
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Information Systems

Participatory establishment of guidelines
through automated testing and gamification

in large-scale agile software development

Sascha Nägele

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Information Systems

Participatory establishment of guidelines through
automated testing and gamification in large-scale

agile software development

Partizipative Etablierung von Richtlinien durch
Gamifizierung und automatisiertes Testen in der

großen agilen Softwareentwicklung

Author: Sascha Nägele
Supervisor: Prof. Dr. Florian Matthes
Advisor: Ömer Uludağ, M. Sc.
Submission Date: 15.12.2018

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, 15.12.2018 Sascha Nägele

Acknowledgments

First and foremost, I would like to thank my thesis advisor Ömer Uludağ for his great
support over the course of this thesis. Your ongoing guidance, constructive feedback
and enthusiasm were of great value.

Furthermore, I would also like to thank Dr. Matheus Hauder who advised me on
the practical side of the thesis and who ensured the practical relevance of this thesis
through his valuable support and feedback. Thank you for the exciting opportunity to
write this thesis with an industry partner and the resulting interesting experiences.

In addition, I would like to thank Dr. Thomas Kofler for the close collaboration at
the industry partner as well as all my other colleagues from the industry partner for
participating in countless interviews and conversations, and who referred me to further
relevant contacts and thus contributed a great deal to make this research possible.

I would also like to thank Professor Dr. Florian Matthes, who made this research
possible in the first place by providing the opportunity to write my thesis at his chair
for Software Engineering for Business Information Systems (SEBIS) and who helped to
shape the topic with his valuable feedback.

Last but not least, I would like to thank my family, including my better half Hannah,
and all my friends who have always supported me during this exciting journey. Thank
you for your unconditional support and that I can always count on you.

Having the pleasure to work with passionate and committed people is invaluable. I
am very grateful that I had the opportunity to do so as part of this master’s thesis.

Abstract

Nowadays, large IT organizations are struggling to cope with unpredictable com-
petitive environments due to rapidly changing customer needs, regulatory changes,
and technological advancements. Thus, the ability of large IT organizations to react
quickly to changes can be a significant competitive advantage. To achieve a high
level of organization-wide agility, standardized processes and commitment from all
stakeholders are necessary. Traditionally, top-down IT governance control mechanisms
have been used to enforce a certain common direction within IT processes, thereby
also aiming to achieve consistency and quality as well as to ensure compliance with
legal requirements. However, these top-down control mechanisms do not fit well into
increasingly widespread agile and lean environments. Scaling agile frameworks, such
as Scaled Agile Framework or Disciplined Agile Delivery, recommend to use more
lightweight and collaborative IT governance approaches. Yet, these frameworks do not
provide enough concrete guidance to implement such a form of IT governance on a
large scale.

We fill this gap by providing a collaborative approach to establish architecture prin-
ciples and guidelines and a prototypical web application to enable and support the
approach. The approach mainly revolves around a close collaboration between enter-
prise architects and agile teams, handling the full life cycle of architecture principles and
guidelines together. The goal is to combine top-down (authoritarian) and bottom-up
(self-governance) perspectives in order to leverage the advantages as well as mitigate
the disadvantages of both sides.

To accomplish this, the thesis first analyzes the current state of existing research
on how governance and architecture fit into modern, large-scale agile development
environments. Afterwards, it first presents the results of a case study of a large global
insurance company and then introduces the collaborative approach and tool support
that aim to solve challenges identified in both research and practice. Subsequently,
we evaluate the two solution artifacts of this thesis in expert interviews with fifteen
participants from the case study organization. Finally, we summarize the key findings
and give an outlook on possible further research. The results indicate a high approval
for the approach and the tool support as well as a strong need for closer collaboration
between both stakeholder groups, enterprise architects and agile teams.

iv

Contents

Acknowledgments iii

Abstract iv

1. Introduction 1
1.1. Motivation . 1
1.2. Research objectives . 4
1.3. Research approach . 5

2. Foundations 8
2.1. IT governance . 8

2.1.1. Traditional IT governance . 8
2.1.2. Modern governance approaches in the context of lean and agile 9

2.2. Enterprise architecture management . 12
2.2.1. The role of EA in IT governance 13

2.3. Principles and guidelines . 13
2.3.1. Definition and delimitation . 14
2.3.2. Importance in enterprise architecture management 16
2.3.3. Value of principles . 17
2.3.4. Generic process . 17

2.4. Agile and lean development . 24
2.4.1. Agile software development . 24
2.4.2. Large-scale agile software development 25
2.4.3. Lean software development . 26
2.4.4. Agile vs. lean software development 26

2.5. The interplay between EAM and large-scale agile software development 27
2.6. Gamification and social design . 29

3. Related work 30

4. Case study 35
4.1. Case study design . 35
4.2. Case description . 38

v

Contents

4.3. Use of architecture principles and guidelines 39
4.4. Architecture communities . 42
4.5. Role of the enterprise architect . 42
4.6. Value contribution of enterprise architects 46
4.7. Summarized challenges . 47

5. Collaborative approach to establish architecture principles and guidelines 50
5.1. Agile governance through collaboration 50
5.2. Guideline establishment approach with relevant stakeholders 52

5.2.1. Involved stakeholders and their role in the approach 52
5.2.2. Community goals and responsibilities 55
5.2.3. Collaborative process steps . 57

5.3. Addressed challenges and solution requirements 66

6. Implementation 75
6.1. Motivation for a web application . 75
6.2. Technical requirements and technology selection 77
6.3. Main views and core features . 78

6.3.1. Overview of the guidelines of a specific team 78
6.3.2. Detail screen of the guideline of a specific team 81
6.3.3. Team dashboard . 82
6.3.4. Team creation and guideline mapping 83
6.3.5. Team and guideline statistics . 84

6.4. Features and possible extensions based on social design principles . . . 84
6.5. System architecture . 90
6.6. Class diagram . 92
6.7. Possible extensions and next steps . 94

7. Evaluation 97
7.1. Goal and methodology . 97
7.2. Evaluation of the collaborative approach 99

7.2.1. Value for agile teams and enterprise architects 99
7.2.2. Challenges . 101
7.2.3. Community activities and process steps 103

7.3. Evaluation of the prototype . 114
7.3.1. Assessment of the main goals of core features 114
7.3.2. Usability assessment based on the System Usability Scale 116

7.4. Summary of the evaluation results . 118

vi

Contents

8. Discussion 120
8.1. Key findings . 120
8.2. Limitations . 122

9. Conclusion and future work 124
9.1. Summary . 124
9.2. Future work . 125

A. Appendix 127
A.1. Evaluation interviews . 127
A.2. Semi-structured case study interviews . 129

A.2.1. General information . 129
A.2.2. Architecture principles . 131
A.2.3. Architecture boards . 132
A.2.4. Role of the enterprise architect . 132
A.2.5. Value contribution of enterprise architects 134

Bibliography 137

vii

1. Introduction

This chapter explains why adapting the use of architecture principles and guidelines to
achieve agile and lean governance of large-scale agile development teams is a relevant
and valuable research field to explore. Furthermore, it presents the main goal and
research questions that this thesis addresses in Section 1.2 and demonstrates the applied
methodology used to answer those research questions in Section 1.3.

1.1. Motivation

To understand why agile and lean governance of agile teams is a pressing issue, the
following chapter looks at how large-scale agile is steadily growing in importance, but
also how raising agile methods to a cross-team level comes with certain challenges.
Subsequently, it justifies the proposal that architecture and governance, and specifically
architecture principles and guidelines, can be a possible solution to those challenges, if
adapted to agile settings.

Large-scale agile on the rise

Agile software development methods have been flourishing since the coining of the
term "agile” with the creation of the "Agile Manifesto” in the year 2001. By now,
they have reached a state of omnipresence. In the latest "State of agile survey" from
2018 [119], more than 97% of interviewed participants state that they use agile methods
in their organization. Despite its prevalence, using agile methods is not yet a trivial,
straightforward undertaking: Only 52% of interviewees have more than half of their
teams practicing agile methods and values. Honda et al. [48] also highlight the fact that
according to the "State of Agile” study results, "an overwhelming 84% of organizations
are ‘still maturing’ in their agile practices”, which stresses the ongoing need for
research in the area of agile adoption and practical application. Since agile methods are
increasingly moving out of their originally intended environment (small, co-located
teams) into large-scale on the business and enterprise level [48], the question of how
to improve the large-scale applicability of agile methods is becoming increasingly
important. However, this development is not new. Already in 2010, "agile and large

1

1. Introduction

projects” has been voted the number one "burning research question” by software
practitioners [36], which shows the continuous importance and relevance of the topic.

Problems of agile on a large-scale

Whereas some studies show a positive impact of agile methods, e. g. when comparing
them with their traditional counterparts in terms of effectiveness and successfulness [4],
there are a lot of researchers questioning the viability of agile methods in large-
scale endeavors. More specifically, in large-scale agile development, common agile
methods are insufficient when developing complex systems [116]. They are especially
problematic for large-scale system architectures and for systems incorporating existent
and possibly evolving software architectures [10] or safety critical systems [115]. One
of the common pitfalls is the lack of architecture and unclear role of architects [9], since
according to Leffingwell and his colleagues, ”some amount of architectural planning
and governance is necessary to reliably produce and maintain such systems. Individuals
teams, products and programs may not even have the visibility necessary to see how the
larger, enterprise system needs to evolve.” [67] Other publications put emphasis on the
lack of suitable IT-Governance methods that impact the ability to scale agile software
development techniques, e. g. because of the issue of regulatory compliance [7] and
concomitant audits [56]. Furthermore, high organizational agility is mainly found in
companies with highly standardized processes and platforms [100]. Therefore, if an
organization aims to achieve organization-wide agility, commitment from all involved
stakeholders is needed, which in turn cannot be achieved without governance [50, 56].

Agile vs. (enterprise) architecture and governance

Responding to those challenges, the agile community started researching if and how
methods from enterprise architecture, software architecture and IT-governance fit into
agile methods. Whereas the "how” question is complex, without one, clear answer and
still part of ongoing research, there is a multitude of researchers that strongly affirm
the question if architecture and agile can and should be combined [10, 85, 101, 1]. The
question of agile vs. architecture also goes hand in hand with the management and
governance of agile teams and yet another appurtenant trade-off regarding governance:
the self-organization vs. control of agile teams. Agile teams usually would like to be
self-responsible and therefore have a lower acceptance for architectural guidance than
traditional teams. This could be related to their concern that architects predetermine
architectural and technical constraints, thereby limiting their freedom and slowing
down their development speed. These challenges have to be taken into account when
attempting to merge agile and architectural methods.

2

1. Introduction

Collaborative use of architecture principles and guidelines to contribute to agile
governance

The goal of this thesis is to help answer the question of how architecture and governance
fit with agile development methods in large-scale endeavors. This thesis proposes the
use of principles and guidelines, a key concept in enterprise architecture management
(EAM), embedded in a collaborative approach that fits well to agile and lean values
and principles. The incorporation of architecture principles is chosen because of their
widespread use and high value. Specifically, they are deemed as highly valuable
because according to Greefhorst and Proper [37], they

• "Fill the gap between high-level strategic intentions and concrete design decisions."

• "Document fundamental choices in an accessible form and ease communication."

• "Prevent analysis paralysis by focusing on the essence."

Albeit Greefhorst and Proper make a very valuable and comprehensive contribution
to the field of architecture principles, they state that their focus is on a traditional top-
down approach and stress the necessity for more research for more bottom-up driven
processes and a higher collaboration in the creation and management of architecture
principles [37]. This research gap is exactly where this thesis positions itself. We
propose a collaborative approach for establishing architecture principles and guidelines
and a software implementation that supports the collaborative approach. These two
solution artifacts of this thesis are based on the findings of a case study we conducted at
a large international insurance enterprise as well as findings from current research and
related work. The proposed web application enables teams to join in on the guideline
creation and management process, facilitates higher contribution and better feedback
cycles, as well as starting points for a higher degree of automation. It also incorporates
gamification and social design principles to motivate and encourage participating
stakeholders to actively contribute.

As demonstrated in our analysis, a top-down governance approach in modern
agile and lean environments is associated with many challenges. Therefore, our
research makes a valuable contribution to the research gap on how to apply architecture
principles in a lean and agile environment through a more bottom-up driven process.
This also fits well to the research of Brosius et al. [19], who state that the main proportion
of enterprise architecture research promotes to enforce and control compliance with
enterprise architecture. But for further research, there is currently a high need for more
research that is less concerned with enforcing or controlling, but rather focuses on
empowering and supporting stakeholders to achieve the intended outcome of enterprise
architecture. They further conclude that "this may be realized, for example, by granting
more autonomy as well as more decision-making authority to local stakeholders" [19].

3

1. Introduction

1.2. Research objectives

To incorporate principles and guidelines in large-scale agile development environments
and adapt them to facilitate a higher degree of collaboration and acceptance between
different stakeholders, we divide the overall research goal into the following three
research questions:

Research question 1: How does governance and enterprise architecture fit
in modern large-scale agile and lean development environments?

To answer the first research question, existing literature on IT-governance, enterprise
architecture, large-scale agile development and the interplay between these areas are
analyzed. In addition, there is a detailed look at architecture principles and guidelines
as an established artifact from enterprise architecture and the existing processes for
using architecture principles and guidelines. Furthermore, a case study is used to
enrich the results from current literature, with a focus on identifying the challenges
that occur in the area of governance in large-scale agile software development in actual
daily practice.

Research question 2: How can agile teams and enterprise architects collab-
oratively establish and manage architecture principles and guidelines in
large-scale agile software development?

Since existing approaches related to architecture principles and guidelines primarily
focus on top-down driven perspectives and processes [37], the second research question
mainly revolves around the issue of how a combination of top-down and bottom-up
processes for establishing architecture principles and guidelines could look like. This
is closely linked to the question of control versus autonomy of agile teams and how
agile teams can become the main stakeholder in establishing architecture principles
and guidelines, therefore resulting in a form of self-governance, without losing the
support and oversight from enterprise architects. To answer this research question, we
build on the existing practical approach by Greefhorst and Proper [37, 38] and extend
it by proposing a collaborative approach, taking into account the findings from the
literature, related work and practical insights from the case study. Finally, the approach
is evaluated through expert interviews with fifteen participants of the case organization.

Research question 3: How can the collaborative approach for establishing
architecture principles and guidelines be supported and further enhanced
by a software implementation?

4

1. Introduction

To answer this question, we develop a software implementation to support the collabo-
rative approach and further address the identified challenges. We focus on providing
a software implementation to support the collaborative approach because of specific
reasons and requirements outlined in Section 6.1. It sets the basis for more automation
in the future and incorporates social design principles and gamification elements to
encourage contribution. The tool support is part of the evaluation with fifteen experts
as well, mainly focusing on comparing the current status with the resulting situation
using the web application to assess the achieved improvement, as well as an evaluation
of the usability of the tool support.

1.3. Research approach

The following section gives an overview of the overall research methodology applied in
this thesis.

This master’s thesis relies on two main research approaches: the design science
paradigm and the case study approach. The design science paradigm, which was
introduced and popularized in the field of information systems research by Hevner
et al. [46] and further refined and completed with the suggestion of a process to
carry out design science research by Peffers et al. [89], is the main approach of this
thesis. It centers around creating and evaluating new and innovative artifacts within
a problem domain, intending to solve identified organizational problems. Thereby,
applied specifically to our thesis, it sets the scene for systematically developing a
tool-supported, collaborative approach for agile and lean governance in large-scale
endeavors with the use of principles and guidelines. The two resulting artifacts are:

(i) the concept for a collaborative approach for establishing architecture principles
and guidelines

(ii) the prototypical implementation of the tool-support for the approach, a web-based
application

Furthermore, this thesis incorporates a case study with our partner company within
the design science approach. Instead of using the case study primarily as a method for
design evaluation of the created artifact, as originally proposed by Hevner et al. [46], we
include the case study results throughout the whole design science approach. This is
inspired by modern, human-centered design thinking approaches which revolve around
continuously involving target users from the beginning and collecting requirements and
feedback before and during the actual artifact development, not only after the design
and development phase. This approach fits well to the "action design research" approach
proposed by Sein et al. [106]. In contrast to the regular design science approaches which

5

1. Introduction

propose rather separated and sequenced key steps, specifically an "evaluation" phase
after the "design and development" [89], action design research acknowledges the need
for interweavingly building the artifact and continuously evaluating it. It emphasizes
that the resulting artifacts will not only mirror the design intentions of the researchers,
but is repeatedly shaped by organizational use, perspectives and participants and by
the outcomes of concurrent evaluation [106]. In regards to the classification for case
studies proposed by Yin [130], the present case study is a single-case study. More
details on our case design can be found in Section 4.1. The case study approach itself is
based on the insights of Runeson and Höst, who provide a case study methodology
and guidelines for researchers in the area of software engineering [102].

Figure 1.1 shows an overview of our research approach, based on Hevner [46], Peffers
[89], Sein [106] and Runeson and Höst [102], adapted to our research. In addition to
the methodological procedure, Figure 1.1 also shows the mapping between the design
science phases and the chapters of this thesis.

Environment

Identify problem &
motivate

Define objectives
of a solution

Demonstration &
Evaluation

Design Science Research
(Hevner et al. 2004 & 2007;

Peffers et al. 2007)
Case Study

(Runeson and Höst 2007)
Action Design Research

(Sein et al. 2011)

Expert interviews with
15 participants for the
formal evaluation of the
artifacts

Literature Review

Foundations
• IT governance
• Agile and lean

governance
• Liberal IT governance
• Large-scale agile

development
• Enterprise architecture

management
• Interplay between EAM

and large-scale agile
development

• Architecture principles
and guidelines

• Control vs. autonomy
• Gamification

• Social design principles

Knowledge Base

Business
needs

Applicable
knowledge

Researcher Practitioners End-users

Artifact

Rele-
vance Rigor

Artifact 1:
Collaborative

approach

Artifact 2:
Web-

application

• Semi-structured
interviews of different
roles (enterprise
architects, agile teams,
and management)

• Informal interviews
• Observations
• Documentanalysis

Explorative case study
to identify challenges
and needs in practice

Design and
development

• Continuous collaboration
with practicioners

• Ongoing shaping of
artifacts by
organizational
perspectives

• Authentic and
concurrent
evaluation

Communication

Chapter 2 & 3

Chapter 7

Chapter 5

Chapter 6

Chapter 4

Chapter 1

Chapter 8 & 9

Figure 1.1.: Research approach overview and mapping with thesis chapters

By combining the research approaches, we aim to find the right balance between
ensuring practical relevance and applicability as well as achieving generalizability of
results and importance for research. The case study and action design research provide
the relevance, whereas the literature review and related work contribute the applicable
knowledge for the necessary rigor of our research. In regards to the characteristics of
different research methodologies described by Runeson and Höst, our research is of
exploratory and improving nature [102]. Therefore, our primary data is of qualitative

6

1. Introduction

nature and the research design is rather flexible than fixed [102].
The structure of the thesis is as follows. Chapter 1 introduces and motivates the

thesis topic and defines the research objectives and methodology. Chapter 2 describes
and summarizes the findings of existing literature. In addition, Chapter 3 presents
additional relevant related work. Chapter 4 details the case study conducted during
this thesis. Chapters 5 and 6 present the two solution artifacts of this thesis, the
collaborative approach and the tool-support implementation. Chapter 7 demonstrates
the main results of the evaluation. Chapters 8 and 9 summarize key findings, limitations
and unveil an outlook for further research and next steps.

7

2. Foundations

This chapter provides the theoretical foundations for the remaining chapters of this
thesis. The goal is to present existing research and findings, establish a common
understanding of the relevant terms and concepts and thereby lay the groundwork for
building on top of these subjects during the subsequent parts of the thesis. The main
focus is on exploring IT governance (Section 2.1), enterprise architecture (Section 2.2),
architecture principles and guidelines (Section 2.3), (large-scale) agile and lean develop-
ment (Section 2.4), and pointing out the relationships between those areas (Section 2.5).
Finally, in Section 2.6, it gives a brief outline of gamification and social design aspects
that are used later in the thesis.

2.1. IT governance

IT governance is a subset of corporate governance, which is focusing on leadership and
control of the organization to achieve responsible and long-term value creation [129,
80]. Corporate governance is an important part of business management [80, 128]. The
first of the following two subsections defines traditional IT governance. The second
subsection dives deeper into IT governance within an agile and lean context.

2.1.1. Traditional IT governance

The specific term "IT governance" originated in the late 1990s when Brown [20] and
Sambamurthy and Zmud [103] first started using the term in reference to an IT gover-
nance framework [66]. The ISO/IEC standard 38500:2015 defines the governance of IT
as "a subset or domain of organizational governance, or in the case of a corporation,
corporate governance" [53].

In line with the ISO standard, Winter et al. state that IT governance takes the role of
corporate governance specifically to the IT area [128]. One of the most cited definitions
of IT governance besides the ISO-standard is the definition by Weill, who defines the
goal of IT Governance as "specifying the decision rights and accountability framework
to encourage desirable behavior in the use of IT" [124]. To achieve the encouragement
of "desirable behavior in the use of IT", IT governance includes policies and methods

8

2. Foundations

to ensure that IT is aligned with business goals, that IT resources are properly and
responsibly used as well as the management and monitoring of risks [80].

After the coining of the term, the importance of IT governance was accelerated by
the enactment of the "Sarbanes-Oxley Act" in 2002, urging companies to put much
more effort into compliance [68]. But IT-governance has also become crucial due to the
increasing and overarching use of technology, which results in high IT investments [55]
and a critical dependency on IT [118, 90]. Therefore, companies can no longer afford
bad IT governance [123, 90]. IT governance also plays a key role in achieving IT-based
synergies, which can lead to reduced expenditures, higher knowledge sharing and may
also achieve higher innovative capabilities [61, 110].

The practical adaption of IT governance is well established, especially through
COBIT, which is one of the most widely used and adapted reference models in the
area of IT governance [128, 80, 90, 95, 61]. COBIT 5 defines governance as follows [52]:
"Governance ensures that enterprise objectives are achieved by evaluating stakeholder
needs, conditions and options, setting direction through prioritization and decisions
making; and monitoring performance, compliance and progress against agreed-on
direction and objectives." Thanks to the widespread use of IT governance, researchers
were also able to analyze the impact and value of IT governance. Multiple studies
indicate a significantly (up to 40%) increased return on IT investments [126, 69]. Lazic
et al., who researched the business impact of IT governance and specifically the reasons
behind the impact, state that the positive impact results from increasing both the
relatedness of IT and the relatedness of business processes, which also improves the
inter-relatedness between IT and business processes [65].

2.1.2. Modern governance approaches in the context of lean and agile

According to Kude and his colleagues, in an organization that is striving for cost
leadership and efficiency, IT governance should aim towards control and regulation to
achieve its’ goal in a rather short time [61]. Nevertheless, they stress that in times of
increasing influence of IT, consensus-oriented IT governance capabilities are important
or even required, especially for fostering innovation in IT and recombining core com-
petencies to create value [61]. Furthermore, the traditional, top-down, authoritarian
control approach to governance does not seem to fit well to agile and lean values and
principles, which put more emphasis on self-organization and self-responsibility. The
key challenges when applying traditional governance in agile environments are mainly
the lack of an agile approach [71, 72, 94] as well as the lack of appreciation of people in
governance processes [71]. Because agile and lean development approaches account
for a large part of today’s software development efforts [122, 48], a better suitable,
modern approach to IT governance is desirable. Ambler and Kroll from IBM state in

9

2. Foundations

their whitepaper titled "Lean development governance" that effective governance is not
about command and control, but enabling the desired behavior through collaborative
and supportive methods [8]. Furthermore, they conclude that it is far more productive
to motivate people to do the right thing instead of forcing them to do so [8]. Two terms
that describe this kind of thinking are "Lean Governance" and "Agile Governance".
"Lean Governance" appears as a term that is used mainly in practice, indicated by
multiple white-papers on the topic [8, 73], as well as the use of the term in popular
scaling agile frameworks, namely the "Disciplined Agile (DA 2.0)" [5] framework and
the "Scaling Agile Framework (SAFe)" [104], but barely any research publications.
"Agile Governance" on the other hand is also addressed by researchers [72, 23, 94, 56].
Some scaling agile frameworks, namely SAFe, EADAGP and DA 2.0, acknowledge the
need for not slowing down teams, but still take in account necessary constraints. There-
fore, they recommend modernizing governance models, resulting in more light-weight,
collaborative and decentralized approaches [117]. Nevertheless, they do not provide
enough guidance how such approaches could be applied in practice. Furthermore,
most decisions are still made top-down without using input and qualitative feedback
from teams [50].

Often, the two terms "Lean Governance and Agile Governance" are combined and
used interchangeably. Luna et al. state that they base their work on agile governance on
the definition by Kruchten [60], which describes agility as "the ability of an organization
to react to changes in its environment faster than the rate of these changes" [60], so
that they can unify agile and lean approaches by simply using the term agile and not
differentiating between agile and lean governance [56]. Based on their analysis, they
define agile governance as "the ability of human societies to sense, adapt and respond
rapidly and sustainably to changes in its environment, by means of the coordinated
combination of agile and lean capabilities with governance capabilities, in order to
deliver value faster, better, and cheaper to their core business." [56]

Because of the similarity of both the concepts of lean and agile governance and the
lack of any clear differentiation in research and practice, we will also treat the terms
"agile governance" and "lean governance" as synonyms.

Luna et al. acknowledge that applying agility and governance together might seem
counter-intuitive at first, but they stress that to achieve the goal of business agility,
there has to be commitment from all parts of an organization, "which in turn cannot be
achieved without governance" [56]. This claim fits well to the research of Ross, Weill
and Robertson, who describe that organizational flexibility and agility requires limiting
local flexibility and enforcing standardization of parts of the organization at first. This
then later at a higher maturity level enables a much higher organizational flexibility
and in the end also achieves higher local flexibility again [100], as illustrated in Figure
2.1.

10

2. Foundations

Figure 2.1.: Changes in organizational flexibility through the architecture stages by
Ross, Weill and Robertson [100]

Rob and Weill summarize their findings in what they call the "Agility paradox". It
describes that firms with high organizational agility more often have a higher degree
of standardized and digitized business processes and platforms [100]. Therefore, gover-
nance is not in the way of reaching organizational agility, but an enabler to do so, as
long as the traditional, controlling top-down approach is reconsidered and transformed
into a more collaborative and supportive approach, which is more compatible with lean
and agile principles. The goal to achieve a more collaborative and supportive approach
to governance, instead of a strict control approach, can also be described as "liberal
governance", compared to its’ traditional counterpart, the "sovereign governane" [66].
In their analysis, Leclercq-Vandelannoitte and her colleagues stress that the changing
technological and social environment that surround the organizations and "[...] the
autonomy of individual users and the changing nature of IT" disrupted the classic,
sovereign governance approach [66]. The vision of a liberal model of IT governance
is that people are active in their own self-government [66]. Hence, not only top-down
laws are required, but methods that actually contribute to self-governance. This fits
very well to the research of Luna et al. who infer that people are a central element
of governance and who see "people’s engagement" as one of the key values in their
proposed "Agile Governance Manifesto" [71].

This all leads to the question of how much decision-making ability teams should have
and the crucial trade-off between control and autonomy of agile teams. This trade-off is

11

2. Foundations

also recognized by current research: Uludağ et al. point out the need to find the right
balance between centralized and decentralized architectural decision-making [117].
They explain that decision making higher up in the chain of authority causes delays
and can decrease the usefulness of the architectural decisions [117]. Horlach et al.
conclude in their research that further investigation is necessary on how to balance
autonomy and authority when integrating agility and governance [50].

In regards of top-down and bottom-up governance processes, we speak of "top-
down" describing governance efforts that are mainly driven by entities or roles higher
in the organizational hierarchy, setting rules, controlling and communicating to groups
lower in the organizational hierarchy. This is what can be described as "traditional"
or "sovereign governance" [66]. With "bottom-up" on the other hand, we describe
governance efforts mainly driven by those entities directly affected by the governance,
or what we therefore call "self-governance", in line with other researchers . Horlach et
al. use the terms similar to our understanding and summarize the two approaches as
"authority-led" (top-down) and "autonomy-led" (bottom up) [50].

2.2. Enterprise architecture management

The ISO, IEC and IEEE describe architecture in their current Standard 42010 as the
"fundamental organization of a system embodied in its components, their relationships
to each other, and to the environment, and the principles guiding its design and evolu-
tion" [54]. Derived therefrom, enterprise architecture can be seen as the fundamental
structuring of an enterprise [3, 76, 127]. While the terms "enterprise architecture"
and the term "architecture" are mixed and used as synonyms by some authors, the
main difference lies in the explicit incorporation of more business-related artifacts
within an enterprise architecture. Enterprise architecture thereby extends traditional IT
architecture with aspects such as organizational goals, products and services or markets
and competitors [127]. This holistic approach leads to better business-IT alignment [128,
59, 125]. Another important aspect is that enterprise architecture (management) deals
with the current, planned and target state in the future and the transitions in-between,
leading from the current state to the target state [112, 3, 43, 21]. This aspect is also
reflected in the enterprise architecture definition of Greefhorst and Proper, who state
that "Enterprise architecture is positioned as an instrument to articulate an enterprise’s
future direction, while serving as a coordination and steering mechanism toward the
actual transformation of the enterprise" [37]. A predominant number of enterprise
architecture frameworks differentiate between multiple architecture layers and views be-
cause of the broad scope and the resulting high number of artifacts [127]. Examples for
frameworks with a large usage in the past are TOGAF and the ARIS framework, with

12

2. Foundations

layers like the business strategy layer, organization/business process layer, integration
layer, software/data layer and IT infrastructure layer [128].

In their state-of-the-art analysis report on enterprise architecture management lit-
erature, Buckl and Schweda use the terms "enterprise architecture” and "enterprise
architecture management” as synonyms, but emphasize that the term "enterprise archi-
tecture" was coined in the year 1993 by both Henderson and Venkatraman [44], as well
as Spewak and Hill [39], and later transitioned into the more recent term "enterprise
architecture management” [21].

In recent years, agile and lean approaches also increased in importance within the
field of enterprise architecture, resulting in calls for a more agile, adaptive approach on
enterprise architecture [58]. One view is that "EA should be an embedded organizational
capacity and shared concern embraced by everyone, not just some master planners and
designers in an EA ivory tower." [58]

Key concepts in the field of enterprise architecture include stakeholders and their
concerns, principles, models, views and frameworks [37, 63]. The concept of principles
is the most relevant element of enterprise architecture management for the scope of
this thesis and will be analyzed in more detail later on in Section 2.3.

2.2.1. The role of EA in IT governance

Even if there is certainly a large overlap between the activities and relevant artifacts of
IT governance and enterprise architecture, the main difference is in their focus areas: IT
governance controls, enterprise architecture informs and is a basis for decision making
and control. Thus, enterprise architecture can be seen as a basis for IT governance [83].
Winter and Schelp are in line with this view: They see enterprise architecture as an
important source of information regarding compliance [128]. In recent years, an increas-
ing number of researchers have dealt with the question of how enterprise architecture
governance should look like, further showing the relatedness of the disciplines. Ko-
rhonen et al. [58] describe one of the possible interpretations of EA as the following:
"Enterprise Architecture is a process meant to identify (and govern) the desirables
changes to the IT resource landscape in order to achieve coherence (alignment) between
desirables business objectives or outcomes as well as to enable new business objectives
and foster new business opportunities." [58]

2.3. Principles and guidelines

The next sections detail the results of our literature review on architecture principles
and guidelines. The section will deal with both the terms "principles" and "guidelines",
because as the analysis shows, they are interwoven concepts, which are often used

13

2. Foundations

interchangeably, but there are also existing efforts for delimiting the two terms. We start
of by illustrating the relationship of principles and enterprise architecture and then
move on to define principles and guidelines for the use in the rest of the thesis. Once
we have clarified what principles in the enterprise architecture context are, and what
they are not, we dive deeper in the process of creating and managing principles. The
structure of this process is based on the practical approach to architecture principles
proposed by Greefhorst and Proper [38]. Their generic process includes determining
drivers, determining principles, specifying, classifying, validating and accepting those
principles as well as applying them, manage their compliance and handle changes [38].

2.3.1. Definition and delimitation

Principles in general are defined in the dictionary as a rule or code of conduct or a
comprehensive and fundamental law, doctrine, or assumption [79]. Guidelines are
defined as an indication or outline of policy or conduct [78]. Guidelines have been
used in the IT environment in several domains and they can be based on practical
experience or derived from research [90]. To focus on the most relevant definitions and
research for our thesis, we will focus on principles and guidelines in the context of
enterprise architecture management, where principles and guidelines are mostly sum-
marized under the term "architecture principles". To properly contextualize architecture
principles, it is important to make the distinction between scientific and normative
principles. According to Greefhorst and Proper, scientific principles are "a law or fact
of nature underlying the working of an artifact" [38]. Normative principles however
are "not enforced by nature. but require explicit attention to be enforced." Architecture
principles belong to the class of normative principles [38].

There is no single, widely applicable definition of enterprise architecture principles,
however, the general intend of principles is to set a constraint on the design space
of enterprises and (information) systems and guide design decisions [87, 108, 40, 16].
According to ANSI/IEEE STD 1471-2000, principles are used for the governance of
architecture design and evolution over the life cycle of a system [54].

To clearly delineate enterprise architecture principles, it is worth noting how the
term is often misunderstood in our context. For this purpose, we adduce the analysis
of Haki and Legner [40] regarding three common confusions of enterprise architecture
principles. They state that principles are not enterprise architecture management goals,
neither enterprise architecture management practices nor more low-level governance
means as guidelines and standards. The difference is that enterprise architecture
management goals do not directly limit the design space or guide design decisions
(they do however have a strong impact on the rationales of principles). Enterprise
architecture management practices on the other hand describe the organizational

14

2. Foundations

process to conduct enterprise architecture management, with best practices and success
factors. Yet again, they do not contribute to limiting design space or guiding design
decisions. Regarding the third point, the confusion of principles with guidelines
and standards, Haki and Legner state that they see principles as having a higher level
granularity, concerning high-level strategic decisions, whereas standards and guidelines
represent more low-level governance means [40]. Nevertheless, the terms "principles"
and "guidelines" are used interchangeably and thereby implicitly seen as synonyms
in some publications and frameworks: e. g. TOGAF defines principles as "general
rules and guidelines, intended to be enduring and seldom amended, that inform and
support the way in which an enterprise sets about fulfilling its mission” [112]. Also,
Richardson et al., who were the first researchers to investigate enterprise architecture
principles according to an analysis by Haki and Legner [40], define principles as
guidelines and rationales for continuously examining the IT target plan [97]. Roos
and Mentz define guidelines as "a general rule, principle, or piece of advice" [99].
These examples illustrate how the definitions of the two terms often include each other,
further showing how interwoven the two concepts are. Interestingly, Greefhorst and
Proper do not clearly differentiate between principles and guidelines in their book on
architecture principles either, but they do so in an earlier publication, where they make
the distinction that "[. . .] guidelines are more specific than architecture principles" [93].
Perhaps, this lack of further distinction has to do with their broad interpretation of
principles, which, in their view, can have different levels of specificity [37], thereby
already including "guidelines" and superseding the additional term. This would also fit
to the view of Op’t Land et al. who see "guidelines" as a possible role that principles can
take. They state that guidelines are "properties of (classes of) a system that are specific
enough to provide guidance to operational behavior [. . .]" [63]. The importance of this
specificity is also recognized by Greefhorst & Proper who state that when enterprises
would like to use principles to actually limit design freedom, they need to be specific
enough and formulated in a way that allows assessing the compliance with those
principles [37].

