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ABSTRACT
Maximal Extractable Value (MEV) has become a significant in-
centive on blockchain networks, referring to the value captured
through the manipulation of transaction execution order and strate-
gic issuance of profit-generation transactions. We argue that trans-
action ordering techniques used for MEV extraction in blockchains
where fees can influence the execution order do not directly apply
to blockchains where the order is determined based on transactions’
arrival times. Such blockchains’ First-Come-First-Served (FCFS) na-
ture can yield different optimization strategies for entities seeking
MEV, known as searchers, requiring further study.

This paper explores the applicability of MEV extraction tech-
niques observed on Ethereum, a fee-based blockchain, to Algorand,
an FCFS blockchain. Our results show the prevalence of arbitrage
MEV getting extracted through backruns on pending transactions
in the network, uniformly distributed to block positions. However,
on-chain data do not reveal latency optimizations between specific
MEV searchers and Algorand block proposers. We also study net-
work clogging attacks and argue how searchers can exploit them as
a viable ordering technique for MEV extraction in FCFS networks.

CCS CONCEPTS
• Security and privacy → Economics of security and privacy.
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1 INTRODUCTION
A recently emerging phenomenon on blockchain networks and the
Decentralized Finance (DeFi) applications built on them, known as
Maximal Extractable Value (MEV), has attracted substantial interest
due to the economic incentives around it [12]. MEV refers to the
total value profit-seeking entities can capture by manipulating
transaction execution ordering and issuing profitable transactions.
While anyone on the network can observe the pending transactions
and run algorithms on them to find profit-generating opportunities,
known as MEV searching, the execution of these strategies depend
on correct positioning in a block.

A blockchain network’s underlying properties, such as consen-
sus and transaction ordering mechanisms, dictate how MEV can
be searched and extracted on it [11]. While Daian et al.’s study on
Ethereum [5] demonstrates how profit-seeking MEV searcher bots
compete in Priority Gas Auctions (PGAs) through escalating gas
fees, not all blockchains facilitate transaction prioritization through
fees. One popular alternative transaction ordering mechanism is
First-Come-First-Served (FCFS), where block proposers, e.g., valida-
tors in Proof-of-Stake (PoS) protocols, sequence the transactions in
the received order. In a blockchain that adopts such a mechanism,
the applicability of order-dependent MEV strategies like sandwich-
ing a Decentralized Exchange (DEX) trade with a significant price
impact or simply frontrunning an observed pending transaction
becomes impossible without further latency optimizations such as
vertical integration with relay operators or block proposers to ma-
nipulate the transaction ordering or spamming the network to prior
propagate the frontrunning transaction. Thus, FCFS ordering can
be considered as a limitation technique for negative externalities of
MEV on users’ transactions, as users are inherently protected from
any frontrunning-based attacks, which potentially cause them to
incur worse trading prices or further externalities.

To dissect the implications of FCFS transaction ordering on MEV
extraction, we delve into the Algorand blockchain. Algorand is a
Layer-1 blockchain1 that adopts a Byzantine Fault Tolerant (BFT)
consensus mechanism, combined with Pure Proof-of-Stake (PPoS)
for consensus participants’ selection. Algorand is interesting to
study as an FCFS blockchain as its consensus participation nodes,
by default, implement a latency-based,FCFS transaction ordering
until the block space demand leads to congestion, where they switch

1FCFS is also adopted by Layer-2 scaling solutions like Arbitrum.
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to a fee-based ordering. Moreover, Algorand does not adopt a di-
rect peer-to-peer network where consensus nodes can connect to
each other. Instead, a relay network operates the network traf-
fic, and consensus nodes communicate through the relays. Hence,
minimizing latency with a particular node in the system becomes
non-trivial, which is an expected strategy in a classic FCFS network.
Besides, Algorand transactions have minimal fixed costs, and failed
transactions are excluded from blocks. Thus, MEV searchers can
be intrigued to attempt computationally expensive strategies.

We believe Algorand’s properties introduce unique dynamics to
MEV extraction on an FCFS network and require further study. To
that extent, we conduct an empirical analysis where we quantify
certain MEV extraction patterns on executed arbitrages, a popular
MEV strategy [12], and scrutinize them to understand the adopted
transaction ordering techniques by MEV searchers and their poten-
tial latency optimizations with proposers. Additionally, we study
network clogging through Batch Transaction Issuance (BTI) events
and propose a novel searcher strategy.

Overall, we make the following main contributions:
• We discuss the applicability of transaction ordering techniques
proposed in [12] to Algorand and support our arguments with
empirical data by conducting the first study of MEV on it.

• We detect 1 142 970 arbitrages, where MEV searchers mainly
exploit network state backrunning strategies, uniformly dis-
tributed to block positions, as an effect of FCFS ordering.

• We analyze on-chain data and observe no imminent latency
effects favoring a particular searcher with a specific proposer.

• We argue the usability of network clogging through BTIs in
FCFS networks as an effective way to enable executing selfish
strategies. We identify 265 637 instances of BTIs on Algorand,
where an address fills more than 80% of a block with a single
type of transaction, with 53 of them spanning the whole block
with arbitrages.

• We propose a novel strategy for searchers on Algorand to tran-
sition the network to a fee-based transaction ordering through
BTIs, enabling frontrunning techniques.

2 BACKGROUND
We focus on the Algorand blockchain [4, 7, 8], introduced by Silvio
Micali in 2017. It uses a new consensus mechanism called Algorand
Byzantine Fault Tolerance Protocol (BA), which offers instant final-
ity, scalability in the number of nodes, and soft fork protection [4, 7].
Algorand relies on PPoS for Sybil attack resistance, allowing anyone
with at least one ALGO, the native token of Algorand, to participate
in consensus. Unlike Ethereum, the protocol does not reward the
consensus participants with fixed block rewards, and transaction
fees are collected by a wallet managed by the Algorand Foundation.

When it comes to the high-level specifications, the system can
handle around 7000 transaction/s and publishes blocks every 3.4 s
following the v3.18.0 upgrade2. The network comprises roughly
1400 nodes (relay and participation nodes)3. The participation nodes
are interconnected via the relays. Each participation node is con-
nected by default to randomly selected four relay nodes. Similarly,
the relays forward the received messages to four relays and all its

2https://github.com/algorand/go-algorand/releases/tag/v3.18.0-stable
3https://metrics.algorand.org/

incoming peers. The default number of incoming connections on a
relay is around 800. However, these configuration parameters can
vary for each peer as they are not enforced. Besides, regular clients
who do not participate in the consensus protocol also rely on the
connections via the relays. Unfortunately, there is no information
on the number of such clients in the system.

Algorand scales with the number of participants in the system
by selecting a committee from the total number of active partic-
ipation nodes. One consensus round consists of three steps - a
block proposer selection, soft vote, and certify vote, after which a
block is appended to the ledger. At the beginning of each step, a
new committee is selected. The likelihood of being selected to a
committee correlates with the amount of stake. Having more stake
increases the chance to hold more votes in the committee itself.
The committee members are not known until they cast their votes.
To determine if a node participates in a committee, they rely on a
cryptographic sortition algorithm implemented by the Verifiable
Random Function (VRF) [7].

