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ABSTRACT

The study of privacy-preservingNatural Language Processing (NLP)
has gained rising attention in recent years. One promising avenue
studies the integration of Differential Privacy in NLP, which has
brought about innovative methods in a variety of application set-
tings. Of particular note are word-level Metric Local Differential

Privacy (MLDP) mechanisms, which work to obfuscate potentially
sensitive input text by performing word-by-word perturbations. Al-
though these methods have shown promising results in empirical
tests, there are twomajor drawbacks: (1) the inevitable loss of utility
due to addition of noise, and (2) the computational expensiveness
of running these mechanisms on high-dimensional word embed-
dings. In this work, we aim to address these challenges by propos-
ing 1-Diffractor, a new mechanism that boasts high speedups
in comparison to previous mechanisms, while still demonstrating
strong utility- and privacy-preserving capabilities. We evaluate 1-
Diffractor for utility on several NLP tasks, for theoretical and
task-based privacy, and for efficiency in terms of speed and memory.
1-Diffractor shows significant improvements in efficiency, while
still maintaining competitive utility and privacy scores across all
conducted comparative tests against previous MLDP mechanisms.
Our code is made available at: https://github.com/sjmeis/Diffractor.
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1 INTRODUCTION

The issue of data privacy has grown in relevance and attention in
recent years with respect to the field of Natural Language Process-
ing, particularly with the rising prominence of language models
which require significant amounts of data to reach state-of-the-
art performance [4, 26]. Tasked with protecting individual privacy
while also allowing for the continued proliferation of highly useful
models, a number of solutions have appeared in recent literature to
form the basis of privacy-preserving Natural Language Processing.

One promising and increasingly researched solution comes with
the notion of Differential Privacy (DP) [11]. In essence, Differential
Privacy provides a mathematically grounded concept of individual
privacy protection whose guarantees can be scaled according to
the crucial 𝜀 parameter, known as the privacy parameter. However,
the integration of DP into Natural Language Processing does not
come without challenges [13, 20, 23], among them the transfer from
structured data to textual data and reasoning about the “individual”.

In response, one avenue of research looks to theword-level, where
text is obfuscated via word-by-word replacements, resulting in
perturbed data [12, 14]. These word-level methods often rely on
Metric Local Differential Privacy (MLDP), a generalized notion of
DP which allows for the extension of DP into metric spaces, such as
withwords represented in embedding spaces [6]. More recent works
have made advancements in the selection strategy of the perturbed
word [5], distance metric [15, 38], or calibration of mechanism
according to the density of the embedding space [37, 39].

As noted by Mattern et al. [23], a major shortcoming of word-
level MLDP methods originates from the relatively large amounts
of noise that must be added to satisfy DP, thus ultimately leading to
perturbed textual data with poor utility. Another limitation, noted
by Klymenko et al. [20], comes with the “structural limitations”
imposed by MLDP, particularly when mapping from original text
to perturbed text. Such perturbations require nearest neighbor
searches, which can become computationally very expensive when
working in high-dimensional spaces with large vocabularies.

In this work, we aim to address these two key issues of util-
ity preservation and efficiency with word-level MLDP. To do so,
we introduce 1-Dimensional Differentially Private Text Obfusca-
tion (1-Diffractor), a novel method that is highly efficient and
boasts competitive levels of utility preservation. In contrast to pre-
vious methods, 1-Diffractor operates on single-dimensional word
embedding lists and uses the geometric distribution, from which
perturbation candidates are selected through what we call a diffrac-
tion process. An illustration of this process is found in Figure 1 and
will be described in Section 3.
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Figure 1: An Overview of 1-Diffractor. Input text is perturbed word-by-word. In this example, we employ the setting in which

five word embedding models are used, with one list per model. An input word is diffracted through these lists, producing a list

of candidate perturbations, from which a final selection is made randomly.

To evaluate 1-Diffractor, we set up three categories of ex-
periments: (1) Utility Experiments, in which two versions of 1-
Diffractor are evaluated on the GLUE benchmark, (2) Privacy
Experiments, which include a comparative analysis of our mecha-
nism’s privacy-preserving capabilities, as well as empirical privacy
tests on two adversarial tasks, and (3) Efficiency Experiments, in
which the performance and scalability our 1-Diffractor is ex-
plored, particularly in comparison to previous mechanisms.

