© Springer-Verlag

C-Merge:
A Tool for Policy-Based Merging
of Resource Classifications

Florian Matthes, Claudia Niederée, and Ulrike Steffens

Software Systems Institute,
Technical University Hamburg-Harburg, Hamburg, Germany
{f .matthes,c.niederee,ul.steffens}@tu-harburg.de
www.sts.tu-harburg.de

Abstract. In this paper we present an interactive tool for policy-based
merging of resource-classifying networks (RCNs). We motivate our approach
by identifying several merge scenarios within organizations and discuss their
individual requirements on RCN merge support. The quality-controlled merg-
ing of RCNs integrates the contributions from different authors, fostering
synergies and the achievement of common goals.

The C-Merge tool design is based on a generalized view of the merge process
and a simple but flexible model of RCNs. The tool is policy-driven and sup-
ports a variable degree of automation. Powerful options for user interaction
and expressive change visualization enable substantial user support as well
as effective quality control for the merge process.

Keywords: Categorization, Taxonomy, Merging, CSCW, Knowledge Management, Know-
ledge Visualization, Quality Control

1 Introduction

Effective cooperative construction, structuring, and handling of digital content is a
crucial factor in the information society. Beyond the use of digital documents coop-
erative work with content also involves information resources like personal interests,
special expertise etc. Effective discovery and use of, as well as communication about
all these resources can be improved by imposing a common classification scheme.
The materialization and adequate visualization of classification hierarchies leads
to resource-classifying networks (RCN) that use enriched classification hierarchies
as an access structure improving information discovery, navigation and exploration.
Innovative graphical user interfaces further enhance the usability of such networks.
The construction of RCNs is often a cooperative, long-term effort which in-
cludes extension, correction, refocusing as well as restructuring and reacts to new
developments and insights assuring a high quality of the classified collection. The
construction process is a mix of autonomous efforts, close and loose cooperation as
well as online and offline work. This leads to separate, partly competing, partly com-
plementing artifacts that have to be reintegrated to gain a common overall result.
RCN merging, thus, is an integral part of the construction process and is required

— to achieve consensus between cooperation partners,
— to benefit from co-workers contributions, and
— to exploit independent, but semantically related evolution.

The potential size and complexity of RCNs makes manual merging a tedious
task. Hence, semi-automatic merge support is crucial. This paper presents C-Meryge,
a prototype tool that implements a proposal-oriented approach for merging RCNs.
It combines powerful merge support with a user-defined degree of automation and
effective options for user intervention.

Flexible RCN merge support is motivated in the next section by considering
various cooperative merge scenarios. Section 3 discusses the RCN merge process re-
quirements together with the solutions employed in our approach. The C-Merge ser-
vice architecture and functionality is summarized in section 4. The paper concludes
with a discussion of related work and future research directions.

2 Motivation: Merging RCNs

Resource classifying networks play an important role in the cooperative work with
information. This section starts with a description of our model of RCNs and iden-
tifies several merge scenarios which require flexible RCN merge support.

2.1 A Model for Resource-Classifying Networks

The classification of information objects according to a predefined hierarchy of con-
cepts is an important contribution to their description and discovery. Resources that
are structured this way include documents in traditional and digital libraries, co-
workers expertise as found in knowledge management, physical facilities like rooms,
and events like conferences. If classification hierarchies are materialized they can be
used for the structuring and navigation of an information space and contribute to
communication and a common domain understanding inside a community [10].

For the merge process we consider a simple but flexible model of such material-
ized classification structures termed resource-classifying networks (RCNs) in what
follows. They consist of three integral parts:

— Classifier nodes represent classification categories. They comprise the name of
the category, an optional ID, a description of the category and further properties.

— Content nodes represent the classified resources, which may be local or remote.
It is assumed here that resources are identified by a URL. The information
resources themselves are not considered part of the RCN.

— Three types of links can exist between the nodes. Parent links between classifica-
tion nodes build up the classification hierarchy, multiple inheritance inclusive.
Classification links connect content nodes with classification nodes and jump
links connect arbitrary nodes to represent general associations.

In contrast to formal approaches like ontologies known from Al [5] we consider a
restricted set of link types and do not assume a formal description of semantics.
Hence, our approach is applicable to more simple, ad-hoc hierarchies as they emerge
in many domains and organizations. RCN example applications are traditional clas-
sification hierarchies, Web catalogs [7], and knowledge portals [9].