Because the focus of this thesis is not only the strategic aspect of principles, but above
all on the practical application and the impact on actual implementation, we would
like to forego merging the two terms, but instead explicitly differentiate the two terms:
To highlight the importance of the right level of specificity of principles, we will mainly
use the term guideline when aiming to emphasize that we are referring to an instance of
a principle that is specific enough to apply guidance for actual implementation. The
term principle is used to also include more generic principles that are not necessarily
suitable to directly guide implementation, but that are more strategic and can be used
to derive one or multiple more specific guidelines from. This interpretation is also in
line with the three common misconceptions of EA principles analyzed by Haki and

15

2. Foundations

Legner [40], since the confusion of principles with guidelines is one of those three
common misconceptions, as explained earlier. Other related terms to principles and
guidelines are rules, policies, standards, norms, credos and regulations. To achieve
consistency, we will stick to the terms principles and guidelines during this thesis.

2.3.2. Importance in enterprise architecture management

This section illustrates the importance of principles and guidelines in enterprise archi-
tecture management. Weill and Ross name "principles" as one of five important type of
IT decisions in IT governance and stress that the joint input of business and IT should
be used to combine strategic business decisions with more technical and organizational
aspects [126]. According to an expert study conducted by Haki and Legner, most of
their questioned experts regard principles as very useful. They conclude that "[...] most
experts believe that EA principles should be an integral part and essential element of
EA and should be considered a necessity" [40]. The most important reason to utilize
enterprise architecture principles is as a part of enterprise architecture governance for
achieving coherence and harmonization [40]. Lumor et al. state that "the importance of
EA principles, in the development of flexible architecture and coherent systems, has
long been identified" as well as "the importance of EA principles is clear" [70]. Some
researchers even position principles as the essence of architecture [37, 49]. Further-
more, multiple authors mention the influence of principles and guidelines in enterprise
architecture decision-making [99, 84, 109, 92].

The following listing shows various, exemplary definitions of architecture and enter-
prise architecture management and highlights the recurring occurrence of principles
and guidelines in those definitions, further demonstrating the high importance of those
concepts within enterprise architecture and IT architecture:

• "EAM is a management practice that establishes, maintains and uses a coher-
ent set of guidelines, architecture principles and governance styles to achieve
enterprise’s vision and strategy" [57] based on [2]

• "An architecture is the fundamental organization of a system embodied in its
components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution" [54].

• "Architecture has two meanings depending upon its contextual usage: (1) A for-
mal description of a system, or a detailed plan of the system at component level
to guide its implementation; (2) The structure of components, their interrelation-
ships, and the principles and guidelines governing their design and evolution
over time." [112]

16

2. Foundations

2.3.3. Value of principles

Now that we have shown that the importance of principles is underpinned by multiple
researchers and practitioners, we will summarize of what exactly makes principles
and guidelines important and what value their usage can achieve. Greefhorst and
Proper [37] explore the value of principles and summarize the following benefits of
architecture principles. They state that architecture principles bridge the gap between
strategic goals and actual design decisions affecting implementation. Principles ensure
that EA is future oriented and deals with the target state, but at the same time prevent
"analysis paralysis" by focusing on the most significant, core aspects. This focus on the
essential requirements enables enterprises to carefully decide on what they would like
to design and govern in a top-down approach and what they would like to leave up to
emergence. Another benefit is that they "document fundamental choices in an accessible
form, and ease communication with all those affected" [37]. Furthermore, principles
contribute to a form of continuity and stability, in an environment of change and
uncertainty. Principles do not only exist for solely providing constraints. In fact, they
contain important design knowledge and act as a source of inspiration for discussion
and the creation of other artifacts [37].

With regards to governance, Greefhorst and Proper see architecture principles as
"the primary enablers for an effective architecture governance" [38]. Compared to
architecture models, Greefhorst and Proper assess principles as the more suited gover-
nance instrument because they give a better sense of what is important, less room for
interpretation and give more insights for implementation and compliance than models.
Additionally, they provide better opportunity for iterative, small-scale releases due to
their self-contained character and higher independence from each other [38].

2.3.4. Generic process

This section summarizes a generic approach and process for the development and
use of architecture guidelines, as proposed by Greefhorst and Proper. The process by
Greefhorst and Proper is chosen because of their extensive and renowned research,
providing a more detailed and practical approach compared to other sources. Further-
more, they have developed and validated their approach over the course of multiple
years [38]. Their generic process includes determining drivers, determining principles,
specifying, classifying, validating and accepting those principles as well as applying
them, manage their compliance and handle changes [37], as shown in Figure 2.2. Since
they mainly use the term "principles", we will stick to their wording in the description
of the process. Later in the thesis, we will incorporate the use of guidelines into the
process. In accordance to the previously described terminology, the term guideline

17

2. Foundations

hints to a more specific version of a principle.

Figure 2.2.: Generic process for handling architecture principles by Greefhorst and
Proper [37]

Determining drivers

Determining drivers revolves around analyzing relevant sources and collecting suitable
input for deriving architecture principles, e. g. goals and objectives, values, issues,
risks, potential rewards and constraints. Table 2.1 shows a short description and an
example for each of the drivers, for illustration purposes.

It is the responsibility of the architects to identify those drivers, keep them up to
date and ensure their quality. In terms of quality, the drivers especially require a high
clarity, thereby preventing ambiguity. Drivers are not always explicitly documented
and have to be gathered from multiple stakeholders. Since drivers are often "poorly

18

2. Foundations

Name Description Example Question to de-
rive principle from
driver

Goals &
Objectives

Targets that stakeholders within
and outside an enterprise seek to
meet. Many of these will be em-
bedded in the strategy of the enter-
prise.

"Decrease costs" (high-level)
or "Decrease IT development
costs with 10% within one
year." (more specific)

What is needed to at-
tain the goal or objec-
tive?

Values Fundamental beliefs shared be-
tween people in an enterprise. Val-
ues are expressed in terms of qual-
ity attributes.

Reliability, trustworthiness,
transparency, sustainability,
efficiency, flexibility, privacy
(see ISO 9126 and IEEE 1061
for more)

What is needed to re-
alize this value?

Issues Issues are anything that hinders an
enterprise in reaching its goals and
problems that the organization face.
They exist at all levels, from strate-
gic to tactical and operational.

An example of an opera-
tional issue is "IT systems do
not reach the availability re-
quirements as set forth in the
Service Level Agreement”

What is needed to
solve the issue?

Risks Problems that may occur in the fu-
ture and that hinder the enterprise
in reaching its goals. They are es-
sentially issues that may occur in
the future.

There are single points of fail-
ure in the infrastructure that
may lead to unavailability of
IT systems.

What is needed to
minimize the proba-
bility or the impact of
the risk?

Potential
rewards

Business opportunities, chances
and their potential reward for en-
terprises. In this sense, a potential
reward is the inverse of a risk.

No specific example given What is needed to at-
tain the potential re-
ward?

Constraints Constraints are defined by others
and cannot be changed by the ar-
chitect. They may come from out-
side the enterprise, such as laws,
policies and regulations provided
by government, or they may also
come from (senior) management.

All non-core activities will be
outsourced.

What is needed to en-
force the constraint?

Table 2.1.: Summary of driver description and questions to derive principles, as pro-
posed by Greefhorst and Proper [37]

19

2. Foundations

documented or the documentation is hard to find" [38], there might even be a need for
conducting analysis, interviews, organizing workshops or organizing questionnaires to
further refine those drivers. Greefhorst and Proper recommend focusing on goals and
issues as the main drivers first, to avoid an overly complex process that takes in account
all types of drivers, but is no longer applicable due to time and capacity constraints in
practical environments [38].

Determining principles

The next step in the process revolves around the question of how to translate the
drivers identified in the previous step into architecture principles. Greefhorst and
Proper see three basic activities during the determination of principles that are used in
combination: Generate candidate principles, select relevant principles and formulate
principle statements [38].

Generate candidate principles
Generating a list of principle candidates in the first step can be achieved with the
help of three approaches: Deriving principles from the identified drivers, elicitation of
domain knowledge and harvesting existing principles [38]. Deriving principles from
drivers makes sure that those principles are properly motivated. This is especially
valuable in the communication with stakeholders and to receive their commitment to
those principles. Refer to Table 2.1 to review the questions that can be used to derive
principles from the different kinds of drivers. Domain knowledge is crucial for a deep
understanding of drivers and to develop proper solutions. The gathering of in-depth
knowledge from a domain expert can be necessary to further enrich the knowledge
that architects contribute to the process. Harvesting existing architecture principles can
contribute to creating a starting set for new architecture principles, but it should not
be used alone, since some of the most important principles could be overlooked. The
principles in question during this step are mainly the ones that have not been formally
agreed on, but exist implicitly in some sources. One of the most interesting sources are
solution architectures that may contain principles which can be reused. In the best case,
a repository with material and information based on previous architecture experiences
already exists. Otherwise, architects could try to set up such a repository based on
previous projects [38].

Select relevant principles
The selection process starts based on the result from the previous phase: the list of
architecture principle candidates. This list now needs to be filtered to ensure that only
relevant principles are included. This selection can be seen as a way of prioritization.

20

2. Foundations

Limiting the number of principles is important to reduce the time that is required
from stakeholders and prevent over-complexity and limited accessibility. Greefhorst
and Proper do not set a specific limit for the amount of principles, but stress that you
should not be afraid to "throw away architecture principles that do not really express
and essential choice and/or are not specific enough for the organizational context" [38].

A crucial activity during the selection is to filter out architecture principle candidates
that are not actually architecture principles, but rather actions, requirements, strate-
gic decisions, business principles, IT principles and more detailed design principles.
Greefhorst and Proper propose the following questions to filter out other types of
candidates that usually end up in a candidate list [38]:

• "Does it describe a functionality that is needed? In that case it is probably a
(functional) requirement."

• "Does it describe something that needs to be done? If it does, then it is probably
an action."

• "Are there objective arguments that support it? If it does not, then it is probably a
(potential) strategic decision or business principle?"

• "Does it have impact on the design of the organization and/or the IT environment?
If if does not, then it is probably a business principle (if it influences the daily
business operations) or an IT principle (if it influences the daily IT operations)."

• "Does it have impact on the design of multiple systems? If it does not, then it is
probably a more detailed design principle or design decision."

Formulate principle statements
In this step, the selected principles should be refined. Specifically, they should be
analyzed regarding their specificity and should be generalized or specified as needed.
The goal is for these principles to cover as many solutions as possible that match the
scope of the architecture, while still guiding actual implementation. This is important,
as too much generalization can be counter-productive because it undermines the
credibility of the architecture and often results in a a lack of relevance and applicability.
This step can be conducted by single architects, but the end result should be validated
within a group.

Specifying principles

In the previous step, the general principle statements or descriptions were formulated.
In this step, the focus is on specifying those principles further by describing all attributes

21

2. Foundations

that have been selected to describe an architecture principle. In an exemplary use case
presented by Greefhorst and Proper, they state that "the drafting of architecture principle
specifications was performed in the same workshop in which they were identified" [38].
This indicates that the "formulating principle statements" step from the previous sub-
process could sometimes be partly merged with the principle specification. They also
explain that full, detailed specifications might not always be necessary. Depending
on architecture maturity and organizational culture, it may be sufficient in certain
situations to forego specifying the principle and just use it to achieve a common
understanding and commitment for certain issues, instead of actually restricting design
freedom. In all other cases, it is advisable to start with the basic structure containing
the rationale and implications and then iteratively add other attributes later. The
selection of the relevant attributes depend on the specific requirements and needs in
the organization. Lastly, Greefhorst and Proper also note the importance of what they
call "guiding architecture principles", which is another kind of prioritization, indicating
the most fundamental principles, often characterized by being the hardest to change
and the closest to the identified drivers. They propose the rule of thumb of having no
more than ten guiding architecture principles [38].

Classifying principles

It can be useful to classify the architecture principles after their specification. This is
especially the case when there is a large number of architecture principles. Greefhorst
and proper differentiate the handling of architecture principles in terms of what they
call a "low ambition level" to a "high ambition level" [38]. The low ambition level
describes the handling of architecture principles when the number of principles is
limited and the adherence to them is not formalized. The high ambition level on the
other hand could contain "[...] hundreds of architecture principles, scattered around
a large number of documents, owned by different stakeholders and governed by a
formalized process" [38]. This level describes the situation where classifying principles
is of high importance. The value of classifying principles is an increased accessibility
and maintainability, by providing a navigation structure and overview as an entry point
to the principle catalogue as well as a better categorization or clustering of principles.

Validating and accepting principles

Because of their high importance, a high quality of principles has to be ensured.
Important to note here is that all the previous steps should include some sort of
validation and at the same time can already be regarded as a validation on the way
to high-quality principles. Nevertheless, Greefhorst and Proper explicitly point out

22

2. Foundations

validation as a formal subprocess to stress its importance and the necessity of a quality
gateway [38]. The validating process itself can be highly standardized and include
specific roles, e. g. discussing and agreeing on the principles in an architectural board
with management representatives of all major departments [38].

Apply principles

Greefhorst and Proper conclude that there is surprisingly little guidance on how
stakeholders actually use architecture principles in the creation of their own artifacts [38].
One aspect is the need for validating solution requirements in regards to the compliance
with architecture principles. Furthermore, architecture principles can also lead to new
solution requirements. This conversion depends on the knowledge and experience
of the involved stakeholders. In addition, Greefhorst and Proper stress that they
distinguish two important types of transformations. One is the derivation, aiming to
find more specific statements that realize an architecture principle. Here, it is important
to document this transformation in the solution architecture, since this enables to trace
the way how an architecture principle is actually implemented. This information can
also be used in a compliance review. The second transformation is from principles
to models and their visual representations, e. g. diagrams. In this case, architecture
principles can be used to reason and distinguish different elements or types of elements
in the models [38].

Manage compliance

It is important to manage and monitor compliance with the agreed architecture princi-
ples. There are often good reasons to deviate from the standards defined by architecture
principles, as not all circumstances can be taken into account during the specification.
Therefore, it is important to draw on findings from specific situations and use that
insight to adapt the architecture principle specifications accordingly. It gives the man-
agement the opportunity to recognize potential problems and witness the actual impact
of the architecture and governance. Greefhorst and Proper emphasize that an effective
architecture compliance process must be conducted several times in the project life-
cycle, spanning from the project initialization to the final completion, to harvest all the
project insights. They also suggest that the architecture compliance process needs an
overall architectural governance framework, which "[...] implies a clear architectural
organization such as an architecture board, and clear roles and responsibilities" [38].

23

2. Foundations

Handling change

Even if architecture principles are supposed to be relatively stable, there are always
influencing factors that require the change or rework of certain principles. This can be
experience from compliance reviews or other processes and sources. The responsibility
of the architect is to monitor the presented potential drivers and take action accordingly,
if necessary. In general, small changes can be applied by directly altering a principle,
bigger changes on the other hand might require a new principle. The advantage of
principles is that they are mostly self-contained, which provides the opportunity for
small-scale, iterative releases. Lastly, Greefhorst and Proper also propose a feedback
mechanism where people can comment on architecture principles, request changes or
discuss with peers on specific experiences [38].

2.4. Agile and lean development

The next section dives into agile software development, large-scale agile software
development and the relationship between lean and agile.

2.4.1. Agile software development

Agile software development originated as a counter-movement to the increasingly
complex processes, project management, tools and documentation, which at the time
(in the 70s and 80s) was necessary to provide the software discipline with more
engineering rigor, but progressed more and more into losing the human side of
software engineering [48]. The actual, wide-spreading coining of the term "agile" is
mostly linked to the publishing of the Agile Manifesto [14] in 2001 [122]. The Agile
manifesto clearly defines four core values and twelve agile principles [14], whereas
the subsequent interpretation and application of "agile" is much more fuzzy and
a precise definition of its’ usage is elusive [27]. Dingsøyr et al. summarize that
agile methods emphasize change tolerance, evolutionary delivery, and active end-user
involvement [32]. Furthermore, they believe that information systems can be produced
with continuous design and iterative improvement, based on rapid testing [31]. Wang
et al. determine that the common denominators of agile methods are i. e. short iterative
life cycles, quick and frequent feedback from customers and constant learning [122].
Research on the effects of agile observed impacts as a higher job satisfaction [113] or
the reduction of bugs [75].

One of the criticism on research on agile development methods is the absence of
proper evaluations of actual usage of agile methods [114] and only meager scientific
evidence for claims within the agile community [34]. Just because a team declares

24

2. Foundations

that they use agile is not a sufficient enough indicator, because actual usage has often
be observed to be lower than claimed [28]. Tripp and his colleagues further criticize
that there would have been many anecdotal claims surrounding the benefits of agile
vs traditional methods, but that "there remains very little peer-reviewed, published,
empirical evidence supporting these claims and substantiating measurable outcomes of
agile vs traditional approaches" [114].

2.4.2. Large-scale agile software development

The success and widespread use of agile methods in small, co-located teams encouraged
the use in new domains and the increasing utilization of agile methods in large-scale
projects [31]. Dingsøyr et al. define large-scale development as a development effort
that "has more than two teams" and very large-scale "agile development efforts with
more than ten teams" [31, 30]. Furthermore, a differentiation can be made between
large-scale agile development and "enterprise agile", which refers to applying agile
methodologies, principles and values to the whole enterprise and not only software
development endeavors [13, 31].

Agile methodologies are not inherently unusable or worse than traditional approaches
(e. g. the Waterfall methodology or the V-model) in a large-scale development con-
text, even the opposite can be the case: In a study by Petersen and Wohlin [91], the
researchers observed a decline in issues compared to traditional development in a
product involving 117 project members, developing three large subsystems in small
groups. Another case study indicates that the application of agile principles leads to
higher project visibility, improved knowledge-sharing and better coordination on a
large-scale [62]. On the other side, there is a multitude of reported limitations and chal-
lenges when trying to scale agile methods. A study of three large-scale development
cases points out serious challenges, especially the lack of guidance in agile methods
regarding dependencies between teams and inter-team coordination [120]. Having
multiple agile teams working towards a common goal necessitates a lot of coordinating
management effort [91] and relying on emerging architecture could impede project
progress [35]. Another interesting aspect, especially relevant for this thesis, is the
self-management and self-responsibility of teams. According to Ingvaldsen and Rolf-
sen, self-management of autonomous work groups can significantly impact effective
inter-group coordination, which becomes a major challenge in autonomous working
teams compared to traditional hierarchical control [51]. In large-scale agile software
development, expertise might also be scattered across multiple locations and teams,
making networking and knowledge-sharing between teams critical [81]. Various mech-
anisms are able to support the development of knowledge networks, e. g. collaborating
closely with experts outside an individual team, facilitating communities of practice

25

2. Foundations

and providing suitable communication infrastructure [107]. Agile methods are espe-
cially problematic for large-scale system architectures and for systems incorporating
existent and possibly evolving software architectures [10] or safety critical systems [115].
Another common pitfall is the lack of architecture and unclear role of architects [9]. Ac-
cording to Leffingwell and his colleagues, ”some amount of architectural planning and
governance is necessary to reliably produce and maintain such systems. Individuals
teams, products and programs may not even have the visibility necessary to see how
the larger, enterprise system needs to evolve.” [67].

2.4.3. Lean software development

The "lean" concept, which emerged mainly from the Japanese automotive industry [122],
focuses primarily on maximizing value and minimizing waste in production pro-
cesses [77]. Another aspect and sometimes called "the essence of the Toyota production
system" is that each of the individual employees are given the opportunity to find
problems in their own way of working, to solve them, and to make improvements [77].
One example for one of the most commonly used methodologies in software engineer-
ing that originates from a lean context are "kanban boards" and related concepts and
practices, e. g. set work in progress limits [122]. While there is no uniformly agreed on
definition of "lean" in the area of software development and some software literature
even see agile and lean "as just two different names for the same thing" [122], a possible
distinction can be made that agile methods are more tactical in nature, whereas lean
principles and approaches are more strategic and can be applied to a wide scope of
different contexts [122]. This differentiation is described in more detail in the next
subsection.

Lean is of importance for this thesis not only because of the concept of "lean gov-
ernance", as detailed earlier, but also because lean is seen as "both the precursor and
future of agile", potentially helping to scale up agile practices [121].

2.4.4. Agile vs. lean software development

Wang et al. [122] note that in some examples of software literature, agile and lean are
just two different words for describing the same phenomenon. Nevertheless, most
literature does consider the difference between agile and lean approaches. One view is
that lean and agile are at different levels, with lean being more of a set of principles and
guiding ideas, and agile being more at a practice level. Therefore, lean principles could
be transformed into agile practices, tailored to individual domain requirements [121].
Another view is that lean and agile are not at different levels but have different scopes
and focus areas [121].

26

2. Foundations

In practice, creating and using hybrid methodologies is very common. Especially
software-intensive companies tend to select those aspects from agile and lean method-
ologies that seem to suit them best, which creates new interpretations of agile and lean
methods [98].

We believe that it can be important in certain situations to precisely differentiate
between agile and lean principles and values because of their clearly different back-
grounds and origins. Nevertheless, due to the large number of hybrid applications
of lean and agile, especially also in the context of IT governance, as shown earlier in
Section 2.1.2, it is appropriate for this thesis to refer to lean and agile as a common
theme.

2.5. The interplay between EAM and large-scale agile software
development

In the collaborative approach for establishing architecture principles and guidelines
presented in this thesis, we combine aspects and insights from different research
fields. In particular, those areas are mainly enterprise architecture management, IT
governance and large-scale agile software development. Therefore, it is important to
build on top of existing research on combining those areas and identifying intersections
where these areas can benefit from each other, instead of arbitrarily throwing them
together when they might not even profit from each other or where they possibly not
be compatible. For that reason, in this section, we analyze the relationship between
enterprise architecture management and large-scale agile software development.

The combination of enterprise architecture management and agile software devel-
opment has been barely researched until now [21, 42, 22], even though both agile
development and enterprise architecture are often used in large organizations [22].
Usually, agile software development is not specifically considering enterprise archi-
tecture management and vice versa [64, 42]. Hanschke et al. point out differences
and similarities between enterprise architecture management and agile software de-
velopment in their research on how to integrate the two fields [42]. According to
them, enterprise architecture management takes a more top-down perspective, in tight
coordination with business goals and strategy. It is focusing on setting long-term goals
and planning on how to reach them. On the other hand, agile software development
is more likely found on a project level. It takes a bottom-up perspective with a more
short-term planning horizon [42]. This is consistent with the results of another study
on combining enterprise architecture management and agile software development by
Canat et al. [22]. All twelve interviewed experts agree on the possibility to combine
enterprise architecture management and agile software development, but also stress

27

2. Foundations

that the different levels the two fields operate have to be taken in account. Enterprise
architecture is regarded useful mainly on the higher, more strategic level, whereas agile
methods are seen as useful in the lower levels, e. g. development and technology [22].
Nevertheless, this gap between the different levels is seen as too large: The lack of
communication and the need that enterprise architects and developers work together
more closely is mentioned as a key challenge by a majority of interviewees [22].

Hanschke et al. [42] explain why the combination of both enterprise architecture
management and agile software development can be very fruitful. Agile software
development teams often lose sight of overarching goals and enterprise-wide objectives
and focus more on achieving a team-specific, local optimum. Here, agile software
development can profit from enterprise architecture management. On the other side,
enterprise architecture management can benefit from becoming more flexible and
dynamic, as well as from developing a stronger focus on collaboration [42].

Another important aspect to consider when aiming to combine enterprise architecture
management and agile development are scaling agile frameworks. The mentioned
observation that agile software development is not considering enterprise architecture
management and vice-versa is no longer true when taking in account newer frameworks
and methods which focus on large-scale agile development, often categorized as "scaling
agile frameworks". Since, in this thesis, we put our main focus on large-scale agile
development instead of the processes within a single agile team, it is worth to take
those scaling agile frameworks into consideration. To further investigate this topic,
the research of Uludağ et al., who look into the role of (enterprise) architecture and
architects in large-scale agile frameworks, is of particular value. In their research, they
demonstrate that three out of twenty analyzed large-scale agile frameworks include
the role of the enterprise architect. Even if this is a rather small portion, making up
15% of the total amount of analyzed agile frameworks, two of the agile frameworks
incorporating enterprise architecture belong to the three most important ones, in
terms of the maturity assessment made by Uludağ et al. [117]. Namely, those are the
"Scaled Agile Framework" (SAFe) [104] and the "Disciplined Agile 2.0" (DA 2.0) [5]
framework. This further hints to the growing importance of combining large-scale
agile and enterprise architecture. The creators of the Disciplined Agile even describe
the advantages of using enterprise architecture in agile software development in more
detail. They state that enterprise architecture enables reuse across delivery teams. With
the possibility of reusing high-quality assets, teams can focus on creating new value for
their stakeholders without reinventing the wheel [6]. The common technical guidance
that enterprise architecture can provide enables better consistency between teams,
resulting in higher overall quality and easier collaboration and exchange between teams.
Furthermore, a common infrastructure enables continuous delivery. They conclude that
enterprise architecture enables organizations to scale agile strategies across their entire

28

2. Foundations

IT department [6].

2.6. Gamification and social design

Gamification is a rather recent approach, which has been successfully applied in fields
like education and health, but is still only rarely appearing in the area of software
development and related disciplines [74]. However, there is already existing evidence
indicating that such an approach can lead to higher team motivation [45]. Since the
focus of our thesis on a more liberal form of governance, including self-governance, is
heavily dependant on the team motivation and relying on the involvement of teams, we
believe that it is valuable to use insights from gamification and social science to further
foster and ensure a high motivation and contribution of teams and individuals. An
alternative term for "gamification" proposed by Chou is "human-focused design", which
is a design process that incorporates human motivation in systems [24]. It revolves
around optimizing the feelings, motivation and the engagement of users and not only
on the functions of a system. This means that the key question in the design process
is not only "What can the user do?", but "Why would the user do it?" [24]. Chou
points out eight core drivers which are crucial and should be taken in account during
gamification efforts, e. g. the feeling of development and accomplishment, ownership
and possession as well as social influence and relatedness. In addition to gamification
elements, it is possible to encourage desirable behavior in communities through certain
design principles based on research in social science and psychology [96]. The detailed
design principles with relevance and application in this thesis are described in detail in
Section 6.4.

29

3. Related work

This chapter presents and summarizes key publications with significant relevance for
this thesis in the areas of enterprise architecture, principles, guidelines as well as agile
IT governance and large-scale agile development. The presented related work further
extends and elaborates on the foundations presented in the last chapter.

Canat et al. (2018) and Hanschke et al. (2015)

Both Canat et al. [22] and Hanschke et al. [42] are some of the few researchers who
investigate the question of how enterprise architecture and agile software development
can be combined. Canat et al. [22] study the interplay between enterprise architecture
and agile development in their paper titled "Enterprise Architecture and Agile Develop-
ment - Friends or Foes?". Based on twelve qualitative interviews with professionals in
architecture, developer and related roles from five different companies, they conclude
that agile development and enterprise architecture can be indeed combined. One of
the key findings is that communication between enterprise architects and developers
is a common issue. This could be due to the distance between an enterprise architect
and the developers. This may also be further affected by a lack of trust and under-
standing of each other’s work. They conclude that both parties would benefit from
working together more closely and that it is important to shorten the distance between
developers and architects, which fits well to the collaborative approach presented in
this thesis. Canat et al. [22] also cite Hanschke et al. [42] as the only other source they
could identify that is aiming to answer the question of how enterprise architects can
collaborate with agile teams as well. In their paper titled "Integrating Agile Software
Development and Enterprise Architecture Management" [42], Hanschke et al. analyze
how enterprise architects can collaborate with agile software development teams. Since
the combination of agile software development and enterprise architecture manage-
ment has been barely researched so far, but is a central aspect in this thesis, the paper
summarizes a couple of interesting aspects regarding the integration of enterprise
architecture management and agile software development. Specifically, Hanschke et
al. explore how enterprise architecture and agile development can be integrated by
combining a widespread artifact from each side, namely TOGAF [112] and Scrum [105].
For this purpose, they have to deal with "the divergent focuses of ASD and EAM, e.g.

30

3. Related work

short vs. long-term goals, bottom-up vs. top-down perspectives, single system vs.
system landscape" [42].

Dikert et al. (2016)

Dikert et al. [29] conduct a systematic literature review to identify challenges and
success factors for large-scale agile transformations. For this purpose, they analyze
52 papers describing 42 different organizations. 46 out of these papers are experience
report, which means that the identified success factors and challenges are mainly
those that practitioners perceive and declare as important. Some of the identified
success factors are management support, communication and transparency, mindset
and alignment as well as team autonomy, allowing teams to self-organize. Challenges,
among others, include a general resistance to change as well as the coordination of
multiple teams in a large-scale environment.

Dreesen and Schmid (2018)

Finding the right balance between top-down oriented governance approaches and
self-governance is an important task for the solution artifacts of this thesis. Hence,
the question of control vs. autonomy in agile development teams is highly relevant
for the scope of this thesis. Because of the lack of existing research in this area,
Dreesen and Schmid make a first effort to address this question in their paper titled
"Do As You Want Or Do As You Are Told? Control vs. Autonomy in Agile Software
Development" [33]. Agile methodologies have in common that they highlight the
significance of empowering teams to make decisions, while the management role is
focusing more on supporting teams than directing teams. Only limited guidance
exists on how agile software development teams should be governed, especially in
regards to the mentioned relationship between control and autonomy. Dreesen and
Schmid [33] summarize various formal and informal control modes and map them
to control mechanisms in agile software development. Those informal control types
include clan control and self-control, which fit well to agile values and principles.
Nevertheless, the authors conclude that it is beneficial to combine agile methodologies
with formal control rather than exclusively with informal control and that their research
suggests that agile software development can be flexible and controlled at the same
time, resulting in a higher efficiency.

Greefhorst and Proper (2011)

In their book "Architecture Principles - The Cornerstones of Enterprise Architecture",
Greefhorst and Proper [37] dive deep into architecture principles and surrounding

31

3. Related work

relevant concepts and processes. Next to describing the role of enterprise architecture
and providing a conceptual framework for principles, they give comprehensive insights
into how exactly architecture principles can be specified, with various suggestions
for dimensions and attributes that can be used during the specification. They also
provide valuable insight by providing a catalog of possible architecture principle
examples. Particularly relevant for this thesis is their practical approach, describing "a
method and techniques to define and apply architecture principles" [37]. The generic
process included in the practical approach is summarized in more detail in Section 2.3.4
within the foundations chapter of this thesis. A quick overview of the creation and
management process of architecture principles can be found in the paper "A Practical
Approach to the Formulation and Use of Architecture Principles" [38], where Greefhorst
and Proper summarize the approach and concomitant process for the development and
use of architecture principles from their book.

In their future work section of their book, they state that "it is of the utmost im-
portance that principles are formulated in a collaborative process involving all key
stakeholders. More research is needed in effective ways to organize these collaborative
processes" [37]. This thesis builds onto this premise and extends the existing approach
and process by collaborative traits.

Leclercq-Vandelannoitte and Emmanuel (2018)

Leclercq-Vandelannoitte and Emmanuel [66] apply analogical reasoning to transfer
theory, knowledge and experience from philosophy, political and social science to
IT-governance. Using the concept of governmentality, first developed by the French
philosopher Michel Foucault, they conceptualize a liberal model of IT governance,
aiming to potentially replace a more traditional, sovereign IT governance model, based
on centralized authority and top-down coercive mechanisms. The liberal IT governance
approach by Leclercq-Vandelannoitte and Emmanuel is described mainly in the context
and from the perspective of IT usage and not software development. Nevertheless,
we see a large overlap with the key principles and values of agile and lean software
development methods and advocate the adaption of a more liberal IT-governance
approach, thereby making a much better fit in agile and lean environments. Since the
implications of a liberal IT governance model are broad, eventually even challenging
the very nature and meaning of "being an employee" [66], transforming from being
a mere executor of orders to a self-responsible being, liberal IT governance must be
understood in a broader context. Therefore, we believe that our approach greatly profits
from taking into account these thoughts from a broader context.

The main findings of their work that we consider relevant to the subject of this thesis
are the following:

32

3. Related work

• The role of a liberal governance is to analyze the conditions in which particular
behavior occurs and then change the conditions in a way that promotes the
desirable behavior [66].

• The question is not how to govern more, but how to govern less and "reach a good
balance between the costs of enforcement and the costs of nonconformity" [66].

• Rather than directly enforcing guidelines, help users to make the best choice, by
supporting and training them to manage their freedom and educate them about
consequences for themselves and the organization [25, 66].

• Greater autonomy and freedom of choice go hand in hand with increased respon-
sibility, accountability and duties [66].

We keep these key findings in mind during the creation of our collaborative approach,
which can be seen as an approach implementing a more liberal form of IT governance,
due to its’ collaborative nature, strongly involving agile teams, resulting in supported
self-governance.

Newman (2015)

Newman, the author of the book "Building Microservices" [82], dedicates one chapter
of his book on the "evolutionary architect". Whereas the remainder of his book is, as the
title suggests, focused on microservices and therefore not relevant for this thesis, the
chapter on the "evolutionary architect" describes an approach with many parallels to
the approach presented in this thesis. The book is less scientific and is mainly based on
practical experience, which makes it an interesting addition to the scientific publications
cited in this thesis. Next to a critical examination of the term "architect" and why the
term "city planner" offers a better analogy, Newman proposes to guide decision-making
by defining a set of principles and practices. These principles should be derived from
strategic goals and are intended to align decisions and activities with a larger goal.
The practices should ensure how principles are being carried out. He describes them
as a set of detailed, practical guidance on how to achieve a certain principle, which
is comparable with our interpretation of guidelines. He also mentions the need for
finding the balance between autonomy without losing sight of the bigger picture. In
line with Greefhorst and Proper [37], he also believes that it is important to document
exceptions from the defined principles and practices for future reference. If exceptions
have occurred several times, it may make sense to adjust the underlying principles, and
thereby to ensure that the principles properly match the challenges that developers
are facing. In terms of governance, he suggests a group responsible for discussing
and changing principles and practices as required, in structured regular meetings.

33

3. Related work

This group should primarily consist of people who are performing the work that is
being governed, that means the developers themselves. He suggests that an architect
chairs the group and makes sure that the group works, but the group is responsible
for the actual governance decisions. This suggestion is very close to our proposal of a
community of practice including enterprise architect and agile team representatives as
part of our collaborative approach and it is a positive indicator that our collaborative
approach makes sense from a practical perspective as well.

34

4. Case study

This chapter presents the case study that was conducted during this thesis. First, we
present the case study design in Section 4.1, including the objectives of the study, an
introductory description of the case, the research questions and a description of the
data collection methods. After a case description in Section 4.2, we describe the results
based on the four analyzed areas defined by the case study research questions. At
the end of this chapter in Section 4.7, we summarize the identified challenges that
we subsequently take into account during the development of the resulting solution
artifacts of this thesis.

4.1. Case study design

As explained earlier in our approach in Section 1.3, we align our case study with the
proposed case study procedure and design by Runeson and Höst [102]. In alignment
with their case study guidelines, we describe the case study in the following based
on the essential elements that should be included in a case study plan [102]. This is
done in order to cover as much of the important meta-information as possible that is
essential for the reader of a case study.

Objective — what to achieve?

The case study is of an exploratory nature and the key objective is to identify best
practices and challenges regarding governance and enterprise architecture in large-scale
agile software development. The focus is particularly on the use of principles and
guidelines, as well as the collaboration between enterprise architects and agile teams.
The underlying purpose of identifying best practices and challenges is the intent to use
those valuable insights, together with the findings from existing research, to create the
solution artifacts of this thesis and thereby to ensure practical relevance and value of
those resulting solution artifacts.

35

4. Case study

The case — what is studied?