The proposer selection step plays a significant role for MEV,
as the selected proposer’s transaction sequence determines the
extracted value. Since transacaions are, by default, ordered on an
FCFS-basis, for optimized MEV extraction, having a fast connection
to the relays can potentially help as they distribute the transactions
to the memory pools (mempools) of block proposers. However, it
must be noted that FCFS ordering is not enforced on the protocol’s
consensus layer (e.g., [10]) but comes with the official Algorand
node implementation. Hence, it is not guaranteed that such ordering
will always hold, and it is possible that peers can run their own
modified source code, enabling certain optimizations. Based on the
current specifications, a maximum of 20 proposers are involved in
step one of consensus, while only a single proposer is selected for
the further steps. This proposer must receive at least the threshold
number of votes expected in the given step and have the lowest
value of the computed VRF.

Algorand offers three main types of transactions - payments
for ALGO transfers, Algorand Standard Asset (ASA) token trans-
fers, and Algorand Smart Contract (ASC1) application calls. Unlike
Ethereum, assets are not managed through smart contracts but
by ASA transactions. ASC1 applications, written in Transaction
Execution Approval Language (TEAL) and interpreted by Algorand
Virtual Machine (AVM), are utilized for deploying functions on the
Layer-1 network, with each having a unique ID once deployed. De-
pending on the complexity of the application, a call to it can be split
into up to 256 inner transactions based on the opcode budget. The
whole bundle is called a group transaction with its own ID, and all
transactions must be present on a node for the successful execution
of the application logic. The transaction cost is fixed at a minimum
value of 0.001ALGO per transaction and only gets charged when a
transaction is successful. When the network is congested, the fee
strategy changes to a dynamic cost model per byte.

The congestion is determined on each client node by the number
of transactions in its local mempool. So, even if the network has
enough capacity, the transaction fees will increase if the node is
congested. Therefore, relying on more than just one client that
connects to the network is essential. Eventually, once the capacity of
the overall network is reached, each node will experience congested
mempools and change the fee mechanism accordingly.
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3 RELATEDWORK
Daian et al. [5] started the discourse on MEV with their publication
outlining what were then theoretical strategies to extract value
on the Ethereum blockchain. Since then, MEV has arrived on pro-
duction blockchain networks. Qin et al. [12] made a significant
contribution by quantifying MEV extraction on Ethereum and pro-
viding a taxonomy of different transaction ordering techniques,
extending [6]. Their analysis focuses on sandwich attacks, DEX-to-
DEX arbitrages, liquidations, and replay attacks, processing a total
of approximately 6million blocks. Interestingly, they found that
profitable arbitrages tend to be located toward the end of a block,
suggesting backruns. This finding inspired us to also investigate
the positioning of arbitrages on Algorand’s FCFS network.

Weintraub et al. [14] examined the success of Flashbots con-
cerning their goals of solving the issues MEV has created for the
Ethereum ecosystem. While Ethereum was still using Proof-of-
Work (PoW), Flashbots offered a private relay service allowing
MEV searchers to submit bids on a particular transaction ordering,
called a bundle. Any miner could incorporate a bundle into their
block in return for a cut of the profits. The system quickly reached
almost 100 % adoption measured in mining hash rate. Weintraub et
al. collected data from Ethereum blocks, snapshots of pending trans-
actions, and Flashbots’ block metadata from the official Flashbots
API. Their findings indicate that MEV on Ethereum is a massive
industry dominated by Flashbots. Furthermore, the distribution of
extracted MEV heavily favors the miners, contrasting Flashbots’
declared goal of democratizing access to MEV. While Algorand has
no private relay services like Flashbots, it shows some similarities,
as there are native bundles in Algorand called group transactions.

One recent paper by Carillo and Hu [3] has worked on quantify-
ing MEV on Terra Classic, an FCFS blockchain with fixed gas prices
where MEV searchers compete on optimizing latency. In a dataset
of almost 3million blocks, they identified a significant number of
arbitrages, of which half are conducted with less than 1000USD. In
contrast to other works, Carillo et al. also spend time identifying
specific searchers behind accounts and benchmarking their perfor-
mance. When diving deeper into arbitrage transaction specifics,
they conclude that each searcher sends several failed transactions
for every successful one, stressing the network in the process. Fi-
nally, they show a relation between transaction propagation latency
and geographic node location, demonstrating how latency optimiza-
tions can be useful for searcher strategies. This work is the one
most closely related to ours as Terra Classic and Algorand share
a fixed price, FCFS-based transaction ordering, suggesting they
influence MEV extraction similarly. Differently from their work,
we approach exploring MEV extraction on an FCFS blockchain
from the perspective of the applicability of the existing transaction
ordering techniques we observe on a fee-based blockchain such as
Ethereum, and, on top of arbitrages, we scrutinize network clogging
as a viable strategy in FCFS networks.

4 APPLICABILITY OF TRANSACTION
ORDERING TECHNIQUES

In this section, we introduce our initial assessment regarding the
applicability of the transaction ordering techniques taxonomy pre-
sented in [12], which extends the work of [6], to Algorand, an FCFS

blockchain. In Table 1, for each technique, we denote whether it
can be utilized in Algorand for extracting MEV based on the last
confirmed blockchain state or available pending transactions in the
mempool, under headers Block State and Network State, respectively.

We argue that MEV searchers cannot enforce frontrunning tech-
niques targeting network state as they cannot deterministically
influence the prior execution of their attacking transaction be-
fore the already-pending victim transaction. However, actors like
block proposers or platform operators who manage transaction
processing can execute such attacks since they control transaction
sequencing in a block or release order to the network. For MEV
transactions targeting the block state, tolerating frontrunning is still
not applicable as guaranteeing a following transaction’s execution
would require observing that transaction in the network first, thus
contradicting the nature of the strategy. However, destructive fron-
trunning can now be performed. An example is an MEV searcher
leveraging an opportunity found in the last confirmed block state
by issuing a transaction as soon as possible, aiming for execution
at the top of the next block. By obtaining the first position in the
block, the searcher destructively frontruns potential competitor
searchers’ transactions, causing them to fail. Since the strategy is
not targeted at an observed transaction but frontrunning the rest
of the network as a whole to obtain the first position, we classify
destructive frontrunning on block state as a viable technique.

Backrunnings targeting block and network states are executable
in FCFS blockchains, as previous work [3] also discusses, although
without differentiating between the targeted state. While the former
simply has the same intuition as destructive frontrunning on the
block state (i.e., executing a strategy immediately after an oppor-
tunity is discovered on the last confirmed block)4, the latter is the
canonical MEV extraction technique we expect to observe. Specifi-
cally, a searcher can spot a transaction in the network mempool,
simulate it on the last confirmed state to observe whether it yields
a profit opportunity (e.g., leading to a price discrepancy that can
be arbitraged to make profits), and if so, backrun it. However, the
backrunning transaction must still be issued as quickly as possible
to frontrun (arguably, destructively) the other searchers attempting
to backrun the same profit-generating transaction.