Master U Integrated
Result
Subnetwork
Selection I Merge

= AN LA

context A Alternative A
Merge === Vlorge
Development Alternative B
context B Integrated Common Integrated
.» Result Predecessor Result

Fig. 1. a) Re-integration of subproject results; b) Merging independent developments;
c) Integrating parallel versions

2.2 Merge Scenarios
When developing RCNs the need for merging arises in several cooperative situations:

— A work group is asked to autonomously revise and extend a part of an organiza-
tion’s RCN. The use of autonomous subnetworks resolves the conflict between
organizational and work group view [3]: The organization’s view is focussed on
long-term usability and consensus with the organization’s objectives whereas
work groups creatively change the RCN according to their task. The revised
subnetwork is later re-integrated into the organization’s network (see Fig. 1 a)).

— An author discovers an RCN of another domain expert in the Web, which has a
focus similar to his own network (see Fig. 1 b)). A controlled integration of the
overlapping areas allows the author to benefit from this expert’s contributions.

— Two independent project teams work on alternative proposals for the restruc-
turing of an organization’s intranet developing two RCNs. The intranet’s accep-
tance can be improved by carefully merging both proposals (see Fig. 1 ¢)).

These situations differ in their requirements. Adequate merge support depends
on factors like the relationship between authors or the importance of the respective
RCNs, which influence the degree of automation and the quality control require-
ments. Confidence in an author’s expertise, for example, enables a higher degree
of automation whereas integrating developments from an unknown author opts for
more quality control. In each case system support has to enable the user to under-
stand the consequences of integrating contributions. A user-friendly visualization,
as implemented in the C-Merge tool (see Fig. 2), is a major step in this direction.

3 System Analysis and Design

The characteristics of RCNs as well as their crucial role for information structuring
and discovery impose special requirements on a process for merging this kind of
information objects. This section starts with a general overview of the process of
merging which in the second part is adapted to the requirements of our RCN model.

3.1 Overview of the Merge Process
Considered on a general level four phases can be identified for a merge process:

1. Merge configuration: The definition of a merge configuration fixes the number
and the roles of the information objects involved in the merge process.

2. Matching: The computation of a matching identifies the corresponding compo-
nents of the information objects to be merged.

3. Change detection: The differences between the considered information objects
are determined by a change detection algorithm.

4. Change integration: The contributions are combined into one result object.

Manual merging provides the user with full process control but may be tedious,
especially for larger information structures like RCNs. Fully automated merging, on
the other hand, is the most comfortable solution, but quality control and conflict res-
olution completely steered by the system are not always acceptable. Semi-automatic
solutions provide a compromise between user-driven control and user comfort.

Merge Configuration This phase assigns roles to the involved information ob-
jects, the merge candidates: Candidates which contain the contributions to be
merged appear in the role of change sources. Furthermore, a change target is chosen,
i.e. a candidate into which the contributions are to be integrated. Change reference
is the third possible role. A merge candidate in this role is compared with the
change source(s) to compute relevant differences. The roles change reference and
change target often coincide, but there are other conceivable options, too.

Matching A prerequisite for change detection is the computation of a matching
identifying corresponding parts in the considered merge candidates. For the match-
ing the merge candidates have to be divided into components where a component
can e.g. be a sentence in a text file, an element of a collection, or a leaf element in
an XML document. The similarity of components depends on different factors:

Component content: Equality or similarity of content is the most obvious evidence
for the similarity of two components.

Component context: The similarity of two components may also depend on their
environment or context. In a tree, for example, the similarity of two nodes is
influenced by the similarity of their children and/or parents.

Component properties: Meta information like size, author or creation date may also
be taken into account when computing the similarity of two components.

Component type: In many cases components that are not of the same type are not
compared at all. In contrast, some component types may be considerably similar
for the respective components to be compared.

Comparing each component of the change source with each component of the
change reference results in a large number of comparisons and makes matching
inefficient. In many cases it is possible to either exclude components of the change
reference from the set of potentially matching candidates or to identify the most
promising candidates with little effort. For the computation of the actual matching
one or more of the above mentioned similarity factors can be chosen and combined.

Change Detection The purpose of this phase is to determine the change source’s
contributions to be integrated into the change target. They are represented by a
so called A-collection, a partially ordered collection of change operations from an
operation repertoire, which, when applied to the change target, adopt the change
source’s contributions. The A-collection is either computed by comparing change
source and reference or extracted from a change history. The change detection pro-
cess is characterized by the chosen operation repertoire and the granularity of con-
sidered changes.