The case under investigation is one of the largest insurance companies in the world.
More specifically, the unit of analysis are the departments, teams and roles that are
in touch with the relevant concepts of this research, namely enterprise architecture,
large-scale development and architecture principles and guidelines. In the analyzed
case, this is mainly the enterprise architecture and IT-strategy department as well as
the agile development teams. An insurance company makes a suitable and interesting
study target because of the high levels of regulatory pressure that insurance companies
face as part of the financial sector. Section 4.2 provides a more detailed description of
the case.

Theory — frame of reference

The theory or "frame of reference" [102], in our case the current state of the literature
on the relevant topics, is described in detail in the foundations and related work in
Chapter 2 and Chapter 3.

Research questions — what to know?

The research questions set out to be answered during the case study are the following:

1. How are architecture principles and guidelines used in an agile environment?

2. Which architecture communities are established in the company?

3. What is the role of the enterprise architects in an agile environment and how do
they collaborate with agile teams?

4. What value do the enterprise architects create in an agile environment?

These questions are also reflected by the four questionnaires used for the semi-
structured interviews that are part of the case study. The questionnaires can be
found in Appendix A.2. Analyzing these questions has the goal to receive relevant
background information and a better understanding of the situation and opinions in the
case study company. Those findings then can provide valuable insight for answering
the overall research questions of this thesis, which are outlined in Section 1.2. As
explained in our approach in Section 1.3, we also use the environment of the case
organization as part of our action research to continuously demonstrate and evaluate
our prototypical implementation, which is described in more detail in Chapter 6. The
more comprehensive, formal evaluation is also done within the scope of the case study
company. This evaluation is described in more detail in Chapter 7.

36

4. Case study

Methods — how to collect data?

Due to the importance of using several data sources in a case study and taking different
viewpoints and roles into account [102], we use the following methods to collect data:

• Unstructured interviews

• Semi-structured interviews

• Observations

• Document analysis

We used informal, unstructured interviews on an almost daily to weekly basis
during our analysis at the case study company, especially for further investigating
and understanding the problem domain, as well as refining the requirements used
during the artifact development. As explained earlier, those continuous activities were
of special importance in this thesis, to ensure ongoing adjustment and continuous
improvement of the artifacts in development, based on new insights and feedback. The
main roles that we communicated and collaborated with were enterprise architects
with agile software development experience. We have also conducted unstructured
interviews with members of agile teams several times, but less frequently than with
enterprise architects due to availability reasons. In addition, we conducted formal, semi-
structured interviews with key stakeholders to achieve more systematically collected
and analyzable data as well. The main difference in semi-structured interviews is
that all questions are planned in advance, containing a combination of open and
closed questions [102]. The question catalog was developed collaboratively with other
researchers, to achieve a homogeneous list of questions that are used not only in the
present thesis but also in case studies with other industry partners. This ensures that
the results from the various case studies can be aggregated and analyzed for more
meaningful insights later on in further research. These semi-structured interviews
were conducted with five interviewees in four interviews. The participating roles
include two enterprise architects, one of whom is more senior, whereas the other one
has only recently switched his role from an agile developer and software architect to
enterprise architect, while still carries out some development and software architecture
tasks. Furthermore, two agile developers were interviewed, with one of the developers
having an additional role which is similar to the role of a scrum master in the scrum
methodology [105]. The fifth participant is an agile manager responsible for all scrum
masters of the agile development teams in the case study organization. Due to the
rather long planned time frame of the interviews (around two to three hours), the
interviews were split into multiple sessions to account for the tight schedules of the

37

4. Case study

interviewees. Table 4.1 shows the participants of the semi-structured interviews with
their respective alias, which we use in Sections 4.5 and 4.6 to map statements to the
respective role that they originate from. The alias of the first and second interviewed
agile developer is combined because of their very strong overlap and agreement in
statements and opinions during a joint interview. The question catalogue of the
semi-structured interviews can be found in Appendix A.2.

No. Main role Alias Professional experience in that role
1 Enterprise Architect EA1 3-5 years
2 Enterprise Architect EA2 3-5 years
3 Agile Developer AD 2-3 years
4 Agile Developer AD 6-10 years
5 Scrum Master Lead SML 3-5 years

Table 4.1.: Interview partners of semi-structured case study interviews

To further enrich our data collection, we conducted document analysis of relevant
documents identified in the target organization and observation by participating in
various meetings on topics and areas relevant to the scope of this thesis.

As described in our approach in Section 1.3, the case study was not limited to a
short time frame, but ongoing throughout the whole time scope of the thesis. This
allowed for continuous analysis, feedback and validation of results, especially also
for the development of the prototypical implementation of the web-based application
presented in Chapter 6. With regards to the design science process, the case study is
used to enrich all phases described in the approach in Section 1.3, but also used for the
evaluation, which is described in Chapter 7.

The following sections summarize the results from the semi-structured interviews,
informal interviews, document analysis and observations at the partner company,
facilitating a better overall understanding of the status quo at the company.

4.2. Case description

The case under investigation is a large insurance enterprise. To keep pace with rising
customer expectations and rapidly changing environments, the organization decided
to start using agile development methods over two years ago in 2016. This was done
by setting up dedicated locations with co-located teams, detached from the traditional
development endeavors. In these dedicated locations, the employees of the company are
being trained in agile development methods and develop products and services with
early consideration of customer feedback. The co-located agile teams are composed

38

4. Case study

of experts from various fields, including developers, designers as well as product and
process experts. One of the goals of this collaboration is to achieve more customer-
oriented and faster results. Within the agile environment, the company relies heavily
on the use of platform as a service (PaaS) products, integrated build pipelines with
automated testing and in general, closely following the cloud native [111] ecosystem
and community. Despite the modern work environment and the attempt to keep the
agile teams separate from the traditional development efforts of the company, there
are still certain structures, regulations and existing processes that impact the agile
development teams in their daily work.

4.3. Use of architecture principles and guidelines

This section described the findings regarding the use of architecture principles and
guidelines within the agile development environments of the analyzed company,
answering the first research question of the case study.

Finding a clear answer to the question of which principles and guidelines agile teams
should adhere to and how exactly principles and guidelines are used in the organization
has proved difficult. There are several reasons for this, which are explained in more
detail in the following. Since the organization mainly uses the term "guideline", the
following description will also mainly rely on this term. First of all, there is the fact
that, due to the large size of the company, multiple stakeholders scattered over different
departments have an interest in influencing the agile development teams. This results
in different sets of principles and guidelines.

Examples for these departments and sets of guidelines include an operations depart-
ment that is providing the infrastructure and services to run the developed applications.
They have a legitimate interest in providing guidelines for teams on how to build and
deploy applications in a way that ensures low-costs and high stability. Furthermore,
there is a separate department that centers on software quality assurance, which also
communicates with departments that focus on legal aspects. Guidelines published by
the software quality department mainly have the purpose to ensure that teams fulfill
legal requirements, which demand certain forms and levels of documentation, trace-
ability of changes to productively deployed applications as well as a safe, longstanding
audit-compliant storage of those documents and artifacts. Because the company is
active in the financial sector, there are specific, more strict national regulations for
IT-usage that have to be taken into account. This is also reflected by the existence of a
dedicated IT-security and data protection department, which also sets certain rules for
developers.

The enterprise architecture management department provides a set of guidelines as

39

4. Case study

well. There is a precisely defined and well documented process on how new guidelines
can be created. The process even already has collaborative aspects. It allows and
encourages everyone to suggest guidelines to the appropriate architecture committee
or send them directly via e-mail to a dedicated guideline team. The members of
the guideline team then assist the guideline proposer with the next steps, especially
with identifying the suitable responsible architecture committee based on the type
and scope of the new guideline. There is an available template that suggests certain
attributes for specifying guidelines as well as categorizing them into different levels of
architecture. The predefined levels of architecture are business architecture, product
architecture, data architecture, service architecture, technology architecture, application
architecture, and software architecture. The guideline proposal may then be submitted
to the responsible architecture committee. After an initial approval of the proposal
by the committee or a further iteration through a chief architect, in case of doubts
regarding the proposed guideline within the committee, the proposal gets refined
further and is then submitted to a "request for comment" phase. During this phase,
the proposed guideline gets published in a wiki and community platform where other
architects and interested employees are now invited to provide their feedback within a
fixed time frame. After this phase is finished, the responsible architecture committee
makes a final decision whether to accept or decline the proposed guideline, also taking
in account the collected feedback. When the decision to accept the guideline is made,
the new guideline is published on a dedicated wiki page, which houses all guidelines
from the enterprise architecture department. Afterward, small changes can be made
self-responsibly or with the help of the guideline team, as long as the committee is
informed of the change. More substantial changes to a guideline require the creation of
a new guideline.

One of the problems is that, while the categorization in different architectural levels
provides a good way to structure and easily navigate the existing guidelines, it lacks
information on which guidelines have which target groups. As explained earlier, the
company is not relying solely on agile development yet but uses non-agile development
methods especially in the development of existing core applications. Therefore, many
of the guidelines aim at areas that are currently not relevant to agile teams. This makes
it difficult for agile teams to identify guidelines that are useful and important for them,
provided that the teams are even aware of the existence of these guidelines at all. The
broad possible scope of guidelines may also hinder participation in the community.
Since guidelines and guideline proposals are not published with information on the
intended target group, it may be hinder participants to quickly identify that there are
relevant guidelines in their area of expertise that they can contribute to. The more
significant problem, however, is the lack of an overall guideline process that also focuses
on other important areas besides the creation of guidelines, e. g. applying guidelines,

40

4. Case study

managing their compliance or more details on handling change.
The fact that there are no defined measures for applying principles or managing their

compliance severely impacts the degree that teams are aware of those principles and
guidelines. While the architecture boards are taking existing guidelines into account
when reviewing architectures of certain teams, the participation and presentation in
this review process is voluntary for agile teams. A common theme that was mentioned
during unstructured interviews is that the lack of consequences for not complying with
guidelines is leading to a lower level of compliance. This is further impacted by the lack
of transparency as to which teams actually apply which guidelines. Additionally to the
department-specific guidelines, there are also guidelines defined by some individual
projects, e. g. a project to migrate legacy applications to a cloud platform. On top
of that, there are is an increasing influence from the superordinate holding company
with the goal of harmonizing the architecture globally over multiple national operating
entities. They also suggest certain principles and guidelines as part of a global blueprint
that should be taken in account by the organization and might be enforced more strictly
in the future.

Another issue, in addition to the existence of multiple different sets of guidelines and
involved stakeholders, is the lack of a joint, uniform communication and documentation
of principles and guidelines. Teams have to communicate with multiple stakeholders
based on the area of principles and guidelines that they are mainly responsible for. It
is often unclear which guidelines have to be used under which conditions and which
guidelines are more best practices than strict rules. Furthermore, there were cases
where it was difficult for teams to identify the proper contact for certain guidelines or
it was unclear were guidelines were coming from and what the underlying rationale
and reasons for the guideline are. Also, regarding guidelines from the enterprise
architecture department, there is limited participation in the community described
earlier. The community is especially limited in diversity, meaning that architects are
more likely to participate because the group was previously limited to architecture
roles, but is now open for everyone who is interested. But awareness and participation
of agile development teams are still low. This issue is further aggravated by the fact
that there is no central guideline repository that covers all relevant guidelines, or a
single entity or group that makes sure that guidelines from different stakeholders are
merged, taking in account inter-dependencies and overlaps between various guidelines
to harmonize governance efforts.

Nevertheless, the observed status quo is subject to continuous improvement. One
example is the planned introduction of architecture training for every agile team as part
of the onboarding process, with the goal to sharpen awareness regarding architectural
topics within agile development teams. When the first agile teams were established,
there was an emphasis on not restricting those teams at all and the decision was

41

4. Case study

made that these teams do not have to adhere to guidelines published by the enterprise
architecture department. But over time it got clear that some sort of guidelines are
required, especially in recent months because of the growing importance of global
harmonization efforts and the goal to standardize and reuse assets globally throughout
different operating entities.

4.4. Architecture communities

This section gives an overview of the different architecture communities that are present
within the company, in regards to the second research question of the case study. As
briefly mentioned in the previous section, there are various architecture committees
overseeing the architectural decisions individual projects make. These committees are
more traditional in their organization, meaning that they have fixed members and
chairmen, and they act on different levels and topics. On the organizational level, there
is a committee that focuses on strategic global decisions. This involves investments or
investment stops for certain technologies, frameworks or software. They also set certain
standard software, directions for innovation and global infrastructure platforms. The
committee on the level of the local IT-organization focuses on IT standards based on
functional domains and propose technical reference models for each domain. On the
portfolio level, there is an architecture committee that looks more closely into projects
and the fit with architectural requirements. On this level, there are additional, separate
architecture committees dedicated to services, data architecture as well as customer
interaction. Agile teams are not forced to present in those architectural boards, but
they are encouraged to seize the opportunity to validate their architectural compliance
and get support and guidance on pressing issues that their team faces. On a program
and team level, chief product owners and product owners make the decisions together
with the agile development teams, which, in the usual case, always consist of multiple
developers with at least one developer taking on the additional role of a software
architect. Within the agile development community, there are various communities of
practices (CoP), with focus on certain topics, e. g. for scrum masters (or at least a role
similar to a scrum master in Scrum that is used in the company) or DevOps enthusiasts.
Some of the enterprise architects have recently started joining these communities on a
regular basis as well, achieving a closer collaboration with agile teams.

4.5. Role of the enterprise architect

The following section describes the analysis of the third research question of the case
study, the role of the enterprise architect within the agile environment, in more detail.

42

4. Case study

The italic aliases in parentheses after certain statements indicate the role behind the
statement and refer to the aliases listed in Table 4.1.

Enterprise architects in the partner company have three core responsibilities: Ar-
chitecture governance, incubation and enabling. Architecture governance revolves
around architectural specifications, the organization of the architecture committee,
creation of guidelines and architectural models and blueprints of the target landscape.
Incubation targets the evaluation of new technologies, whereas enabling has the goal
to provide reusable assets to simplify the work of agile teams and support their day
to day efforts, e. g. by providing a standardized continuous deployment pipeline and
cloud platform. Furthermore, enabling includes training and coaching to teach the
most important architecture basics. In terms of responsibility, the goal of the enterprise
architecture in the organization is that they do not have to participate and approve
every single decision, but that they let agile teams make the decisions and let them take
over responsibility (EA1). This requires the enterprise architects to ensure that existing
guidelines are of high quality and, above all, that teams are aware of them (EA1). The
agile developers see the core responsibility of enterprise architects in communicating
important information to the teams, collaborate closely with the teams, provide access
to their network, identify necessary contacts and support with building common assets
(AD). These may include development platforms or continuous deployment pipelines,
enabling the teams to work more quickly (AD). In their view, the responsibility of
enterprise architects has decreased in the agile context because teams are more self-
responsible, also requiring enterprise architects to be willing to give up some of their
power (AD). On the other side, they stress that more effort and commitment is now
required to be able to explain and communicate existing guidelines, because instead of
relying solely on command and control, they now have to achieve acceptance on the
part of the teams and provide real value for the teams (AD). Both interviewed enterprise
architects agree with this view and stress that enterprise architects have to generate
tangible added value within the project teams (EA1) and have to clearly communicate
what they do and how they can support agile teams (EA2). This is required so that
these teams approach enterprise architects on their own initiative to work together
(EA1, EA2) and that enterprise architects also get invited into collaborating more closely
with agile teams, e. g. in CoPs that are mainly driven by the agile teams themselves
(AD). Enterprise architects are also responsible for distributing knowledge across the
teams and help them to get started quickly when approaching a new project or product
(SML).

Some of the enterprise architects of the organization are already working in a more
collaborative way with agile development teams than traditional architects. Instead
of being isolated in their "ivory tower", they work directly with the teams and are
even part of those agile teams for a certain time period to support them. This is

43

4. Case study

something that both enterprise architects and agile developers call for. According to the
developers, enterprise architects should not be a permanent part of a fixed agile team,
but they should rotate through teams (AD). SML also stresses that enterprise architects
are no longer in a position to only create rules, but are a kind of service provider
who can provide a certain architecture and support, and who is also responsible for
communicating the architecture and its rationale.

Enterprise architects in the company already put emphasis on direct communication
and try to actively approach teams and provide them with information. In line with the
wide range of different enterprise architecture activities in the organization, the team
of enterprise architects is very interdisciplinary, consisting of experts with different
technical expertise and skills. Within the agile environment, the working methodology
changed in the sense that the direct collaboration and information sharing with agile
development teams became significantly more important (EA1, EA2, AD, SML). This is
also reflected in the relevance of different tools. Previously, there was a higher focus
on modeling in specialized tools. Nowadays, the focus is more on collaboration tools
(Wiki, issue trackers, community platform etc.). Enterprise architects should also work
in a more agile way themselves, conducting weekly stand-ups and using backlogs and
Kanban boards (EA1) to distribute and manage tasks, which is already partly the case
in the organization. Enterprise architects have a lot of self-responsibility and can take
initiatives on their own to suggest new projects or directions they would like to head to.

All interviewed stakeholders see the need and value in enterprise architects joining
teams for actual coding (EA1, EA2, AD, SML), which might not directly benefit the
enterprise architecture (EA1), but strongly benefits the acceptance by agile teams, which
is the basis for everything else (EA1). Therefore, the approach of enterprise architects is
less-top down driven, but becoming more collaborative (SML). Nevertheless, especially
in large organizations as the case study company, traditional enterprise architects who
work mainly strategically are still import and should not and cannot be part of agile
teams (EA1).

Both enterprise architects see the future focal point of enterprise architecture in
automation. Architectural documentation could be increasingly automated (EA1, EA2),
as well as the data collection for certain metrics and KPIs (EA1, EA2). Self-service
offerings for software development teams to quickly spin up application templates
and build pipelines with necessary integration should be provided as well as tools
and methods for automatically testing guidelines (EA1, EA2). Architecture has to be
integrated into modern development and deployment platforms, but more strategically
focused enterprise architecture that can not be automated will be still important in
the future (EA1). One of the interviewed enterprise architects states that the current
architecture role might not even be required any more in this particular form, but
it might be more in the form of a "community manager"(EA1). Because in the ideal

44

4. Case study

case, architectural artifacts (e. g. blueprints) should originate bottom-up through the
agile teams and not top-down (EA1). The enterprise architect further sees the vision of
establishing architecture as a product (including e. g. a wiki, development platform,
continuous delivery pipeline, and enterprise architecture tool) with a chief architect
as the product owner and the various agile teams as customers, with more systematic
feedback processes and retrospectives (EA1). This need for a more systematic and
regular feedback cycle between architects and agile teams is also mentioned by the
other interviewed stakeholders (EA2, AD).

A challenge for the enterprise architects is the unclear role within agile processes,
because prevalent agile methodologies do usually not consider the role of an enterprise
architect (EA1). This requires experimentation, testing and evaluation of what works
and what does not work, as well as research and exchange of experience with industry
partners, to coin a more concrete role of the enterprise architect in agile settings (EA1).
Establishing such a new agile enterprise architecture role and process requires a lot
of time and resources (EA1). This challenge is exacerbated by the quickly changing
environments of the enterprise architects, forcing them to rapidly adjust with those
changes (SML). According to SML, this makes enterprise architects that are closely
collaborating with agile teams even more important, because they have the necessary
proximity to agile teams to quickly recognize changes and adapt accordingly.

Another important challenge is the acceptance of enterprise architects as well as
principles and guidelines by agile teams (EA1, AD), because teams do not always see
enterprise architects as necessary and do not like to be controlled (AD). This may be
a reason that existing guidelines are often being ignored (EA2). The challenge for
enterprise architects is how to develop those principles and best practices together
with the teams (AD). This is made more difficult by the tendency of teams to challenge
and question everything that is related to certain predefined standards and guidelines
defined by other stakeholders, even if they do not know the details behind the decisions
or the evidence that lead to certain decisions (EA2). A further challenge is that the
responsibility is increasingly passed on to the teams, without that these teams are even
aware of all the responsibilities that they now have to take care of (EA2). Another
common problem mentioned by the interviewees is the lack of technical expertise and
proximity to technical implementation of enterprise architects. They interviewees stress
that this is not a problem that they see in the case study company, because enterprise
architects mostly have sufficient technical backgrounds, but it is a challenge that they
have seen or experienced in other companies (EA1, EA2, AD).

The interviewees state various recommendations for the role of the enterprise ar-
chitects in agile environments. Enterprise architects should closely examine modern
development platforms, because architecture should no longer be on slides, in doc-
uments or wiki pages, but directly integrated into the platform (EA1). They should

45

4. Case study

also try to look at enterprise architecture from the perspective of agile teams and tailor
their role accordingly, in a way that enables them to bring value to those teams (AD).
They should also be present and co-located with the teams (EA2, AD) so that they are
able to identify what challenges teams face and where the teams could use support
(AD). This also gives enterprise architects valuable insights into how teams work, how
decisions are made in teams and what consequences decisions by other stakeholders
have for the teams (EA2). Furthermore, SML recommends that enterprise architects
focus on providing value for the teams and on their ability to communicate and present
their concepts. The generated value should be measured based on the needs of the
organization (SML).

4.6. Value contribution of enterprise architects

This section focuses on the fourth research question, the value contribution of enterprise
architecture in the agile environment.

As stated previously, enterprise architects cannot rely on command and control
anymore, but they have to create value for the agile teams, ideally in a way that the
teams ask for more help on their own, because of the advantages they can benefit from
(EA1, EA2, AD).

Regarding the expectations agile teams have of architectural models and other
artifacts delivered by the enterprise architects, all interviewees stress the importance of
the reliability and binding nature of the deliverables and information communicated by
the enterprise architects (EA1, EA2, AD, SML). Teams would like to be able to rely on the
information they receive and might refer to it at a later time (EA2). They also expect that
architectural models are developed collaboratively and are not "carved in stone" (EA2),
but can be discussed with the architects. The teams also expect architecture models to
be up-to-date and relevant for the team, with availability during the project initialization
where they are most helpful, because they can be used for solving initial problems (AD).
They would also like to understand the motivation behind the architectural artifacts
and what exact value it can provide for their team (SML).

Regarding the question if and how teams would like to be controlled or guided
by enterprise architects, the agile developers have the opinion that agile teams do
not want to be controlled at all and that exercising control is also not part of the
tasks of enterprise architects, because the teams should be self-responsible (AD). They
do however acknowledge the potential need for a type of "sign off" on go-lives to
production or regarding legal requirements, ideally through automated testing (AD).
The manager, who is responsible for all Scrum Masters in the case study organization,
also believes that teams want and should be able to work as autonomously as possible

46

4. Case study

(SML). Nevertheless, there is a need for central coordination and for someone to provide
centralized services. However, this should take the form of a service provider rather
than a regulator (SML).

The enterprise architects take a more differentiated view of the situation. From the
perspective of developers, there should be no control and the ability and freedom to
decide for themselves (EA1). Nevertheless, a product owner could have a high interest
in being compliant to certain standards and receive guidance and information for
achieving this compliance (EA1). The level of control necessary or desired also depends
highly on the individual team. Some teams even approach enterprise architects on their
own initiative and ask for guidance, while other teams have a very low acceptance of
control or guidance, depending on the individual characters and experience within
the team (EA2). Nevertheless, most teams would like to understand beforehand what
their scope of action is, as well as what they are free to decide and where they have to
take some regulations into account, instead of having to deal with issues after taking a
certain course of action (EA2).

Guidelines and standards that would bring value to teams are those that explain legal
requirements and best practices for solving them, as well as guidelines and reusable
assets on cross-team topics, e. g. logging, monitoring, security, version control (AD)
or UI-components, services, development and runtime environments (EA1). Concrete
technical guidance, e. g. using predefined technologies and thereby limiting the
technology selection of individual teams does not appeal to teams (EA2, AD), but
might significantly help the overall organization and enterprise architecture (EA1, EA2).
Teams focus more on how they as an individual team can build the quickest, but that
does not mean that it is the ideal solution in the long run, e. g. regarding operability
and maintainability (EA2). However, it can be a problem if standardization does not
allow for enough heterogeneity, e. g. to test and evaluate new technologies (EA1).

4.7. Summarized challenges

While the last sections already provided more detailed information regarding best
practices and existing challenges, in this section, we would like to summarize a se-
lection of the main relevant challenges that we identified at the case study company.
These challenges are then taken into account during the following chapters. Mainly
relevant for the scope of this thesis are challenges related to architecture principles and
guidelines as well as the collaboration between enterprise architects and agile teams.
Table 4.2 shows an overview of the identified challenges. The collaborative approach
presented in Chapter 5 and the tool support introduced in Chapter 6 address these
challenges.

47

4. Case study

ID Main challenge
C1 No single point of truth for guidelines
C2 Multiple involved stakeholder groups
C3 Lack of awareness and compliance with guidelines
C4 Acceptance of principles and guidelines by agile teams
C5 Unclear implications of guidelines
C6 Lack of relevance and applicability
C7 Lack of transparency
C8 Principles and guidelines require additional time and effort
C9 Architecture integration into the platform
C10 Collaboration and feedback cycles

Table 4.2.: Main relevant challenges identified during the case study

There is no single point of truth or a clear and easy overview of all existing guidelines
that a team should adhere to (C1). Guidelines are spread throughout multiple channels
(e. g. different wikis) and documented in different forms. There is no single entity
which takes care of managing guidelines, but there are multiple stakeholders (C2) who
have an interest in defining principles and guidelines, further complicating the situation
(e. g. interests from business, infrastructure, architecture or security departments). This
makes it difficult for teams to be aware of which guidelines exist and which guidelines
are relevant to them, therefore the lack of compliance with guidelines is a challenge
(C3). This lack of compliance is further exacerbated by the lack of transparency which
guidelines are being fulfilled by which teams (C7) and the lack of consequences for not
fulfilling these guidelines. Teams do not always care about guidelines or do sometimes
simply not know that they exist. Sometimes they also ignore guidelines by purpose
because of a lack of acceptance regarding specific guidelines (C4). This also makes it
difficult for the guideline creators to better understand the impact of their guidelines
at the implementation level (C5), which could be used to assess whether a guideline
is actually valuable and to provide valuable feedback for further refining guidelines.
Another one of the main challenges is the lack of relevance and applicability (C6). Not
all guidelines are equally relevant for each team. There might be guidelines that are
only relevant when certain preconditions are met or when the team is active in a certain
functional or technical domain.

The lack of transparency (C7) is also a challenge from the perspective of the teams.
For them, it is often not clear why they should comply with a certain guideline and
what the rationale for the decisions described in the guideline is. On top of that, it is not
always clear to teams whether they have to adhere to a guideline or whether it is more

48

4. Case study

a best practice that they should follow, but from which they may also deviate. Another
major challenge is the additional time and effort required in the area of architecture
principles and guidelines, both for principles and guidelines creators as well as agile
teams who should comply with those principles and guidelines (C8). On the one hand
side, it means effort for agile teams to familiarize themselves with existing guidelines
and to ensure the compliance with those guidelines. Furthermore, it can be a lot of
effort for those teams to communicate with the involved stakeholders because of the
different stakeholders involved (C2), leading to uncertainty whom teams have to contact
for questions or problems with certain guidelines or how they can get an exemption if
they face special requirements. In the worst case, the progress of a team can even be
impeded due to slow governance processes. Teams may have to wait for a decision or
architectural approval so that they can go ahead with their planned endeavors. On the
other hand, it causes a lot of effort to manage the compliance to guidelines, since the
lack of transparency (C7) and the fact that guidelines are not automatically tested. This
leads to the challenge on how to integrate the architecture directly into the development
platforms (C9), so that the compliance to guidelines can be assessed at least in part
automatically. This would further reduce the required manual effort and enhance the
awareness and compliance with guidelines. Lastly, we would like to highlight the
challenge that enterprise architects and agile teams have to collaborate more closely
(C10). The collaboration challenge is not only exclusively relevant for the relationship
between enterprise architects and agile teams, but the agile teams would also profit
from more inter-team collaboration between each other.

As this brief analysis shows, many of the challenges are mutually reinforcing. Over-
coming some of these challenges could therefore also reduce challenges that have not
been addressed directly and contribute to solving them.

49

5. Collaborative approach to establish
architecture principles and guidelines

This chapter presents one of the two main artifacts of this thesis: a collaborative
approach to establish principles and guidelines that is combining top-down and bottom-
up processes. First, in Section 5.1, we provide an introduction for our collaborative
approach. Afterwards, we describe the collaborative approach in detail in Section 5.2:
The involved stakeholders and their role in the approach, the guideline establishment
process as well as the specific activities of the community in the collaborative approach.
The final part of this chapter is Section 5.3 where we outline the addressed challenges
and resulting solution requirements.

5.1. Agile governance through collaboration

Our approach focuses on achieving agile governance by bringing principles and guide-
lines, an established artifact from traditional IT-governance and enterprise architecture
management, to modern agile and lean environments. As outlined in the foundations
in Chapter 2.1.2, our understanding of agile and lean governance is that it revolves
around a more liberal stance on governance, putting more trust in agile teams and
giving them more responsibility, resulting in a form of self-governance.

Achieving the goal of a collaborative approach requires an adaption of the existing
approaches and processes related to principles and guidelines. This adaption is neces-
sary and important because traditional, top-down methods lack the consideration of
bottom-up processes and put the main emphasis on top-down, "command and control"
methods, which we see as contradicting with agile and lean values.

Scott Ambler, creator of the "Disciplined Agile" framework [5] during his time as
chief IT-methodologist at IBM Rational, states that "Traditional IT governance strategies
prove to be at odds to agile’s collaborative, value-focused strategies. As a result, a lean
approach based on enablement, collaboration, and motivation is required to effectively
govern agile teams." [7] We regard the consideration of the bottom-up view as an ade-
quate fit with the lean mindset because, as stated by experts on the Toyota production
system where lean values originate from, "the essence of the Toyota production system
is that each individual employee is given the opportunity to find problems in his own

50

5. Collaborative approach to establish architecture principles and guidelines

way of working, to solve them, and to make improvements" [47]. Hamel summarizes
Toyota’s advantage as the "ability to harness the intellect of ’ordinary’ employees" [41].

In our approach, this means that agile teams are no longer only affected by the results
of the principles and guidelines governance process, but that they are key stakeholders
themselves in determining, specifying, applying and refining principles and guidelines.
This approach pushes decisions to the people closest to the implementation, meaning
the people who are actually executing the work being governed. This increases both the
power and autonomy of the individual teams, however at the same time also making
them more accountable for their actions.

To achieve the goal of agile teams becoming a key stakeholder in the creation and
application of architecture principles and guidelines, without losing the necessary
oversight to achieve organizational, cross-team goals, we propose a community of
enterprise architects and agile developers who collaboratively conduct a process for
establishing architecture principles and guidelines. For this purpose, we adopt and
adapt the generic architecture principle process by Greefhorst and Proper [37] to take
the additional perspective of the agile teams into account. Greefhorst and Proper admit
that their comprehensive process, covering the whole architecture principle life-cycle,
is focusing on a top-down approach and that more work has to be done to include
bottom-up perspectives into their approach [37].

And this is precisely where we position our collaborative approach for establishing ar-
chitecture principles and guidelines: we build on existing, well-established approaches
and adapt and enrich them in a way that focuses on collaboration and enablement of
affected stakeholders instead of strict control.

The combination of the top-down and bottom-up perspective is what we call the
collaborative establishment of principles and guidelines. And when we speak of the
collaborative establishment of principles and guidelines, we mean that we take into
account the full life-cycle of principles and guidelines. This means that our approach
encompasses not only the creation process itself on a strategic level, but the actual
application of principles and guidelines during implementation and handling of change
by incorporating experience and feedback.

It is important to note that our approach is not a golden hammer, but has to be
adapted to the specific requirements of an organization. As Greefhorst and Proper
conclude regarding the architecture principle development process: "It has been shown
that the development of architecture principles is very situational. In particular, the
type of architecture, the maturity level of the organization and the culture very much
influence the approach" [37]. To take this into account, we will mention instances where
we see a particularly high need to adjust our approach to the organization maturity and
culture. Furthermore, it is worth mentioning that we do not focus on suggesting specific
architecture principles and guideline examples. Instead, we aim our attention on the

51

5. Collaborative approach to establish architecture principles and guidelines

way how such principles and guidelines can be collaboratively developed. This is due
to the fact that concrete principles and guidelines are highly specific to the individual
organization. Greefhorst and Proper also acknowledge this by stating the following
regarding their catalog of architecture principle examples: "Experienced architects
probably do not need the catalogue; they completely depend on their personal instinct,
experiences and knowledge" [37]. Besides, the process and the detailed order of steps
is not a strict specification, but it should provide an indication of what activities should
be done in such a community. The central aspect of the approach is that the individuals
from the different stakeholder groups come together and interact more frequently, in
line with the first agile value of the agile manifesto [14].

The value of our approach is that, in the ideal case, only the governance remains
that is inherently useful to the target stakeholders, without losing the oversight, long-
term planning and collective goals of the organization. This also encourages those
stakeholders to give valuable feedback on existing guidelines, making it possible to
improve them further and adapt them to the needs and challenges that agile teams face
on a day-to-day basis. Ultimately, the approach allows companies to decentralize their
decision-making and enable teams to manage themselves as much as possible.

5.2. Guideline establishment approach with relevant
stakeholders

The following section presents the key stakeholders and their role in our process, the
way how they come together to collaborate on architecture principles and guidelines,
as well as the steps of that process itself.

5.2.1. Involved stakeholders and their role in the approach

This section describes the central roles that are part of our approach, without detailing
their function in each specific step of the process yet.

In our approach, we focus mainly on two roles: The enterprise architect and the agile
development teams. Nevertheless, our approach could also be generalized. The two
roles could also be described as the group that creates principles and guidelines and
the group that has to comply with those principles and guidelines. In the end, the
essence is to melt these two groups into one community, thereby combining top-down
and bottom-up views within one process.

The traditional approach is shown in the left column of Figure 5.1. Guideline creators
are on their own in creating guidelines, which are then communicated to the guideline
target groups. A more participatory approach can be seen in the center. Guideline

52

5. Collaborative approach to establish architecture principles and guidelines

Command and control Collaborative

Management Guidelines

co
m

m
un

ic
at

es

gu
id

el
in

es

have to comply

Participatory

creates and
revises

Target
group

co
m

m
un

ci
at

es
de

ci
si

on
s

gi
ve

 fe
ed

ba
ck

an

d
di

sc
us

s

creates and revises
based on feedback

have to
comply

Management Guidelines

Target
group

Guidelines

create and
revise together

responsible for
(non)- compliance

collect and
discuss feedback

ManagementTarget
group

Community

Figure 5.1.: High-level overview of the key difference in the collaborative approach

target groups can now participate in the creation process, e. g. by giving feedback
to guidelines. From a collaborative perspective, this is already an improved situation
and closer to the collaborative approach than the traditional form. However, the basic
outcome is the same: Guidelines are created top-down and teams have to adhere to the
guidelines without a lot of self-responsibility. The desired process is illustrated on the
right. The crucial difference is that there are no longer separate groups for guideline
creators and the group who has to implement the guidelines. Instead, the people
who have to implement the actual governance intentions are the ones who shape the
guidelines. They can actively join in on the process and the participating stakeholders
have a common goal: to establish guidelines that are valuable and relevant to the target
groups. However, this does not mean that only the groups who are performing the
work being governed are involved in the process. An overarching perspective is still
important.

Through the involvement of enterprise architects, the more strategical perspective is
included that aims to reach a global, organization-wide optimum. By including agile
teams, the operational perspective is included as well. Those individual agile teams
are the experts in their project or product scope and can aim for a local optimum. By
combining both views, agile teams get more aware of the global optimum as well, and
how they have to adapt their goals to not only reach a local optimum for their team, but
also conform with the goals of the organization. Even if we speak mostly of developers
in the following explanations of our approach, the community could also be interesting
for the other possible members of an agile team, which might include business analysts,
designers or product experts. If additional stakeholder groups have been involved in
the creation of principles and guidelines or other governance measures, they would

53

5. Collaborative approach to establish architecture principles and guidelines

also have to be included in the community, or at least have to be taken into account
by enterprise architects. The approach also has to be embedded into a broader scope,
that means it should have awareness and support of the upper management and they
should reward participation within the community appropriately.