The results of our experiments demonstrate that perturbing
datasets with 1-Diffractor preserves utility across a variety of
NLP tasks. In addition, 1-Diffractor is effective in reducing ad-
versarial advantage in two chosen tasks. Finally, 1-Diffractor is
significantly more efficient than previous methods, processing text
at greater than 15x the speed and with less memory than previously.

The contributions of our work are as follows:

(1) We present a novel word-level MLDP mechanism, built upon
word embeddings in a one-dimensional space, or lists

(2) We demonstrate the effectiveness of our list method with an
existing noise-addition mechanism, as well as a new mecha-
nism previously unused in the NLP domain

(3) We also emphasize efficient word-level MLDP, highlighting
the speed and memory consumption of word perturbations

2 FOUNDATIONS

2.1 Differential Privacy

Intuitively, Differential Privacy (DP) [11] ensures that the result
of a computation over a collection is nearly the same irrespective
of inclusion or exclusion of a single data point. Hence, if we have
two databases D and D′ differing in only one data point, when a
differentially private mechanism is applied over these two databases

D and D′, the result of the mechanism will be very similar. Such
databases that differ only by a single element are called neighboring
or adjacent databases. More formally, a mechanismM : X𝑚 → O
operating over any two adjacent databases D, D′ ∈ X𝑚 is (𝜀, 𝛿)-
differentially private, iff ∀𝑂 ⊆ O, the following condition holds:

P[M(D) ∈ 𝑂] ≤ 𝑒𝜀 · P[M(D′) ∈ 𝑂] + 𝛿

where 𝜀 > 0 and 𝛿 ∈ [0, 1].
In other words, a mechanism is (𝜀, 𝛿)-differentially private if

its output distributions on adjacent databases are "close enough"
to each other. In the case of traditional databases, the notion of
adjacent databases is simple to understand and without loss of
generality could be given as D′ = D ∪ {𝑑}, where 𝑑 is a single
record in a database. The case of unstructured domains such as
text, however, brings additional considerations. Based on how the
notion of adjacent databases is defined, so is the element which DP
aims to protect. Since this original notion defines databases as those
differing in a single record, a differentially private mechanismM
will guarantee that the influence of a single record on the output of
the mechanism is bounded.

2.2 Local Differential Privacy and NLP

The notion of DP as introduced above is known asGlobal Differential
Privacy. Another notion is called Local Differential Privacy (LDP),
where noise is added directly to the data before being aggregated
at a central location [19]. In LDP, the notion of adjacent databases
is defined over data points from a single individual: every collected
data point from a single individual is adjacent to every other data
point from another individual. Feyisetan et al. [14] leverages the
“one user, one word” model, where the curator collects a word from
each user and uses these to perform some downstream tasks. Instead
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of making the original words available to the analyst and leaking
information about the users, users can run a privacy-preserving
mechanism over their words before releasing them. In the base
version of this model, the practicality is quite limited, as collecting
a single word from each user would rarely allow for meaningful
analysis. As noted by Feyisetan et al. [14], however, this model can
be extended to larger textual units (see Section 3.1.3).

Another aspect of this model is the notion of adjacency being
defined on words – each word is a database and is adjacent to every
other word. However, this is a very strict notion of privacy with
severe implications for utility [14]. Hence, a relaxation of (LDP)
called Metric Local DP (MLDP) or 𝑑𝜒 -privacy [6] is used instead
for a better privacy-utility trade-off [14].

2.3 Metric (Local) Differential Privacy

Let X andZ be finite sets and let 𝑑 : X × X → R+ be the distance
metric defined on the set X that satisfies the axioms of a metric.

Definition 1. (𝑑X-privacy). Let 𝜀 > 0. A randomized mechanism

M : X → Z satisfies 𝜀𝑑X-privacy iff ∀𝑥, 𝑥 ′ ∈ X and ∀𝑧 ∈ Z

P[M(𝑥) = 𝑧]
P[M(𝑥 ′) = 𝑧] ≤ 𝑒𝜀𝑑 (𝑥,𝑥

′ ) (1)

With MLDP, the notion of adjacent databases remains any two
words, but while LDP bounds the output distributions over the
adjacent sets by 𝑒𝜀 , MLDP bounds it by 𝑒𝜀 ·𝑑𝜒 (𝑤,𝑤′ ) . Hence, when
an MLDP mechanism is applied, the words that are close (measured
by some distance metric) would have more “similar” output dis-
tributions compared to when the words are far apart. It should be
noted that MLDP is a generalized notion of LDP, and (pure) LDP
can be derived from MLDP by keeping the distance between any
two words as a constant value, i.e., ∀𝑤,𝑤 ′ ∈ X, 𝑑X (𝑤,𝑤 ′) = 1.