Finally, clogging (or suppression attacks) is expected to be ob-
served in FCFS blockchains as it is not directly dependent on the ex-
act ordering of the transactions following an identified opportunity
on the block state or network state but is executed by spamming the
network with transactions to fill the mempool, and eventually the
mined block, thus, preventing the inclusion of others’ transactions.

4One can argue that a block state backrun must be destructively frontrunning com-
petitor searchers’ transactions to ensure desired execution. We avoid such discussion
in the scope of this paper and deem these strategies to be equivalent.

Table 1: Transaction Ordering Techniques on Algorand

Ordering Technique Block State Network State

Destructive Frontrunning ✓ ✗

Tolerating Frontrunning ✗ ✗

Backrunning ✓ ✓

Clogging/Suppresion ✓ ✓
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An enabler of such a strategy can be low, fixed transaction fees,
which we observe in Algorand.

Based on our evaluation of the applicability of transaction or-
dering techniques and related work by Qin et al. [12], to further
comprehend how MEV strategies are executed in FCFS blockchains,
we determine arbitrages and clogging as the relevant strategies to
be focused as they can be exploited by an unprivileged, not ver-
tically integrated MEV searcher. The rest of the paper presents
our methodology for collecting the instances of these strategies
on the Algorand blockchain. We analyze and discuss how network
dynamics, especially the FCFS nature, shape their execution. For
completeness, in Appendix A.4, we provide a timeline analysis of
arbitrage activity observed on Algorand.

5 DATA COLLECTION AND PROCESSING
We developed a pipeline for collecting relevant on-chain data for
our study. We focused on blocks and transactions, which we gath-
ered using our Algorand indexer deployment and the AlgoNode
service provider5 to fulfill throughput needs. To obtain block pro-
poser details, we utilized our Algorand client node. We fetched data
from block 16 500 000 (on Tue, 28 Sep 2021 at 12:55:52) to 30 235 000
(on Mon, 03 Jul 2023 at 21:22:22). The start date coincides with the
dawn of the first DeFi activities on Algorand, signaled by the emer-
gence of the Tinyman V16 DEX on block 16 518 736. Overall, our
examination spanned 13 735 000 blocks, which included 4557 empty
blocks (0.033% of total) and incorporated a total of 745 767 520
transactions. On a median, each block contained 40 transactions,
with block 23 593 602 containing a maximum of 26 197 transactions.

5.1 Detecting Arbitrages
Our study aims to quantify atomic arbitrage trades on the Algorand
blockchain. Algorand’s ability to execute groups of transactions
atomically - where all transactions in a group either succeed or
fail - underpins our approach. We assemble transactions within the
same block into groups based on their group ID. We then process
each group and individual transaction separately, handling grouped
transactions as internal calls of a single transaction, aggregating
their transaction fees at the end.

Initially, we process transactions based on their type field. We
focus on pay type for simple ALGO transfers, axfer for ASA token
transfers, and appl for Algorand application calls, which we investi-
gate further for their inner transactions. After creating swap objects
from the processed transactions, we use a heuristic approach, sim-
ilar to Qin et al. in [12], for detecting potential cyclic arbitrages.
Given a transaction 𝑡 comprising 𝑛 swaps {𝑠1, ..., 𝑠𝑛 }, we employ the
following heuristics:
𝐻1 : Transaction 𝑡 includes multiple swaps (𝑛 ≥ 2).
𝐻2 : The tokens involved in the swaps form a cycle, such that

the input token of 𝑠𝑖 is the output of 𝑠𝑖−1. Therefore, the first
swap’s input token matches the last swap’s output.

𝐻3 : The input amount of 𝑠𝑖 should be less than or equal to the
output of 𝑠𝑖−1. Therefore, the input amount of the first swap
should be less than or equal to the output of the last swap,
suggesting a profitable arbitrage.

5https://algonode.io/
6https://tinyman.org/

5.2 Detecting Batch Transaction Issuance
We suspect Algorand’s low transaction fees may make it susceptible
to clogging [6, 12]. However, the FCFS-based transaction ordering
mechanism complicates such attacks. Unlike Ethereum, where in-
clusion can be influenced by fees, on Algorand, attackers can only
orchestrate clogging attacks by issuing transaction batches, which
accumulate in the proposers’ mempool and execute simultaneously
or in quick succession based on their arrival time. We have identi-
fied such actions as Batch Transaction Issuance (BTI) and defined
heuristics to detect them without assuming any specific intent.

Given that BTIs cannot be enforced by fees and their execu-
tion timing relies on network latency, BTI instances might not
occur in consecutive blocks. Thus, unlike the work of Qin et al. on
Ethereum [12], we initially set no duration constraints for our BTI
detection heuristics. Moreover, we focus on blocks filled by a single
type of transaction from the same sender, with no constraints on
maximum block space consumption. We only investigate blocks
larger than the median size to limit unintentionally occurring BTIs.
Hence, given a block 𝑏, we apply the following heuristics:
𝐻1 : 𝑙𝑒𝑛(𝑏) > 40 (median block size).
𝐻2 : The same transaction or group pattern from the same sender(s)

make up ≥ 80 % of 𝑏.

5.3 Validation and Limitations
As the first MEV study on Algorand, we lack comparative results
to validate our findings. Consequently, our heuristics are designed
to minimize False Positives (FPs) while being aware that we may
overlook certain False Negatives (FNs), such as non-atomic arbi-
trages. Before the introduction and widespread adoption of inner
transactions that enabled calls to DEXs from an application in a
single transaction, arbitrages were exclusively conducted using
grouped transactions. During this phase, we identified non-atomic
arbitrages happening through multiple groups, where each group
represents a single DEX swap7. However, such arbitrages are prone
to the risk of not getting executed in the desired order due to latency
effects. We leave the identification of these multi-group arbitrages
to future work.

6 ANALYSIS
This section presents our analysis of MEV extraction happening on
Algorand. Besides providing a comprehensive descriptive analysis
of the arbitrages, we also closely examine the MEV searchers who
conducted them. We scrutinize their strategies in transaction po-
sitioning and latency relationships with proposers to understand
how Algorand’s latency-based transaction ordering mechanism
and network infrastructure impact the MEV extraction dynamics.
Additionally, we delve into BTIs, exploring their duration and types,
and propose a potential strategy for searchers to exploit them.

6.1 Overview
Our heuristics detected approximately 1 142 970 exploited arbi-
trages across 401 679 blocks, making up 2.92 % of all analyzed blocks.
The earliest arbitrage was noted in block 19 293 106 (on Thu, 17 Feb
2022, at 05:56:20), with MEV searchers collectively earning over

7Multi-group arbitrage profiting approximately 22 ALGO: Swap-1 -> Swap-2 -> Swap-3
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251 650.15USD thus far. This amount, however, is a lower-bound es-
timate, derived using heuristics and only accounting for arbitrages
profiting in ALGO (or ALGO-pegged tokens) and stablecoins. For
the calculation of profits in USD, we utilized the daily price data
provided by the CoinGecko API [2], with stablecoins assigned a
fixed 1USD price. The remaining tokens’ arbitrages were negligi-
ble, making up only 0.38 % of all, and were not considered for this
study. The most lucrative arbitrage was found in block 25 712 503,
granting the searcher a 2738.57USD profit.