When it comes to increasing the autonomy of agile teams and achieving some form
of self-governance and self-management, one could argue that agile teams themselves
should be the only stakeholders in the process. This would make the role of enterprise
architects superfluous. However, we believe that the role remains important. Since
self-management can negatively affect the ability to effectively coordinate between
teams [51], it is vital to have a role that can assist and support with cross-team
coordination. Furthermore, when teams should be able to self-manage in large-scale
environments, they need to have a strong knowledge network and collaborate closely
with experts outside of their team [31, 81, 107]. Enterprise architects can be of immense
value by providing teams with such a network and helping them with identifying
the right contact persons in a short amount of time. Moreover, enterprise architects
usually have a better insight and understanding of organizational goals and strategy,
and thereby a better ability for business and IT alignment. Nevertheless, in our
approach, we see enterprise architects in a different role than they might have had
before. Architects in some companies are still in a more traditional role: they create
diagrams, models, slides, documentation on the perfect system, but do not take in
account the unforeseeable future. We see the modern architect in a different role, which
could be more accurately compared with a "town planner". The analogy of a "town
planner" was first introduced by Doernenburg [82]. As described in more detail by
Newman, the town planner uses a myriad of information to attempt to "optimize the
layout of a city to best suit the needs of the citizens today" [82]. The way a town
planner does this optimization is interesting because it fits well to the general idea
of the liberal governance approach: He does not specifically state "build this specific
building here". Instead, he splits the city into different zones, e. g. by designating parts
of the city as residential zones or industrial zones. It is then the decision of the people
what exact buildings are going to be built. The town planner will then primarily focus
on what happens between the zones, but not necessarily what happens specifically
within a zone [82]. This is very similar to how we position the enterprise architect
in our approach. The shift goes away from making detailed decisions himself, but to
focus more on supporting and enabling others to make these decisions themselves
within certain boundaries, and document resulting insights on the way. The core
responsibility of the enterprise architect in our approach is facilitating the collaboration,
bringing the community together and supporting them in reaching the community goal.
Especially in the initial phase of such a community, it is important that someone takes
the initiative and assumes responsibility for establishing the community. To build such

54

5. Collaborative approach to establish architecture principles and guidelines

a community, it would be advisable for enterprise architects to look for allies within
the agile development teams. This could significantly improve the initial acceptance
and prevent the impression on agile teams that this is another initiative that is being
forced on them. The biggest obstacle at the beginning of such a community could be
that it requires a certain level of participation to create value, but at the same time, it
requires a certain level of value to achieve enough participation. The use of the network
of enterprise architects to identify enough potential participants for the first steps of
the community could be crucial to cross this value and participation threshold.

5.2.2. Community goals and responsibilities

Since both enterprise architects and developers would benefit if it was possible to work
more closely together [22], thereby building more trust and understanding of each
others’ work, we propose a community consisting of both developers and (enterprise)
architects who meet on a regular basis. Especially in large-scale agile software de-
velopment, expertise might be scattered across multiple locations and teams, making
networking and knowledge-sharing between teams critical [81]. Šmite et al. summarize
various mechanisms that can support the development of knowledge networks in
large-scale agile development, e. g. collaborating closely with experts outside an indi-
vidual team, facilitating communities of practice and providing suitable communication
infrastructure [107]. Our approach fits well with these proposed mechanisms. The
goal is that this community creates, validates and decides on architecture principles
as well as handling changes to existing principles and guidelines. From our point of
view, it makes sense to not restricting the community to focus solely on architecture
principles and guidelines. On the contrary, it is probably suitable in most cases to
embed the topic of principles and guidelines into a broader agenda. Such an agenda
could be designed to enable teams exchanging information on architectural topics
and presenting their architectures, status and findings, thereby receiving validation
and feedback from other teams and identifying needs for optimization. In case the
participants notice a broader relevance of these discussions or identify drivers for new
potential principles or guidelines or changes to existing ones, they can act accordingly.

To keep the community relatively small in size, so that the decision-making ability
is not lost, it can be useful to have one team member from each team joining the
community, as a representative of that team. Those representatives do not always
have to be the same person and they do not necessarily have to be in a lead role since
the community could also benefit from different opinions and viewpoints. The same
applies to the architects who are joining the community. Teams should have the right
to elect the representative freely. In some specific cases, it could be necessary to request
a certain team member who has valuable knowledge or insights on certain topics that

55

5. Collaborative approach to establish architecture principles and guidelines

are on the agenda for a meeting. Nevertheless, in general, the community should be
open for everyone who is interested and not enforce participation.

As described previously when discussing involved stakeholders, in terms of responsi-
bilities, the goal is that the architects are facilitating the community, but the community
is making the decisions. Or as Sam Newman puts it in his similar approach on creating
a group of architects and developers, working closely together: "The architect is respon-
sible that the group works, but the group as a whole is responsible for governance" [82].
This also comes with a necessity for a shift in the mentality of the architect. In their
concept for a more adaptive enterprise architecture management by Korhonen et al.,
where the enterprise architect is also seen in a more collaborative role, the architect
has to build humility and respect for the people that he is helping and also believe
in their capacity to grow and learn [58]. Regarding the question of what areas the
community is responsible for, the idea of the community is not that every aspect must
be discussed in detail and that teams must necessarily participate in all areas. Rather,
due to time and capacity constraints of the participants, there could be the decision
made that teams do not want to deal with certain topics and would like to leave them
in the responsibility of the enterprise architects or other stakeholders. And on the
other side, the decision could be made that certain topics are left for the individual
teams to decide, without the need for cross-team principles or guidelines. Nevertheless,
something of value was achieved: instead of leaving certain areas almost randomly to
"emergent architecture", there has been a conscious and well-founded decision made
on which areas are left to emergent architecture and which areas are left to intentional
architecture. This also matches one of the advantages of architecture principles stressed
by Greefhorst and Proper, who state that "By focusing on the essential requirements,
the use of architecture principles allows/invites enterprises to think carefully about
what to regulate in a design-first style and what to leave up to emergence, or to even
take measures that enable desirable emergence." [37] In general, the community should
be worried about what happens between the teams and be liberal about what happens
within an agile team.

A suitable frequency of community meetings is strongly dependant on the specific
organization and can be suggested for the first time by enterprise architects and can
later be adjusted according to the community needs.

As mentioned earlier, we are aware of the fact that especially in larger organizations,
enterprise architects might not be the originators of all principles and guidelines that
are affecting development teams. There might be other governance entities outside
of the enterprise architecture department, or groups specifically dealing with certain
areas, e. g. (information) security, data protection and privacy or legal requirements.
Those would have to be taken in account as well and included in the collaboration,
when necessary. Since the above mentioned examples mostly build their work on

56

5. Collaborative approach to establish architecture principles and guidelines

legal requirements, there is less need for discussion and close collaboration within the
community, but it has to be ensured that the information flows properly between those
departments and the community of architects and developers, which again should be
facilitated by the architects. In the end, it is important that a "single source of truth"
is built. That means that for every guideline that a stakeholder group would like to
set for agile teams, they would have to go through the community. This ensures that
guidelines are not created over the head of agile teams and that agile teams can rely on
a single point of contact regarding guidelines, saving a lot of time and effort.

5.2.3. Collaborative process steps

The following process of our approach is based on the established process of Greefhorst
and Proper [38], as summarized and presented in Section 2.3.4. Where in the original
process, the life cycle of principles is mainly driven by enterprise architects, now all
stakeholders affected by guidelines are continuously involved, so in our case of large-
scale development, we closely involve the agile development teams. Nevertheless, even
if Greefhorst and Proper do not explicitly focus a bottom-up perspective and collabo-
rative traits in their approach, they stress the need for the collaborative involvement
of stakeholders multiple times in their book, as reflected by the following exemplary
quotes:

• "These processes are best performed collaboratively to ensure involvement and
commitment of stakeholders." [37]

• "It is of the utmost importance that principles are formulated in a collaborative
process involving all key stakeholders. More research is needed into effective
ways to organize these collaborative processes." [37]

• "Therefore, more research is needed into ways of better dealing with the top-down
versus bottom-up and design-first versus emergence ‘game’." [37]

Because of this need, we would like to contribute the following resulting steps for
the process being used in a collaborative approach, illustrated in Figure 5.2. The titles
of the process steps mostly match the steps presented by Greefhorst and Proper [38],
with the difference of our suggestion to merge the "specify principles" and "classify
principles" steps and our renaming of the "validate and accept" phase, which we call
"vote and accept", to put more emphasis on the community-driven decisions. The
detailed descriptions of the steps have been adjusted to take better account of the
inclusion of the bottom-up perspective.

Important to note is that the process is not meant as a strict specification of an
order of steps that has to be followed in a linear fashion. Rather, it is meant as a

57

5. Collaborative approach to establish architecture principles and guidelines

recommendation of possible activities that the suggested community should deal
with. Those activities can occur in different orders or with different entry points,
depending on the situation. For example, some drivers might already exist, so the
community would directly move on to the specify principles and guidelines step when
dealing with these existing drivers. In other cases, there might already be existing
principles or guidelines, although they might lack a proper specification. In this
case, the process would start with the third step, which revolves around specifying
and classifying the principle or guideline. Additionally, there might be cases where
most principles and guidelines are already sufficiently defined and the community
focuses mostly on the application of principles and guidelines as well as managing
their compliance and changes. Nevertheless, we choose to present the suggested
activities of the community in form of a process to achieve a better fit with the
established architecture principle process as well as a clear structuring and logical order
of activities.

Guideline
Set B

Agile Teams

Top-down, strategical perspective
(“global optimum”)

Bottom-up, operational perspective
(“local optimum”)

Enterprise Architects

Determine principles and
guidelines

Determine principles
and guidelines

Specify and classify

Apply principles and guidelines

!
! !

!

!

Determine drivers
• Goals and objectives
• Values
• (Legal) constraints
• Potential risks and rewards

Determine drivers
• Implementation experience
• Issues
• Team-specific agreements
• Technical innovation

team representativesarchitect representative(s)

Handle changes

Vote and accept

Guideline
Set A

use identified
drivers to GuidelineGuideline

KPIKPI

Principle

KPIKPI

1

1..n

1..n

Guideline
Set C

suggest
candidates

1 1

2 2

3

4 5

7

use identified
drivers to

suggest
candidates

validate and propose
new principles or
guidelines

give feedback

6 Manage compliance
document usage (& integrate automated tests)

5

6

Figure 5.2.: Collaborative approach overview

In the following, we describe the resulting steps in more detail, with a focus on the
difference to the original process in Section 2.3.4.

Step 1: Derive drivers

According to Greefhorst and Proper, principles without drivers are pointless. Determin-
ing drivers revolves around analyzing relevant sources and collecting suitable input
for deriving architecture principles, e. g. goals and objectives, values, issues, risks,

58

5. Collaborative approach to establish architecture principles and guidelines

potential rewards and constraints [38]. This often requires certain levels of analysis, e.
g. conducting interviews or organizing workshops [38]. The key difference within this
process step in our approach is that not the enterprise architects alone are responsible
for identifying those drivers, keeping them up to date and ensuring their quality, but
through the community, enterprise architects and agile teams are responsible together.
In our view, this has some significant advantages. Most importantly, it opens up new
types of drivers and ensures easier access to some drivers. Agile teams can contribute
their implementation experience as a basis to derive principles and guidelines. This
bottom-up perspective can provide valuable input to principles and guidelines by
taking in account the practical experience of the teams. They experience first hand what
implications the governance activities actually have and how they ultimately affect
actual implementation. This provides valuable insight into which governance intentions
work and which ones do not work. In addition, already existing, team-specific internal
agreements or agreements from previous projects can lead to architecture principles and
guidelines. Those team-internal agreements might not always be explicitly documented,
but are often a result of the selection and agreement of a suitable solution to a reoccur-
ring challenge that a team has faced over a period of time. This information could be
valuable for other teams as well and therefore lead to principles or guidelines later in
the process. Furthermore, agile teams are often closer at the heartbeat of technological
innovation because of their day-to-day technical work and keeping themselves up to
date with the latest developments. This can be valuable input for new or changing
principles and guidelines. Furthermore, concrete, tangible issues mostly arise during
the actual implementation. Because of their proximity to actual implementation, it is
much easier for agile teams to identify and analyze those issues in more detail. This
is why we place issues in Figure 5.2 on the right side of our approach, in the main
visibility and responsibility of the agile teams. This matches with what Greefhorst and
Proper call "operational issues". They state that "Including them as drivers enables
operational employees to provide relevant input to the architecture, and thereby involve
them in the process" [37]. Involving agile teams so closely in the process as suggested
in this approach brings the advantage of shining more light on those issues.

Of course issues will also still arise on a higher, more strategic level, but it will
save architects time by not having to do a lot of digging to identify their causes,
because the origin of the issue might be on an operational level. At the strategic
level, you can observe the implications or effects of issues, e. g. higher costs, delays
or low re-use of standardized components. Consequently, enterprise architects can
focus on more strategic types of drivers where their expertise and positioning gives
them a crucial advantage. These drivers are especially organization-wide goals and
objectives, values defined as part of the (IT-)strategy, potential risks and rewards
and legal constraints. Guidelines based on legal requirements also often originate

59

5. Collaborative approach to establish architecture principles and guidelines

from team-external sources, because teams rarely have the time, oversight and/or
qualification to take legal requirements into account. Since legal constraints play an
important role in directing organizational decisions, because failure to comply with
regulations and laws might lead to fees, penalties or reputation risk [99], these drivers
have to be documented with additional care. Later in the process, it will be important
to distinguish between guidelines that are based on legal constraints and therefore
required to fulfill a law or regulation, because those are types of guidelines that might
have to be excluded from a community vote in the fourth step of the process. The
positioning of enterprise architects with their access to multiple teams also gives them
the advantage to identify cross-team patterns more easily. Due to the collaborative
nature of the proposed community and process, the increased interaction between
teams should also help those teams to be able to identify such recurring patterns.

Step 2: Determine principles and guidelines

As described earlier in Chapter 2.3.4, the identified drivers can be used to derive
principles, which encompasses three key steps: Generate a list of possible principles,
select the relevant principles from this resulting candidate list and then use the chosen
candidates to formulate the actual principle statements [38].

These key activities also remain the same within this step in our collaborative
approach. The only key differences now in our approach are that agile teams are
directly involved in the question what principles are relevant or not and that not
only principles can be derived from drivers, but also already more specific guidelines.
Furthermore, through the newly introduced drivers described in the previous step,
these additional drivers now have also to be taken in account within the principle
and guideline determination. Since the drivers that are identified by agile teams are
usually closer to actual implementation, as described before, these drivers could also
directly result in guidelines. This is especially conceivable when teams have identified
more specific issues that can be directly translated into a principle that guides actual
implementation, therefore into the kind of principle what we classify as a guideline. In
this case, it might be worth analyzing if there is already an existing principle that fits
the resulting guideline as a more generic, overarching statement or if there is a need
for creating a more generic principle as well. This relationship between principles and
guidelines is discussed in the next step of the process.

When selecting relevant principles of the list of potential candidates, we believe that
principles and guidelines that focus on the interplay between various teams or services
are the ones with higher importance and higher binding nature ("has to be done").
Guidelines that are providing solutions to a specific implementation usually should
be "may be done", because those are best-practices that originate from teams. In these

60

5. Collaborative approach to establish architecture principles and guidelines

cases, those guidelines could help other teams by providing them with ways to solve
their challenges, but it should not limit their ability to chose a solution themselves.
One simple test that could be used to support the decision on the binding nature of a
guideline is to look at the consequences of not fulfilling guidelines: In the first case, the
direct consequences affect only the team itself, which indicates a lower priority and
binding nature. In the other case, it affects not only the team, but other stakeholders
(e. g. because the team decides on a different logging and monitoring stack than the
standard, they now cause additional work for other stakeholders to incorporate them in
the existing, overall monitoring). We suggest on relying on the team to make the right
local decisions. But everything that affects more than the local team space is highly
relevant for the community. As mentioned earlier, the community should be primarily
worried about what happens between teams and be liberal about what happens within
a team.

Step 3: Specify and classify

In contrast to the generic approach by Greefhorst and Proper [38], we combine the
two phases of "specifying principles" and "classifying principles". We merge the two
steps not only to reduce the total number of steps in the approach, but also because
we would like to stress the need to consider the classification of the principle during
the specification, e. g. to determine the target groups and align the specification of
the principle or guideline accordingly. This means that a principle or guideline is
specified in a way that the resulting specification is most useful for the intended target
group. In our approach, this is of higher importance because we put more emphasis
on the specificity of principles. The importance of this specificity is also recognized by
Greefhorst and Proper who state that when enterprises would like to use principles to
actually limit design freedom, they need to be specific enough and formulated in a way
that allows assessing the compliance with those principles [37]. We would like to ensure
this specificity in our approach by differentiating between principles and guidelines.
Furthermore, we propose defining fulfillment criteria for guidelines in the form of KPIs,
meaning measurable values that are decisive for compliance with the guideline. This
sets an important basis for a possible automated testing of guideline fulfillment in the
future. As illustrated in Figure 5.2, we propose to transform a principle into one or
multiple more specific guidelines, if necessary. This necessity arises when one of the
following two criteria are met. Either, the principle is too broad or unspecific to guide
actual implementation and as a result, stakeholders feel confused or do not feel like the
principle gives them concrete value. Or the principle is so broad or abstract that it is
difficult to define actual fulfillment criteria, let alone concrete measurements that could
indicate the fulfillment level of a principle.

61

5. Collaborative approach to establish architecture principles and guidelines

These guidelines typically then describe different ways on how a principle can
be implemented. Furthermore, if possible, one or more KPIs should be defined for
each guideline. There will be principles that will be though to specify into more
specific guidelines and there will be guidelines whose compliance criteria cannot
be easily expressed as measurable values. In these cases, it is not worthwhile to
enforce a specification into guidelines or KPIs. But the community should critically
question if the principle or guideline can provide practical value and relevance if it
cannot be further specified or measured. Nevertheless, it is plausible that there are
principles or guidelines that do not need to be further specified and still provide added
value. Because depending on architecture maturity and organizational culture, it may
be sufficient in certain situations to forego specifying the principle and just use it
to achieve a common understanding and commitment for certain issues, instead of
actually restricting design freedom [37].

We consider this relationship as very interesting because if maintained correctly,
valuable observations can be made. In this way, it is much easier to understand how
concrete strategic goals (as part of the drivers and principles) affect actual implementa-
tion, which concrete measures (guidelines) are taken to implement these strategic goals
and how well these measures (KPIs) are adhered to . It could be very insightful for the
management to be able to visualize such a relationship, to get a better understanding
of the concrete decisions that strategic goals lead to in lower, operative levels. Thereby,
management could trace how more generic objectives and values or "meta-principles"
(e. g. standardization, modularity, reusability, interoperability, integration, simplicity,
compliance, data consistency [40]) are actually implemented on lower levels. Through
the use of classifying principles and guidelines, these statistics and relationships could
also be analyzed based on certain categories or target groups. On the other side, a
potential limitation of this aspect is that the relationship between principles, guidelines,
and KPIs is only rarely strictly hierarchical. In most cases of existing principles and
guidelines, there are dependencies between multiple principles and guidelines, as well
as the possibility of KPIs that can measure the fulfillment of parts of multiple guide-
lines. The proposed mapping would also involve a significant time and coordination
investment, therefore further research would have to weigh up costs and benefits.

For classification purposes, we suggest to define a set of target stakeholder groups
and then classify principles and guidelines based on the target groups. Of course, a
principle or guideline can be relevant to multiple stakeholders. But in only rare cases
are they relevant for all possible target groups. This causes additional complexity and
wasted effort. If stakeholders are confronted with a variety of content that consumes
time but is not relevant to them, it could also reduce the overall acceptance of principles
or guidelines. In addition, it makes it more difficult to clearly identify the principles and
guidelines that are actually relevant. In general, due to their more abstract character,

62

5. Collaborative approach to establish architecture principles and guidelines

principles are more relevant to a larger target group. Guidelines, on the other hand,
tend to be more limited in their relevance because of their higher degree of specificity.
To guide actual implementation, there is more need to take into account the type of
implementation that should be targeted.

The specification and classification could be done in a small group or by an individual
participant of the community, but the results should be validated within the community.
A form of validation will also happen in the next step, during the vote and accept
phase, although it would be preferable if principles and guidelines already fulfill a
certain quality level before they are put to the vote.

Step 4: Vote and accept

Because of their high importance, a high quality of principles and guidelines has to
be ensured. Therefore principles and guidelines need to be validated before they get
accepted into a pool of principles and guidelines that are used productively. Important
to note here is that all the previous steps both should include some sort of valida-
tion. Greefhorst and Proper point out that the validating process itself can be highly
standardized and include specific roles. As an example, they mention discussing and
agreeing on the principles in an architectural board with management representatives
of all major departments [37]. In our approach, we believe that the community should
be responsible for making the final decision on accepting a principle or guideline. This
means that there has to be a discussion and vote whether it can be accepted, needs
further refinement or maybe even has to be declined because there are solid reasons
which speak against the principle or guideline. The result of these votes should be
documented for further reference. For the enterprise architect, this will likely mean
an increased required effort and commitment to present proposals convincingly. With-
out explaining the rationale behind the suggested principle or guideline, it might be
difficult to get the support of the community. We suggest that the effort is worth it,
because as observed during the case study, principle and guidelines that do not have
the acceptance of the target stakeholder are likely to be ignored or to be bypassed
anyway. Even if the proposed principle or guideline does not provide direct value to
the individual agile teams, with the awareness of the reasoning and the benefits at a
different part of the organization, the community can be convinced of the introduction
anyway, presupposed the community already has a certain maturity level. Depend-
ing on this maturity level and the characteristics of the organization, the enterprise
architects might provide strong, detailed governance or gentle directional guidance.
The current state of the level of authoritarian control or guidance has to be taken into
account during the establishment of such a community. A democratic vote, meaning
that each representative of the agile teams has the same voting power as each enterprise

63

5. Collaborative approach to establish architecture principles and guidelines

architect within the community, requires a certain level of organizational maturity. In
organizations that have only recently begun to transform into a more agile environment,
it might be required to steer such a community more strongly, e. g. by veto rights of the
enterprise architects or power to overrule the community. To go back to the metaphor
of the town planner, who more accurately represents the role of an IT-architect, as
described earlier, he should only steer the broad direction and not control the details.
But "if someone decides to build a sewage plant in a residential area" as Sam Newman
describes it, "he needs to be able to shut it down" [82]. This means that, in extreme
cases, there might be the need for someone within the community to intervene, but it
should be the clear exception to the rule. The more mature the community, the less
likely such situations should occur. Some organizations might benefit from not taking
such measures to overrule the community at all, leaving full power to the community
and therefore ensuring its’ credibility and commitment.

As explained earlier, not all proposals can be run through such a vote. If the main
driver of a principle or guideline is a legal requirement, a vote whether such a principle
or guideline is necessary does not make sense and therefore can be omitted.

Step 5: Apply principles and guidelines

In research for their process, Greefhorst and Proper conclude that there is surprisingly
little guidance on how stakeholders actually use architecture principles in the creation
of their own artifacts [37]. We believe that the specification of principles to guidelines
and KPIs should make the application much easier. At least, it should make it much
clearer what a more generic principle actually means for implementation. A crucial
advantage is also that the people who are executing the work that is governed by
principles and guidelines are actually the main stakeholder in our approach. Naturally,
this should improve the applicability of those principles and guidelines. It could be
valuable to document the solution to specific guidelines, as it could serve as an example
for other teams and provide insight into the solution requirements that implement
those guidelines. Applying a guideline should be as easy as possible for the teams and
in the best case, it should be even easier than not applying the guideline. This could be
achieved by providing reusable templates, components, guides, code examples etc.

Step 6: Manage compliance

As in step 4 "vote and accept", the specific degree on how much self-responsibility the
community can have in this step is heavily dependant on the organization. Depending
on the maturity level of the organization regarding agile processes and mindset, it
is most cases probably indispensable to support teams to achieve self-governance,

64

5. Collaborative approach to establish architecture principles and guidelines

especially in the beginning. A way how this can be achieved is to show teams ways
to get a clear overview of the guidelines they have to fulfill and let them track their
current compliance status on these guidelines. We decided to use a web application for
this purposes, as described later in Chapter6.

The advantage of our approach is that through the involvement of stakeholders who
execute the work that is being governed from the beginning, there is a higher chance
that self-governance will be sufficient. Those stakeholders are aware of principles
and guidelines because they coined them. Giving teams the responsibility to follow
guidelines and therefore also the freedom to decide against using a specific guideline
can also improve acceptance. However, we see the need for documenting these decisions.
The community needs to know when their plan is not being followed. A very low
compliance degree of a guideline across all teams can be an indicator that there
are existing issues with a guideline, either in implementing the guideline or in the
specification of the guideline itself. Documenting exceptions can be very valuable and
is both mentioned by Greefhorst and Proper [38] as well as Newman. As he states it,
"tracking exceptions may be vital to ensure that the rules put in place properly reflect the
challenges people are facing" [82]. If enough exceptions are found, it may make sense
to change the principle or guideline. Therefore, enterprise architects could have an eye
on whether those decisions are being documented, without strictly monitoring every
guideline and a team’s compliance with that guideline. Time-consuming, extensive
architecture reviews as in traditional governance processes are not necessary anymore.

In the best case, only guidelines remain in our approach that are inherently useful
for the affected target groups and complying with a guideline is also the easiest thing
to do. Having to manually and continuously check the compliance to all relevant
guidelines can be a significant effort. One way to reduce this effort is by automated
testing, preferably directly integrated into the build pipeline. The goal would be
to automatically test some of the guidelines. Amongst other things, this requires
measurability of guidelines, which we would like to achieve by specifying KPIs. The
web application presented in Chapter 6 aims to build a basis for automated testing
of guidelines and could be extended to integrate various data sources for automated
compliance testing of certain guidelines.

Step 7: Handle changes

It is crucial to collect feedback from the involved stakeholders to get a more genuine
impression on the actual consequences of governance activities [15]. Furthermore, it
is important to actively involve all stakeholders during the feedback phase to be able
to profit from the diversity of knowledge in an organization, which can be a valuable
input for architectural decisions [15]. In general, small changes can be applied by

65

5. Collaborative approach to establish architecture principles and guidelines

directly altering a principle or guideline, bigger changes, on the other hand, might
require a new principle or guideline. The advantage of principles and guidelines is that
they are mostly self-contained, which provides the opportunity for small-scale, iterative
releases. Greefhorst and Proper propose a feedback mechanism where people can
comment on architecture principles, request changes or discuss with peers on specific
experiences [38]. Our proposed community provides the opportunity to do so. The key
difference is that, again, not only the architects are responsible for monitoring causes
for changes and taking care of these changes, but the community is. Since feedback
that requires the change of a certain principle or guideline will naturally often arise
during applying that principle or guideline, therefore during implementation, it is a
significant advantage to have the agile teams so closely involved in the approach. In
their practical approach, Greefhorst and Proper state that "It can even be valid to adjust
the architecture principles based on insight originating from specific situations" [38],
which fits well with including the experience of individual agile teams in specific
situations in the change process.

5.3. Addressed challenges and solution requirements

In this section, we summarize the relevant challenges identified in the case study pre-
sented in the previous chapter and explain what requirements and solution objectives
result therefrom. This ensures that we create solution artifacts that provide actual value
by tackling multiple existing challenges. We describe solution requirements that we con-
sider both in our collaborative approach presented in this chapter as well as in the web
application, presented in Chapter 6, that supports the approach . The approach does
not necessarily have to be supported by a web application, as we describe in Section 6.1.
Therefore, it would be possible to implement certain requirements in a different way,
for example with the help of physical Kanban boards, whiteboards or sticky notes, or
other digital collaborative tools, e. g. a community and wiki platform. Nevertheless,
our suggestion of a software-based support comes with certain advantages, such as
scalability, maintainability and expandability with automated tests. These advantages
and the reasons for our decision to support the approach with a web application are
also described in more detail in Section 6.1.

No single source of truth (C1)

As observed in the case study, a key challenge is that there is no single source of
truth for principles and guidelines for affected stakeholders. Principles and guidelines
are often spread throughout multiple departments and documented in different ways
and locations. Therefore, one of the main requirements of a solution is to create a

66

5. Collaborative approach to establish architecture principles and guidelines

"single source of truth" that unites all efforts regarding architecture principles and
guidelines that are relevant for agile teams. It should also provide a central place for
managing and documents principles and guidelines as well as related information.
This allows for quicker decision making and feedback cycles as well as less effort and
time consumption for identifying existing guidelines and relevant contact persons.

In our approach, we address this by proposing a community that has the main
responsibility for all principles and guidelines that are relevant to agile teams. Fur-
thermore, we introduce a web application as a common repository for documenting
guidelines themselves as well as their fulfillment status and other related information,
e. g. feedback on those guidelines.

Multiple involved stakeholder groups (C2)

A large amount of potential stakeholders involved make communication more difficult,
requires additional time and effort for teams to identify suitable contact persons and
thereby further aggravates the additional time and effort problem (C8). One of the
common problems in this area is also that teams have to await architectural decisions
before they can continue with certain tasks. There is also the risk that efforts regarding
principles and guidelines are not harmonized and that different stakeholder groups have
different goals and priorities in mind, possibly causing conflicting and interdependent
principles and guidelines that could further delay and obstruct agile teams in their
daily work. A key requirement derived from this challenges is the need to involve all
relevant stakeholders, so that governance efforts can be harmonized and integrated
together. This enables potential conflicts of interest to be identified and resolved at an
early stage before they lead to problems during implementation.

The resulting solution objective is to invite all key stakeholders to the community on
a regular basis, and the stakeholders more specialized to certain areas (e. g. security,
operations, etc.) when necessary. In addition, everyone interested should be able to
access the tool support for the related documentation.

Lack of awareness and compliance with guidelines (C3)

The challenge describes the problem that guidelines are often not applied in the actual
implementation, either because of a lack of awareness of certain guidelines or because
the target stakeholders deliberately ignore them. This could be caused by the lack of
relevance or applicability of a guideline (C6) or the additional time and effort required
to identify, understand and apply existing principles and guidelines (C8).

Consequently, it is required to improve awareness and ensure the compliance with
principles and guidelines. A crucial question is how exactly architecture compliance of

67

5. Collaborative approach to establish architecture principles and guidelines

implementation projects should be ensured [42]. Since enterprise architecture manage-
ment might benefit from a tighter integration into agile methods and processes [42], we
propose a collaborative approach with tool-support as presented in this thesis.

Low acceptance of principles and guidelines by agile teams (C4)

As described in the previous section, principles and guidelines are sometimes getting
ignored. This can be related to the issue that agile teams usually prefer independence
and self-responsible decisions, and do not like to be controlled or governed. In
general, top-down driven management initiatives have a lower acceptance in agile
environments [29].

Therefore, one of the central requirements is to not solely rely on a top-down,
authority-based governance and control approach that gives the full responsibility
of creating and managing guidelines to a single person or small of group of people,
mainly consisting of management stakeholders or lead architects. Instead, all relevant
stakeholders should be included in the governance efforts, thereby extending the
top-down approach by a bottom-up perspective.

In our approach, we intend to solve the acceptance problem by giving agile teams a
say in decision making and governance. Teams should be able and actively empowered
to define solutions on their own, while still considering certain limitations set by the
current and future IT landscape [42].

Unclear implications of guidelines (C5)

Another common challenge is that the implications of principles and guidelines are often
unclear, meaning that it is often ambiguous what a principle or guideline really means
during actual implementation and how exactly it can be fulfilled. This is especially the
case for architecture principles, which are more general than guidelines (as explained in
more detail in Section 2.3). Additionally, there is the question of whether the adherence
to the principle or guideline is mandatory or more of a recommendation that can also
be deviated from.

In our view, architecture principles face this crucial challenge due to two contradictory
goals they are intended to fulfill. On the one hand side, they should be applicable
to all solutions that match the scope of the architecture [37], which requires a certain
level of abstraction and generalization. On the other hand, this more generic nature
limits their applicability, because principles have to be specific enough to get applied.
Greefhorst and Proper state that "Architecture principles are still fairly generic, which
does not position them as strategically and thereby effective as they could be" [37] and
"It is important to carefully determine the extent of generalization that is needed. You

68

5. Collaborative approach to establish architecture principles and guidelines

should not generalize too much since that can have a counter-productive effect" [38].
As a result, there is a trade-off between generalizability and specificity of architecture
principles. Architecture principles should be specific enough to get applied, but general
enough to apply to all solutions that match the scope of the architecture.

This is the reason why we introduce principles and guidelines as separate terms
in our solution. Since the two goals of generalizability and specificity are clearly
contradicting each other, it is difficult to reach them at the same time. We believe that
the scope and target group of architecture principles play an important role in this
matter. Because to find the sweet spot in the trade-off between a high generalizability
and enough specificity to guide actual implementation, we have to use principles and
guidelines scope-related. Meaning there is not one single way of how to fulfill a certain
principle, but multiple ways based on project characteristics and requirements, target
stakeholders and so on. Therefore, an additional requirement is to manage target
stakeholders and categories of principles and guidelines to be able to map them to
project characteristics.

The second major aspect of the unclear implications of a guideline is that it might
not be clear what guidelines have to be fulfilled, without any or with only very minor
deviation possible (e. g. because of legal requirements), and which ones are more a
recommendation and can be adjusted to individual requirements of individual products
or teams. A resulting requirement is that it should be made clear whether a certain
guideline is a strict regulation or rather a broad recommendation.

A possible solution could be an additional attribute describing the guideline: the
liability level. The liability level signifies how binding a guideline is. The terminology
that we propose is borrowed from the field of requirements engineering, where it is
typical to describe the priority of certain requirements levels with terms as "must"
or "shall", "should" or "recommended" and "may" or "optional" [17]. In regard to
guidelines, a "must" is justified by a regulatory or legal issue that results in the need
for a guideline. It could also be justified by an important internal policy, but we advise
caution doing so because of the following reason. "Must" guidelines are intended as
"non-negotiable" rules which ensure compliance. Their number should be kept to a
minimum since they would also be integrated into auditing and revision processes.
For the community in the collaborative approach, it might also important to define
something like a liability level for specific guidelines early on, so that governance efforts
that are based on legal requirements cannot be stopped by a community vote.

Lack of relevance and applicability (C6)

Next to the unclear implications of guidelines, another important challenge is the lack
of relevance and applicability of architecture principles and guidelines. This can have

69

5. Collaborative approach to establish architecture principles and guidelines

different reasons. One of the common reasons is that architecture principles are often
still fairly generic [37], as detailed in the previous challenge. Another possible reason
is the distance of guideline creators to the actual implementation. Decisions might
be made that directly or indirectly affect implementation details, without detailed
knowledge and insight on these areas, thereby negatively impacting the practical
applicability. In addition, the comprehensibility might be a reason for a low applicability,
since principles can possess a high complexity and low accessibility [40]. But even if the
principle is well specified and giving clear guidance for actual implementation (what
we refer to as "guideline"), it could be simply not relevant for a certain stakeholder
group. A principle or guideline cannot continually be relevant, useful and applicable
for every single team. There are always exceptions to the rule due to team or product-
specific requirements or special circumstances that might make a guideline irrelevant
or sometimes even lead to negatively impacting a team.