Following Feyisetan and Kasiviswanathan [16] and subsequent
works, theseMLDPmechanisms are run onword embeddings, which
lend themselves well to the MLDP scheme due to their underlying
metrics spaces and distance measures, while still preserving the
goal of the one user, one word notion.

3 1-DIFFRACTOR

As previously stated, our model operates as defined by Feyisetan
et al. [14]: one user, one word. In this setting, a utility-preserving
private mechanism produces a “perturbed” version of the input
word that preserves its original intent but prevents the leakage of
the user information that can be extracted from the choice of their
word. If the word sent by a user is𝑤 , the mechanismM outputs its
“privatized” word �̂� =M(𝑤).OurMechanismM operates onword
embeddings where the words are arranged in a one-dimensional
list, with adjacent words being close in the original space.

Intuition behind converting a word embedding model from R𝑑

to Z. Previous word-level MLDP mechanisms operate on high-
dimensional word embeddings, adding noise to every dimension
of the vector. This not only adds a high value of noise (measured
by its norm), but the noisy vector rarely corresponds to a word
in the embedding model. Hence, it must be remapped to a nearby
word, increasing the time complexity and potentially impacting the
utility of the overall mechanism. There exist multiple approaches to

remapping the vector to a word [14, 37, 39]. Several approaches that
do not add noise directly to word vectors have been proposed that
use variants of the Exponential Mechanism for choosing a priva-
tized word for the input word [5, 36]. We formulate our mechanism
in a different way that is fast to compute, by reducing the dimension
of embeddings to one dimension. As such, noise must only be added
on one dimension; concretely, we add discretized noise sampled
from Geometric distribution to words in one-dimensional space.

Converting high-dimensional embeddings to a 1-D list has sev-
eral advantages: 1-D embeddings can be considered an index and
this simplifies word privatization to returning a noisy index. More-
over, these 1-D lists can be combined together into a collection
of lists from different embedding models, thereby increasing the
diversity of output words while also providing an extra layer of
obfuscation, described further in Section 3.1.2.

To create such a one-dimensional list from a word embedding
model such as word2vec [25] or GloVe [27], we initialize the list
𝐿 with a random word and iteratively add the nearest word in
the embedding space to the previously added word. Concretely, a
random word is first selected as the seed word and it is added to the
list 𝐿. Then the nearest word in the embedding model, according
to the Euclidean distance, is made the seed word and the process
repeats for the remaining embedding space, until no words remain.

Thus, this process mimics a “greedy search” through a given em-
bedding space, from a randomly selected starting point. Algorithm 1
outlines this process. Multiple lists from a single embedding model
can be created by initializing the starting point (seed) at different
points. In addition, various pre-trained word embedding models
can be utilized in tandem to create several lists.

Algorithm 1

Creation of a word list 𝐿 from a word embedding model
Require: Word Embedding model 𝐸
𝐿 ← list( )
words← vocabulary(𝐸 )
seed← random(words)
𝐿.append(seed)
while words.length() > 1 do

𝑁 ← NearestWord(seed)
𝐿.append(𝑁 )
words.remove(seed)
seed← 𝑁

end while

return 𝐿

3.1 Word-level 𝑑X-privacy mechanism

3.1.1 Using a single word embedding list. We describe how our pro-
posed 𝑑𝜒 -privacy mechanism works with a single word embedding
list 𝐿. We define an embedding function Φ : V → [0, |V|] ∩N over
the list 𝐿 that takes a word from our vocabulary setV as input and
returns its position (index) in the list as the output. Using these
indices, we define a distance function 𝑑V : V×V → Z+ that gives
us the distance between two words𝑤 and𝑤 ′ in our list as follows:

𝑑V (𝑤,𝑤 ′) = |Φ(𝑤) − Φ(𝑤 ′) | (2)

Note that the 𝑑V distance function indeed follows all three ax-
ioms of a distance metric. Now we define our mechanism that
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takes a word𝑤 as input and outputs a “privatized” word𝑤 ′ using
𝑑V -privacy mechanism.