When we analyzed the distribution of arbitrages across blocks,
we discovered that 297 479 blocks (74.05 %) included 1-2 arbitrages,
while only 4.41 % of blocks contained more than ten arbitrage trades.
This can be attributed to Algorand’s quick block time and the rela-
tively lowmedian transaction count per block. Hence, opportunities
are rare in every block, but they occur frequently. A noteworthy
observation was that 525 blocks (0.14%) had over 50 arbitrages
(peaking at 613), with 384 of these occurring in June 2023 — the
month with the highest arbitrage count (349 835 ). Timeline analy-
sis of arbitrages is detailed in Appendix A.4. Further examination
revealed 12 BTI blocks with 50+ arbitrages, where a single type of
arbitrage executed by the same searcher accounted for ≥80 % of the
transactions. Such instances are further detailed in Section 6.4.

In examining arbitrage attributes, we found that approximately
75% of arbitrages involved ≤3 swaps and tokens, with the most
complex instances involving up to nine swaps and eight tokens. Of
the 26 unique profit tokens identified, ALGO was by far the most
popular (used in ∼ 97% of cases), followed by the USDC stable-
coin and AF-BANK-ALGO from the AlgoFi platform. Interestingly,
while the top two pools utilized in arbitrages were ALGO/COOP
and ALGO/PEPE, the associated COOP and PEPE tokens were not
utilized as profit tokens. Detailed overviews of profit tokens, as
well as popular pools and platforms, are respectively provided in
Table 6 and Table 7 in Appendix A.

6.2 MEV Searchers
Before inspecting arbitrages on Algorand in-depth, we provide an
overview of the MEV searchers executing them so that, later on, we
can scrutinize their individual strategies. In our analysis, we initially
recognized 45 unique addresses. However, further scrutiny revealed
inter-relations between some addresses due to common funding
sources, as shown in Table 5 in Appendix A. The address MDC5
was the leading funder, backing 12 addresses. Notably, AACC, the
address associated with the highest number of arbitrages, also fi-
nanced the second most active address, J4BJ. Following the consol-
idation of searchers sharing the same funding source, we are left
with 32 unique players. On a further note, we have not identified
any block proposers in our searcher set (i.e., a searcher-proposer).
However, this could have been a profitable strategy considering
that proposers lack economic incentives as they are not rewarded
for participating in consensus and producing blocks. We suspect
that there are no active searcher-proposers as most of the blocks are
built by Algorand Foundation controlled addresses8, which follow
the default, FCFS ordering implemented in their client.

8https://www.algorand.foundation/updated-wallet-address

6.2.1 Top Players. To identify the most active and profitable MEV
searchers, we compiled a list merging the top 10 searchers with the
highest number of arbitrages and the most profitable ones. This
led to a consolidated list of 12 top searchers due to an overlap of
eight searchers. Table 2 highlights these top searchers, indicating
their number of arbitrages, profits in USD and ALGO, and profit
rate, which represent the median profit relative to the input across
all arbitrages by the searcher.

Currently, the searcher AACC overwhelmingly dominates the
arbitrage extraction market, leading in both total arbitrages and
profits, accounting for 57% and 44% respectively of all arbitrages
and profits. Note that the number of arbitrages and profits do not
scale linearly. However, this observation requires caution as we
only convert profits made in ALGO-based tokens and stablecoins
to USD. For example, searcher G4X2, despite ranking sixth in the
number of arbitrages, falls short in profits, potentially due to a
primary profit source in tokens we do not convert to USD.

The maximum profit rate from a single arbitrage is an astound-
ing 1 464 042 %, achieved by URKF, signaling the existence of highly
profitable arbitrage opportunities, albeit rare, given the significant
gap between the maximum and the 99th percentile (14.49%). The
median profit rate for arbitrageurs stands at approximately 0.47 %,
with a mean around 11.21 %. A high standard deviation of roughly
2548.98 points to a large disparity in profit rates among top arbi-
trageurs, implying a broad range of profitability.

Figure 1a displays the monthly number of arbitrages executed by
top searchers over time. Most searchers show activity confined to
specific periods, with only a few, such as AACC, EAFS, and TZ3U,
demonstrating sustained activity. AACC consistently leads in 13 of
the 17 months we analyzed, with a notable increase in dominance
during the last two months of our analysis, accounting for 69 % and
72 % of all arbitrages in those periods respectively. We attribute this
rise to AACC utilizing applications that can execute an atomic arbi-
trage in a single transaction (see Appendix A.5). Aside from AACC,
the only other searchers performing arbitrages through their ap-
plications are URKF, HS2Y, and ODKH9. As shown in Figure 1b,
despite being consistently profitable, AACC was occasionally sur-
passed in total monthly profits by searchers ODKH, EVES, TEIC,
and URKF, especially between January and April 2023.

9The IDs of the most frequently used applications of the successful searchers:
1099380935, 1052848269, 1104000629, and 1002599007

Table 2: Top MEV Searchers on the Algorand Blockchain

MEV Searcher # Arbitrages Profit (USD) Profit (ALGO) Profit Rate (%)

AACC 653,001 110,967.67 491,541.65 0.56
URKF 133,594 31,201.12 174,681.03 0.95
TZ3U 80,396 14,391.43 14,155.33 0.07
HS2Y 70783 2,947.39 16,874.87 0.28
TEIC 57,222 25,304.40 128,401.05 0.52
G4X2 38,516 861.02 4,673.21 1.99
EAFS 36,500 10,484.67 21,691.85 0.09
ODKH 30,797 24,897.54 121,210.04 0.17
EVES 17,528 18,241.63 75,312.27 0.59
2HB6 12,411 2,756.26 3,688.96 0.24
XEYE 10,055 5,935.95 18,523.89 0.16
MDC5 222 3,374.57 8.19 0.37
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https://algoexplorer.io/application/1052848269
https://algoexplorer.io/application/1104000629
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https://algoexplorer.io/address/EAFSBZIDWYH4BAR34FZHQXKKQ6IYRVITQPDM2XXY3RBKSRO6EIR6COTCN4
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https://algoexplorer.io/address/XEYEWDWEHMIOAXFZN2HSBZJNCROOG7JKJLKFQSGG25JGE5UUZBZCGEWGEA
https://algoexplorer.io/address/MDC5Y5MOYKYRMOLR56ZQKYFQK2IR4LOOXGSHWSIRNJ3CT635FRB37YKVSA
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Figure 1: Monthly arbitrage counts and profits by top MEV
searchers from February 2022 to June 2023.

6.3 Arbitrage Strategies
To better comprehend how arbitrage MEV extraction strategies
are performed under the influence of Algorand’s FCFS transaction
ordering mechanism and network infrastructure, we analyze the
positioning of arbitrage transactions in the blocks and potential
latency relations between searchers and block proposers. Such
analysis yields insights about the adopted transaction ordering
techniques we have discussed in Section 4.