To address the low relevance and applicability, a key requirement is to enable
operational employees to provide relevant input to the guideline creation. As Greefhorst
and Proper [37] state, including operational issues and aspects "provides an opportunity
for the architect to contribute to problems that people are confronted with in their daily
work, and is an important step in the acceptance of architecture principles." Generally
speaking, the requirement is that the groups who eventually have to apply the principles
or guidelines should be involved in the creation process to ensure better applicability.
This also tackles the challenge of the low acceptance when those stakeholders are
not involved in the process, as explained earlier. We implement this requirement by
building our approach around the core idea to include the bottom-up perspective over
the whole life-cycle of architecture principles and guidelines.

As mentioned in the previous challenge, architecture principles and guidelines have
to be specific enough to be relevant for actual implementation. Also, target stakeholders
of principles and guidelines should be clearly defined and principles and guidelines
should be categorized accordingly. We propose to use tags as an easy solution for
categorization and use those tags to map project and team characteristics to those
tags, which results in a quick selection of relevant guidelines and an evolving pattern
matching that helps to end up with certain guideline sets for different stakeholders.

The problem that not all guidelines are relevant for every team requires the possibility
to be able to override existing principles and guidelines and move forward with a
team-specific solution. Making architectural decisions is often about trade-offs, and
especially in system design, it is not possible to define principles that are always right in
all of the cases. This makes also sense from the perspective that the closer collaboration
between enterprise architects and agile teams can leverage the knowledge of the experts
in the field and leave as many of the decisions as possible to them [42]. Therefore
it is important to let teams deviate from the standard. Nevertheless, in those cases

70

5. Collaborative approach to establish architecture principles and guidelines

of reasonable deviation, it is of high interest to learn more about the reasons for the
deviation. This is valuable because first of all, other teams in the future can learn
from the experience and also use similar deviations without redoing the full process.
And secondly, if enough deviations are found and it gets clear that multiple teams
have similar good reasons for deviating from the principle or guideline, it might make
sense to adjust and improve those principles or guidelines. This can result in better
versions of those standards and ensures that lessons learned and practical experiences
are incorporated into those standards, to tackle and better match the challenges teams
face on a daily basis.

The close collaboration proposed in the approach, as well as the feature to document
a team-specific guideline rationale and solution in the web application as described in
Section 6.3.2, aim to address these problems.

Lack of transparency (C7)

The lack of transparency challenge has multiple facets. One of the main problems is that
it is not clear why some principles or guidelines are not being used by teams or if and
why they deliberately decided against the usage, as explained in the previous challenge.
For future reference, it might be worth capturing these exceptions and fundamental
choices of the teams. This problem is also closely related to the lack of awareness and
compliance with guidelines (C3). It is not only unclear if a team is using a guideline
or not, but also whether they currently fulfill a guideline or not. Another facet of the
transparency challenge is that it is not always clear to agile teams why they should
adhere to a certain guideline, and what the reasons and arguments are that lead to the
decision for creating a principle or guideline. The resulting requirements for a solution
are that it has to provide a better overview and documentation on what guidelines
are being used by which teams, which guidelines are being fulfilled by which teams
and what the rationale behind a guideline is. These requirements are implemented in
the tool support by the guideline overview for each team, the guideline statistics page
and the ability to document and display rationales for each guideline. Those solution
features are described in more detail in Section 6.3. A possible further extension of
the tool-support could include the managing of drivers and the mapping to principles
and guidelines, which can provide more information on where certain principles and
guidelines are coming from, additional to the rationale description. For the time being,
the drivers can be easily documented as part of the rationale behind the principle or
guideline.

71

5. Collaborative approach to establish architecture principles and guidelines

Additional time and effort required (C8)

Enterprise architecture management is a complex field and capacities are usually scarce.
Hence, enterprise architects cannot make a vast number of well-informed decisions
on a detailed level themselves. Therefore, it is required to shift some of the decision
making to the agile teams, which aims to profit from multiple advantages. On one
side, enterprise architects have more capacity to focus on areas where they create
added value. On the other side, agile teams could become more satisfied and accepting
towards governance and enterprise architecture efforts because they have more say in
decision making.

But agile teams do not have many resources available as well and should focus on
implementing their product or project requirements. Therefore, it is required that the
solution provides high usability and as much automation as possible. Of course, a
community as presented in the collaborative approach and all its related activities, e. g.
creating principles and guidelines, checking their compliance, handling change and
maintaining them, etc. consumes time and requires commitment from the involved
stakeholders as well. Greefhorst and Proper also note this regarding their generic
process for architecture principles, stating that "in practice it remains difficult to apply
the process with enough depth and formality, due to limited time that is typically
available" [37]. We keep this in mind by trying to extract and focus on the most
important aspects of the process. In addition, our collaborative approach comes with
the advantage of splitting the workload within the involved stakeholder groups within
the community, which should further alleviate the problem.

Some of the solutions presented in the tool-supported collaborative approach al-
ready aim to address these challenges. For example, the mapping of project or team
characteristics to guideline categories allows for a quicker identification of relevant
guidelines. The statistics page automatically aggregates and visualizes the existing
information on compliance with guidelines over multiple teams. A web application also
provides the basis for automatically testing the compliance with guidelines in the future,
because it can access and integrate various data sources. In addition, the community
aims to save time in the long run by bringing all related stakeholders together. This
solves the often necessary long search and delay in identifying the appropriate contact
person for certain principles and guidelines, due to multiple stakeholder groups (C2).
Furthermore, this should prevent teams from having to await architectural decisions.

Architectural integration into the platform (C9)

Based on the findings from the case study, it is important in large-scale agile software
development to integrate architecture directly into the development platforms, e. g.

72

5. Collaborative approach to establish architecture principles and guidelines

by using automated tests of architecture principles and guidelines, providing precon-
figured tooling, suitable code templates and scaffolding or the ability to generate the
necessary CI/CD pipeline and other important aspects of the development. This is im-
portant for making the desirable behavior as easy as possible for affected stakeholders,
resulting in a higher compliance to the intended behavior.

Even though there is more research needed on the details on how such an integration
can look like, we provide a first step by deciding for the use of a web application to
support the collaborative approach. A web application provides the basis for connecting
to other data sources that can be used for automated testing of architecture principles
and guidelines. Furthermore, the application could be integrated into existing CI/CD
pipelines, e. g. to act as a quality gate and check for the fulfillment of certain guidelines
before a deployment to production is possible, as described in Section 6.7 about the
potential next steps regarding the implementation of the tool support. In addition, since
the automated testing of generic concepts would be difficult, we suggest a specification
of abstract principles to more specific guidelines and even KPIs, for the purpose of
reaching measurable values that can then be used during the automated testing.

Collaboration, feedback cycles and consideration of bottom-up perspectives
(C10)

The final important challenge presented in this thesis is the need for a closer collab-
oration and feedback cycles as well as the consideration of bottom-up perspectives
in governance and enterprise architecture processes. Greefhorst and Proper stress
that principles can be used as a control mechanism, but should not be mistaken to be
solely part of a top-down steering approach [37]. By observing factors that lead to
the violation of existing principles and the emergence of the need for new principles,
architecture principles "can be used as an indicator mechanism as well" [37]. Therefore
the key requirement for the solution is to facilitate a higher degree of collaboration
and to take into account the bottom-up, operational perspective. We take this into
account in our approach by making the bottom-up perspective of agile teams a crucial
part of the overall approach and process. As already mentioned in a previously de-
scribed challenge, speaking with operational employees and taking into account the
bottom-up perspective is important because it provides an opportunity to contribute to
problems that the teams are encountering in their daily work [37]. A tighter integra-
tion and collaboration also helps to bridge the gap between enterprise architects and
agile teams [42] and thereby facilitates a better mutual understanding and acceptance
between each other [64, 42]. This also leads to a better ability to rapidly respond to
changing needs [50]. The close collaboration between enterprise architects and agile
teams can also "leverage the knowledge of the experts in the field and leave as many of

73

5. Collaborative approach to establish architecture principles and guidelines

the decisions as possible to them" [42].
Collaboration in large-scale agile development is not only important between enter-

prise architects and agile teams, but also between different agile teams. A common
problem in large-scale agile development are deficiencies in inter-team coordination
and communication [117] as well as the need to have an effective knowledge network
and collaborate closely with experts outside the team [81, 107]. Therefore, the solution
artifacts should also fulfill the requirement to encourage and facilitate better communi-
cation between teams. By including representatives of multiple teams in the community
within the approach as well as documenting and presenting teams who can help with
implementing certain guidelines in the tool support, we aim to fulfill this requirement.

74

6. Implementation

This chapter describes the prototypical implementation of a web application aiming to
support the collaborative establishment of principles and guidelines as explained in the
previous chapter. Its features are designed to solve the observed problems described
in the previous chapter and to fulfill the resulting requirements in a prototypical
implementation.

Due to the time constraints of the thesis, the tool support does not yet support all
phases of the presented collaborative approach, but focuses on specific aspects. The
focus is to support applying and managing the compliance of principles and guidelines,
and to provide a better overview and mechanisms to facilitate more awareness and
transparency in regards to guidelines. This prioritization of features was mainly done
in respect of the main challenges that the case study organization faces.

In the beginning of this chapter, Section 6.1 explains the motivation and rationale for
developing a web application. Subsequently, Section 6.2 briefly outlines the technical
requirements and technology selection. The main views and core features are presented
in Section 6.3. Afterwards, in Section 6.4, we explain how social design principles
influence the design of those features and how they could be used in the future.
Section 6.5 and Section 6.6 present a brief overview of the system architecture and a
class diagram of the application.

Finally, Section 6.7 contributes ideas for potential extensions and further development.

6.1. Motivation for a web application

Of course, the development and usage of a web application is only one possible answer
to the described challenges. To tackle the described challenges and to achieve the
solution goals and improvements, other ways to support the collaboration between
agile teams and enterprise architects regarding architecture principles and guidelines
could be used as well.

The decision for a web application during this thesis is a conscious choice because
of the following arguments that in our opinion outweigh the positive aspects of other
possible supportive tools (e. g. Kanban boards, wikis, issue trackers or other project
management tools):

75

6. Implementation

• The possibility of a web application to communicate with other tools, development
platforms and databases for data collection, for example to provide the basis for
running automated tests for certain guidelines

• Other forms of automating or simplifying processes, as described in more detail
in the next paragraph

• The possibility to integrate the web application into existing build pipelines to
use the fulfillment of various guidelines as a quality gate for teams to deploy on
production

• The scalability, because a web application can better support larger communities
and provide means to have votings, feedback cycles and other collaboration across
multiple teams

• Accessibility and portability, the possibility to access the documentation and
information on principles and guidelines from any location and from different
devices

• The interactivity and possible implementation and usage of gamification aspects
and social design principles to encourage contribution and participation and other
desirable behavior

We believe that well-maintained wiki pages could be sufficient in some cases for
supporting the collaborative approach, documenting fundamental choices and making
them easily accessible. But especially features that revolve around automation can
provide a significant advantage over a wiki. Some examples are listed in the following:

• automated testing of guideline fulfillment

• automated quality gate check, such as a HTTP call from a build pipeline to the
application when a specific team likes to build and deploy their application to
production, to verify if mandatory guidelines for deployment are fulfilled

• fast creation of new teams, automatic mapping of guidelines to that team based
on project characteristics and tags

• automatic generation of statistics

• automatic generation of reports for auditing reasons

• recommendations on new guidelines based on project characteristics

76

6. Implementation

But no matter which kind of tool support is chosen, to establish the tool-support in
an organization in the long term, it has to be embedded into a broader process and
scope, e. g. by being part of a community of practice similar to the one presented in
the previous chapter, or part of sprint retrospectives, architectural spikes or should be
taken into account during the evaluation of teams by the management. In line with the
first agile value, the individuals and their interactions come first[14], and the process
and tools should support that collaboration and communication.

6.2. Technical requirements and technology selection

The technical requirements for the prototype are straightforward. An important re-
quirement for the case study organization is that the application can be easily deployed
to the organization’s cloud infrastructure, which is based on Pivotal Cloud Foundry1.
Ideally, it should use the standard technologies that are suggested in the organization,
which are the Angular2 framework for the front-end and Spring Boot3 for the back-end
server. To comply with these guidelines, we decided to use these technologies in their
latest versions (Angular v6, which was upgraded to Angular v7 during the time frame
of this thesis, as well as Spring Boot v2.1). This enables us to use the standard Cloud
Foundry buildpacks that are provided by the case study company. As a build tool, we
use Jenkins4 to be able to build and deploy the two applications effortless to the cloud
infrastructure and thereby enabling continuous deployment. Furthermore, we use a
MySQL5 instance which is provided by the organization and which we bind to the
backend application in Cloud Foundry, automatically delivering the service instance
credentials to our application in an environment variable. As the UI component library,
we use the latest Angular Material6. It includes material design components specifically
for Angular. The organization guidelines stipulate that the internal UI library should be
used for all design aspects, but due to the goal to open source the application at some
point and the internal library is closed source, Angular Material is chosen because it
is open source. For responsiveness across devices, we base our layouts on Angular
Flex-Layout7 which provides a responsive layout API for Angular applications using
CSS8 flexbox and Media Queries.

1 https://www.cloudfoundry.org/
2 https://angular.io/
3 http://spring.io/projects/spring-boot/
4 https://jenkins.io/
5 https://www.mysql.com/
6 https://material.angular.io/
7 https://github.com/angular/flex-layout
8 https://www.w3.org/Style/CSS/Overview.en.html

77

https://www.cloudfoundry.org/
https://angular.io/
http://spring.io/projects/spring-boot/
https://jenkins.io/
https://www.mysql.com/
https://material.angular.io/
https://github.com/angular/flex-layout
https://www.w3.org/Style/CSS/Overview.en.html

6. Implementation

6.3. Main views and core features

This section introduces the core features of our prototype, based on the main views
in which they are used within the application. The features were carefully designed
and implemented based on the challenges identified in Section 4.2 and continuously
discussed, adjusted and extended over the course of the case study and prototype
implementation, as described in our research methodology in Section 1.3. In addition to
the core features presented in the next subsections, the application includes further mis-
cellaneous features, e. g. user and team management, authentication and authorization,
settings for guidelines, tags and belts as well as other supportive features.

6.3.1. Overview of the guidelines of a specific team

Figure 6.1.: Team-specific guideline overview with belt category selection and fulfill-
ment status of each guideline in the selected belt

The core feature of the application is the guideline overview for each team. It enables
the user to get a quick overview of the guidelines that are relevant to his team and
the fulfillment status of these guidelines. The team-specific guideline overview screen
can be seen in Figure 6.1. The most apparent trait are the tabs on the top which show
differently colored belts. This is used as a categorization for the guidelines and can be
used to switch between displaying guidelines that are assigned to the respective belts.
The term "belt" is a metaphorical reference to the different ranks in martial arts and is
part of our gamification approach. In the same manner a martial artist can achieve belt

78

6. Implementation

after belt, starting from the white beginner belt until the black champion belt, teams
can rank up their belt as well. Instead of having dedicated tests to rank up as in most
martial arts, teams can rank up by fulfilling guidelines.

Each tile on the screen represents a single guideline which is assigned to the currently
selected team of the logged in user. The colorized border on the left of each guideline
tile represents the current fulfillment status of the respective guideline. A green border
indicates that the currently selected team has set the guideline status to "fulfilled", a
red border indicates that the team is not fulfilling the guideline yet. The tiles on this
overview screen aggregate important information on each guideline. On the top, they
show the title of a guideline, followed by a description. To achieve an appropriate
overall size of the guideline tile, not the full-length description is displayed, but only
the first few lines. This space constraint ensures that enough guideline tiles fit on the
screen, even on smaller devices, to achieve a helpful and quick overview. The tags that
are assigned to a guideline are displayed right below the description. We consider the
tags as crucial information on this overview page because it gives a quick impression
what category the guideline belongs to. Below the tags are icons of teams that already
fulfill the guideline. This can be valuable information for teams who are looking for
help on how to implement certain guidelines in their project or product. With this
information, they can approach other teams and ask for support in a more targeted
manner. The team icons are currently only indistinguishable placeholder icons, but a
tool-tip message reveals the team name when hovering over the icon. In the future,
teams could use their team logos or a team icon could be generated from the initials of
the team name. The expert teams are also displayed in the guideline detail screen. The
information icon button on the top right corner leads to this guideline detail screen.
Previously, the whole guideline tile was linked to the guideline detail screen, but this
turned out to be less intuitive for the users and caused a lot of accidental clicks. At the
bottom right corner, the guideline tile shows an icon button to change the fulfillment
status of the guideline. According to the current guidelines status, the button is either
used to set the guideline status to fulfilled or not fulfilled. A check-mark icon and
cross-mark icon symbolize the two different actions.

79

6. Implementation

Figure 6.2.: Providing a link to fulfill the type of guideline that requires an artifact
delivery

When trying to fulfill a certain type of guideline that requires an artifact, the user is
prompted to provide the link to the created artifact which is related to the guideline
fulfillment, as presented in Figure 6.2.

Figure 6.3.: Dialog for adding a new guideline

For each belt, an additional "add guideline" tile is displayed that can be used to add
a completely new guidelines or add existing guidelines from the general guideline
pool. When choosing to add a new guideline, a new dialog is opened for creating a

80

6. Implementation

guideline, as it can be seen in Figure 6.3. When selection to add a new guideline from
a certain belt, the belt of the new guideline is preselected with this belt, but it can still
be adjusted in case the new guideline should be added to a different belt than the
currently selected one.

6.3.2. Detail screen of the guideline of a specific team

Figure 6.4.: Guideline detail view dialog of a specific guideline

The goal of the guideline detail screen dialog is to present more information about a
specific guideline, additionally to the information presented to the user in the team-
specific guideline overview screen. For clarity and navigational purposes, the title of
the guideline is displayed again. Additionally, the full description of the guideline
is shown as well as the solution criteria for a guideline, aiming to give more insight
into how to fulfill the guideline. More information can be accessed by expandable
components which include the following contents:

• A rationale, detailing the reasons behind a guideline and giving additional
context, aiming to build a better understanding of the underlying motives and
therefore increasing acceptance.

• Additional resources, which are links that can redirect to more information, e.
g. to Wiki-pages, example code, reference implementations etc. These resources

81

6. Implementation

consist of a description which is shown to the user and a corresponding link that
is opened in a new tab when a user clicks the respective additional resource.

• Expert teams, which are teams that fulfill the guideline and could help other
teams with the implementation. In contrast to the rationale and the additional
resources, these teams are not specified by a user creating or changing the
guideline, but they are automatically calculated and displayed. In the current
state of the prototype, teams that fulfill a guideline automatically become expert
teams and are displayed with the date on which they achieved the fulfillment
of this particular guideline. Due to the fact that this could lead to a large list of
expert teams quickly, only three expert teams are shown at once. In the future, a
more sophisticated way of identifying expert teams could be useful, as explained
in section 6.7.

The top bar of the dialog includes the current guideline status next to the guideline
title and also two additional buttons on the top right side. The button with the clock
history icon leads to the guideline history, which shows logs on when guidelines have
been set to fulfilled or not fulfilled by which user. This feature gains in importance once
automated tests for guidelines get integrated because it could then be used to show
the times and results of automated tests that were running to determine the fulfillment
status of a guideline. At the moment, it displays a history of status changes of the
guideline, that means if the guideline was set to fulfilled or not fulfilled, with each
entry including a time stamp, the type of status change as well as the responsible user
for the change. With certain guidelines, especially the ones based on legal requirements,
this can be important for auditing as well. The comment button gives the teams the
possibility to enter a team specific solution and rationale for their guideline. This
can be valuable when the team has reasons not to fulfill the guideline as intended
by the guideline specification. Documenting these deviations from the standard can
help to collect valuable feedback on refining guidelines later on. If there is an existing
team-specific solution or rationale for the guideline, it is then shown in the guideline
detail screen so that the team is reminded of how they are fulfilling the guideline.

6.3.3. Team dashboard

The team-specific dashboard is the home screen that is shown to a user. It prominently
displays the current belt of the selected team and the percentage of the progress to the
next belt that can be achieved. The activity feed on the right side of the dashboard
displays cross-team information. At the moment it displays the achievements of a
new belt by a team with the associated date of that event. This could be extended in
the future by also presenting other collaborative information, such as welcoming new

82

6. Implementation

Figure 6.5.: Team-specific dashboard displaying the current belt, activity feed and the
progress of other teams

team members or displaying team-specific information, like the new fulfillment of a
guideline. The area below the activity feed shows other teams working on the same belt
as the current team of the user and their progress in the belt, aiming to further motivate
teams, but also enabling them to identify teams who are facing similar challenges at
the moment or who are in a similar state of project maturity. This could spark higher
collaboration and exchange between those teams.

6.3.4. Team creation and guideline mapping

The team creation feature allows users to easily add new teams and add existing
or new users of the application as members to that team. Furthermore, during the
creation process, it is possible to select from predefined project or team characteristics
as illustrated in Figure 6.6. These project characteristics are linked to certain guideline
sets, which are based on the inclusion and exclusion of all guidelines of a single tag or
the combination of tags as well as the inclusion or exclusion of specific guidelines.

Depending on the selection of the user creating the team, the application pre-selects
the relevant guidelines in the guideline selection step that can be seen in Figure 6.7.
Nevertheless, the user can still adjust the selection based on the project or team
requirements. As described earlier, new guidelines can also be added later to a team.

83

6. Implementation

Figure 6.6.: Selection of project and team characteristics when adding a new team

Guidelines then get pre-selected accordingly to the chosen characteristics.

6.3.5. Team and guideline statistics

The fourth core feature in the current prototype of the application is a team and
guideline overview, which allows the user to get an overview of his teams and the
fulfillment status of the selected guidelines. This allows for easy comparison and
identification of existing problems.

6.4. Features and possible extensions based on social design
principles

Since the value of the presented tool is dependent on the active usage and contribution
of its users, we incorporate insights from social science and gamification into the design
of our features. Even if it is important to integrate the tool-support into a broader scope
such as a community and collaborative process, as presented in our approach, it is
possible to use certain design principles of online communities to encourage desirable
behavior [96]. In the following, we list selected design claims based on the research
by Resnick and Kraut [96]. The goal of this section is to describe how some of the
selected, relevant design claims have already been taken into account with already
implemented features, and to suggest ideas how others could be used in possible
future features. The design claims presented could not only improve the level of
participation and contribution, but also lead to better compliance with guidelines.
All presented design claims are drawn from the chapter "Encouring Contribution to

84

6. Implementation

Figure 6.7.: Pre-selection of guidelines based on the chosen team or project characteris-
tics

85

6. Implementation

Figure 6.8.: Overview of teams and guidelines and their respective fulfillment status

86

6. Implementation

Online Communities" [96] and resolve around encouraging contribution in an online
community, because this has the highest priority in our case. These design principles
are not only relevant for an online community, but many of them originate from social
psychology lab experiments and general findings from social science, which makes them
also valuable in general for our community approach. In the future, other categories of
design principles could be taken in account as well, e. g. encouraging commitment or
dealing with newcomers. The numbering of the design claims represents the original
numbering by Resnick and Kraut for quicker identification within their book chapter.

"Making the list of needed contributions easily visible increases the likelihood that
the community will provide them." (Design claim #1 in [96])

The guideline overview for a team is designed to quickly and easily show the
members of a team which guidelines have already been met and where action is needed
within the team. The design principle could also be kept in mind at a later stage when
extending the application, e. g. by clearly listing the guidelines that need further
specification or improvement by the community and how and where exactly a member
of the community can contribute. This could also fit to prompting the users of the
application to contribute to the community by rating existing or proposed guidelines
as well as giving qualitative feedback to improve those guidelines.

This also fits well with the second design claim, which states that

"Providing easy-to-use tools for finding and tracking work that needs to be done
increases the amount that gets done." (Design claim #2 in [96])

Therefore, the application could provide a small task list that summarizes the need
for certain guideline improvements that are required, e. g. extending the guideline
description, providing a more comprehensive rationale or specifying KPIs or solution
criteria for the guideline.

"Compared to asking people at random, asking people to perform tasks that interest
them and that they are able to perform increases contributions." (Design claim #3
in [96])

This design principle could be implemented by tailoring the call for contributions
stated in the previous two design claims to specific teams that are most suitable for
the tasks. This could be done by asking only those teams to vote on guidelines that
are categorized with tags that also fit the project characteristics of the respective team.
Furthermore, call to action for refinement or validation of guidelines could be displayed
mainly to expert teams of those guidelines.

87

6. Implementation

"People will be more likely to comply with requests if they come from others who
are familiar to them, similar to them, are attractive, are of high status or have other
noticeable socially desirable characteristics." (Design claim #11 in [96])

The familiarity between different teams based on similar project characteristics and
selected guideline tags could be used to recommend guidelines to each other. Also,
it might be considered to introduce a form of a reputation or endorsement system
where teams and/or individual users can endorse each other for contributions to the
community and thereby achieve a certain rank or status, which could then, in turn,
lead to a higher level of compliance to the requests from the community.

"People are more likely to comply with a request when they see that other people
have also complied." (Design claim #12 in [96])

This design claim fits well with the news feed and belt-specific progress leaderboard
displayed on the team dashboard page, displaying teams achieving new belts and how
far they are progressing in the belt that is relevant for the current team. Furthermore,
the expert team feature shows teams who have been complying with a guideline for a
certain time period.

The news feed could be extended to also include information on how teams or
individual users are contributing to the community, e. g. by adding new guidelines
or refining existing ones. Also, aggregated statistics on specific guidelines might be a
good way to further benefit from this design claim, such as revealing an information
like "87% of teams are fulfilling this guideline" on a certain guideline, which could
further encourage non-compliant teams to comply as well.

"Providing members with specific and highly challenging goals, whether self-set or
system-suggested, increases contribution." (Design claim #13 in [96])

The presented tool-support challenges teams to reach a higher level until they reach
the black belt. This could be further enhanced by providing other forms of goals
such as badges or achievements. A team can also self-set goals by adding their own,
team-specific guidelines.

"Coupling goals with specific deadlines leads to increases in contribution as the
deadline approaches." (Design claim #14 in [96])

This design principle might become relevant in the future within additional features.
One potential aspect is to limit the call for participating in voting or providing feedback
to specific time periods. This would be similar to the process that was observed in

88

6. Implementation

the case study during the "request for comments" phases, in which participants of the
community have a limited time period to give their feedback on a specific guideline
within a community board, before the process continues.

"Goals have greater effects when people receive frequent feedback about their perfor-
mance with respect to the goals." (Design claim #15 in [96])

For this purpose, the team dashboard always indicates the current progress in the
current belt on the way to the belt that can be achieved next. In the future, more
detailed feedback could be given to the user, e. g. regarding their progress on certain
badges or other achievements. But not only feedback on the progress could be given to
the user, but on actual performance, as stated in the design claim, e. g. by using KPIs
for guidelines - where possible - and displaying the achieved value for that KPI.

"Combining contribution with social contact with other contributors causes mem-
bers to contribute more." (Design claim #16 in [96])

This design claim highlights the necessity to integrate the tool into a broader context, as
stated earlier. By including the tool in existing processes and collaboration, especially
the ones focused on personal, face to face interaction, the awareness for the tool and
actual usage could increase sharply. The tool could be included in existing communities
of practice, sprint retrospectives or during the assessment of minimal viable product
iterations (e. g. to demonstrate a high fit with the organizational strategy and cross-team
guidelines to the management).

"Performance feedback - especially positive feedback - can enhance motivation to
perform tasks." (Design claim #18 in [96])

Similar to design claim #15, we rudimentarily implement this design claim by showing
the teams their progress in a current belt and encouraging them to achieve compliance
with further guidelines. In the future, the design claim could be used to a greater
extent, e. g. by alert or notification messages with congratulations after reaching a new
belt, badge or other achievements. Also, the newsfeed within the dashboard could
incorporate more positive feedback.

"Site designs that encourage systematic, quantitative feedback generate more verbal
feedback as well." (Design claim #19 in [96])

By promoting to give feedback on a Likert scale on how valuable the guideline is for a
specific team, as illustrated in the screenshot in Figure 6.11, the goal is to increase the
amount of more detailed feedback and reasoning behind the rating as well.

89

6. Implementation

"Comparative performance feedback can enhance motivation, as long as high perfor-
mance is viewed as desirable and potentially obtainable." (Design claim #21 in [96])

"Performance feedback, especially comparative performance feedback, can create a
game-like atmosphere that may have undesirable consequences in some communi-
ties." (Design claim #22 in [96])

The progress indicator on the dashboard presenting other teams working on the same
belt already aims to provide comparative performance feedback as described in design
claim #21, and can be seen as a sort of leaderboard. The application could also be
extended by a more comprehensive leaderboard, listing teams from all belts and other
statistics. Additionally, once KPIs for guidelines are implemented, the comparative
performance feedback could be done in even more detail. Nevertheless, as design claim
#22 warns, such measures could also have undesirable effects. This is especially the
case in supportive and learning environments [96], in which community members
might prefer an environment that builds on positive, supportive aspects instead of
competition, which could also lead to more people "gaming the system" to achieve
progress and outperform the competition.

"Rewards, whether in the form of status, privileges or material benefits - motivate
contributions." (Design claim #23 in [96])

Achieving a new, higher belt can already be seen as a sort of status, but this could
be further extended with other kinds of achievements, e. g. badges. Furthermore,
depending on how the tool gets embedded in a broader context, it would also be
possible to think about including privileges or material benefits.

6.5. System architecture

The following section provides a brief insight into the technical architecture of the
application.

The system architecture is kept very simple. It consists of the Angular single-page-
application serving as the frontend for the user, which is communicating with the
Spring Boot backend and its exposed REST-API via HTTP calls. The Spring Boot
backend then accesses a MySQL database with the use of JPA9 and Hibernate ORM10.
Figure 6.9 illustrates a high-level overview of the architecture.

9 http://spring.io/projects/spring-data-jpa
10 http://hibernate.org/orm/

90

http://spring.io/projects/spring-data-jpa
http://hibernate.org/orm/

6. Implementation

Services

REST-API

https

Angular

Spring Boot

Inc ludes

Components

JPA and Hibernate

Controllers

Request
mapping

DT
O

s
Do

m
ai

n
M

od
el

s
Frontend

Backend
D

atabase

Repositories

Services

Figure 6.9.: High level overview of the system architecture

91

6. Implementation

The frontend architecture is closely aligned to the architecture11 intended by the
Angular framework. Two of the basic building blocks in the Angular framework are
components and services. Both are simply classes, with decorators that indicate their
type and provide the necessary meta-data that tells the Angular compiler how to handle
them. Components control the different parts of the application. A component provides
a reusable view, consisting of an HTML template, a stylesheet as well as the necessary
logic. Services, in general, provide functionality which is not directly related to views.
In our case, this is mainly the communication with our REST-API via the Angular HTTP
client, which is based on the XMLHttpRequest interface exposed by browsers12, as well
as the communication between various components in cases where input and output
component bindings are not feasible, because the data would have to be passed through
multiple components. Another basic building block of an Angular application are
modules. Modules can include a set of components and services and help to organize
code into distinct functional units which can be very helpful in developing complex
applications. So far, the web application is kept in one root module due to its rather
small size, but with further extensions, it could quickly become advantageous to split
the application into multiple modules.

6.6. Class diagram

The following class diagram presented in Figure 6.10, based on the Unified Modeling
Language (UML) notation specification [86], presents the main elements of the applica-
tion. For a better overview and readability reasons, attribute types are omitted, as well
as reoccurring attributes that are the same for every class, namely "ID", "last updated"
and "created at".

The guideline definition represents the guidelines that exist in the overall guideline
pool of the application. It consists of information for the respective guideline that is the
same for each team, e. g. the title, description, rationale, etc. Furthermore, a guideline
definition belongs to a certain belt and multiple tags can be assigned to a guideline.
The actual guideline class represents an instance of a guideline that belongs to a certain
team. A team can have multiple guidelines and a guideline definition can be used by
multiple teams. For each guideline definition a team is using, a guideline instance gets
created to store the current fulfillment status as well as other additional information,
e. g. a team specific rationale and solution that the team can document in the case
that they would like to fulfill or use the guideline in a different way than the guideline
definition originally specified in the guideline definition. For a guideline, we do not use

11 https://angular.io/guide/architecture
12 https://angular.io/guide/http

92

https://angular.io/guide/architecture
https://angular.io/guide/http

6. Implementation

GuidelineDefinition

-title
-description
-rationale
-solution
-type
-data
-resources
-priority
-severity
-testMode
-archived
-createdByUserId
-lastUpdateByUserId

+getTeams()

Tag

-name
0..*0..*

Guideline

-status
-isFulfilled
-lastFulfillmentDate
-teamPriority
-overwrittenRationale
-overwrittenSolution

Team

-name
-isActive
-teamOwner

+getGuidelines()

GuidelineInstanceHistory

-userId
-date
-state
-description

User

-firstname
-lastname
-email
-password
-roles
-enabled

0..*

0..*

Belt

-name
-beltRank
-colorCode
-archived+uses

1 0..1

+is instance of

0..1 1

0..*
1

Achievement

-lastTimeStatusDisplayed
-lastStatusChange
-lastRefreshTime
-numberOfAchievedSubTypes
-numberOfAchievedSubTypesFulfilled
-fulfillmentRate

+calculateFulfillmentRate()

AchievementDefinition

-name
-category
-subCategory
-achievementType
-belt

+achieved by
0..*

1

-is instance of

0..* 1

-belongs to

0..1 1

Figure 6.10.: Underlying class diagram of the application

93

6. Implementation

a regular auto-generated ID, but a composite ID as a primary key which is composed
of the team ID and the guideline definition ID, because every guideline instance can
be uniquely identified by its associated team and original guideline definition. The
guideline of a team can also have multiple history entries which store information when
and by whom a certain fulfillment status change has been conducted. Lastly, multiple
users can be assigned to a team and a team can accomplish multiple achievements. At
the moment, the only achievement type is the belt achievement, which describes that
the team progressed into a higher belt. Nevertheless, for further extensions, the existing
model can be used to introduce additional achievement types, e. g. badges.

6.7. Possible extensions and next steps

Even if the current state of the application is already sufficient for usage in the case study
company, there are a large number of possible further extensions of the application.
Some of the possible next steps are described in the following.

Offer a rest endpoint for quality gate checks from build and deployment pipelines

The web application could be extended to expose an endpoint that can be called within
a build script by a build tool (e. g. Jenkins) as a quality gate, next to the other forms
of testing that are usually performed within a CI/CD pipeline (e. g. end-to-end
tests). The response of the web application indicates whether all necessary mandatory
guidelines for a deployment are fulfilled. The build and deployment would continue if
the response is positive, in case of a negative response the deployment would fail. This
is similar to how the integration of other tools works, e. g. how earlier versions of the
static code analysis tool SonarQube could be used to break the build13.

For the request, a standard GET request could be used, with an URL parameter
identifying the team (e. g. a unique team name or ID). With this information, the web
application can check whether all necessary guidelines are fulfilled or a sufficient belt is
reached. For usability purposes, the frontend could offer a code snippet for teams that
already includes their identifier and can easily be copied into the build script. A more
sophisticated future version could offer a dedicated plugin for common build tools.

Automated testing of guideline fulfillment

Instead of relying solely on the manual effort of agile team members or architects
to maintain the current fulfillment status for the different guidelines, the goal is to

13 https://docs.sonarqube.org/display/SONARQUBE53/Breaking+the+CI+Build

94

https://docs.sonarqube.org/display/SONARQUBE53/Breaking+the+CI+Build

6. Implementation

automatically check the compliance with guidelines, where possible. In the UI, a
small lock or a similar icon on a guideline could indicate that the guideline fulfillment
status cannot be changed automatically, but is determined by an automated test
running in the background. For the purpose of testing, the application could be
extended by an integration controller and service in the backend that collects data from
various sources that are relevant to the guideline fulfillment (e. g. from static code
analysis tools, configuration management databases, performance metrics from the
cloud infrastructure etc.). A testing service would then run the actual tests based on the
acquired data. To identify what needs to be tested to determine the fulfillment status of
the guideline, it would be helpful to allow the definition and management of KPIs for
guidelines first, which then provide a measurable value that should be automatically
testable in some cases.