The mechanismM : V → Z operates over a word and adds
noise sampled from the geometric distribution. This particular dis-
tribution can be utilized due to our representation of words in
one dimension (discrete indices), and thus we return a noisy index.
Mathematically,M is defined as follows:

M(𝑤,Φ( ·), 𝜀 ) = Φ(𝑤 ) + 𝑥, 𝑥 ∼ G
(
0,

1
𝜀

)
(3)

where G is the Geometric distribution, given by the following prob-
ability density function,

∀𝑥 ∈ Z, P
𝑋←G(𝜇,𝑏)

[𝑋 = 𝑥 ] = 𝑒1/𝑏 − 1
𝑒1/𝑏 + 1

· 𝑒−
|𝑥−𝜇 |
𝑏 (4)

Using the property of linear transformation of random variables,
one can see that our mechanism M is a randomized algorithm
and its outputs are random variables drawn from the Geometric
distribution G(Φ(𝑤), 1/𝜀). The proof thatM satisfies 𝜀𝑑V -privacy
can be found in Theorem 1.

Theorem 1. The proposed mechanismM defined in Equation 3

satisfies 𝜀𝑑V -privacy.

Proof. Let𝑤 and𝑤 ′ be any two words belonging to setV , then
the ratio of the probability distribution of application ofM on𝑤

and𝑤 ′ can be given as
P[M(𝑤 ) = 𝑥 ]
P[M(𝑤′ ) = 𝑥 ] =

𝑒−𝜀 · |𝑥−Φ(𝑤) |

𝑒−𝜀 · |𝑥−Φ(𝑤′ ) |

(From Equation 4)

= 𝑒𝜀 · ( |𝑥−Φ(𝑤
′ ) |−|𝑥−Φ(𝑤) |)

≤ 𝑒𝜀 · ( |Φ(𝑤)−Φ(𝑤
′ ) |)

( |𝑎 | − |𝑏 | ≤ |𝑎 − 𝑏 |)

= 𝑒𝜀 ·𝑑𝑉 (𝑤,𝑤′ )

(From Equation 2)

□

Now, we define a truncation function 𝑡 : Z→ [0, |V|] ∩ N that
takes the input from our mechanism defined above and truncates
its output to the range {0 . . . |V|} in the following way:

𝑡 (𝑥 ) =


𝑥 𝑥 ∈ [0, |V | ]
0 𝑥 < 0
|V | 𝑥 > |V |

(5)

The application of the function 𝑡 (·) to the output of the mecha-
nismM truncates its values in the range [0, |V|]. Due to resilience
to post-processing of 𝜀𝑑X-privacy, the composition (𝑡 ◦ M) also
satisfies 𝜀𝑑V -privacy [21]. Alternatively, the composition (𝑡 ◦M)
can be thought of as a randomized mechanismM′ that adds to the
index Φ(𝑤) a random variable 𝑥 drawn from a Truncated Geometric

distribution instead of the Geometric distribution in Equation 3.
In order to convert the privatized index back to the domain of

words, we can apply a function 𝑟 : [0, |V|] ∩ N → V . Note that
function 𝑟 is the inverse function of our embedding function Φ(·).
𝑟 (·) takes the index of the word and returns its corresponding word.
Again from the post-processing property of metric-DP, the compo-
sition (𝑟 ◦ 𝑡 ◦M) satisfies 𝜀𝑑V -privacy [21]. Hence, our function
(𝑟 ◦ 𝑡 ◦M) : V → V takes a word and outputs a “privatized" word.

3.1.2 Using multiple word embedding lists. One can use multiple
lists L = {𝐿1, 𝐿2, . . . , 𝐿𝑛} as well. We define separate word embed-
ding functions Φ𝑙 : V → [0, |V|] ∩N corresponding to each list 𝐿𝑙
and by extension, separate distance functions 𝑑𝑙V : V ×V → Z+
for each list 𝐿𝑙 . Then, on the input word, we apply the mechanism
M(𝑤,Φ𝑙 (·), 𝜀) for every list in L, which outputs perturbed words
W = {𝑤 ′1,𝑤

