[71] T. Reschenhofer, M. Bhat, A. Hernandez-Mendez, and F. Matthes. “Lessons
Learned in Aligning Data and Model Evolution in Collaborative Information
Systems.” In: 2016 IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C). 2016, pp. 132–141.

[72] Basic Types in MxL. https://sociocortex.com/tutorial/2015/12/01/mxl02/.
(Accessed on 02/20/2021).

[73] React – A JavaScript library for building user interfaces. https://reactjs.org/.
(Accessed on 02/25/2021).

[74] K. Chinnathambi. Learning React. Boston: Addison-Wesley, 2017. isbn: 978-0-13-
454631-5.

[75] About | Node.js. https://nodejs.org/en/about/. (Accessed on 02/26/2021).

[76] M. Satheesh. Web development with MongoDB and NodeJS : build an interactive and
full-featured web application from scratch using Node.js and MongoDB. Birmingham,
UK: Packt Publishing, 2015. isbn: 978-1-78528-752-7.

[77] Express - Node.js web application framework. https://expressjs.com/. (Accessed
on 02/27/2021).

[78] Scrum Pattern Community. http://www.scrumplop.org/. (Accessed on 03/14/2021).

[79] EuroPLoP. https://europlop.net/. (Accessed on 03/14/2021).

[80] The Hillside Group - A group dedicated to design patterns. Home of the patterns library.
https://hillside.net/. (Accessed on 03/14/2021).

[81] Welcome to ILDEplus! - ILDE. https://ilde.upf.edu/pg/lds/firststeps/.
(Accessed on 03/14/2021).

[82] R. Gharibi and M. Malekzadeh. “Gamified Incentives: A Badge Recommendation
Model to Improve User Engagement in Social Networking Websites.” In: Inter-
national Journal of Advanced Computer Science and Applications 8 (Jan. 2017). doi:
10.14569/IJACSA.2017.080533.

76

https://sites.google.com/a/scrumplop.org/published-patterns/home
https://sites.google.com/a/scrumplop.org/published-patterns/home
https://wwwmatthes.in.tum.de/pages/13uzffgwlh8z4/SocioCortex
https://wwwmatthes.in.tum.de/pages/13uzffgwlh8z4/SocioCortex
https://sociocortex.com/tutorial/2015/12/01/mxl02/
https://reactjs.org/
https://nodejs.org/en/about/
https://expressjs.com/
http://www.scrumplop.org/
https://europlop.net/
https://hillside.net/
https://ilde.upf.edu/pg/lds/firststeps/
https://doi.org/10.14569/IJACSA.2017.080533

Bibliography

[83] S. Buckl, F. Matthes, A. W. Schneider, and C. M. Schweda. “Pattern-Based Design
Research – An Iterative Research Method Balancing Rigor and Relevance.” In:
Design Science at the Intersection of Physical and Virtual Design. Ed. by J. vom Brocke,
R. Hekkala, S. Ram, and M. Rossi. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 73–87. isbn: 978-3-642-38827-9.

77

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Introduction
	Research Objectives
	Research Approach

	Foundations
	Agile Software Development
	Agile Manifesto
	Scrum Process Framework
	Kanban in Software Development

	Large-Scale Agile Development
	Scaling Agile Frameworks
	Large-Scale Agile Development Patterns

	Social Design Principles

	Related Work
	Implementation
	Motivation for a Web Application
	Technical Requirements, Technology selection, and Usage
	SocioCortex
	React
	NodeJS

	System architecture
	Main views and core features
	User Access Management
	Badge System
	Activity Feed
	Pattern visualization
	PDF Export

	Evaluation
	User Count and Engagement Time View
	Demographic View
	Page View
	Event View

	Discussion
	Key Findings
	Limitations

	Conclusion and Future Work
	Summary
	Future Work

	Bibliography