Feedback for specific guidelines

To support the handling changes phase of the approach, it is important to collect
relevant feedback from all involved stakeholders. The possibility to quickly give
feedback for a specific guideline could facilitate a higher amount of feedback and more
target-directed feedback. By combining measurable feedback on a Likert scale with
qualitative feedback, the feedback can both be aggregated for statistical insights, e.
g. how well a guideline is perceived by the target stakeholders, but can also provide
qualitative insight into how a guideline could be improved. The web application could

Figure 6.11.: Possibility to provide feedback for specific guidelines

be extended to store a guideline maintainer for each guideline and the feedback could
then be send to that guideline maintainer. It could also be displayed as comments on
the guideline if transparent feedback is preferred. Furthermore, a new statistics page
could be introduced that aggregates and visualizes the feedback on guidelines. This

95

6. Implementation

should provide a good basis for the community to discuss, review and adjust existing
guidelines or for guideline maintainers to make minor tweaks to the guideline.

Export feature for audit-compliant documentation

For audit requirements, it might be necessary to be able to export some documentation
on the guideline compliance that, amongst other information, includes the links to the
artifacts that are necessary for the guideline fulfillment. This documentation then has
to be stored safely for a pre-determined time frame, often over multiple years. For agile
teams and other stakeholders, it could be very valuable and time-saving when they do
not have to create those documents for auditing reasons manually anymore, but if they
could instead rely on the application to automatically export the necessary information.

96

7. Evaluation

In this chapter, we describe the evaluation of the resulting artifacts of this thesis. In the
first section, we describe the goal of the evaluation and how we conduct the evaluation.
In the sections thereafter, we present the actual results of the evaluation. Section 7.2
presents the evaluation of the collaborative approach, Section 7.3 demonstrates the
results of the evaluation of the tool support.

For the evaluation, semi-structured, qualitative, semi-structured expert interviews
with fifteen participants have been carried out. The participants all belong to the
case study organization and are active in roles that are relevant for the scope of the
developed artifacts, mainly enterprise architects and agile developers.

7.1. Goal and methodology

In this section, we describe the approach of the conducted evaluation.
For the evaluation of our two artifacts, we use the means of our case study. Within

a case study, interviews can be a suitable source for information gathering for the
evaluation of information systems artifacts [26]. Based on the evaluation method types
in design science research presented by Peffers et al. [88], our evaluation methodology
could be categorized as a combination of "Prototype", which is described by Peffers et
al. [88] as "Implementation of an artifact aimed at demonstrating the utility or suitability
of the artifact", "Expert Evaluation", which is summarized as an "Assessment of an
artifact by one or more experts" [88] and "Case Study", which is the "Application of an
artifact to a real-world situation, evaluating its effect on the real-world situation." [88].

The goal of the evaluation is, first of all, to assess whether the artifacts are perceived
as valuable by key stakeholders and potential users, and second, to identify and provide
insights for further refinements of the developed solution artifacts.

To achieve this, we conducted semi-structured interviews with experts within the
organization based on an evaluation questionnaire we developed in multiple iter-
ative steps. The questions of those semi-structured expert interviews are listed in
Appendix A.1.

For the purpose of reaching the goal of the evaluation, we demonstrated the key
results of our research and presented the two resulting solution artifacts during the
interviews, followed by the interviewees answering the questionnaire.

97

7. Evaluation

Table 7.1 lists all interviewed experts, their main role and their professional experience
in years in enterprise architecture and agile development. As presented in the table,
on average, the interviewed enterprise architects have a wealth of experience in agile
development, which makes them especially suited for the purpose of the evaluation.
Most of the enterprise architects and some of the agile developers would have even
more years of experience in software development if traditional development methods
are taken into account. But due to the nature of this thesis, with the main focus
being on agile and lean environments, we list only their agile development experience.
Furthermore, for comparison and simplicity reasons, we categorize a participant with
the main role of being a solution architect as an enterprise architect due to the closely
related tasks and activities carried out in comparison to the other interviewed enterprise
architects. The role of the enterprise architects also varies in detail, with some enterprise
architects focusing more on development tasks and being closer to agile teams as others.
For the purpose of our evaluation, it was important to get a diverse impression and
opinions from different perspectives, hence the balanced distribution of interviewed
roles.

No Alias Main role Professional experience in years

Enterprise Architecture Agile Development
1 EA1 Enterprise Architect 2 5
2 EA2 Enterprise Architect 1 10
3 EA3 Enterprise Architect 1.5 6
4 EA4 Enterprise Architect 3 6
5 EA5 Enterprise Architect 5 15
6 EA6 Enterprise Architect 2 -
7 EA7 Solution Architect 6 10
8 EA8 Enterprise Architect 2 5
9 AD1 Agile Developer - 7
10 AD2 Agile Developer - 1
11 AD3 Agile Developer - 3
12 AD4 Agile Developer - 1
13 AD5 Agile Developer 1 3
14 AD6 Agile Developer - 7
15 AD7 Agile Developer 1 3

Table 7.1.: Evaluation interview partners

98

7. Evaluation

7.2. Evaluation of the collaborative approach

This section presents the evaluation results of the collaborative approach, introduced
in Chapter 5, in detail. For this purpose, we present the respective question of the
evaluation questionnaire, the quantitative results for each question as well as a summary
of the qualitative answers that were given by the participants. In the last part of this
section, we summarize and provide an overview of the results of all questions evaluating
the collaborative approach.

7.2.1. Value for agile teams and enterprise architects

Introduction in the questionnaire: "The approach focuses on creating a com-
munity of developers and solution architects from different agile teams as
well as enterprise architects, meeting regularly, discussing and deciding on
architecture principles and guidelines together."

Question 1: In your opinion, how valuable is such a collaboration for agile
teams?

4 4

5

2

0

2

4

6

8

10

V E RY
V A LUA BLE (5)

V A LUA BLE (4) NE UT RA L (3) LE S S
V A LUA BLE (2)

NOT V A LUA BLE
A T A LL (1)

N
U

M
BE

R
O

F
IN

TE
RV

IE
W

 P
AR

TN
ER

S

V A L UE FOR A GIL E TEA M S

Enterprise Architects Agile Developers

Median
Total Average
Std. Deviation

Average (EAs)
Average (Devs)

5
4.6
0.49

4.5
4.7

Figure 7.1.: Evaluation results for question 1

The close collaboration between agile teams and enterprise architects, as suggested
in the collaborative approach, is rated as very valuable by the interviewees. The agile
developers rate the value for themselves slightly higher as enterprise architects consider
the value for agile teams.

One of the main advantages of the approach which is identified and mentioned by
multiple participants is that the approach facilitates a better understanding (EA1, EA2,
AD3, AD4, AD5). The interviewees specifically refer to a better common understand-
ing (AD5), a more conclusive understanding of the global idea of architecture in an

99

7. Evaluation

organization (AD4), a better understanding of guidelines (AD3) and better access to
information and guidance (EA1). The approach also provides a better possibility to get
insights into topics developers usually do not focus on (AD5). Teams mostly concentrate
on reaching a local optimum, but do not necessarily know the overall context (EA7).
Other commonly stated themes are the better, shorter feedback cycles and the regular
exchange, which can lead to continuous improvements of existing guidelines (AD5,
AD3, EA3) and gives a better impression "what works and what doesn’t" (EA3). Teams
can then save time through good guidelines and can focus more on their development
activities (EA6). EA5 stresses that "architecture won’t work without input from those
which have to implement it at the end". Such a close collaboration as suggested in the
approach could significantly increase acceptance within the teams (AD6, EA8). EA4
sees a better awareness of principles and guidelines, ensuring that teams do know
about them and do not ignore guidelines during their work, which otherwise can
cause problems like delays and higher costs, e. g. by not being allowed to deploy to
a productive environment. The closer collaboration not only between the enterprise
architects and agile teams, but also between the agile teams themselves, can contribute
to the development of products that are more homogeneous and fit together more
seamlessly (EA7). Furthermore, teams can profit from the experience of others and not
make the same mistakes (EA6). There is also a high value because of the better, more
joint cross-team direction (EA4) and increased speed through direct communication
and feedback (EA2).

AD1 stresses that representatives from other relevant involved stakeholders should
also be included (e. g. operations, IT-security, data protection). AD2 states that even
if both sides can profit from the collaboration, it is also associated with more effort.
Teams could also be worried that they lose some freedom because of guidelines, but on
the other side, they get a say in the architectural topics (EA6).

Question 2: In your opinion, how valuable is such a collaboration for
enterprise architects?

Similar to the first question, the value for enterprise architects is also considered very
high. Agile developers estimate the value for enterprise architects slightly lower than
enterprise architects rate the value of the collaborative approach for themselves.

The value for the enterprise architects is seen by EA4 in "dissolving the ivory tower,
more direct contact with the teams, being closer to the results and how principles and
guidelines affect the results". This statement fits well to some of the points that are
also listed by multiple other interviewees: The approach could help architects to learn
that top-down processes not always work (EA6) and that "one architect can’t know
everything, people who implement it might come up with better or more pragmatic

100

7. Evaluation

7

1

4

2

10

2

4

6

8

10

12

V E RY
V A LUA BLE (5)

V A LUA BLE (4) NE UT RA L (3) LE S S
V A LUA BLE (2)

NOT V A LUA BLE
A T A LL (1)

N
U

M
BE

R
O

F
IN

TE
RV

IE
W

 P
AR

TN
ER

S
V A L UE FOR ENTERPRISE A RCHITECTS

Enterprise Architects Agile Developers

Median
Total Average
Std. Deviation

Average (EAs)
Average (Devs)

5
4.67
0.6

4.88
4.43

Figure 7.2.: Evaluation results for question 2

solutions" (EA5) and prevent "architecture in the ivory tower" (AD7). They can establish
close contact with the teams, which is often not the case, and they are closer to the
actual issues (EA6, EA7, EA8). It can also help architects to better understand the
worries and challenges of developers (AD5). For architects, it is important to know the
problems of "the base" (AD4).

More traditional groups (e. g. the committees) often lack the feedback what impact
the decision actually had after they were made and applied during implementation
(EA6, EA8). The value in the approach, on the other hand, is seen in the ability to
receive faster and better feedback of agile teams (EA2), as well as direct feedback
to guideline proposals, so that adjustments can be discussed together immediately
(AD6). These better feedback loops and the closer collaboration could lead to a better
applicability of guidelines (EA3), because the input of developers shines light on the
aspect whether certain guidelines even can be implemented at all (AD3) and whether
they actually work in practice (AD7). It also allows architects to adopt guidelines
from teams that might already use their own team-specific guidelines (AD5). As a
result of the collaboration and letting teams join in on the process, they can spark
more motivation in teams (EA1), increase awareness and therefore compliance because
"rules must be known in order to be followed" (EA4). Finally, the approach would also
facilitate better transparency as it structures and centralizes collaboration (EA1) and
because of the feedback cycles and KPI measurements (EA1, EA2).

7.2.2. Challenges

In contrast to the previous questions, the following question is of a purely qualitative
nature. Therefore, there are no quantitative results.

101

7. Evaluation

Question 3: What challenges do you see in the actual implementation of
such a community? In your opinion, which problems need to be considered
and solved in order to make the collaborative approach successful?

The first of the identified challenges by the expert interviewees is the necessary
organizational shift and cultural fit. EA4 states that the presented approach could
be especially challenging for organizations with a structure close to traditional line
organizations (very hierarchical, with the line of command being carried out from
top to bottom). An approach like the presented one requires that the top and middle
management have to be willing to give up power and fully commit to the new structure
(EA4). A similar point is made by AD2, who explains that architects have to be open
to listen to the developers and let them influence their decision making (AD2), which
might result in less power and authority of the architects. Similar to this opinion, EA8
notes that both agile teams and enterprise architects have to be open for approaching
each other and there must be a common willingness for change. EA4 acknowledges
that this requires a change progress and that it may take some time. EA6 also assesses
that the approach, in general, would need time to be able to provide value. Regarding
the organizational and cultural aspect, EA3 puts emphasis on the "people" aspect and
sees the challenge on how to build the community in a way that the participants get
to know each other as people and not by their roles (which may lead to the tension of
"police" vs. developers), so that collaboration on a constructive and open level can take
place. Since communities build on the passion and contribution of its members, the
organizational culture has to encourage such a community so that enough participants
are available (AD7). This also means that members of agile teams is given the time
by the management, product owners, etc., to participate in such a community (EA7).
A common challenge in these communities is that potential participants prioritize
the meetings that are mandatory for them (e. g. planning meetings, retrospectives,
grooming etc.). That is why it might be challenging if there is no mandatory aspect to
the community (EA7).

The second challenge is the potential conflict of interest. For example, acceptance
at the beginning of the community establishment could be a problem. Agile teams
would have to invest a part of their time, but it does not immediately help them to
reach their project or product goal, which has priority for them (EA6). Furthermore,
developers usually tend to prefer fewer guidelines because the resulting restrictions and
additional effort might "annoy” them (AD3). This could lead to developers blocking
new guidelines or removing existing ones, as well as to developers and architects
not finding common ground (AD3). In general, architects and agile teams might
have conflicting goals, so there has to be a clear way and rules how decision making
can be achieved anyways (AD1). Therefore, it has to be clear for both sides that the

102

7. Evaluation

common goal is to find pragmatic solutions that are acceptable for both sides (AD6).
Furthermore, a common definition and consistent use of important recurring terms to
facilitate a better understanding between agile teams and enterprise architects can be
helpful (EA8).

The third major challenge is scalability. The question regarding scalability is how
the collaborative approach could be implemented with a high number of teams (EA6).
AD5 notes that in the case of a high number of teams, it is challenging to introduce
overarching, uniform guidelines. The size of the community could become a problem,
because "if you send one representative for each team to join the community, the group
will become very large and possibly inefficient" (EA5). This requires that all decisions
have to be made transparent and well documented for everyone who is not joining the
community in person (EA6). A challenge that goes hand in hand is how to publish
that information in a way that the teams understand it easily and fast. A related
challenge is how to integrate new teams in a way that they don’t get left behind by
more experienced teams (EA6). Also, there is the need for someone to take care of
creating meeting agendas and announcements to the community, because otherwise,
the motivation to participate decreases (EA7).

The fourth challenge is setting the responsibilities and scope of the community. The
scope has to be very clear, that means how far does the freedom and flexibility of the
community go and what is "non-negotiable” (AD6). There are regulatory requirements
which need to be fulfilled no matter how the community votes. The community could
decide how to implement those, but the final acceptance still depends on regulators
(EA5).

7.2.3. Community activities and process steps

The next questions evaluate the proposed activities of the community and the more
detailed steps of the process.

Question 4: It is important that development teams do not just get architec-
ture principles and guidelines dictated by other stakeholders, but that they
are the main stakeholder themselves in managing architecture principles
and guidelines and are involved in the whole approach (steps 1-7).

The main reason for agreeing with the statement above is the better acceptance and
motivation of agile teams that could result from involving them more closely in the
process and giving them the opportunity to have a say (AD2, EA1, EA2, EA4, EA6,
EA8). EA4, for example, states that "principles and guidelines are mainly created by the
enterprise architects, but the involvement of agile teams is extremely important for the
acceptance and compliance by agile teams". EA8 explains that it is very important for

103

7. Evaluation

5

2

4
3

1
0

2

4

6

8

10

S T RONG LY
A G RE E (5)

A G RE E (4) NE UT RA L (3) D I S A G RE E (2) S T RONG LY
D I S A G RE E (1)

N
U

M
BE

R
O

F
IN

TE
RV

IE
W

 P
AR

TN
ER

S
A GIL E TEA M S A S THE M A IN STA KEHOL DER

Enterprise Architects Agile Developers

Median
Total Average
Std. Deviation

Average (EAs)
Average (Devs)

5
4.53
0.62

4.38
4.71

Figure 7.3.: Evaluation results for question 4

the acceptance to "turn those affected into actors". The involvement of teams also helps
validate the effect of governance efforts during actual implementation (EA7, AD7) and
can prevent too much time being spent on theoretical concepts (EA7). Other reasons
for agreeing with the statement include the reasons already described in the previous
section regarding the value of the collaborative approach for agile teams and enterprise
architects.

Some interviewees partially agree due to the following reasons. Some things have
to be regulated and enforced because developers do not like to do them because they
mean additional effort, but they might still be necessary (AD3). Furthermore, EA5
states that "they are ’a’ main stakeholder, but not ’the’ main stakeholder. Finance,
company strategy etc. also significantly influence architecture (EA5). Similarly, EA3
feels that the wording of the statement is too opinionated, because the main focus
should not be on developers or any other role, but on the business value (EA3). This
fits well with the view that agile teams should be closely involved, but clear guidance
from an overall perspective is still needed (EA1).

Question 5: Agile teams can provide valuable input for creating and refining
common architecture principles and guidelines drivers (especially based
on their implementation experience, the issues they face on a daily basis,
team-specific agreements, and their technical knowledge and insights in
innovative technologies) (step 1).

There is a high agreement of the participants with the statement and the described
ways on how agile teams can contribute to drivers. Issues are seen as important,
because not all, but often only a little of the implementation challenges can be identified
up front, even more challenging is the identification of an actual solution (EA1). Also

104

7. Evaluation

4 4

5

2

0

2

4

6

8

10

S T RONG LY
A G RE E (5)

A G RE E (4) NE UT RA L (3) D I S A G RE E (2) S T RONG LY
D I S A G RE E (1)

N
U

M
BE

R
O

F
IN

TE
RV

IE
W

 P
AR

TN
ER

S
V A L UA BL E INPUT OF A GIL E TEA M S

Enterprise Architects Agile Developers

Median
Total Average
Std. Deviation

Average (EAs)
Average (Devs)

5
4.6
0.49

4.5
4.71

Figure 7.4.: Evaluation results for question 5

problems of the specific domain often only appear during the concrete implementation
(AD6). The experience of the agile teams is seen as important as well, to achieve
experience-based decision making instead of a "perfect world” theory (EA2). One
developer would even like that teams should give the main input for the drivers and
that enterprise architects mainly take care of the governance based on that input (AD4).

Regarding the question what other valuable input teams can provide next to the four
examples listed in the above statement, a pattern could be identified regarding two
additional examples of input that were mentioned more than once. Firstly, the ability
of teams to provide concrete instructions, examples, code snippets or best practice
implementations for others (AD3, EA5, EA6) and the possibility to form an open
source community around the guidelines, thereby also taking ownership of the shared
artifacts (EA5). Secondly, the ability to validate principles and guidelines and test,
if they can actually be applied or if they might lead to other problems (EA4, EA6,
EA7, AD7). Another point being mentioned is that teams can include feedback from
end customers who use the software and might "suffer” from certain guidelines or
the results and effects of certain guidelines (AD5). Furthermore, they could provide
valuable experience for other teams by presenting mistakes that have occurred in a
team (EA8). However, this requires an appropriate corporate culture. A similar point is
raised by AD7, who stresses that in his experience, teams often face similar problems
that could be solved once for all teams. Therefore the input of teams regarding these
issues is import to identify and tackle those common problems (AD7).

Question 6: The input of enterprise architects to principles and guidelines
is still important because of their insight into multiple teams, knowledge of
business goals, strong network and their resulting ability to align multiple
teams, business and IT (overall).

105

7. Evaluation

6

2

5

1

10

2

4

6

8

10

12

S T RONG LY
A G RE E (5)

A G RE E (4) NE UT RA L (3) D I S A G RE E (2) S T RONG LY
D I S A G RE E (1)

N
U

M
BE

R
O

F
IN

TE
RV

IE
W

 P
AR

TN
ER

S
V A L UA BL E INPUT OF ENTERPRISE A RCHITECTS

Enterprise Architects Agile Developers

Median
Total Average
Std. Deviation

Average (EAs)
Average (Devs)

5
4.67
0.6

4.75
4.57

Figure 7.5.: Evaluation results for question 6

Similar to the previous question, there is again a high level of agreement from both
agile developers and enterprise architects. An important advantage is the cross-sectional
knowledge, which is mostly missing or not as pronounced outside of the enterprise
architecture team (EA4). The network of enterprise architects can also save the teams a
lot of time and effort to find suitable necessary contacts or experts within the organi-
zation (EA4). Additionally, enterprise architects are important for the communication
with the management and to ensure the reporting ability, e. g. enterprise architects can
select and communicate KPIs to management (EA4). Developers often do not have the
business goals and business value in mind because they are too focused on technical
aspects and the actual coding (AD3). This view is similar to EA6 who states that an
overall perspective is important because a development team "thinks more from sprint
to sprint”, enterprise architects, on the other hand, can support with the long-term
focus (EA6). Teams also mostly focus on solving a single problem within their scope,
which might be subpar from an enterprise perspective (EA1). Another developer agrees
that enterprise architects are helpful, because then teams can and should focus on their
own topics, having to coordinate with other teams all the time is rather obstructive
(AD6), whereas enterprise architects do not face as much operational pressure and can
commit more time into certain topics (EA3). Nevertheless, there is also a view that if
there is a good way for the teams to discuss and create principles, enterprise architects
would be less necessary (AD4). This is opposed by the opinion that overarching topics
cannot be done by the teams without losing their product focus (AD1). EA5 also agrees
that enterprise architects are still needed, but stresses that they need to work in a lean
and practical way and states that "Powerpoint slides which have nothing in common
with reality provide no benefit and cause huge distractions" (EA5).

Question 7: It is valuable to specify generic architecture principles to one

106

7. Evaluation

or more specific guidelines.

1

3

3

2 2
3

1
0

1

2

3

4

5

6

7

S T RONG LY
A G RE E (5)

A G RE E (4) NE UT RA L (3) D I S A G RE E (2) S T RONG LY
D I S A G RE E (1)

N
U

M
BE

R
O

F
IN

TE
RV

IE
W

 P
AR

TN
ER

S

DERIV E SPECIFIC GUIDEL INES FROM PRINCIPL ES

Enterprise Architects Agile Developers

Median
Total Average
Std. Deviation

Average (EAs)
Average (Devs)

4
3.67
0.87

3.63
3.71

Figure 7.6.: Evaluation results for question 7

The question of whether it is valuable to transform generic architecture principles
into more specific guidelines received a mixed response. On the one hand, one
interviewee agrees that principles are often too generic and abstract (e. g. "reusability”,
"microservices”, ..), and that it is very important to break principles down to something
more specific and fill them with more content (EA4). Another one argues that such
a specification would help to bring top-down and bottom-up approaches together
(EA6). EA8 agrees with this view and stresses that specifying principles to guidelines
can connect the more general, strategic top-down perspective with more concrete
solutions and the bottom-up perspective. Some agile developers argue that "squishy”
guidelines are useless (AD3) and that specification is important to understand what
exactly the principle is about, as well as to achieve a common understanding (AD4),
clarity and comprehensibility (AD2). Multiple teams might have to implement the
same principle in a different way, thus guidelines can provide a better starting point for
actual implementation based on the type of the problem and previous experience with
the suggested implementation (EA7).

On the other hand, even if more specific guidelines give clearer guidance, they are
also harder to maintain (EA1). Also, it is difficult to introduce more specific guidelines
across-teams, because that specificity might not match other teams, so more general
may be better in this respect (AD5). Furthermore, it depends on the way how exactly
principles, guidelines and KPIs are related and organized, because the relationship is
not always hierarchical and there might be many dependencies (EA2) or conflicting
goals (EA6). Also, it would have to be more clearly defined what a principle is, what
a guideline is and where the exact difference is (EA3, EA8). Whether something is a

107

7. Evaluation

principle or a guideline could also depend on the individual interpretation. EA5 argues
that such a mapping can be a lot of overhead and it is hard to apply to practical work.
There is the risk that people spend months to do certain mappings, which are never
really used like this later on (EA5).

Question 8: It is valuable to specify one or multiple KPIs for each guideline.

5
3

4

2
1

0

2

4

6

8

10

S T RONG LY
A G RE E (5)

A G RE E (4) NE UT RA L (3) D I S A G RE E (2) S T RONG LY
D I S A G RE E (1)

N
U

M
BE

R
O

F
IN

TE
RV

IE
W

 P
AR

TN
ER

S

DEFINE KPIS FOR GUIDEL INES

Enterprise Architects Agile Developers

Median
Total Average
Std. Deviation

Average (EAs)
Average (Devs)

5
4.33
0.94

4.63
4.0

Figure 7.7.: Evaluation results for question 8

The results of this question show quite a discrepancy between the average answers of
the two different roles. Nevertheless, in total, there is a large agreement regarding the
questions if KPIs should be defined for guidelines. On the positive side, the interviewees
value that KPIs make it measurable if a guideline is being followed or not (AD3). It also
makes it possible to see and measure progress within a certain guideline, instead of
only being able to tell if a guideline is fulfilled or not fulfilled (EA6). Furthermore, KPIs
specify what needs to be done by the teams, while leaving them the space to find their
own solution (EA1). Thereby, they can help to facilitate a better understanding of what
a guideline actually means (AD7). KPIs can also provide an important data basis to
get an idea of how the company is performing at the moment, but also to improve the
guidelines themselves (EA4). KPIs could also be very valuable to measure the effects of
guidelines themselves and if they actually have a changing impact (AD2). The ability
to have measurable indicators is especially valued by the interviewees because concrete
KPIs would make a more automated testing of guidelines possible (EA2, EA3, EA4,
EA5, EA6, AD4, AD7). This would save time (EA6, AD4) and help to scale applying
guidelines to multiple teams (EA5). Nevertheless, there are also potential risks and
doubts mentioned by the participants. Defining KPIs for a guideline might not always
be possible or make sense (AD5, EA5, EA8). There is also the risk with KPIs of "you
get what you measure” (EA5), meaning that teams focus only on fulfilling the specific

108

7. Evaluation

KPIs anymore, without taking in account aspects that are important, but might be
difficult to measure. Another participant is not sure how this could be realized on a
large scale and questions if it makes sense from a feasibility perspective regarding the
involved cost and potential value (AD6). Also, there is the concern that KPIs are used
to control and restrict teams, but teams should be allowed to decide on their own to
what degree the implementation of a specific guideline makes sense (AD1). There is
also the challenge that KPIs should provide stable, objective measurement over time
(EA2, EA4) and therefore they have to be long lasting, because if they are changed too
often, they can not be used for time comparisons, e. g. over multiple years, which
diminishes their value (EA4).

Question 9: It makes sense to categorize guidelines (e. g. by tags), to define
target groups for guidelines and to use those tags and target guidelines later
to map those resulting sets of guidelines to certain project criteria (because
not all guidelines are applicable for all types of projects, but there are certain
patterns of important guidelines for similar projects) (step 3).

5

3

3

2

1 1
0

1

2

3

4

5

6

7

8

9

S T RONG LY
A G RE E (5)

A G RE E (4) NE UT RA L (3) D I S A G RE E (2) S T RONG LY
D I S A G RE E (1)

N
U

M
BE

R
O

F
IN

TE
RV

IE
W

 P
AR

TN
ER

S

CA TEGORIZE GUIDEL INES A ND M A P TO TEA M CHA RA CTERISTICS

Enterprise Architects Agile Developers

Median
Total Average
Std. Deviation

Average (EAs)
Average (Devs)

5
4.33
0.87

4.63
4.0

Figure 7.8.: Evaluation results for question 9

The statement is mostly supported. Positive aspects that are mentioned is that it is
important to define the target group to demonstrate the relevance (EA6), enable a better,
time-saving organization and navigability of guidelines (EA4, AD2, EA7) and to achieve
a better fit to the respective product, project or team characteristics (EA2). Different
products, projects or teams may have very different requirements and the guidelines
should be adjusted accordingly (EA1, EA2, AD1, AD5) for example a system that is
productive and has a lot of consumers already might have to fulfill critical guidelines
more strictly than one without any productive consumers yet (AD1). Nonetheless, EA1

109

7. Evaluation

is not certain if the decision criteria can be simplified into a tag or target group. AD3
has a similar view and states that tagging might not be the ideal solution, but a concise
statement if the guideline is important for a certain undertaking is helpful. A possible
downside could be that if target groups are defined, other stakeholders will not even
look through the other information, which might provide insights into cross-project or
enterprise-wide information that could be valuable (AD4).

Question 10: It makes sense to let the group of developers and (enterprise)
architects vote if a new guideline should be accepted into the pool or if a
certain change should be made (as long as the new or changed guideline
is not based on a legal requirement), instead of solely relying on a senior
architect or manager to make that decision alone (step 4).

3

1

4

1

3

1

2

0

1

2

3

4

5

6

S T RONG LY
A G RE E (5)

A G RE E (4) NE UT RA L (3) D I S A G RE E (2) S T RONG LY
D I S A G RE E (1)

N
U

M
BE

R
O

F
IN

TE
RV

IE
W

 P
AR

TN
ER

S

COM M UNITY V OTE FOR A DDING OR CHA NGING GUIDEL INES

Enterprise Architects Agile Developers

Median
Total Average
Std. Deviation

Average (EAs)
Average (Devs)

4
3.67
1.01

3.88
3.43

Figure 7.9.: Evaluation results for question 10

The question of whether the community should vote on certain decisions instead
of having a single or a few decision makers in a lead or senior role received mixed
feedback, with slightly more agreement than disagreement.

The main argument that is being brought forward on the agreement side is the higher
acceptance of decisions (EA1, EA2, EA4. EA6). EA1 names the higher motivation
of teams and better approval of the decisions as positive aspects. In line with the
acceptance, the feeling of ownership for the guidelines could be improved as well (EA2).
EA4 states that it is "not helpful if the role alone does provide a more powerful voting
right", but architects would have to very clearly point out possible consequences of
community decisions. AD4 is in favor of the voting because of the belief of the "wisdom
of the many", leading to better decisions. EA7 argues that it is difficult to analyze all
aspects of complex decisions, therefore it is very helpful to leverage the knowledge

110

7. Evaluation

of the community to achieve better decisions. In addition, a joint vote can prevent
discussions later on in the process of applying principles and guidelines (EA7). AD7
raises the question of how good a principle or guideline can be when the majority of
agile teams are against it. Nevertheless, he also sees the possibility of decisions that
might receive a lot of disapproval by agile teams, although they are important for the
future of the organization (AD7). AD5 likes the idea in general, but notes that such
a voting approach might be difficult to implement with a large number of teams and
team members. Similar to this view, EA4 raises the question if a voting mechanism is
feasible in practice, because it means additional effort, which might not be possible in
some organizations.

A challenge with the community voting is how mandatory guidelines should be
handled and how they can be separated from other guidelines (EA2), because legal
requirements and top-level management decisions have to be taken in account and
usually cannot simply be overruled (EA4). There is also the question if not only legal
aspects should be excluded from the vote, but also security guidelines (EA6). It also
has to be ensured that useful and important guidelines are not being blocked by the
participants, so the maturity of the community and participants has to be high enough
(AD6, EA6). The introduction of new guidelines could also mean a lot of effort, e.
g. because of necessary changes to existing architecture, which is why developers
might also try to block new guidelines (AD3). Therefore, there should be more focus
on an open discussion instead of an actual vote (AD3). AD2 agrees with the general
idea of voting, but believes that there should be someone in the end to take over the
responsibility of the decision and who can use some sort of veto power. AD7 has a
similar point of view and sees the necessity of decisions driven from an organizational
perspective, but also stresses that it is important to get an idea on how difficult the
introduction of certain principles or guidelines would be because of the potential
disapproval by agile teams. EA5 adds that an acceptance criterion for guidelines
should be a practical implementation with at least two teams or technologies, wherever
possible.

Question 11: It is important that enterprise architects support agile teams
in applying architecture principles and guidelines (step 5).

This proposition received strong support from both groups, with developers agreeing
especially strongly. The main argument for the agreement of developers is that enter-
prise architects should not only introduce theoretical guidelines, but make sure that
teams can actually use them in practice (AD5) and work together with the agile teams
to develop a specific implementation (AD3). Since some guidelines might be more
complicated to implement, support can be valuable (AD6). The close collaboration is

111

7. Evaluation

6

1

3
4

1
0

2

4

6

8

10

S T RONG LY
A G RE E (5)

A G RE E (4) NE UT RA L (3) D I S A G RE E (2) S T RONG LY
D I S A G RE E (1)

N
U

M
BE

R
O

F
IN

TE
RV

IE
W

 P
AR

TN
ER

S
ENTERPRISE A RCHITECTS SHOUL D SUPPORT A GIL E TEA M S WITH A PPL Y ING

PRINCIPL ES A ND GUIDEL INES

Enterprise Architects Agile Developers

Median
Total Average
Std. Deviation

Average (EAs)
Average (Devs)

5
4.53
0.62

4.25
4.86

Figure 7.10.: Evaluation results for question 11

also seen as important regarding the knowledge and experience transfer from architects
to developers (AD1, AD4). AD2 adds that this could also help architects to get a
better idea whether guidelines are actually used. The regular presence of enterprise
architects is very important for acceptance and can also help agile teams to overcome
their inhibitions to actively approach enterprise architects, thereby leading to agile
teams communicating more openly with enterprise architects (AD7). The enterprise
architects have a similar point of view and argue that enterprise architects might have
additional insight and knowledge that can be helpful for applying a guideline (EA4).
The support is also crucial because it ensures that enterprise architects are closer to
the teams and gain a deeper understanding of the actual implementation (EA4). The
close work with teams also further increases acceptance and provides concrete direct
feedback to the enterprise architects (EA2). EA3 raises the question of how exactly
the support should look like, e. g. with classical documentation, pair programming
or other methods. EA5 stresses that in the approach, the community could also help
itself to implement the guidelines. Scaling the support of enterprise architects can be
difficult due to capacity constraints (EA8). EA6 takes a similar view and suggests that
teams act as self-responsible as possible in applying the principles and guidelines, but
they should also be able to request support whenever necessary (EA6).

Question 12: Teams should be self-responsible for managing their compli-
ance with guidelines and not controlled by team-external stakeholders (e. g.
enterprise architects) (step 6).

The results show that the self-responsible management of compliance by teams is
the most controversially discussed statement of the evaluation questionnaire, with a
slight overall disagreement. A positive aspect mentioned is that there is a much better

112

7. Evaluation

1

1
4

1

3 3
2

0

1

2

3

4

5

6

7

S T RONG LY
A G RE E (5)

A G RE E (4) NE UT RA L (3) D I S A G RE E (2) S T RONG LY
D I S A G RE E (1)

N
U

M
BE

R
O

F
IN

TE
RV

IE
W

 P
AR

TN
ER

S
A GIL E TEA M S SEL F-RESPONSIBL E FOR COM PL IA NCE

Enterprise Architects Agile Developers

Median
Total Average
Std. Deviation

Average (EAs)
Average (Devs)

3
2.8
1.05

3.13
2.43

Figure 7.11.: Evaluation results for question 12

chance to shape the sense of responsibility of the teams, so that they more often ask
themselves the question "what is the right thing to do?” (AD1). EA6 takes a similar
perspective and states that "if you are responsible for something, you take better care of
it". If teams are not responsible for managing the compliance themselves, they may also
feel that they only need to comply with certain guidelines if someone explicitly notifies
the team (EA7). However, most participants state that compliance with guidelines
should be controlled. It is great if teams are self-reflective and they should also be
granted a leap of faith so that they can decide for themselves (AD7). Nevertheless, at
some point, compliance should be verified by an external stakeholder (AD7). If there
is no dedicated regulatory body, then perhaps not everything will be implemented
(AD3). Teams could do it themselves, but it would be better to monitor and control
externally, also to give more time and space to the teams for actual development
(AD5). It is highly dependent on the motivation to comply with the guidelines, but
if teams participate in the guideline creation, they should also not have a problem
with being controlled at this point (AD6). AD4 is in line with this perspective by
stating that if the community including developers voted for a specific architecture,
everyone should commit themselves to it and it should be controlled accordingly. The
control does not necessarily has to be done by an external stakeholder, but at least the
developers should control each other (AD4). EA2 states that there should be a way to
guarantee compliance to certain "mandatory” guidelines, e. g. the ones that are based
on legal requirements. EA5 adds that there is always the need for control in regulated
environments. As long as the team does not have the ultimate, full liability over their
actions, a complete self-responsible compliance management does not work (EA5). EA8
has the opinion that the full self-responsibility for the compliance of guidelines would
be a desirable target state, but it requires a very high level of maturity on the part of

113

7. Evaluation

the agile teams and could also be exploited. Governance by external stakeholders can
achieve more fairness by having the possibility to intervene and initiate consequences,
if necessary (EA8).