6.3.1 Transaction Positioning. This section analyzes the distribu-
tion of arbitrage transaction positions within a block. Instead of
defining ranges, we calculated position octiles. We opted for octiles
as a measure to achieve finer granularity than quartiles. If even
more granularity is required, deciles could be chosen, but we believe
octiles suffice to reflect the searcher strategy patterns we are inter-
ested in. As shown in Figure 2, the first octile (O1) contains the most
arbitrages, with the remaining ones evenly distributed (median:
142 871.50 ; std: 8952.31 ). Such distribution indicates that while
certain arbitrages only happen at the top of the block, executing
destructive frontrunning on the block state, most are network-level

backruns spread uniformly across octiles. Profits, however, peak in
the last octile (O8).

Based on prior studies [9, 12] and our observations, the uniform
spread of arbitrages on Algorand stems from the way searchers
exploit backruns. Searchers actively monitor the mempool for large
trades, such as those by the address W2IZ, a potential Centralized
Exchange (CEX)-DEX arbitrageur, who we found to be involved
in 29.8% of all blocks containing arbitrages. These searchers aim
to be positioned right after the arbitrage-triggering transaction,
indifferent to their absolute position in block. With such transac-
tions entering the mempool at random, the octile placement of
following backruns is equally unpredictable. Neither the initiating
party nor the backrunner can reliably influence their transaction’s
position due to Algorand’s FCFS-based ordering and the absence of
private relay services like the ones on Ethereum10. This results in
a consistent distribution of network state backruns across octiles
as displayed in Figure 2.

In our quest to detect individual searcher strategies, we examine
the arbitrage positioning of each searcher. Table 3 displays the distri-
bution of arbitrages across predefined octiles for each top searcher,
highlighting in bold the two octiles with the most arbitrages and
profits. Additionally, we compute a correlation coefficient (𝜌) to
identify any potential link between the placement of arbitrages
within the block (octiles) and their profitability.

Our analysis reveals varying strategies. Several searchers, like
EVES, TEIC, and 2HB6, increase their profits by occupying lower
octiles, while only URKF statistically significantly enhances profits
from higher octile positions, potentially executing block state ar-
bitrages. Interestingly, URKF has only 0.6% of their arbitrages at
block’s first position (P1), whereas searcher ODKH, with the most
significant proportion of P1 arbitrages, positioned about ∼ 14 % of
their total in P1, hinting latency and transaction issuance timing

10Flashbots: https://docs.flashbots.net/flashbots-auction/overview
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Figure 2: Distribution of arbitrages across position octiles.
The green bars reflect the cumulative profit in USD from
arbitrages in each octile, while the blue bars represent the
total count of arbitrages per octile.
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Table 3: Arbitrage Positions and Profits of Top MEV Searchers Across Octiles

Searcher P1 Octile 1 Octile 2 Octile 3 Octile 4 Octile 5 Octile 6 Octile 7 Octile 8 Arbitrages Total Profit
# [%] [USD] [%] [USD] [%] [USD] [%] [USD] [%] [USD] [%] [USD] [%] [USD] [%] [USD] # USD 𝜌

AACC 25,639 11.01 11,981.18 12.34 15,455.07 12.77 16,604.04 13.78 13,182.64 12.72 12,028.81 14.34 12,858.93 12.63 16,772.82 10.42 12,084.19 653,001 110,967.68 -0.07
URKF 827 10.69 4,254.39 17.35 6,818.57 16.32 6,976.56 15.38 4,688.87 11.89 2,732.24 11.16 2,382.18 8.51 1,438.94 8.69 1,909.37 133,594 31,201.12 -0.80
TZ3U 5,214 37.27 2,750.82 17.94 2,187.35 11.04 1,227.88 8.22 1,226.85 5.90 887.69 6.22 1,085.61 5.95 1,647.45 7.47 3,377.78 80,396 14,391.42 0.03
HS2Y 3,438 14.42 272.58 10.02 150.41 8.93 166.63 8.93 174.14 8.40 174.72 11.34 289.81 14.67 455.78 10.42 1,263.32 70,783 2,947.39 0.68
TEIC 3,848 18.88 1,349.72 10.46 2,302.37 8.92 2,623.49 9.34 3,051.24 8.79 2,195.52 11.02 4,984.92 13.18 2,764.92 19.41 6,032.19 57,222 25,304.39 0.77
G4X2 2,420 13.82 68.67 9.37 65.03 8.31 89.15 9.21 71.04 9.76 62.57 12.16 201.02 14.86 125.56 19.28 177.99 38,516 861.03 0.74
EAFS 1,113 12.42 547.58 9.00 527.89 8.07 422.85 8.26 557.57 7.70 551.25 11.51 815.34 16.50 1,783.19 26.53 5,278.99 36,500 10,484.66 0.71
ODKH 4,351 35.26 7,833.42 12.44 2,171.64 9.95 2,476.42 7.97 1,839.85 6.68 2,000.83 7.97 1,691.99 8.71 2,228.73 11.04 4,654.65 30,797 24,897.54 -0.33
EVES 117 4.35 424.77 10.43 1,178.14 12.79 1,233.66 14.69 1,513.73 12.72 2,801.68 15.92 2,487.90 15.00 4,657.03 12.77 3,944.71 17,528 18,241.62 0.93
2HB6 238 5.89 205.29 6.55 297.18 6.90 146.64 8.74 188.62 8.97 224.19 13.00 354.72 17.22 481.15 32.74 858.47 12,411 2,756.16 0.76
XEYE 150 6.31 129.96 9.59 335.48 11.70 798.03 12.38 561.73 12.97 394.30 17.10 2,554.89 17.28 527.09 12.68 634.46 10,055 5,935.94 0.36
MDC5 9 11.26 250.87 8.56 769.19 5.86 772.65 5.86 124.06 6.76 101.79 12.16 484.54 14.86 238.54 34.68 632.93 222 3,374.56 -0.09
Others 40 8.74 53.41 9.61 28.06 9.87 17.91 10.49 0.80 10.08 148.28 15.17 7.34 16.61 7.89 19.43 22.82 1,945 286.50 -0.12

Sum 47,404 14.01 30,122.66 12.75 32,286.38 12.18 33,555.89 12.50 27,181.16 11.23 24,303.87 12.78 30,199.19 12.12 33,129.09 12.39 40,871.88 1,142,970 251,650.15 0.39

optimizations11. Searchers with no significant correlation between
octiles and profits have their profitable arbitrages either evenly dis-
tributed, such as AACC, or they profit predominantly from extreme
positions, like TZ3U. These findings support our initial assumptions
that while few searchers mainly profit from block state arbitrages
at the top block positions, most exploit network-level arbitrages
through backruns, as the uniform distribution to octiles show.

6.3.2 Latency Games. While we noted various arbitrage MEV ex-
traction strategies, the critical point of all lies in ensuring prompt
transaction delivery to block proposers for desired positioning, as
this is how a searcher can become competitive in an FCFS transac-
tion ordering network. However, achieving deterministic latency
optimization is challenging in Algorand due to the VRF-based,
probabilistic selection of the next round’s block proposer (like the
hash puzzle solving process in PoW chains) and the intricacies of
the relay network. Consequently, we hypothesize that searchers
may operate multiple nodes connected to different relays to reduce
latency with high-staked participation nodes, issuing duplicate arbi-
trage transactions (similar to the strategy observed in [3]) without
risk due to the exclusion of failing transactions on-chain.