Change Integration This phase integrates the identified changes into the change
target. An uncontrolled application of the operations from the A-collection may re-
duce the result quality. Therefore, the operations are filtered before they are applied
to the change target. The filter process may depend upon user interaction, a merge
strategy, consistency rules, or the state of the change target.

Depending on the considered merge scenario and the type of information objects
different degrees of automation are adequate for change integration. Semi-automatic
merging may support automatic detection and visualization of changes which are
manually accepted or rejected by the user (e.g. [14]). An adequate change visualiza-
tion enables comprehension and reliable integration decisions. A flexible degree of
automation is achieved by policy-based merging as discussed in [11] where a merge
policy determines what kind of changes are automatically integrated or rejected and
what kind of changes require interactive approval.

3.2 Design of the RCN Merge Process

The RCN merge process is influenced by two competing requirements: The com-
plexity of the networks calls for a high degree of process automation to make it
feasible. Yet, RCNs are often high investment structures intended for the long-term
use making strict quality control crucial. In our approach matching and change de-
tection are automated but also augmented with options for user intervention. This
is combined with a flexible degree of automation in the change integration phase,
which is of special importance for quality control.

Another issue for semi-automatic RCN merging is the sequence of components
to be merged. During the RCN merge process the user must be guided through the
network in a way that preserves his orientation to support meaningful integration
decisions. Proceeding along the classification hierarchy seems intuitive here.

Our work focusses on the merging of the network structure. For the node content
we rely on existing approaches for document merging (e.g. [8]).

Merge Configuration Although merging of more than two networks might be
desirable in some organizational contexts (see Sect. 2) and is also technically possi-
ble, keeping track of the changes in all the networks would probably overstrain the
user. We therefore restricted ourselves to two merge candidates at a time, where
one appears as change source and the other as both, change target and reference.
This corresponds to the scenario in which an author integrates contributions from
another RCN (change source) into his own one (change target and reference).

The coverage of the two networks to be merged may differ substantially. One
network may for example structure the entire area of digital library research whereas
the second network may be restricted to IR issues. This situation is handled by
providing support for the merging of user-defined subnetworks.

RCN Matching The nodes within RCNs carry an elaborate and often also sta-
ble part of the network’s semantics. Using RCN nodes as matching components is
therefore a straightforward approach.

Content and classifier nodes represent different types of RCN components. As
they perform different tasks within the RCN, instances of different types are dis-
regarded for matching. Considering node content, the matching of classifier nodes
mainly relies on the name of the corresponding concept and can also involve the ID
or description if present. Content nodes are matched by comparing the referenced
resources. The matching result is further refined by taking into account the nodes’
context, mainly focussing on the comparison of parent and classification links.

To achieve a tolerable efficiency for the RCN matching process, it is subdivided
into two phases. Initial matching candidates are computed making use of indexes
over the node names and the resource’s URLs, respectively. The intermediate result
set is then further narrowed by comparing the nodes’ context.

A comparison of the computed similarities with two customizable threshold val-
ues subdivides the matching pairs into proposed and confirmed pairs. Pairs with a
similarity below the smaller threshold are not considered as a matching at all.

Change Detection in RCNs Taking a node-centered approach change detection
and change integration are realized as alternating phases within the merge process.
The operation repertoire for networks consists of operations on nodes and links.
Our approach supports a restricted repertoire that is manageable for the user. It in-
cludes operations for node insertion, update, and deletion as well as for link creation
and removal. Additionally, we consider two operations for link update: re-parent,
redirecting a parent link to a different parent node, which corresponds to moving a
subtree, and change Type, turning a parent link into a jump link or vice versa.

A precomputation of the complete A-collection in a separate pass is inadequate
for RCNs. It does not take dynamic changes during merging into account (see Sect.
4.2). Instead our approach locally determines the differences node by node, just in
time for change integration. Change detection and integration rely on the notion of a
focus node which is the node currently processed. In succession, each node becomes
a focus node in a variant of a breadth-first processing order along the hierarchy.

For change detection the focus node environment is compared with the envi-
ronment of its matching partner. The environment of a node includes all direct
neighbors of a node and the connecting links. Links that differ within the two envi-
ronments are matched with a set of possible difference situations in order to identify
the operations for the A-collection. Single nodes, i.e. nodes that have no matching
partner, get special treatment.

Change Integration in RCNs The automation of the change integration phase
is a challenging task. For RCNs this is further tightened by the complexity of the

information structure to be merged. To achieve a variable degree of interactivity we
decided to employ merge policies as proposed in [11].