7.3. Evaluation of the prototype

7.3.1. Assessment of the main goals of core features

The participants of the evaluation were asked to rate each of the following statements
of the questionnaire twice. Once, for rating the situation without the support of the
presented tool, and once, with the support of the tool. This is done to obtain reference
values of the current situation and be able to compare those with the ones acquired
from the assessment of the situation with tool support. Thereby, it is possible to assess
whether the tool support fulfills its main goals by improving the current situation
significantly. Contrary to the previous evaluation section, in which the participants
were asked to choose their answers as universally as possible, driven mainly from their
general experience in their role and less from case organization specific experience,
the current situation now relates to the situation at the case organization presented
in Chapter 4. Figure 7.12 shows the results of the evaluation of the tool support
based on the questions that are briefly described below. The results indicate that the
situation is already clearly improved with the help of the prototypical web application.
Nevertheless, together with additional qualitative feedback by the users, it also shows
there is still potential for further improvements and extensions of the web application.

Question 1: Agile teams and enterprise architects have a good overview on
which guidelines agile teams must or should adhere to.

The question relates mainly to the team-specific guideline overview feature as pre-
sented in Subsection 6.3.1 as well as the guideline selection feature of the application
and its goal to provide a better overview of the guidelines.

Question 2: It is easy for agile teams and enterprise architects to give
feedback on guidelines.

This question relates to the feedback feature presented in the next steps in Section 6.7
and shown in Figure 6.11. The feature was prototypically implemented for the purpose
of the demonstration and evaluation, but the data is not further processed and persisted
yet.

Question 3: It is a lot of effort to identify which guidelines a specific agile
team is fulfilling and which ones it is not fulfilling.

114

7. Evaluation

1

1,5

2

2,5

3

3,5

4

4,5

5

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6

Evaluation results of the tool support for the collaborative approach

Without Tool-Support With Tool-Support

Strongly
agree

Strongly
disagree

Figure 7.12.: Evaluation results of the tool support

This question relates to the team-specific overview of guidelines, including fulfillment
indicators for each of the guidelines that are used by a team, which is represented by
green and red bars, as described in Subsection 6.3.1.

Question 4: It is easy for agile teams to look through existing guidelines
and select the guidelines that fit their use cases.

This question revolves mainly around the select existing guideline feature and the
mapping of guidelines to project characteristics when creating a new team.

Question 5: It is simple to get an overview of which agile teams are compli-
ant to which guidelines.

The question addresses the possibility to select between multiple teams to receive
insights and transparency into the guideline compliance and usage status as well as the
statistics screen summarizing multiple teams and their compliance with guidelines, as
described in Section 6.3.5.

Question 6: It is clear why an agile team decided against using a specific
guideline.

This question relates to the possibility for users to enter a team specific solution and
rationale for their guideline, describing how they deviate from the standard that is
originally intended by the guideline, as mentioned in Section 6.3.2.

115

7. Evaluation

7.3.2. Usability assessment based on the System Usability Scale

For the evaluation of our prototypical implementation, we use the "System Usability
Scale" (SUS) by Brooke [18] to collect relevant subjective ratings of the usability by our
participants who all belong to roles that are part of the potential user group of the
application. The SUS is a simple set of ten questions to assess the usability of a system
based on a Likert scale, giving the respondents the possibility to rate their agreement or
disagreement on regarding ten usability questions on a 5-point scale. The results from
an empirical evaluation, based on almost ten years of SUS data collected on multiple
products in various phases of the development lifecycle, shows that the "SUS is a highly
robust and versatile tool for usability professionals" [12]. During the application of the
SUS, it is important to encourage respondents to record their immediate response to
each item, instead of thinking about each question for a longer time [18]. Furthermore,
respondents should check all items. If respondents are in doubt whether it is possible
for them to answer a particular item, the center point of the scale can be marked
to indicate a neutral or conflicting stance on the question. The SUS results in one
single number on a range from 0 (negative) to 100 (positive), "representing a composite
measure of the overall usability of the system being studied" [18]. Brooke also notes that
scores for individual items do not provide meaningful insights on their own. Brooke
describes the calculation of a system usability score as follows: "To calculate the SUS
score, first sum the score contributions from each item. Each item’s score contribution will range
from 0 to 4. For items 1, 3, 5, 7, and 9 the score contribution is the scale position minus 1. For
items 2, 4, 6, 8, and 10, the contribution is 5 minus the scale position. Multiply the sum of the
scores by 2.5 to obtain the overall value of SU" [18].

The different calculations for the questions are caused by alternating positive and
negative items. For positive items, a high usability requires to answer "strongly agree",
whereas, for negative ones, a high perceived usability requires the respondent to answer
with "strongly disagree". Brooke argues that this was done "in order to prevent response
biases caused by respondents not having to think about each statement; by alternating
positive and negative items, the respondent has to read each statement and make an
effort to think whether they agree or disagree with it [18]".

While such a scoring from 0 to 100 is seen as intuitive and allows for relative
judgments [11], the original methodology does not provide a way on how to translate
the numeric score into a qualitative judgment of usability. However, Bangor et al. [11]
demonstrate such a method and provide the interpretation of a SUS score shown in
Figure 7.13, based on the insights of their analysis of almost one thousand SUS surveys
that they complemented with a seven-point Likert scale based on evaluative adjectives.
Their research shows that their newly introduced Likert scale scores based on seven
adjectives reaching from worst imaginable to best imaginable "correlate extremely well

116

7. Evaluation

Figure 7.13.: A comparison of the adjective ratings, acceptability scores, and school
grading scales, in relation to the average SUS score by Bangor [11]

with the SUS scores (r=0.822)" [11].
Table 7.2 shows the results of the usability evaluation. The average of all fifteen

usability evaluations result in an 81.33 system usability score, which is in the acceptable
region, scoring a "B" in the grading scale and a rating between good and excellent on
the adjective rating scale. Overall, this is a satisfactory result, nevertheless, together
with the qualitative feedback and comments of the participants, it also shows room for
potential improvements and further development. The obtained system usability score
result can be used to compare the results of the current prototype iteration with future
development iterations to check whether UI/UX and general usability improvements
have the desired effect and are reflected in a higher usability score.

117

7. Evaluation

No. System Usability Score

1 77.5
2 80
3 57.5
4 87.5
5 70
6 87.5
7 90
8 95
9 85
10 80
11 77.5
12 67.5
13 77.5
14 92.5
15 95

Average 81.33

Table 7.2.: System Usability Score results

7.4. Summary of the evaluation results

Figure 7.14 shows an overview of all questions and the resulting level of agreement or
disagreement by the two stakeholder groups regarding the first solution artifact of this
thesis, the collaborative approach.

With regards to the second solution artifact, the tool support, Figure 7.12 shows that
the main goals of the application are being fulfilled by visualizing the comparison of
the results between the current situation without tool support and the situation with
tool support. Participants rate the overview of an existing guideline, the transparency
of the fulfillment status of guidelines (both within a team and across several teams)
and the selection of guidelines for a certain use case as considerably improved with
the tool-support compared to without the tool-support. The evaluation results also
reveal another interesting finding. Whereas some interviewed experts assess the current
situation as decent and especially mention the existing documentation on guidelines
in the wiki, others point out the lack of useful information. This shows that the wiki
can be an appropriate tool, but it also reflects the challenges identified during the case
study, which are the lack of a single source of truth and awareness.

118

7. Evaluation

Very
valuable

Not
valuable

at all

Very
valuable

Not
valuable

at all

I strongly
agree

I strongly
disagree

I strongly
agree

I strongly
disagree

I strongly
agree

I strongly
disagree

I strongly
agree

I strongly
disagree

I strongly
agree

I strongly
disagree

I strongly
agree

I strongly
disagree

I strongly
agree

I strongly
disagree

I strongly
agree

I strongly
disagree

I strongly
agree

I strongly
disagree

Question 1: [...] In your opinion, how valuable is such a
collaboration for agile teams?

Question 2: [...] In your opinion, how valuable is such a
collaboration for the enterprise architects?

Question 4*: It is important that development teams do not just
get architecture principles and guidelines dictated by other
stakeholders, but that they are the main stakeholder themselves
[...]

Question 6: The input of enterprise architects to principles and
guidelines is still important [...]

Question 7: It is valuable to specify generic architecture
principles to one or more specific guidelines

Question 8: It is valuable to specify one or multiple KPIs for
each guideline

Question 9: It makes sense to categorize guidelines (e. g. by
tags), to define target groups for guidelines and to use those to
map resulting guideline sets to certain project criteria [...]

Question 10: It makes sense to let the group of developers and
enterprise architects vote if a new guideline should be accepted
in the pool or if a certain change should be made [...]

Question 11: It is important that enterprise architects support
agile teams in applying architecture principles and guidelines

Question 12: Teams should be self-responsible for managing
their compliance to guidelines and not be controlled by team-
external stakeholders (e. g. enterprise architects)

Question 5: Agile teams can provide valuable input for creating
and refining common architecture principles and guidelines
drivers [...]

Agile Developers Enterprise Architects
* Question 3 is excluded in the overview because it is a purely
qualitative question

Figure 7.14.: Overview of the evaluation results of the collaborative approach

119

8. Discussion

This chapter summarizes key findings and provides a critical reflection that discusses
the potential limitations of this master’s thesis.

8.1. Key findings

In the following, this section describes and summarizes the key findings of this master’s
thesis.

Strong need for closer collaboration between enterprise architects and agile
teams

There is a strong demand for closer collaboration between enterprise architects and
agile teams, both in the research described in current literature as well as in practice.
The main reasons for this need are to facilitate a better understanding and acceptance
between the two stakeholder groups, and to incorporate strategical and operational
perspectives and experiences into governance efforts, thereby improving the quality
of governance and enterprise architecture artifacts, such as principles and guidelines,
and increasing compliance with these governance efforts by agile teams. The need for a
closer collaboration was also evaluated during the expert interviews, where there was
a strong consensus for the need of the collaborative aspects presented in the solution
artifacts of the thesis.

High importance of incorporating the bottom-up perspective into
governance and enterprise architecture processes

Incorporating the bottom-up perspective into governance and enterprise architecture ef-
forts can improve the acceptance of the affected groups who actually have to implement
the standards prescribed by those governance efforts. Furthermore, the operational
perspective can also improve the quality of those efforts by identifying and address-
ing issues that arise on an operational level, monitor and evaluate the actual impact
and effect that existing governance has on an implementation level. Including opera-

120

8. Discussion

tional stakeholders can also improve the relevance and applicability of principles and
guidelines.

A community is suited to combine top-down and bottom-up perspectives
by jointly creating and managing architecture principles and guidelines

One of our main contributions with this thesis is the presented collaborative approach
which provides a basis for establishing a community of relevant stakeholders with
insight into some of the key activities that should be conducted in a collaborative way
within and around such a community. Those activities include the determination of
drivers, deriving principles and guidelines from drivers, specifying and classifying
principles and guidelines, voting and accepting and applying them as well as managing
their compliance and handling change. The insights from the comprehensive evaluation
in fifteen interviews with agile developers and enterprise architects, further detailing
the advantages and challenges or potential problems of the approach, should be taken
into account during the implementation.

Changing role of enterprise architects in agile environments

The research also indicates the changing role of enterprise architects in agile environ-
ments. Enterprise architects are less able to rely on control and authority when working
with agile teams, but have to put more focus on enabling and supporting them. They
have to ensure that they can provide actual value to the relevant stakeholders. This
requires more close collaboration, not only in form of regular community meetings, but
also during everyday work, thereby getting insight into problems and challenges agile
teams face on day to day basis. Nevertheless, despite the changing role of the enterprise
architects in the agile environment, enterprise architects still remain important. For
example, they can provide valuable input for agile teams based on their experience,
their knowledge and oversight on architectural topics and their insight into multiple
teams and business aspects of the organization.

Value of a collaborative and liberal IT-governance, suitable for agile
environments

The collaborative form of IT-governance presented in the thesis aims to increase the
acceptance of governance efforts by key stakeholders because of their involvement
and right to have a say within the governance processes. This, in turn, may increase
compliance. Also, the quality of governance artifacts such as principles and guidelines
can be increased by achieving a higher relevance and applicability during actual

121

8. Discussion

implementation. Especially in large-scale agile development environments, governance
and standardization are still important for a common direction and commitment of all
relevant stakeholders, required for achieving organizational agility.

Agile teams do not insist on full autonomy, as long as they have a say in
rule-making

As long as they have a say in rule-making, agile developers do not necessarily insist
on full autonomy or the right to manage the compliance with existing principles
and guidelines all by themselves. Quite the contrary, they believe that it can still be
important to have some external stakeholders evaluating the compliance, also saving
time and enabling teams to focus on their core task, the development of their software
product. Nevertheless, having the ability to participate in the creation of principles
and guidelines is essential for agile teams. If this condition is met, then a more strict
governance process regarding compliance can help to ensure the actual usage, resulting
in a better common direction of all teams. This can be especially helpful in an early
state in when collaborative and agile processes have a low maturity in an organization.
The full autonomy of agile teams could be a target state in more mature organizations
with teams that are already more experienced in self-responsible decision making, not
only solely focusing on the local optimum but also taking the global optimum into
account.

A web application can be valuable for supporting the collaborative use of
principles and guidelines

A web application, with features as presented in the thesis, can provide valuable support
for collaboratively using architecture principles and guidelines. So far, the proposed
web application mainly aims to increase the transparency and accessibility of guidelines,
by supporting to reach a better overview of existing guidelines, selecting relevant
guidelines for a specific use case and managing the compliance with guidelines, both
within a single team, but also over multiple teams. The prototypical web application
also provides the basis for future enhancements, such as the automated testing of
guidelines.

8.2. Limitations

This section discusses limitations and threats to the validity of the thesis. First of all,
a limitation is the limited time frame of the thesis that is available for conducting the
research, which does not allow for a longer evaluation and actual usage of the solution

122

8. Discussion

artifacts over the course of multiple months. Another limitation is the potentially
limited generalizability because of the execution of a single case study, focusing on one
organization. We aimed to counteract this limitation by including existing literature and
related work into the design of our solution artifacts as well as presenting the results of
our research to other partner companies of the research chair during a workshop. This
provides valuable input and confirmation that the identified challenges and solution
artifacts are relevant in other organizations as well.

In regards to counteract the threats of validity concerning the case study part of
our research, we addressed the potential threats listed by Runeson and Höst [102] as
follows. To address the construct validity, which can be threatened for example when
the researcher and interviewed persons have a different understanding of discussed
constructs, we interviewed multiple stakeholders with different backgrounds and
also emphasize the importance to ask follow up questions in case the nature of a
construct is unclear. The external validity deals with how far it is possible to generalize
the findings and "to what extent the findings are of interest to other people outside
the investigated case" [102]. As stated before, we began to present and discuss the
findings with stakeholders outside of the case study company as well, as part of a
workshop with other industry partners of the research chair. Nevertheless, regarding
the reliability of the research, repeating the research in a different organization might
end in different results because in differences of the organizations’ culture, structure
and maturity regarding agile methods and mindset. Another key limitation in the scope
of this thesis regarding the mentioned threats to validity is the diversity and broad
nature of possible architecture principles and guidelines, which can be highly specific
to certain organizations. Because of this reason, our research focused less on what
specific principles and guidelines should be used, and more on the way how principles
and guidelines can be used in an organization, independent from the specific nature
or category of the applied principles and guidelines. Nonetheless, since principles
and guidelines can take on many forms and manifestations, it could be possible that
the presented approach and tool support works better for certain types or areas of
principles and guidelines.

123

9. Conclusion and future work

The final chapter of this thesis provides a summary of the thesis based on the research
objectives and presents an outlook for further work.

9.1. Summary

The following section summarizes the answers to the research questions presented in
Section 1.2.

Research question 1: How does governance and enterprise architecture fit
in modern large-scale agile and lean development environments?

Governance and enterprise architecture management is important to ensure a com-
mon direction and an alignment of ongoing efforts into the direction of the target
vision. This is especially important in large organizations and large-scale agile software
development. Nevertheless, the traditional top-down governance approach relying
mainly on authority and control is no longer contemporary and does not fit very well
with agile and lean principles and values. On the other side, full autonomy of teams
would harm the ability of enterprises to achieve organizational agility which requires
a high amount of standardization. Instead, more right of co-determination has to be
given to the teams, so that they can have a say in governance, facilitating both a higher
acceptance as well as quality, relevance, and applicability of governance endeavors.
Therefore, the bottom-up perspective of agile teams has to be incorporated into existing
processes, turning top-down governance into a more collaborative form of governance.

Research question 2: How can agile teams and enterprise architects collab-
oratively establish and manage architecture principles and guidelines in
large-scale agile software development?

Establishing a community of enterprise architects, agile developers and other interested
and relevant stakeholders can enable a close collaboration on principles and guidelines.
Taking the bottom-up perspective of teams into account facilitates the consideration of
valuable input, including issues that arise on an implementation level, implementation

124

9. Conclusion and future work

experience, technical innovation, and team-specific agreements. This contributes to a
higher relevance and applicability of principles and guidelines. The community also
allows much faster feedback cycles and refinements of existing guidance. The results of
governance efforts get much clearer and transparent, since the stakeholders who are
responsible for implementing the guidance are now involved in all steps of the process.
The results of the semi-structured expert interviews with fourteen participants provide
further insight into the value and challenges of the presented approach.

Research question 3: How can the collaborative approach for establishing
architecture principles and guidelines be supported and further enhanced
by a software implementation?

A web application can provide a suitable form of a software implementation to
support the collaborative process. By providing an overview of existing guidelines and
their fulfillment for different teams, as well as the possibility to filter and select from
existing guidelines, can support agile teams to apply principles and guidelines in their
work. Furthermore, creating more transparency and a single source of truth with a
web application can support the creation, classification and compliance management
of principles and guidelines. It also creates a valuable basis for enabling the partial
automation of checking the compliance for principles and guidelines by the ability to
connect to various data sources and integrate into existent continuous deployment and
delivery pipelines in the future.

9.2. Future work

Due to the limited time frame of this master’s thesis, the results of the evaluation
could not be implemented in further development iterations. Including the valuable
feedback from the conducted expert interviews can be one of the crucial next steps
for further work. Besides improving existing traits of the approach and tool-support,
the tool-support could also be extended to implement the remaining aspects of the
approach which are not yet covered by the current implementation, e. g. managing
drivers or the ability to specify and manage KPIs for guidelines.

Another aspect for future work is the generalization of the results. Firstly, applying
and evaluating the approach and tool-support in other companies could provide helpful
insights on how the to further refine and adjust the approach and the demonstrated
web application. Secondly, our collaborative approach for establishing guidelines is
not inherently limited to principles and guidelines. On the contrary, principles and
guidelines are only one possible artifact that can be established collaboratively to
achieve agile IT-governance. It is conceivable that other aspects of governance and

125

9. Conclusion and future work

enterprise architecture management could also be developed collaboratively, e. g. a
target architecture or system landscape, architectural models or more strategical goals
and values. In general, more research could be done on whether the transition to more
collaborative decision making based on agile and lean values and principles is desirable
in organizations and how such an approach can be implemented.

To demonstrate and proof the actual long-term value and applicability of the collabo-
rative approach and tool-support, one of the possible next steps could be a field study
obtaining data on the long-term usage, providing more measurements and insights into
the applicability and value contribution of the solution artifacts over a longer period of
time.

126

A. Appendix

A.1. Evaluation interviews

1. General questions

a) Which of the below roles are applicable for you?

b) For how many years have you been active in the field of enterprise architec-
ture and/or agile software development?

2. Collaborative approach for establishing architecture principles and guidelines

a) The approach focuses on creating a community of developers and solution
architects from different agile teams as well as enterprise architects, meeting
regularly, discussing and deciding on architecture principles and guidelines
together.

i. In your opinion, how valuable is such a collaboration for agile teams?

ii. In your opinion, how valuable is such a collaboration for enterprise
architects?

b) What challenges do you see in the actual implementation of such a commu-
nity? In your opinion, which problems need to be considered and solved in
order to make the collaborative approach successful?

c) It is important that development teams do not just get architecture principles
and guidelines dictated by other stakeholders, but that they are the main
stakeholder themselves in managing architecture principles and guidelines
and are involved in the whole approach.

d) Agile teams can provide valuable input for creating and refining common
architecture principles and guidelines drivers (especially based on their
implementation experience, the issues they face on a daily basis, team-
specific agreements, and their technical knowledge and insights in innovative
technologies) (step 1).

e) The input of enterprise architects to principles and guidelines is still im-
portant because of their insight into multiple teams, knowledge of business

127

A. Appendix

goals, strong network and their resulting ability to align multiple teams,
business and IT (overall).

f) The approach proposes to derive architecture principles from drivers and
then further specify those – often more generic – principles into one or
multiple, more specific guidelines that give insight on how to actually
implement the principle. It proposes to define one or more KPIs for each
guideline to be able to measure the level of compliance with a guideline
(step 2-3).

i. It is valuable to specify generic architecture principles to one or more
specific guidelines.

ii. It is valuable to specify one or multiple KPIs for each guideline.

g) It makes sense to categorize guidelines (e. g. by tags), to define target
groups for guidelines and to use those tags and target guidelines later to
map those resulting sets of guidelines to certain project criteria (because not
all guidelines are applicable for all types of projects, but there are certain
patterns of important guidelines for similar projects) (step 3).

h) It makes sense to let the group of developers and (enterprise) architects vote
if a new guideline should be accepted into the pool or if a certain change
should be made (as long as the new or changed guideline is not based on a
legal requirement), instead of solely relying on a senior architect or manager
to make that decision alone (step 4).

i) It is important that enterprise architects support agile teams in applying
architecture principles and guidelines (step 5).

j) Teams should be self-responsible for managing their compliance to guide-
lines and not controlled by team-external stakeholders (e. g. enterprise
architects) (step 6).

k) Do you have any comments or open points?

3. Tool-Support

a) Agile teams and enterprise architects have a good overview on which guide-
lines agile teams must or should adhere to.

b) It is easy for agile teams and enterprise architects to give feedback on
guidelines.

c) It is a lot of effort to identify which guidelines a specific agile team is
fulfilling and which ones it is not fulfilling.

128

A. Appendix

d) It is easy for agile teams to look through existing guidelines and select the
guidelines that fit to their use cases.

e) It is simple to get an overview of which agile teams are compliant to which
guidelines.

f) It is clear why an agile team decided against using a specific guideline.

g) General usability of the application

i. I think that I would like to use this system frequently

ii. I found the system unnecessarily complex

iii. I thought the system was easy to use

iv. I think that I would like to use this system frequently

v. I think that I would need the support of a technical person to be able to
use this system

vi. I found the various functions in this system were well integrated

vii. I thought there was too much inconsistency in this system

viii. I would imagine that most people would learn to use this system

ix. I found the system very cumbersome to use

x. I felt very confident using the system

xi. I need to learn a lot of things before I could get going with this system

A.2. Semi-structured case study interviews

A.2.1. General information

1. Section: Overview of the transformation

a) What are the reasons for the transformation?

b) What are the goals of the transformation?

c) When did the transformation begin?

d) How did the transformation take place?

e) What success have you achieved so far?

2. Section: Agile methods and practices

a) Which agile and large scale agile methods / frameworks are used in your
organization?

129

A. Appendix

3. Section: Challenges and solutions

a) What are the greatest challenges of the transformation?

b) How did you try to solve the challenges?

4. Section: Plans for the future

a) What are the next steps?

b) What are possible stumbling blocks?

c) On a scale from 1 "no enablement at all" to 10 "very strong enablement", how
strong does the EAM enable the scaling of agile practices?

130

A. Appendix

A.2.2. Architecture principles

1. Section: Background questions

a) Which role description applies to you?

b) For how many years have you been working in the field of agile software
development or EAM?

c) How is your EAM organization structured? Which architectural roles do
you have and how are they assigned to the agile teams?

2. Section: Drivers and goals

a) Which driving forces are significantly responsible for creating architectural
principles?

b) What are your goals in defining architectural principles?

3. Section: Specification and classification

a) Which architectural principles do you use in an agile environment? Which
architectural principles from the attached Excel list do you use? (Please
specify them in the Excel list)

b) Are there architectural principles that are unsuitable for the agile environ-
ment or which are not applied? If so, why?

c) Who is responsible for the creation and specification of the architectural
principles?

d) Is there a guideline for creating architectural principles?

e) (If yes): With which specifications?

f) (If yes): Who created this guideline and is responsible for its maintenance?

4. Section: Application and compliance

a) When do new architectural principles become valid?

b) What measures exist for the implementation of the newly created architec-
tural principles?

c) In which way is compliance with the architectural principles checked and
ensured?

d) Which tools are used to test compliance with architectural principles?

e) What problems do you identify when introducing or implementing architec-
tural principles?

131

A. Appendix

5. Section: Discussion

a) Generally speaking, what do you expect from the cooperation with TUM?

b) If necessary, can we contact you again in the context of the case study? If
yes, please enter your name and email address. Naturally, we will not make
this data available to third parties.

c) Are there any comments or open questions?

A.2.3. Architecture boards

1. Section: Background Information

a) Which role description applies to you?

b) For how many years have you been working in the field of agile software
development or EAM?

2. Section: Architectural Decisions

a) Name typical examples of architectural decisions in an agile environment.

b) How do you categorize architectural decisions?

c) How and where are architectural decisions documented?

d) At what level and by which role is an architectural decision made?

3. Section: Architecture Boards

a) What forms of architectural boards do you have in your company? Please
specify the existing forms in the attached Excel list.

4. Section: discussion

a) Generally speaking, what do you expect from the cooperation with TUM?

b) If necessary, can we contact you again in the context of the case study? If
yes, please enter your name and email address. Naturally, we will not make
this data available to third parties.

c) Are there any comments or open questions?

A.2.4. Role of the enterprise architect

1. Section: Background information

a) Which role description applies to you?

132

A. Appendix

b) For how many years have you been working in the field of agile software
development or EAM?

2. Section: Responsibility

a) What responsibilities do Enterprise Architects have in your company?

b) How did the responsibilities of Enterprise Architects change in an agile
environment?

c) What distinguishes your Enterprise Architects and how do they differ from
the classic role of Enterprise Architects in other companies?

d) How did the working methodology of the Enterprise Architect change in an
agile environment?

e) How did the environment of the Enterprise Architect change in an agile
environment?

3. Section: Collaboration

a) How should Enterprise Architects support agile programs and agile trans-
formation?

b) How is the role of the architect practiced in your company?

c) What are the characteristics of the role selected in question 3.2?

d) What are the advantages and disadvantages of the role mentioned in question
3.2?

e) In your opinion, which of the roles listed in question 3.2 should be lived
more strongly in the future?

f) Should Enterprise Architects be part of the agile teams?

g) To what extent should Enterprise Architects be involved in the agile pro-
grams?

4. Section: Artifacts

a) What artifacts are provided by the Enterprise Architects to the stakeholders
in an agile environment?

b) What artifacts should be provided by Enterprise Architects to stakeholders
in the future?

5. Section: Problems and outlook

a) What problems do Enterprise Architects encounter in an agile environment?

b) In your opinion, how should these problems be addressed?

133

A. Appendix

c) What recommendations would you give Enterprise Architects in an agile
environment?

d) On which topics should Enterprise Architects focus in the future?

6. Section: Discussion

a) Generally speaking, what do you expect from the cooperation with TUM?

b) If necessary, can we contact you again in the context of the case study? If
yes, please enter your name and email address. Naturally, we will not make
this data available to third parties.

c) Are there any comments or open questions?

A.2.5. Value contribution of enterprise architects

1. Section: Background information

a) Which role description applies to you?

b) For how many years have you been working in the field of agile software
development or EAM?

2. Section: Enabling

a) What information do Enterprise Architects need from agile teams to provide
appropriate architectural models?

b) Which architectural models are provided to the agile teams by the Enterprise
Architects?

c) What do agile teams expect from Enterprise Architects’ architectural models?

d) Are the expectations regarding the architectural models fulfilled? (On a scale
from 1 "not fulfilled" to 10 "more than fulfilled")

e) Please give reasons for your answer:

3. Section: Cooperation

a) Is it difficult to find an Enterprise Architect as a contact person?

b) How do you rate the availability of an Enterprise Architect? (On a scale from
1 "not available at all" to 10 "always available")

c) How do Enterprise Architects communicate with agile teams?

d) What do agile teams expect from the communication with Enterprise Archi-
tects?

134

A. Appendix

e) Are expectations in terms of communication fulfilled? (On a scale from 1
"not fulfilled" to 10 "more than fulfilled")

f) Please give reasons for your answer:

g) To what extent are agile teams involved in the architecture processes that
are relevant to them?

h) To what extent should agile teams be involved in the architecture processes
that are relevant to them?

i) Are the expectations in terms of the integration into architectural processes
fulfilled? (On a scale from 1 "not fulfilled" to 10 "more than fulfilled")

j) Please give reasons for your answer:

k) How do Enterprise Architects support agile teams?

l) What kind of support do agile teams expect from Enterprise Architects?

m) Are the expectations in terms of support fulfilled? (On a scale from 1 "not
fulfilled" to 10 "more than fulfilled")

n) Please give reasons for your answer:

o) In what form and frequency can the agile teams give feedback to Enterprise
Architects?

p) In what form should feedback from agile teams be given to Enterprise
Architects?

q) Are the expectations in terms of feedback fulfilled? (On a scale from 1 "not
fulfilled" to 10 "more than fulfilled")

r) Please give reasons for your answer:

s) On a scale from 1 "not fulfilled" to 10 "more than fulfilled", how likely is it
that you would recommend the EA? (To an agile team that has developed
without the support of an Enterprise Architect)

4. Section: Review

a) How does feedback from agile teams affect the EAM?

b) Which criteria are currently used to assess the value contribution of the EAM
and which metrics are used to measure it?

c) How could the value contribution be measured in the future?

5. Section: Governance

135

A. Appendix

a) To what extent do agile teams want to be controlled by the Enterprise
Architects?

b) Which requirements can help?

c) Which specifications would not be helpful or restrictive?

6. Section: Discussion

a) Generally speaking, what do you expect from the cooperation with TUM?

b) If necessary, can we contact you again in the context of the case study? If
yes, please enter your name and email address. Naturally, we will not make
this data available to third parties.

c) Are there any comments or open questions?

136

Bibliography

[1] P. Abrahamsson, M. A. Babar, and P. Kruchten. “Agility and architecture: Can
they coexist?” In: IEEE Software (2010). issn: 07407459. doi: 10.1109/MS.2010.36.

[2] F. Ahlemann, E. Stettiner, M. Messerschmidt, and C. Legner. Strategic Enterprise
Architecture Management: Challenges, Best Practices, and Future Developments. 2012.
isbn: 3642242227. doi: 10.1007/978-3-642-24223-6.

[3] S. Aier, C. Riege, and R. Winter. “Unternehmensarchitektur – Literaturüberblick
und Stand der Praxis”. In: WIRTSCHAFTSINFORMATIK (2008). issn: 0937-6429.
doi: 10.1365/s11576-008-0062-9.

[4] M. Alqudah and R. Razali. “A Review of Scaling Agile Methods in Large
Software Development”. In: International Journal on Advanced Science, Engineering
and Information Technology (2016). issn: 2460-6952. doi: 10.18517/ijaseit.6.6.
1374.

[5] S. Ambler. The Disciplined Agile Framework 2.0. url: http : / / www .
disciplinedagiledelivery.com.

[6] S. Ambler. The Disciplined Agile Framework 2.0: Agility at scale and enterprise
architecture. 2016. url: http://www.disciplinedagiledelivery.com/agility-
at-scale/enterprise-architecture/.

[7] S. W. Ambler. “Scaling agile software development through lean governance”.
In: Proceedings of the 2009 ICSE Workshop on Software Development Governance,
SDG 2009. 2009. isbn: 9781424437368. doi: 10.1109/SDG.2009.5071328.

[8] S. Ambler and P. Kroll. Lean development governance: Applying agile and lean
principles to the governance of software and systems development. Tech. rep. IBM,
2007.

[9] M. A. Babar. “An exploratory study of architectural practices and challenges in
using agile software development approaches”. In: 2009 Joint Working IEEE/IFIP
Conference on Software Architecture European Conference on Software Architecture.
Sept. 2009, pp. 81–90. doi: 10.1109/WICSA.2009.5290794.

[10] M. A. Babar, A. W. Brown, and I. Mistrik. Agile Software Architecture: Aligning
Agile Processes and Software Architectures. 1st. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2013. isbn: 9780124077720.

137

http://dx.doi.org/10.1109/MS.2010.36
http://dx.doi.org/10.1007/978-3-642-24223-6
http://dx.doi.org/10.1365/s11576-008-0062-9
http://dx.doi.org/10.18517/ijaseit.6.6.1374
http://dx.doi.org/10.18517/ijaseit.6.6.1374
http://www.disciplinedagiledelivery.com
http://www.disciplinedagiledelivery.com
http://www.disciplinedagiledelivery.com/agility-at-scale/enterprise-architecture/
http://www.disciplinedagiledelivery.com/agility-at-scale/enterprise-architecture/
http://dx.doi.org/10.1109/SDG.2009.5071328
http://dx.doi.org/10.1109/WICSA.2009.5290794

Bibliography

[11] A. Bangor, P. Kortum, and J. Miller. “Determining What Individual SUS Scores
Mean: Adding an Adjective Rating Scale”. In: Journal of Usability Studies (2009).
issn: 1931-3357.

[12] A. Bangor, P. T. Kortum, and J. T. Miller. “An empirical evaluation of the system
usability scale”. In: International Journal of Human-Computer Interaction (2008).
issn: 10447318. doi: 10.1080/10447310802205776.

[13] J. M. Bass. “How product owner teams scale agile methods to large distributed
enterprises”. In: Empirical Software Engineering (2015). issn: 15737616. doi: 10.
1007/s10664-014-9322-z.

[14] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin,
S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas. Manifesto for Agile Software
Development. 2001. url: http://agilemanifesto.org/.

[15] S. Bente, U. Bombosch, and S. Langade. Collaborative Enterprise Architecture. 2012.
isbn: 9780124159341. doi: 10.1016/C2011-0-69682-6.

[16] P. van Bommel, P. M. Buitenhuis, S. J. Proper, and E. H. Hoppenbrouwers.
“Architecture principles – A regulative perspective on enterprise architecture”. In:
Enterprise modelling and information systems architectures : concepts and applications ;
proceedings of the 2nd International Workshop on Enterprise Modelling and Information
Systems Architectures, St. Goar, Germany, October 8 - 9. 2007. isbn: 9789461911780.
doi: 10.1063/1.3033202. arXiv: 0512156v1 [cond-mat].

[17] S. Bradner. RFC 2119 - Key words for use in RFCs to Indicate Requirement Levels
Status. 1997. doi: http://www.ietf.org/rfc/rfc2119.txt.