Our study, however, is limited to on-chain data and lacks empiri-
cal latency data, which would necessitate a global network of nodes.
Therefore, we can only evaluate whether particular searchers per-
form significantly better with specific block proposers, potentially
indicating latency optimizations in play. Under the assumption of
an equal playing field, i.e., identical geographical locations and no
arbitrage withholding attempts, every dominant block proposer
should converge to the same set of most successful searchers over
time. However, some searchers might rank higher with certain pro-
posers despite lower overall ranks if latency effects are prevalent.

To investigate this, we analyzed the searcher and proposer activ-
ity over the last two months, with the highest number of arbitrages.
We identified each month’s top five searchers for each proposer
and compared them with the aggregated searcher rankings of all
proposers. The results showed a near-unanimous consensus among
top proposers on top searchers, with a minor variation in May 2023,
where a proposer switched a single searcher’s ranking.

11We argue that obtaining P1 can be possible by estimating the expected arrival time
of the first transaction on the network since the last proposed block and running an
arbitrage detection algorithm on the block state constrained by this expected time. We
leave the detailed construction of such a block state arbitrage strategy to future work.

Although we have limited on-chain data, our observation sug-
gests that either every top MEV searcher cuts down latency in
the same way via duplicate transaction issuance over a scattered
network of nodes or they cannot do it at all due to the relay-based
network infrastructure of Algorand, limiting optimizations with
specific participation nodes since they are not directly connected
as in a peer-to-peer network. To definitively determine whether
latency games are played (or even feasible), in future work, we plan
to conduct network experiments and collect empirical data from
nodes running on the Algorand MainNet12.

6.4 Batch Transaction Issuance
We identified a total of 265 637 BTIs over 13 735 000 blocks, ap-
proximately one BTI every 50 blocks. We found that 75% of BTIs
accounted for between 80% and 90% of all transactions within
their respective blocks, with 348 BTIs constituting all transactions
in a block. Regarding the duration of the BTIs, we recorded 397,
289, 127, and 22 BTIs that lasted for 20-30, 30-50, 50-100, and over
100 blocks respectively. The longest BTI spanned 364 consecutive
blocks, nearly 23 minutes, issued by the address ZW3I.

As presented in Table 4, we classified notable BTIs based on their
issuer and purpose. While most were issued to facilitate services
like reward distribution, we also noted instances of token distribu-
tion via faucets, and even the logging of results from world chess
tournaments13. Notably, 53 BTIs were instigated by MEV searchers
executing arbitrages throughout a block. Block number 28 328 225
exemplifies this, with 603 arbitrage transactions by searcher HS2Y,
accounting for approximately 95 % of the block’s transactions.

6.4.1 A Novel Searcher Strategy. BTIs occur frequently on Algo-
rand, yet their strategic use remains largely unexplored outside
of searchers filling blocks with their arbitrage transactions. A po-
tential novel application of BTIs on Algorand might be to congest
the network, forcing nodes to transition to fee-based transaction
prioritization. Once this shift occurs, a searcher could monitor the
mempool and implement strategies, such as sandwiching or re-
play attacks [12], which require frontrunning. Based on the block
size limit, we estimate that creating such congestion would re-
quire around 3000 pay transactions at a cost of about 3 ALGO
(approximately 0.3USD). Upon issuing such a batch of transactions,

12https://developer.algorand.org/docs/get-details/algorand-networks/mainnet/
13https://fideworldchampionship.com/partners/
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Table 4: Notable BTI Instances

Issuer Address Purpose # BTIs

ZW3I Planet Reward Payment 192,288
XUEN ZONE Reward Payment 43,210
FAUC The Algo Faucet 9,440
4FIQ Algorand Inc. Stress Test 4,029
PJLP Planet Reward Payment 2,413
C7RY LCBZR and LCRDR tokens (Chess) 1,547
K4R3 ZONE Reward Payment 1,258
VOTE VOTE Opt-in 624
ZZVA Algorand Inc. Stress Test 693
2UQL Algorand Inc. Stress Test 240
Various Searchers Arbitrage Block 53

a searcher could leverage frontrunning-based MEV strategies to
exploit the information exposed by other searchers who, assuming
they are unaware of the incoming BTI, might issue transactions
with a minimum fee to carry out their strategies.

Although the application of this strategy exploits the specific
way Algorand deals with congestion by transitioning to a fee-based
prioritization, we suspect that BTIs can be effectively used on FCFS
networks to deal with the limitations latency-based ordering causes
on MEV extraction techniques, as discussed in Section 4. By with-
holding the network execution, a searcher can attempt to gain time
for opportunity discovery and censor out the transactions of the
competing searchers. To better assess the viability of this strategy,
we plan to study the congestion handling mechanisms of other net-
works that employ FCFS transaction ordering, such as the Layer-2
scaling solution Arbitrum [1].

7 DISCUSSION
The analysis results support our initial assessment regarding the ap-
plicability of transaction ordering techniques observed on Ethereum,
a fee-based blockchain, to Algorand, an FCFS blockchain. We note a
significant preference for network state arbitrages executed through
backruns, compared to block state arbitrages on top block positions
executed through destructive frontruns. This trend, driven by Algo-
rand’s FCFS-based transaction ordering, contrasts with Ethereum,
where initially, block state arbitrages prevailed due to the ability to
secure a top block position by simply paying higher fees [12]. On
Algorand, backrunning a pending transaction is more straightfor-
ward, only requiring positioning right after the target transaction,
making network state arbitrages a more reliable strategy, as sup-
ported by the distribution of profits and arbitrage counts to block
positions (see Figure 2). The advent of relay services like Flash-
bots, enabling atomically executed transaction bundles, facilitated
a similar shift towards network state arbitrages on Ethereum [9].

Our study on the latency games, examined through individual
searcher rankings of proposers, shows that no particular proposer
favors a specific searcher that is not aligned with the overall rank-
ings. Although our study is limited to on-chain data, observing no
direct searcher-proposer relation suggests that either every com-
petitive Algorand MEV searcher runs multiple node instances and
issues duplicate transactions to minimize latency with high-staked
proposers or the relay infrastructure of Algorand limits the latency

gains with specific block proposers. Nonetheless, the success of
searcher ODKH in executing P1 arbitrages hints latency optimiza-
tions with regards to the issuance timing as part of their strategy.

Finally, as we have initially discussed, the low fixed fees on Al-
gorand, or in FCFS networks in general, can motivate searchers to
execute computationally expensive strategies such as block clog-
gings. Our study on BTIs on Algorand reveals that searchers are
conducting arbitrages consuming almost complete block space. The
low cost of such selfish strategies can harm the usability of FCFS
networks and require further consideration of congestion pricing
mechanisms. Although Algorand has such an attempt, our novel
search strategy showcases the necessity of re-evaluating the mech-
anism. In a fee-based blockchain network like Ethereum, the cost of
BTI strategies can dominate the profits due to the adopted dynamic
transaction fee mechanisms like EIP-1559 [13].