A merge policy customizes the merge process by defining rules for handling
occurring changes. Since we have only one change source, the policies can be imple-
mented by simplified, single-column merge matrices that provide an entry for each
possible change operation. This entry specifies if the operation is automatically ap-
plied, ignored or if the user is asked for a decision. The matrices are used to look
up the further proceeding for the operations found in the A-collection. Flexibility
is increased by enabling users to define their own merge policies.

File Matching Merge Policy Merging

Merge ... o(\t\fggd)
~

Worlde
L]
“Mass
OFrequgncy OFrequgncy oSoul Resgnance
refocus change focus

| e E x|

Change link type between <Mind> and <World>?

| Yes | ‘ Ho | ‘ Defer Decision |

Fig. 2. Proposal of Changing a Link Type

Most policies chosen for RCN merging will not be fully automatic: A change will
be proposed to the user and he decides about its integration. The visualization must
enable the user to understand the proposed change as well as the consequences of
its acceptance or rejection. For this purpose the change is presented as part of the
focus node context: The change under consideration is entered into the focus node
environment and highlighted according to the type of change. As an example figure
2 shows the proposal of changing a link type. Via a dialog box the user can accept
or reject the change. In addition we enable intermediate browsing through the RCN
during change integration so that the user can gain more context information.

4 The C-Merge Prototype

This section presents C-Merge, a flexible Java prototype tool for the merging of
RCNs implemented at our department. The implementation relies on existing com-
ponents and libraries and uses a commercially available RCN format. The prototype
is characterized by a proposal-based change integration and offers several options
for user interaction and intervention enabling a flexible process control.

Visualization

{ Brain SDK } { Java Swing} { Ul Component

Ul package Library Control

Matching Component Integration Component
Matching Candidate Integration Change
Control Management Control Detection

Similarity

IR Policy Merge
Functions Package

Management}i Sessions |

Storage Component

Brain SDK
DB package

Java lO
Library

Fig. 3. The C-Merge Architecture

4.1 System Overview

C-Merge Component Architecture The tool consists of four main components
(see Fig. 3) implementing the approaches presented in the previous section:

The integration component implements the presented approach for change de-
tection, provides support for the definition, management and application of
merge policies and controls the change integration process according to the
chosen policy. Advanced merge session support is planned for a future version.

The matching component computes the RCN matching. It includes a component
for the management of matching candidates, matching pairs and single lists as
well as a component for the control of the matching process. An existing Java
IR package is employed to compute the similarity of text properties.

The visualization component relies on the Java Swing library and the UI pack-
age of the BrainSDK, a Java library that comes with the RCN format employed
in the prototype. This imported functionality is integrated and controlled by a
set of application specific user interface classes.

The storage component uses the BrainSDK DB package functionality for the
persistent storage of the employed RCN format. Further merge-related informa-
tion like merge policies are stored using the classes of the Java IO library.

Processing Sequence The UML activity diagram in figure 4 shows a pass through
a typical merge session with the C-Merge prototype. During the process intermediate
merge results can be stored.

The Brain RCN format The prototype uses a commercially available RCN for-
mat, namely the Brain format from Natrificial (www.thebrain.com). The metaphor
behind this format is a brain consisting of a set of associated thoughts. The thoughts,
which are the nodes of the Brain RCNs, are connected by two types of links: parent
links create a hierarchy and jump links express general references between thoughts.

The BrainSDK, a development kit provided by Natrificial, includes Java class
libraries for the visualization, manipulation, and storage of the Brain RCNs and
provided a good starting point for the implementation of our tool.

Choose RCMs

(choose or Define Strateny)

Compute Matching
[adaption required
Adapt Matching

else]
Start Change Detection

Firstitext Focus Node

Compare Ervironments

K‘ Look up Strategy for firstmext Change)

[interactive]

Fropogse Change

urent environment reack ‘

[merge completed]

<

[autamatic]

C)el Store result RCGH) Apply Change

Fig. 4. A typical C-Merge session

4.2 User Interaction and User Intervention

A challenging issue in tool design is the coordination of user interaction with the
automatic steps of the merge process. In addition to user input at well-defined points
like merge policy definition and integration decisions as required by the policy there
is another kind of user interaction: Task-driven wuser intervention spontaneously
manipulating and redirecting the process flow. Possible user interventions are:

— Update of the matching
— Change of the focus node
— Update of the RCN

The increased complexity of the control flow requires additional book-keeping.
Node processing states are used for this purpose. The states unprocessed, in work,
and ready are distinguished. An additional state, modified, marks nodes that have
already been processed but need reconsideration because of some user intervention.