[18] J. Brooke. “SUS - A quick and dirty usability scale”. In: Usability Evaluation in
Industry. 1996. isbn: 0748404600.

[19] M. Brosius, S. Aier, K. Haki, and R. Winter. “Enterprise Architecture Assimila-
tion: An Institutional Perspective”. In: Thirty Ninth International Conference on
Information Systems (ICIS 2018). San Francisco, CA: Association for Information
Systems, 2018, pp. 1–16. url: https://www.alexandria.unisg.ch/255633/.

[20] C. V. Brown. “Examining the Emergence of Hybrid IS Governance Solutions:
Evidence from a Single Case Site”. In: Information Systems Research (1997). issn:
10477047. doi: 10.1287/isre.8.1.69.

[21] S. Buckl and C. Schweda. On the State-of-the-Art in Enterprise Architecture Manage-
ment Literature. Tech. rep. Chair for Software Engineering of Business Information
Systems. Technische Universität München, 2011.

138

http://dx.doi.org/10.1080/10447310802205776
http://dx.doi.org/10.1007/s10664-014-9322-z
http://dx.doi.org/10.1007/s10664-014-9322-z
http://agilemanifesto.org/
http://dx.doi.org/10.1016/C2011-0-69682-6
http://dx.doi.org/10.1063/1.3033202
http://arxiv.org/abs/0512156v1
http://dx.doi.org/http://www.ietf.org/rfc/rfc2119.txt
https://www.alexandria.unisg.ch/255633/
http://dx.doi.org/10.1287/isre.8.1.69

Bibliography

[22] M. Canat, N. P. Català, A. Jourkovski, S. Petrov, M. Wellme, and R. Lagerström.
“Enterprise Architecture and Agile Development - Friends or Foes?” In: IEEE
22nd International Enterprise Distributed Object Computing Workshop. 2018. url:
https://tearseriesdotorg.wordpress.com/tear2018/.

[23] T. H. Cheng, S. Jansen, and M. Remmers. “Controlling and monitoring agile
software development in three dutch product software companies”. In: Proceed-
ings of the 2009 ICSE Workshop on Software Development Governance, SDG 2009.
2009. isbn: 9781424437368. doi: 10.1109/SDG.2009.5071334.

[24] Y.-K. Chou. Actionable Gamification : beyond points, badges, and leaderboards. Octaly-
sis Media, 2015. isbn: 9781511744041.

[25] S. R. Clegg, T. S. Pitsis, T. Rura-Polley, and M. Marosszeky. Governmentality Mat-
ters: Designing an Alliance Culture of Inter-organizational Collaboration for Managing
Projects. 2002. doi: 10.1177/0170840602233001.

[26] A. Cleven, P. Gubler, and K. M. Hüner. “Design alternatives for the evaluation of
design science research artifacts”. In: Proceedings of the 4th International Conference
on Design Science Research in Information Systems and Technology - DESRIST ’09.
2009. isbn: 9781605584089. doi: 10.1145/1555619.1555645.

[27] K. Conboy. “Agility from first principles: Reconstructing the concept of agility
in information systems development”. In: Information Systems Research (2009).
issn: 15265536. doi: 10.1287/isre.1090.0236.

[28] K. Conboy and B. Fitzgerald. “The views of experts on the current state of agile
method tailoring”. In: IFIP International Federation for Information Processing. 2007.
isbn: 0387728031.

[29] K. Dikert, M. Paasivaara, and C. Lassenius. “Challenges and success factors for
large-scale agile transformations: A systematic literature review”. In: Journal of
Systems and Software (2016). issn: 01641212. doi: 10.1016/j.jss.2016.06.013.

[30] T. Dingsøyr, T. E. Fægri, and J. Itkonen. “What Is Large in Large-Scale? A
Taxonomy of Scale for Agile Software Development”. In: Product-Focused Software
Process Improvement 8892 (2014), pp. 273–276. issn: 0302-9743. doi: 10.1007/978-
3-319-13835-0{_}20.

[31] T. Dingsøyr, N. B. Moe, T. E. Fægri, and E. A. Seim. “Exploring software
development at the very large-scale: a revelatory case study and research agenda
for agile method adaptation”. In: Empirical Software Engineering (2018). issn:
15737616. doi: 10.1007/s10664-017-9524-2.

139

https://tearseriesdotorg.wordpress.com/tear2018/
http://dx.doi.org/10.1109/SDG.2009.5071334
http://dx.doi.org/10.1177/0170840602233001
http://dx.doi.org/10.1145/1555619.1555645
http://dx.doi.org/10.1287/isre.1090.0236
http://dx.doi.org/10.1016/j.jss.2016.06.013
http://dx.doi.org/10.1007/978-3-319-13835-0{_}20
http://dx.doi.org/10.1007/978-3-319-13835-0{_}20
http://dx.doi.org/10.1007/s10664-017-9524-2

Bibliography

[32] T. Dingsøyr, S. Nerur, V. Balijepally, and N. B. Moe. “A decade of agile method-
ologies: Towards explaining agile software development”. In: Journal of Systems
and Software (2012). issn: 01641212. doi: 10.1016/j.jss.2012.02.033.

[33] T. Dreesen and T. Schmid. “Do As You Want Or Do As You Are Told? Control
vs. Autonomy in Agile Software Development Teams”. In: Proceedings of the 51st
Hawaii International Conference on System Sciences. 2018. isbn: 0998133116.

[34] T. Dybå and T. Dingsøyr. Empirical studies of agile software development: A systematic
review. 2008. doi: 10.1016/j.infsof.2008.01.006.

[35] J. Eckstein. “Architecture in Large Scale Agile Development”. In: Agile Methods.
Large-Scale Development, Refactoring, Testing, and Estimation. Ed. by T. Dingsøyr,
N. B. Moe, R. Tonelli, S. Counsell, C. Gencel, and K. Petersen. Cham: Springer
International Publishing, 2014, pp. 21–29. isbn: 978-3-319-14358-3.

[36] S. Freudenberg and H. Sharp. “The top 10 burning research questions from
practitioners”. In: IEEE Software (2010). issn: 07407459. doi: 10.1109/MS.2010.
129.

[37] D. Greefhorst and E. Proper. Architecture Principles The Cornerstones of Enterprise
Architecture. 2011. isbn: 9783642202780. doi: 10.1007/978-3-642-20279-7.

[38] D. Greefhorst and H. Proper. “A Practical Approach to the Formulation and Use
of Architecture Principles”. In: 2011 IEEE 15th International Enterprise Distributed
Object Computing Conference Workshops. IEEE, Aug. 2011, pp. 330–339. isbn: 978-1-
4577-0869-5. doi: 10.1109/EDOCW.2011.18. url: http://ieeexplore.ieee.org/
document/6037636/.

[39] S. H. Spewak and S. C. Hill. Enterprise Architecture Planning : Developing a
Blueprint for Data, Applications and Technology. Wiley-QED, 1993. isbn: 0471599859.

[40] M. K. Haki and C. Legner. “Enterprise Architecture Principles in Research
and Practice: Insights from an Exploratory Analysis”. In: Proceedings of the 21st
European Conference on Information Systems ECIS. 2013.

[41] G. Hamel. “The why, what, and how of management innovation”. In: Harvard
Business Review 84.2 (2006).

[42] S. Hanschke, J. Ernsting, and H. Kuchen. “Integrating Agile Software Develop-
ment and Enterprise Architecture Management”. In: 48th Hawaii International
Conference on System Sciences. 2015. isbn: 9781479973675. doi: 10.1109/HICSS.
2015.492.

[43] M. Hauder, S. Roth, C. Schulz, and F. Matthes. “Agile Enterprise Architecture
Management: An Analysis on the Application of Agile Principles”. In: Fourth
International Symposium on Business Modeling and Software Design (BMSD) (2014).

140

http://dx.doi.org/10.1016/j.jss.2012.02.033
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://dx.doi.org/10.1109/MS.2010.129
http://dx.doi.org/10.1109/MS.2010.129
http://dx.doi.org/10.1007/978-3-642-20279-7
http://dx.doi.org/10.1109/EDOCW.2011.18
http://ieeexplore.ieee.org/document/6037636/
http://ieeexplore.ieee.org/document/6037636/
http://dx.doi.org/10.1109/HICSS.2015.492
http://dx.doi.org/10.1109/HICSS.2015.492

Bibliography

[44] J. C. Henderson and H. Venkatraman. “Strategic alignment: Leveraging informa-
tion technology for transforming organizations”. In: IBM Systems Journal 32.1
(1993), pp. 472–484. issn: 0018-8670. doi: 10.1147/sj.382.0472.

[45] E. Herranz, R. Colomo-Palacios, A. de Amescua Seco, and M. Yilmaz. “Gamifi-
cation as a disruptive factor in software process improvement initiatives”. In:
Journal of Universal Computer Science (2014). issn: 09486968. doi: 10.3217/jucs-
020-06-0885.

[46] A. R. Hevner, S. T. March, J. Park, and S. Ram. “Design Science in Information
Systems Research”. In: MIS Quarterly (2004). issn: 02767783. doi: 10.2307/
25148625.

[47] S. Hino. Inside the mind of Toyota: management principles for enduring growth. New
York: Productivity Press New York, 2006. isbn: 1563273004.

[48] R. Hoda, N. Salleh, and J. Grundy. “The Rise and Evolution of Agile Software
Development”. In: IEEE Software (2018), p. 1. issn: 0740-7459. doi: 10.1109/
MS.2018.290111318. url: doi.ieeecomputersociety.org/10.1109/MS.2018.
290111318.

[49] J. Hoogervorst. Enterprise Governance and Enterprise Engineering. Springer, 2009.
isbn: 978-3-540-92670-2. doi: 10.1007/978-3-540-92671-9.

[50] B. Horlach, T. Böhmann, I. Schirmer, and P. Drews. “IT Governance in Scal-
ing Agile Frameworks”. In: Multikonferenz Wirtschaftsinformatik (MKWI) 2018.
Lüneburg, Germany, 2018, pp. 1789–1800.

[51] J. A. Ingvaldsen and M. Rolfsen. “Autonomous work groups and the challenge
of inter-group coordination”. In: Human Relations (2012). issn: 00187267. doi:
10.1177/0018726712448203.

[52] ISACA. COBIT 5 - A Business Framework for the Governance and Management of
Enterprise IT. Rolling Meadows, IL, USA, 2012. isbn: 978-1-60420-241-0.

[53] ISO and IEC. ISO/IEC 38500:2015 International Standard Information technology
- Governance of IT for the organization. Tech. rep. International Organization for
Standardization, 2015. url: https://www.iso.org/standard/62816.html.

[54] ISO, IEC, and IEEE. “ISO/IEC/IEEE 42010:2011 - Systems and software engi-
neering – Architecture description”. In: ISO / IEC / IEEE Standard 42010:2011
(Revision of ISOIEC 42010:2007 and IEEE Std 1471:2000) (2011). doi: 10.1109/
IEEESTD.2011.6129467.

[55] D. D. Jacobson. “Revisiting IT governance in the light of institutional theory”. In:
Proceedings of the 42nd Annual Hawaii International Conference on System Sciences,
HICSS. 2009. isbn: 9780769534503. doi: 10.1109/HICSS.2009.374.

141

http://dx.doi.org/10.1147/sj.382.0472
http://dx.doi.org/10.3217/jucs-020-06-0885
http://dx.doi.org/10.3217/jucs-020-06-0885
http://dx.doi.org/10.2307/25148625
http://dx.doi.org/10.2307/25148625
http://dx.doi.org/10.1109/MS.2018.290111318
http://dx.doi.org/10.1109/MS.2018.290111318
doi.ieeecomputersociety.org/10.1109/MS.2018.290111318
doi.ieeecomputersociety.org/10.1109/MS.2018.290111318
http://dx.doi.org/10.1007/978-3-540-92671-9
http://dx.doi.org/10.1177/0018726712448203
https://www.iso.org/standard/62816.html
http://dx.doi.org/10.1109/IEEESTD.2011.6129467
http://dx.doi.org/10.1109/IEEESTD.2011.6129467
http://dx.doi.org/10.1109/HICSS.2009.374

Bibliography

[56] A. J.H.de O.Luna, P. Kruchten, M. L. d. E.Pedrosa, H. R. Almeida Neto, and
H. P. M. Moura. “State of the Art of Agile Governance: A Systematic Review”.
In: International Journal of Computer Science and Information Technology (2014). issn:
09754660. doi: 10.5121/ijcsit.2014.6510.

[57] K. Julia, S. Kurt, and S. Ulf. “Challenges in Integrating Product-IT into Enterprise
Architecture - A case study”. In: Procedia Computer Science. 2017. doi: 10.1016/j.
procs.2017.11.070.

[58] J. J. Korhonen, J. Lapalme, D. McDavid, and A. Q. Gill. “Adaptive Enterprise
Architecture for the Future: Towards a Reconceptualization of EA”. In: 2016
IEEE 18th Conference on Business Informatics (CBI). Vol. 01. Aug. 2016, pp. 272–281.
doi: 10.1109/CBI.2016.38.

[59] J. J. Korhonen, K. Hiekkanen, and J. Lähteenmäki. “EA and IT governance-
A systemic approach”. In: European Conference on Leadership, Management and
Governance. 2009.

[60] P. Kruchten. “Contextualizing agile software development”. In: Journal of software:
Evolution and Process. 2013. doi: 10.1002/smr.572.

[61] T. Kude, M. Lazic, A. Heinzl, and A. Neff. “Achieving IT-based synergies
through regulation-oriented and consensus-oriented IT governance capabilities”.
In: Information Systems Journal 28 (2018), pp. 765–795. issn: 13652575. doi: 10.
1111/isj.12159.

[62] L. Lagerberg, T. Skude, P. Emanuelsson, K. Sandahl, and D. Stahl. “The impact
of agile principles and practices on large-scale software development projects: A
multiple-case study of two projects at Ericsson”. In: International Symposium on
Empirical Software Engineering and Measurement. 2013. doi: 10.1109/ESEM.2013.
53.

[63] M. O. L. Land, E. Proper, M. Waage, J. Cloo, and C. Steghuis. “Enterprise
Architecture: Creating Value by Informed Governance”. In: Springer (2009). issn:
1098-6596. doi: 10.1007/978-3-540-85232-2.

[64] M. M. Lankhorst and H. A. Proper. “Agile Architecture”. In: Agile Service Devel-
opment: Combining Adaptive Methods and Flexible Solutions. Ed. by M. Lankhorst.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 41–57. isbn: 978-3-
642-28188-4. url: https://doi.org/10.1007/978-3-642-28188-4_3%20http:
//link.springer.com/10.1007/978-3-642-28188-4_3.

[65] M. Lazic, M. Groth, C. Schillinger, and A. Heinzl. “The Impact of IT Governance
on Business Performance.” In: AMCIS 2011. Citeseer. 2011. url: https://aisel.
aisnet.org/amcis2011_submissions/189.

142

http://dx.doi.org/10.5121/ijcsit.2014.6510
http://dx.doi.org/10.1016/j.procs.2017.11.070
http://dx.doi.org/10.1016/j.procs.2017.11.070
http://dx.doi.org/10.1109/CBI.2016.38
http://dx.doi.org/10.1002/smr.572
http://dx.doi.org/10.1111/isj.12159
http://dx.doi.org/10.1111/isj.12159
http://dx.doi.org/10.1109/ESEM.2013.53
http://dx.doi.org/10.1109/ESEM.2013.53
http://dx.doi.org/10.1007/978-3-540-85232-2
https://doi.org/10.1007/978-3-642-28188-4_3%20http://link.springer.com/10.1007/978-3-642-28188-4_3
https://doi.org/10.1007/978-3-642-28188-4_3%20http://link.springer.com/10.1007/978-3-642-28188-4_3
https://aisel.aisnet.org/amcis2011_submissions/189
https://aisel.aisnet.org/amcis2011_submissions/189

Bibliography

[66] A. Leclercq-Vandelannoitte and B. Emmanuel. “From sovereign IT governance
to liberal IT governmentality? A Foucauldian analogy”. In: European Journal
of Information Systems 27.3 (2018), pp. 326–346. issn: 0960-085X. doi: 10.1080/
0960085X.2018.1473932. url: https://www.tandfonline.com/doi/full/10.
1080/0960085X.2018.1473932.

[67] D. Leffingwell. Agile Software Requirements: Lean Requirements Practices for Teams,
Programs, and the Enterprise. 1st. Addison-Wesley Professional, 2011. isbn: 978-0-
321-63584-6.

[68] M. Leih. “IT Governance and the Sarbanes-Oxley Act”. In: AMCIS 2006 Proceed-
ings. Vol. 129. 2006, pp. 970–979.

[69] H. L. H. Lingyu, L. B. L. Bingwu, Y. R. Y. Ruiping, and W. J. W. Jianzhang.
“An IT Governance Framework of ERP System Implementation”. In: Computing,
Control and Industrial Engineering (CCIE), 2010 International Conference on (2010).
doi: 10.1109/CCIE.2010.226.

[70] T. Lumor, E. Chew, and A. Q. Gill. “Exploring the Role of Enterprise Archi-
tecture in IS-enabled Ot: An EA Principles Perspective”. In: Proceedings - IEEE
International Enterprise Distributed Object Computing Workshop, EDOCW. 2016.
isbn: 9781467399333. doi: 10.1109/EDOCW.2016.7584360.

[71] A. J. H. d. O. Luna, P. Kruchten, E. L. Riccio, and H. P. d. Moura. “Foundations
for an Agile Governance Manifesto: a bridge for business agility”. In: 13th
International Conference on Management of Technology and Information Systems
(2016).

[72] A. J. H. D. O. Luna, C. P. Costa, and C. A. D. C. Nascimento. “Agile Governance
in Information and Communication Technologies : Shifting Paradigms”. In:
Journal of Information Systems a Technology Management (2010). issn: 18071775.
doi: 10.4301/S1807-17752010000200004.

[73] E. Marks. A Lean Enterprise Governance Manifesto: Improving Business Performance
with Event-Driven Governance. Tech. rep. AgilePath, 2012.

[74] R. Marques, C. Gonçalo, D. Gonçalves, M. Mira da Silva, and P. Gonçalves.
“Improving Scrum Adoption with Gamification”. In: Twenty-fourth Americas
Conference on Information Systems. New Orleans, 2018.

[75] L. M. Maruping, V. Venkatesh, and R. Agarwal. “A control theory perspective on
agile methodology use and changing user requirements”. In: Information Systems
Research (2009). issn: 1526-5536. doi: 10.1287/isre.1090.0238.

[76] F. Matthes, I. Monahov, S. Alexander, and C. Schulz. EAM KPI Catalog. 2011.

143

http://dx.doi.org/10.1080/0960085X.2018.1473932
http://dx.doi.org/10.1080/0960085X.2018.1473932
https://www.tandfonline.com/doi/full/10.1080/0960085X.2018.1473932
https://www.tandfonline.com/doi/full/10.1080/0960085X.2018.1473932
http://dx.doi.org/10.1109/CCIE.2010.226
http://dx.doi.org/10.1109/EDOCW.2016.7584360
http://dx.doi.org/10.4301/S1807-17752010000200004
http://dx.doi.org/10.1287/isre.1090.0238

Bibliography

[77] Á. Medinilla. Agile management: Leadership in an agile environment. 2012. isbn:
9783642289095. doi: 10.1007/978-3-642-28909-5.

[78] Merriam-Webster Online Dictionary: "guideline" definition. url: https://www.
merriam-webster.com/dictionary/guideline.

[79] Merriam-Webster Online Dictionary: "principle" definition. url: https://www.
merriam-webster.com/dictionary/principle.

[80] M. Meyer, R. Zarnekow, and L. M. Kolbe. “IT-Governance - Begriff, Status quo
und Bedeutung”. In: Wirtschaftsinformatik (2003). issn: 09376429.

[81] N. B. Moe, D. Šmite, A. Šāblis, A.-L. Börjesson, and P. Andréasson. “Networking
in a large-scale distributed agile project”. In: Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement - ESEM
’14. 2014. isbn: 9781450327749. doi: 10.1145/2652524.2652584.

[82] S. Newman. Building Microservices. O’Reilly Media, Inc., 2015. isbn:
9781491950357. doi: 10.1109/MS.2016.64.

[83] K. Niemann. Von der Unternehmensarchitektur zur IT-Governance: Bausteine für ein
wirksames IT-Management. Vieweg+Teubner Verlag, 2005. isbn: 978-3-528-05856-2.

[84] E. Niemi and K. S. Soliman. “Enterprise architecture benefits: Perceptions from
literature and practice”. In: 7th IBIMA Conference Internet & Information Systems
in the Digital Age. 2006. isbn: 9780975339367.

[85] R. L. Nord, I. Ozkaya, and P. Kruchten. “Agile in Distress: Architecture to
the Rescue”. In: Agile Methods. Large-Scale Development, Refactoring, Testing, and
Estimation. Ed. by T. Dingsøyr, N. B. Moe, R. Tonelli, S. Counsell, C. Gencel,
and K. Petersen. Cham: Springer International Publishing, 2014, pp. 43–57. isbn:
978-3-319-14358-3.

[86] Object Management Group. Unified Modeling Language Specification Version 2.5.1.
2017. url: https://www.omg.org/spec/UML/.

[87] M. Op’t Land and E. Proper. “Impact of Principles on Enterprise Engineering.”
In: ECIS. 2007, pp. 1965–1976.

[88] K. Peffers, M. Rothenberger, T. Tuunanen, and R. Vaezi. “Design science research
evaluation”. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2012. isbn:
9783642298622.

[89] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee. “A Design
Science Research Methodology for Information Systems Research”. In: Journal of
Management Information Systems (2007). issn: 0742-1222. doi: 10.2753/MIS0742-
1222240302.

144

http://dx.doi.org/10.1007/978-3-642-28909-5
https://www.merriam-webster.com/dictionary/guideline
https://www.merriam-webster.com/dictionary/guideline
https://www.merriam-webster.com/dictionary/principle
https://www.merriam-webster.com/dictionary/principle
http://dx.doi.org/10.1145/2652524.2652584
http://dx.doi.org/10.1109/MS.2016.64
https://www.omg.org/spec/UML/
http://dx.doi.org/10.2753/MIS0742-1222240302
http://dx.doi.org/10.2753/MIS0742-1222240302

Bibliography

[90] R. Pereira and M. M. da Silva. “A Literature Review: Guidelines and Contin-
gency Factors for IT Governance”. In: European, Mediterranean & Middle Eastern
Conference on Information Systems (2012). doi: 10.1145/2463728.2463789.

[91] K. Petersen and C. Wohlin. “The effect of moving from a plan-driven to an
incremental software development approach with agile practices: An industrial
case study”. In: Empirical Software Engineering (2010). issn: 13823256. doi: 10.
1007/s10664-010-9136-6.

[92] G. Plataniotis, S. De Kinderen, Q. Ma, and E. Proper. “A Conceptual Model
for Compliance Checking Support of Enterprise Architecture Decisions”. In:
Proceedings - 17th IEEE Conference on Business Informatics, CBI 2015. 2015. isbn:
9781467373401. doi: 10.1109/CBI.2015.46.

[93] E. Proper and D. Greefhorst. “The Roles of Principles in Enterprise Architecture”.
In: Trends in Enterprise Architecture Research. Ed. by E. Proper, M. M. Lankhorst,
M. Schönherr, J. Barjis, and S. Overbeek. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 57–70. isbn: 978-3-642-16819-2.

[94] A. Qumer and B. Henderson-Sellers. “A framework to support the evaluation,
adoption and improvement of agile methods in practice”. In: Journal of Systems
and Software (2008). issn: 01641212. doi: 10.1016/j.jss.2007.12.806.

[95] D. Radovanovic, T. Radojević, and M. Sarac. “IT audit in accordance with Cobit
standard”. In: MIPRO, 2010 Proceedings of the 33rd International Convention. 2010,
pp. 1137–1141. isbn: 9781424477630.

[96] P. Resnick and R. E. Kraut. Building Successful Online Communities: Evidence-Based
Social Design. 2009. isbn: 9780262016575.

[97] G. L. Richardson, B. M. Jackson, and G. W. Dickson. “A Principles-Based Enter-
prise Architecture: Lessons from Texaco and Star Enterprise”. In: MIS Quarterly
(1990). issn: 02767783. doi: 10.2307/249787.

[98] P. Rodríguez, J. Partanen, P. Kuvaja, and M. Oivo. “Combining lean thinking
and agile methods for software development a case study of a finnish provider
of wireless embedded systems”. In: Proceedings of the Annual Hawaii International
Conference on System Sciences. 2014. isbn: 9781479925049. doi: 10.1109/HICSS.
2014.586.

[99] R. Roos and J. C. Mentz. “Factors that influence enterprise architecture decision
making”. In: 2018 Conference on Information Communications Technology and Society
(ICTAS). Mar. 2018, pp. 1–6. doi: 10.1109/ICTAS.2018.8368763.

[100] J. W. Ross, P. Weill, and D. C. Robertson. Enterprise Architecture as Strategy. 2006.
isbn: 1591398398.

145

http://dx.doi.org/10.1145/2463728.2463789
http://dx.doi.org/10.1007/s10664-010-9136-6
http://dx.doi.org/10.1007/s10664-010-9136-6
http://dx.doi.org/10.1109/CBI.2015.46
http://dx.doi.org/10.1016/j.jss.2007.12.806
http://dx.doi.org/10.2307/249787
http://dx.doi.org/10.1109/HICSS.2014.586
http://dx.doi.org/10.1109/HICSS.2014.586
http://dx.doi.org/10.1109/ICTAS.2018.8368763

Bibliography

[101] D. Rost, B. Weitzel, M. Naab, T. Lenhart, and H. Schmitt. “Distilling Best Practices
for Agile Development from Architecture Methodology”. In: Software Architecture.
Ed. by D. Weyns, R. Mirandola, and I. Crnkovic. Cham: Springer International
Publishing, 2015, pp. 259–267. isbn: 978-3-319-23727-5.

[102] P. Runeson and M. Höst. “Guidelines for conducting and reporting case study
research in software engineering”. In: Empirical Software Engineering (2009). issn:
13823256. doi: 10.1007/s10664-008-9102-8. arXiv: 9809069v1 [gr-qc].

[103] V. Sambamurthy and R. Zmud. “Arrangements for Information Technology
Governance: A Theory of Multiple Contingencies”. In: MIS Quarterly (1999).
issn: 02767783.

[104] Scaling Agile Framework. url: https://www.scaledagileframework.com/.

[105] K. Schwaber and M. Beedle. Agile Software Development with Scrum. 2001. isbn:
0130676349. doi: 10.1109/2.947100.

[106] Sein, Henfridsson, Purao, Rossi, and Lindgren. “Action Design Research”. In:
MIS Quarterly (2011). issn: 02767783. doi: 10.2307/23043488.

[107] D. Šmite, N. B. Moe, A. Šāblis, and C. Wohlin. “Software teams and their
knowledge networks in large-scale software development”. In: Information and
Software Technology (2017). issn: 09505849. doi: 10.1016/j.infsof.2017.01.003.

[108] D. Stelzer. “Enterprise architecture principles: literature review and research
directions”. In: Proceedings of the 2009 international conference on Service-oriented
computing. 2010. isbn: 978-3-642-16131-5. doi: 10.1007/978-3-642-16132-2.

[109] T. Tamm, P. B. Seddon, G. Shanks, and P. Reynolds. “How does enterprise
architecture add value to organisations?” In: Communications of the Association
for Information Systems (2011). issn: 15293181. doi: 10.1287/isre.3.1.60.

[110] H. Tanriverdi. “Performance Effects of Information Technology Synergies in
Multibusiness Firms”. In: MIS Quarterly 30.1 (2006), pp. 57–77. issn: 02767783.
doi: 10.2307/25148717.

[111] The Linux Foundation. Cloud Native Computing Foundation. 2018. url: https:
//www.cncf.io/.

[112] The Open Group. TOGAF Version 9. 2009. isbn: 9789087532307. doi: 10.1111/j.
1365-2702.2009.02827.x.

[113] J. F. Tripp, C. Riemenschneider, and J. B. Thatcher. “Job satisfaction in agile
development teams: Agile development as work redesign”. In: Journal of the
Association for Information Systems (2016). issn: 1536-9323. doi: 10.17705/1jais.
00426.

146

http://dx.doi.org/10.1007/s10664-008-9102-8
http://arxiv.org/abs/9809069v1
https://www.scaledagileframework.com/
http://dx.doi.org/10.1109/2.947100
http://dx.doi.org/10.2307/23043488
http://dx.doi.org/10.1016/j.infsof.2017.01.003
http://dx.doi.org/10.1007/978-3-642-16132-2
http://dx.doi.org/10.1287/isre.3.1.60
http://dx.doi.org/10.2307/25148717
https://www.cncf.io/
https://www.cncf.io/
http://dx.doi.org/10.1111/j.1365-2702.2009.02827.x
http://dx.doi.org/10.1111/j.1365-2702.2009.02827.x
http://dx.doi.org/10.17705/1jais.00426
http://dx.doi.org/10.17705/1jais.00426

Bibliography

[114] J. Tripp, J. Saltz, and D. Turk. “Thoughts on Current and Future Research
on Agile and Lean: Ensuring Relevance and Rigor”. In: Hawaii International
Conference on System Sciences. 2018. doi: 10.24251/HICSS.2018.681.

[115] D. Turk, R. France, and B. Rumpe. “Limitations of agile software processes”.
In: Third International Conference on eXtreme Programming and Agile Processes in
Software Engineering (XP 2002) (2002).

[116] Ö. Uludağ, M. Hauder, M. Kleehaus, C. Schimpfle, and F. Matthes. “Supporting
Large-Scale Agile Development with Domain-Driven Design”. In: Agile Processes
in Software Engineering and Extreme Programming. Ed. by J. Garbajosa, X. Wang,
and A. Aguiar. Cham: Springer International Publishing, 2018, pp. 232–247. isbn:
978-3-319-91602-6.

[117] O. Uludağ, M. Kleehaus, X. Xu, and F. Matthes. “Investigating the Role of
Architects in Scaling Agile Frameworks”. In: Proceedings - 2017 IEEE 21st Interna-
tional Enterprise Distributed Object Computing Conference, EDOC 2017. 2017. isbn:
9781509030453. doi: 10.1109/EDOC.2017.25.

[118] W. Van Grembergen and S. De Haes. Implementing Information Technology Gov-
ernance Models, Practices, and Cases. New York: IGI Publishing, 2007. isbn: 978-
1599049243. doi: 10.4018/978-1-59904-924-3.

[119] VersionOne. 12th Annual State of Agile Survey Report. 2018. url: https : / /
stateofagile.versionone.com/%0A.

[120] J. Vlietland and H. Van Vliet. “Towards a governance framework for chains of
Scrum teams”. In: Information and Software Technology. 2015. doi: 10.1016/j.
infsof.2014.08.008.

[121] X. Wang. “The Combination of Agile and Lean in Software Development: An
Experience Report Analysis”. In: 2011 AGILE Conference (2011). doi: 10.1109/
AGILE.2011.36.

[122] X. Wang, K. Conboy, and O. Cawley. “"Leagile" software development: An
experience report analysis of the application of lean approaches in agile software
development”. In: Journal of Systems and Software (2012). issn: 01641212. doi:
10.1016/j.jss.2012.01.061.

[123] P. Webb, C. Pollard, and G. Ridley. “Attempting to define IT governance: Wisdom
or folly?” In: Proceedings of the Annual Hawaii International Conference on System
Sciences. 2006. isbn: 0769525075. doi: 10.1109/HICSS.2006.68.

[124] P. Weill. “Don’t just lead, govern: How top-performing firms govern IT”. In: MIS
Quarterly Executive (2004). issn: 14111128. doi: 10.2139/ssrn.664612.

147

http://dx.doi.org/10.24251/HICSS.2018.681
http://dx.doi.org/10.1109/EDOC.2017.25
http://dx.doi.org/10.4018/978-1-59904-924-3
https://stateofagile.versionone.com/%0A
https://stateofagile.versionone.com/%0A
http://dx.doi.org/10.1016/j.infsof.2014.08.008
http://dx.doi.org/10.1016/j.infsof.2014.08.008
http://dx.doi.org/10.1109/AGILE.2011.36
http://dx.doi.org/10.1109/AGILE.2011.36
http://dx.doi.org/10.1016/j.jss.2012.01.061
http://dx.doi.org/10.1109/HICSS.2006.68
http://dx.doi.org/10.2139/ssrn.664612

Bibliography

[125] P. D. Weill and J. W. Ross. ITSavvy: What top executives must know to go from pain
to gain. 2009.

[126] P. Weill and J. W. Ross. “How Top Performers Manage IT Decisions Rights for
Superior Results”. In: Harvard Business School Press (2004). issn: 1556-5068. doi:
10.2139/ssrn.664612.

[127] R. Winter and R. Fischer. “Essential layers, artifacts, and dependencies of en-
terprise architecture”. In: Proceedings - 2006 10th IEEE International Enterprise
Distributed Object Computing Conference Workshops, EDOCW2006. 2006. isbn:
076952558X. doi: 10.1109/EDOCW.2006.33.

[128] R. Winter and J. Schelp. “Enterprise architecture governance: the need for a
business-to-IT approach”. In: Proceedings of the 2008 ACM symposium on . . . (2008).
issn: 13506285. doi: 10.1145/1363686.1363820.

[129] P. Witt. “Corporate Governance im Wandel”. In: Zeitschrift Führung und Organi-
sation 69.3 (2000), pp. 159–163. issn: 0722-7485.

[130] R. K. Yin. Case Study Research: Design and Methods. 2009. isbn: 9781412960991.

148

http://dx.doi.org/10.2139/ssrn.664612
http://dx.doi.org/10.1109/EDOCW.2006.33
http://dx.doi.org/10.1145/1363686.1363820

	Acknowledgments
	Abstract
	Contents
	Introduction
	Motivation
	Research objectives
	Research approach

	Foundations
	IT governance
	Traditional IT governance
	Modern governance approaches in the context of lean and agile

	Enterprise architecture management
	The role of EA in IT governance

	Principles and guidelines
	Definition and delimitation
	Importance in enterprise architecture management
	Value of principles
	Generic process

	Agile and lean development
	Agile software development
	Large-scale agile software development
	Lean software development
	Agile vs. lean software development

	The interplay between EAM and large-scale agile software development
	Gamification and social design

	Related work
	Case study
	Case study design
	Case description
	Use of architecture principles and guidelines
	Architecture communities
	Role of the enterprise architect
	Value contribution of enterprise architects
	Summarized challenges

	Collaborative approach to establish architecture principles and guidelines
	Agile governance through collaboration
	Guideline establishment approach with relevant stakeholders
	Involved stakeholders and their role in the approach
	Community goals and responsibilities
	Collaborative process steps

	Addressed challenges and solution requirements

	Implementation
	Motivation for a web application
	Technical requirements and technology selection
	Main views and core features
	Overview of the guidelines of a specific team
	Detail screen of the guideline of a specific team
	Team dashboard
	Team creation and guideline mapping
	Team and guideline statistics

	Features and possible extensions based on social design principles
	System architecture
	Class diagram
	Possible extensions and next steps

	Evaluation
	Goal and methodology
	Evaluation of the collaborative approach
	Value for agile teams and enterprise architects
	Challenges
	Community activities and process steps

	Evaluation of the prototype
	Assessment of the main goals of core features
	Usability assessment based on the System Usability Scale

	Summary of the evaluation results

	Discussion
	Key findings
	Limitations

	Conclusion and future work
	Summary
	Future work

	Appendix
	Evaluation interviews
	Semi-structured case study interviews
	General information
	Architecture principles
	Architecture boards
	Role of the enterprise architect
	Value contribution of enterprise architects

	Bibliography