8 CONCLUSION
In this paper, we examined the implications of FCFS transaction
ordering mechanism on MEV extraction through a study on the
Algorand blockchain. As a first such study on Algorand, we discuss
the applicability of transaction ordering techniques and analyze
empirical data on arbitrages, an MEV strategy we deem executable
under FCFS transaction ordering. Our study uncovers the preva-
lence of network state arbitrages through a uniform distribution
to block positions. While Algorand’s on-chain data was not suffi-
cient to deduce definitive latency relationships between successful
searchers and block proposers, our study on network congestion
events through BTIs showcases a novel strategy for MEV searchers
on FCFS networks. Overall, our findings present a different set of
optimization dynamics for MEV extraction compared to fee-based
blockchains and set the stage for future research on latency games
and refined FCFS strategies.

9 ACKNOWLEDGMENTS
We would like to thank our anonymous reviewers for their sugges-
tions, Erik Hasselwander from Vestige for valuable feedback, and
Paweł Pierścionek for AlgoNode services.

This work was supported by the Algorand Centres of Excel-
lence programme managed by Algorand Foundation. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect
the views of Algorand Foundation.

REFERENCES
[1] 2022. Transaction ordering policy. https://research.arbitrum.io/t/transaction-

ordering-policy/127
[2] 2023. Crypto API Documentation. https://www.coingecko.com/en/api/

documentation
[3] Facundo Carrillo and Elaine Hu. 2023. MEV in fixed gas price blockchains:

Terra Classic as a case of study. https://doi.org/10.48550/arXiv.2303.04242
arXiv:2303.04242 [cs].

[4] Jing Chen and Silvio Micali. 2017. Algorand. arXiv:1607.01341 [cs.CR]
[5] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Ben-

tov, Lorenz Breidenbach, and Ari Juels. 2020. Flash Boys 2.0: Frontrunning
in Decentralized Exchanges, Miner Extractable Value, and Consensus Insta-
bility. In 2020 IEEE Symposium on Security and Privacy (SP). 910–927. https:
//doi.org/10.1109/SP40000.2020.00040

[6] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. 2020. SoK: Trans-
parent Dishonesty: Front-Running Attacks on Blockchain (Financial Cryptogra-
phy and Data Security), Andrea Bracciali, Jeremy Clark, Federico Pintore, Peter B.

295

https://algoexplorer.io/address/ZW3ISEHZUHPO7OZGMKLKIIMKVICOUDRCERI454I3DB2BH52HGLSO67W754
https://algoexplorer.io/address/XUENGXBKWAUXULXWUFCWVAGDO3CDCKZ7NDO2SBNG5QQSJMREFWHLGOROVA
https://algoexplorer.io/address/FAUC7F2DF3UGQFX2QIR5FI5PFKPF6BPVIOSN2X47IKRLO6AMEVA6FFOGUQ
https://algoexplorer.io/address/4FIQU7BXCX7O2XEUOMU3O4H654TBM5MLFLW3TMMXTR3T4VTZ2JAKN2WO3Q
https://algoexplorer.io/address/PJLPUBJMHDYKL2EYGICXWSASANWTTQA7DBQTH3UJQTQDIA7LEV6M6BHQVY
https://algoexplorer.io/address/C7RYOGEWDT7HZM3HKPSMU7QGWTRWR3EPOQTJ2OHXGYLARD3X62DNWELS34
https://algoexplorer.io/address/K4R3HYQFKZAAHBEXANZG5OZHYXAOL6NXLSY7XA3R42GWLBIQVAGMXND7FY
https://algoexplorer.io/address/VOTESZMB66LO6CGVREQENOKIBMW4JG2BA7HJUXZBAYDLE6RKM2CQ2YI5EI
https://algoexplorer.io/address/ZZVA5JQ6HBJF7FBKFJMZMCG3LCGA5GJSSJY4PGCR7SENDWESPNJVWIQKLY
https://algoexplorer.io/address/2UQLQONIYN6SD4WBF46E57GFYLFRULG7P42DUIR56XFKPEFRZ5SMLE7FIQ
https://algoexplorer.io/address/ODKHWTGQUBJ2I62QBLBL3BZP5YUSPJ5OVL7JHUKCJOE3T4YET6RXVT65QY
https://research.arbitrum.io/t/transaction-ordering-policy/127
https://research.arbitrum.io/t/transaction-ordering-policy/127
https://www.coingecko.com/en/api/documentation
https://www.coingecko.com/en/api/documentation
https://doi.org/10.48550/arXiv.2303.04242
https://arxiv.org/abs/1607.01341
https://doi.org/10.1109/SP40000.2020.00040
https://doi.org/10.1109/SP40000.2020.00040


A Study of MEV Extraction Techniques on a First-Come-First-Served Blockchain SAC ’24, April 8–12, 2024, Avila, Spain

Rønne, and Massimiliano Sala (Eds.). Springer International Publishing, Cham,
170–189.

[7] Yossi Gilad, RotemHemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. Cryptology
ePrint Archive, Paper 2017/454. https://eprint.iacr.org/2017/454 https://eprint.
iacr.org/2017/454.

[8] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. In
Proceedings of the 26th Symposium on Operating Systems Principles (Shanghai,
China) (SOSP ’17). Association for Computing Machinery, New York, NY, USA,
51–68. https://doi.org/10.1145/3132747.3132757

[9] Magnus Hansson. 2022. Arbitrage in Crypto Markets: An Analysis of Primary
Ethereum Blockchain Data. https://doi.org/10.2139/ssrn.4278272

[10] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. 2020. Order-
Fairness for Byzantine Consensus. https://eprint.iacr.org/2020/269 Report
Number: 269.

[11] BrunoMazorra, Michael Reynolds, and Vanesa Daza. 2022. Price of MEV: Towards
a Game Theoretical Approach to MEV. In Proceedings of the 2022 ACM CCS
Workshop on Decentralized Finance and Security. ACM, Los Angeles CA USA,
15–22. https://doi.org/10.1145/3560832.3563433

[12] Kaihua Qin, Liyi Zhou, and Arthur Gervais. 2022. Quantifying Blockchain Ex-
tractable Value: How dark is the forest?. In 2022 IEEE Symposium on Security
and Privacy (SP). 198–214. https://doi.org/10.1109/SP46214.2022.9833734 ISSN:
2375-1207.

[13] Tim Roughgarden. 2020. Transaction Fee Mechanism Design for the Ethereum
Blockchain: An Economic Analysis of EIP-1559. https://doi.org/10.48550/arXiv.
2012.00854 arXiv:2012.00854 [cs, econ].

[14] Ben Weintraub, Christof Ferreira Torres, Cristina Nita-Rotaru, and Radu State.
2022. A Flash(Bot) in the Pan: Measuring Maximal Extractable Value in Private
Pools. In Proceedings of the 22nd ACM Internet Measurement Conference (Nice,
France) (IMC ’22). Association for Computing Machinery, New York, NY, USA,
458–471. https://doi.org/10.1145/3517745.3561448

A ADDITIONAL EMPIRICAL DATA
A.1 Related MEV Searchers
Upon investigating the funding sources of the identified MEV
searchers, we discovered instances where searchers were either
initially financed by another searcher or received funds from an
external address not directly involved in arbitrage activities such
as MDC5. Table 5 outlines our findings.