Change of Focus Node The predefined processing order for change detection and
integration may be changed by manually choosing a new focus node. The user may
decide interactively if he wants only this node processed or the entire subtree rooted
at the new focus node. For the subtree option the processing of the actual focus
node f,; is considered completed. The node processing state changes from in work
to ready. The chosen node f,¢,, becomes the new focus node and is processed next.
Subsequently, the subtree of which f,¢,, is the root is processed. Finally, processing
returns to the normal order. A nested change of focus node is possible.

During the merge process the user can browse both RCNs to get more context
information. Pressing a button he can return to the current focus node.

=P

File Matching Merge Policy Merging

I\?ﬁrld orld
“Countries Trade gone
“QOceans Meather
refacus change focus
Matched Pairs
(o] Marme 1D Marne Confirmed pair User's pair
1}\niorld 1warld v [] -
2/Countries 2Countries v
3Weather 3ieather v C
4|0ceans 4/0ceans il [=
G\ Trade Zone 5 Trade Zane v [
Fhdind Rbind v i |
Unpair ‘
Singles
First Brain Second Brain
Italy Atlantic
Make Pair England
Soul Resonance
WO

Fig. 5. C-Merge User Interface

Update of Matching The computed matching results in a list of matched nodes
presented side by side, where some pairs are marked as confirmed matchings. In
addition there is a list of single nodes for each involved RCN (see Fig. 5). The
matching can be modified manually by the user which can have implications for the
rest of the matching as well as for the change detection process.

The effects on change detection are handled through the node states. If a match-
ing is changed all involved nodes in state ready are changed to the state modified
and change detection re-starts at the top. Only nodes that are in the state in work,
unprocessed or modified are considered in this pass through the RCN.

No automatic re-matching is performed as an effect of a manual change, unless
explicitly triggered by the user, because, although useful in some settings, it may
effect large parts of the network and complicate the running merge process.

Update of the RCN Merging RCNs implicitly involves rethinking of the networks’
semantics. To directly integrate new ideas the user is allowed to change the RCN
acting as change target in the course of the merge process.

RCN modifications influence the merge process, especially change detection. The
consequences of such changes depend on the operation type and the states of the
involved nodes. For an wunprocessed node a modification of it or its environment
will be handled as part of the normal processing. For a node that is in state ready
a modification is considered as a post-merging operation that requires no further
processing. For a node that is currently in work change detection is reconsidered
taking into account the integration decisions already made by the user.

5 Related Work

Like RCNs, topic maps [2] are materialized classification structures, but exhibit a
richer meta level with typed nodes and links as well as scopes for topics. Ontologies
[5] used for the conceptualization and representation of knowledge are based on a
more formal approach. RCNs can be considered as weakly structured ontologies [6]
that exhibit a restricted set of link types and do not formalize the semantics.

The need for merging comes up in cooperation situations where stronger forms
of synchronization are not possible. Examples are offline work, parallel work due
to time constraints and loose cooperation with high autonomy for the coopera-
tion partners. These forms of so-called autonomous collaboration are motivated and
discussed in more detail in [4]. Further mechanisms relevant in such cooperation
contexts are change notification (e.g. [12]) and advanced link management [13].

Merging support mainly exists in multi-version working contexts like cooperative
software development and information artifact authoring. Hence, typical merge can-
didate formats are pure text files [8], other document formats like Microsoft Word,
and source code files [15]. The merge candidates considered in our tool are often
high-investment structures whose correctness and adequateness plays an important
role for an organization. This imposes additional requirements on merge support.

All existing merge tools are semi-automatic where a frequent solution is auto-
matic change detection and visualization combined with interactive change integra-
tion (e.g. [8]). Our tool is based on a more flexible approach proposed in [11], where
the degree of automation can be gradually adapted via merge policies. A somewhat
different approach to merging is taken in the GINA framework [1], which is based on
protocolled changes managed in operation histories. Special redo operations enable
operation re-application in a modified object state during merging.

6 Conclusions and Future Work

In this report we presented C-Merge, a flexible tool for the semi-automatic merging
of resource-classifying networks. First experiments with the tool at our department
showed that it enables comfortable and quality-preserving merging of RCNs. Es-
pecially the enhanced change proposal visualization and the customizable merge
policies contributed to user satisfaction.

Merging larger RCNs can be a time-consuming task even with semi-automatic
merge support as provided by our tool. Thus, it is desirable to have persistent merge
sessions that can be interrupted and resumed later without losing the effort already
invested. In addition to the current state of the change target RCN further process
information has to be made persistent for this purpose. We plan to integrate a merge
session management into the prototype.