A.2 Profit Tokens
As depicted in Table 6, we identified that arbitrages profit from 26
different tokens, with ALGO being the most prevalent, accounting

Table 5: MEV Searchers Funded by the Same Address

Funding Address MEV Searcher # Arbitrages

AACC J4BJ 135,022

2HB6 GVNI 12,334

XEYE MAPE 9,845
JN2N 210

MDC5

MHPG 67
BAK6 40
7GBO 38
JTML 26
3ATA 10
KIE4 9
L44D 8
TVOC 7
KRI6 6
2YUG 6
MIMZ 5
LA6L 1

Table 6: Summary of Profit Tokens Used in Arbitrages

Token # Arbitrages Revenue (Token) Profit (USD)∗

ALGO 1,107,629 1,079,446.11 235,825.86
USDC 18,560 11,844.45 11,755.43
AF-BANK-ALGO 6,499 17,645.04 4,202.21
OPUL 3,514 0.14 N/A
STBL 3,337 2,925.90 2,899.52
USDT 2,523 1,182.08 1,169.14
goBTC∗∗ 452 < 0.01 N/A
goETH∗∗ 297 0.43 N/A
GARD 66 0.31 0.21
Yieldly 20 17.47 N/A
BANK 15 47.55 N/A
AF-BANK-BANK 14 0.12 N/A
PLANET 10 5.81 N/A
AF-BANK-STBL2 8 0.04 N/A
AF-BANK-goBTC 5 < 0.01 N/A
AF-BANK-goETH 5 < 0.01 N/A
DeFi-nite 3 19.99 N/A
TEAR 2 1.39 N/A
DEFLY 2 0.06 N/A
BIRDS 2 280.00 N/A
STKE 2 0.70 N/A
SVANSY 1 26,687.14 N/A
STBL2 1 < 0.01 N/A
SMILE 1 45.37 N/A
XGLI 1 1.30 N/A
DeLTA 1 9.02 N/A
∗We only report the profits for ALGO-based tokens and stablecoins.
∗∗goBTC and goETH are pegged to BTC and ETH values respectively.

for nearly 97% of all arbitrages. Among the top six most utilized
tokens, five are either based on ALGO or are stablecoins.

A.3 Pool and Platform Usage
Table 7 presents our findings regarding the use of pools and plat-
forms in arbitrage transactions. It reveals that the top five most
popular pools consist of ALGO paired with COOP, PEPE, STBL, or
USDC. Intriguingly, three out of the top five pools are hosted on
the same platform, Tinyman AMM V2.

Table 7: Most Used Pools and Platforms in Arbitrages

Pair # Arbitrages Application ID Platform

ALGO/COOP 179,890 1002541853 T. V2†
ALGO/PEPE 142,491 1002541853 T. V2†
ALGO/STBL 119,523 607645439 AlgoFi
ALGO/USDC 105,020 605929989 AlgoFi
ALGO/USDC 88,423 1002541853 T. V2†
ALGO/AF-BANK-ALGO 70,263 818179346 AlgoFi
USDC/STBL 61,811 658337046 AlgoFi
ALGO/USDC 50,985 620995314 Pact
ALGO/OPUL 48,427 1002541853 T. V2†
ALGO/OPUL 47,530 635146381 Pact
AF-BANK-ALGO/AF-BANK-STBL2 46,540 855716333 AlgoFi
ALGO/goBTC 46,163 661744776 Pact
ALGO/Vote 42,466 662102761 Pact
ALGO/goETH 41,129 645869114 Pact
USDC/Vote 33,015 662105634 Pact
ALGO/USDC 32,816 1056825958 Pact
USDC/AF-BANK-USDC-STANDARD 28,460 818182048 AlgoFi
ALGO/Vote 26,644 1075389128 Pact
ALGO/goUSD 25,096 835609896 HumbleSwap
goETH/STBL 24,533 635853824 AlgoFi
†Tinyman AMM v2
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Figure 3: Timeline of the number of arbitrages (orange plot), profits in USD (blue bars), and profits in ALGO (green bars) from
February 2022 to June 2023.

A.4 Arbitrage Timeline Analysis
The period of our arbitrage analysis from February 2022 until June
2023, outlined in Figure 3, is characterized by a steady upswing
in the number of arbitrages, peaking with 351 394 arbitrages in
June 2023. Despite exhibiting 59% fewer arbitrages, March 2023
accounted for the highest USD profits at 43 131USD. On a monthly
average, we observed approximately 27 220 arbitrages, generating
profits around 11 250USD.

At the beginning of our timeline, DEX platforms like AlgoFi and
Tinyman already demonstrated notable Total Value Locked (TVL)
and volume. This landscape expanded with the rise of Pact’s TVL
from mid-April 2022 and HumbleSwap14 coming into significance
by the end of June 202215, which fostered an increase in the number
of arbitrages throughout Q2 2022. November 2022 stands out with
the occurrence of the FIFA World Cup, where Algorand served
as the official blockchain platform of FIFA16. The event ignited
an increase in volume across all DEXs and a noticeable rise in
arbitrages. In March 2023, the stablecoin USDC deviated from its
peg. This incident, coinciding with the day of the highest arbitrage
profits within the analyzed period, notably influenced the statistics.
During the Algorand governance period in April 2023, there was a
sharp decrease of around 50 % in TVL across all platforms starting
from March 31st, 2023. Despite the recovery within one week after
the initial rewards were dispensed, a dip in volume across all DEXs
was observable for April compared to the previous months. In early
May, searcher AACC deployed their applications to execute atomic
arbitrages (see Appendix A.5). This deployment can explain the
observed surge in arbitrage activities during the latter part of May
and June.

14https://www.humble.sh/
15https://defillama.com/chain/Algorand
16https://www.fifa.com/about-fifa/president/media-releases/fifa-announces-
partnership-with-blockchain-innovator-algorand

A.5 Arbitrage Execution Types
We initially noted a profit spike for the most active MEV searcher,
AACC, starting May 2023 (see Figure 1). Further scrutiny in Fig-
ure 4 reveals that AACC primarily executed non-atomic arbitrages
through group transactions until the last two months. With May
2023, a surge in atomic arbitrages occurs, similar to the rise in
profits. We argue that this is attributable to the applications AACC
deployed and started using (1097349178, 1099380935). These apps
enable atomic arbitrages in single transactions over non-atomic
transaction groups, guaranteeing execution in the desired order.

20
22

-02

20
22

-03

20
22

-04

20
22

-05

20
22

-06

20
22

-07

20
22

-08

20
22

-09

20
22

-10

20
22

-11

20
22

-12

20
23

-01

20
23

-02

20
23

-03

20
23

-04

20
23

-05

20
23

-06

1,000

10,000

100,000

#
 A

rb
itr

ag
es

Non-Atomic (AACC)
Non-Atomic (Others)
Atomic (AACC)
Atomic (Others)

Figure 4: Arbitrage execution types over time by MEV
searcher AACC versus the rest of the network.
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