In the current prototype we restricted ourselves to a simple operation repertoire
avoiding information overload in the visualization. In a future version we will ex-
periment with the detection and visualization of important more complex change
operations, which are typical for RCN restructuring, like the splitting of a node or
the merging of two nodes. We expect that a carefully tuned operation repertoire
provides the user with valuable additional information for his integration decisions.

Some merge scenarios, as e.g. the integration of parallel versions of a common
predecessor, are more adequately mapped by a three-way merge. For this reason

we intend to examine options for three network merge configurations although the
danger of information overload is rather high. A careful user interface design and
conflict management are crucial in this context.

Acknowledgments: The described research was partly supported by the HSPIII
Project WEL and the DFG Project KOLIBRI (DFG Schm450/7-1, MA2005/1-2).

We would like to thank Siripong Treetasanatavorn and Hendry Chandra for their

help in implementing the prototype.

References

1.

10.

11.

12.
13.

14.
15.

Thomas Berlage and Andreas Genau. A Framework for Shared Applications with a
Replicated Architecture. In Proceedings of the ACM Symposium on User Interface
Software and Technology, Atlanta, GA, pages 249-257, November 1993.

. Michel Biezunski, Martin Bryan, and Steve Newcomb. ISO/IEC FCD 13250:1999 -

Topic Maps, April 1999. http://www.ornl.gov/sgml/sc34/document/0058.htm.
Giorgio De Michelis, Eric Dubois, Matthias Jarke, Florian Matthes, John Mylopoulos,
Joachim W. Schmidt, Carson Woo, and Eric Yu. A Three-Faceted View of Information
Systems. Communications of the ACM, 41(12):64-70, December 1998.

W. Keith Edwards and Elizabeth D. Mynatt. Timewarp: Techniques for Autonomous
Collaboration. In Proceedings of the Conference on Human Factors in Computing
Systems (CHI’97), Atlanta, GA, pages 218-225, March 1997.

T. R. Gruber. A translation approach to portable ontology specifications. Technical
Report KSL 92-71, Computer Science Department, Stanford University, CA, 1993.
Michiaki Iwazume, Kengo Shirakami, Kazuaki Hatadani, Hideaki Takeda, and Toyoaki
Nishida. IICA: An Ontology-based Internet Navigation System. In AAAI Workshop
Internet-Based Information Systems, Portland, OR, pages 65 — 78, August 1996.
Yannis Labrou and Tim Finin. Yahoo! As an Ontology: Using Yahoo! Categories to
Describe Documents. In Proceedings of the 8th International Conference on Informa-
tion Knowledgement (CIKM-99), pages 180187, N.Y., November 2000.

David MacKenzie, Paul Eggert, and Richard Stallman. Comparing and Merging Files.
http://www.gnu.org/manual/diffutils-2.7/html_mono/diff. html, September 1993.

F. Matthes and U. Steffens. Establishing a Cooperative Digital Library for Teach-
ing Materials - A Case Study. Technical report, Software Systems Group, Hamburg
University of Technology, Germany, August 2000.

Rainer Miiller, Claudia Niederée, and Joachim W. Schmidt. Design Principles for
Internet Community Information Gateways: MARINFO - A Case Study for a Mar-
itime Information Infrastructure. In Proceedings of the 1st International Conference
on Computer Applications and Information Technology in the Maritime Industries
(COMPIT 2000), Potsdam/Berlin, Germany, pages 302-322, April 2000.

J. Munson and P. Dewan. A Flexible Object Merging Framework. In Proceedings
of the ACM CSCW’94 Conference on Computer Supported Cooperative Work, Chapel
Hill, NC, pages 231 — 242, October 1994.

NetMind. Mind-It Notification Service. http://www.netmind.com/.

Claudia Niederée, Ulrike Steffens, Joachim W. Schmidt, and Florian Matthes. Aging
Links. In Research and Advanced Technology for Digital Libraries, Proceedings of the
8rd Europ. Conf., ECDL2000, Lisbon, Portugal, pages 269 — 279, September 2000.
Presto Soft. Exam Diff Pro. http://www.nisnevich.com/examdiff/examdiffpro.htm.
Bernhard Westfechtel. Structure-Oriented Merging of Revisions of Software Docu-
ments. In Proceedings of the 3rd International Workshop on Software Configuration
Management, pages 68 — 80, 1991.