′
2, . . . ,𝑤

′
𝑛} for an input word, and we randomly select

a single word out ofW, releasing that as the “privatized” word for
the input word. Even though the mechanism is applied 𝑛 times,
only a single output out of all 𝑛 results is released, implying it is not
a sequential application of 𝑑𝜒 -privacy mechanism; hence, we do
not incur any additional privacy cost in terms of 𝜀 as compared to
utilizing a single list. However, since the distance between the two
words𝑤 and𝑤 ′ may not be the same across lists, the probability
distributions resulting from the application of mechanismM on𝑤
and𝑤 ′ would be bounded by 𝑒𝜀 ·𝑑𝑚𝑎𝑥 (𝑤,𝑤′ ) , i.e.,

P[M(𝑤 ) = 𝑥 ]
P[M(𝑤′ ) = 𝑥 ] ≤ 𝑒𝜀𝑑𝑚𝑎𝑥 (𝑤,𝑤′ ) (6)

where 𝑑𝑚𝑎𝑥 (𝑤,𝑤 ′) = max
𝑙∈{1...𝑛}

𝑑𝑙V (𝑤,𝑤 ′).

3.1.3 Extending Word-level 𝑑X-privacy to sentences. Our proposed
mechanism 1-Diffractor operates on the word level; however, the
perturbation of large units of textual data, i.e., sentences can be
extrapolated from this base level, as described in [14].

In particular, a sentence 𝑠 can be considered as a concatenation
of 𝑛 words, i.e., 𝑠 = 𝑤1 · 𝑤2 · · ·𝑤𝑛 . We follow [14] and apply our
mechanism to each word independently to generate a privatized
sentence 𝑠′ = 𝑥1 ·𝑥2 · · · 𝑥𝑛 . We define the distance function𝐷 : V∗×
V∗ → Z+ between two sentences of same length 𝑠 = 𝑤1 · · ·𝑤𝑛

and 𝑠′ = 𝑤 ′1 · · ·𝑤
′
𝑛 as D =

𝑛∑︁
𝑖=1

𝑑𝑚𝑎𝑥 (𝑤𝑖 ,𝑤
′
𝑖 )..

Since the application of the mechanismM is independent with
respect to words, whenM is applied on a sentence 𝑠 = 𝑤1 · · ·𝑤𝑛 ,
its output distribution is given by:

P[M(𝑠) = 𝑧] =
𝑛∏
𝑖=1
P[M(𝑤𝑖 ) = 𝑥]

Theorem 2. ∀𝑠, 𝑠′ ∈ V∗,∀𝑧 ∈ V∗ and |𝑠 | = |𝑠′ | = |𝑧 | = 𝑛, we

have the following inequality:

P[M(𝑠 ) = 𝑧 ]
P[M(𝑠′ ) = 𝑧 ] ≤ exp (𝜀 · D (𝑠, 𝑠′ ) )

Proof.

P[M(𝑠 ) = 𝑧 ]
P[M(𝑠′ ) = 𝑧 ] =

𝑛∏
𝑖=1

P[M(𝑤𝑖 ) = 𝑥 ]
P[M(𝑤′

𝑖
) = 𝑥 ]

≤
𝑛∏
𝑖=1

exp
(
𝜀 · 𝑑𝑚𝑎𝑥 (𝑤𝑖 , 𝑤

′
𝑖 )

)
= exp

(
𝜀 ·

𝑛∑︁
𝑖=1

𝑑𝑚𝑎𝑥 (𝑤𝑖 , 𝑤
′
𝑖 )

)
= exp

(
𝜀 · D (𝑠, 𝑠′ )

)
□

The limitation of extending word-level metric-DP to a sentence
is that the neighboring “dataset” should be sentences of the same
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length, and hence the output sentence actually leaks the number of
words in a sentence, as pointed out by Mattern et al. [23].

4 UTILITY EXPERIMENTS

To test the utility-preservation of 1-Diffractor, we have designed
a three-part experiment, consisting of (1) experiments with different
settings of our method on the GLUE benchmark, (2) comparative
tests on selected GLUE tasks, comparing our method against previ-
ousMLDPmechanisms, and (3) a semantic similarity test to evaluate
how well 1-Diffractor preserves meaning.

4.1 Design

We decide to evaluate utility on the GLUE benchmark [34], which
presents a series of nine NLP tasks broken down into three cat-
egories. These include binary classification tasks (CoLA, SST2),
textual similarity tasks (QQP,MRPC, STSB), and textual entailment
tasks (MNLI, QNLI, WNLI, RTE). Previous works on text-to-text
privatization perform evaluations on single tasks for the bench-
mark [32, 40], but to the best of the authors’ knowledge, no works
have done so for the entire benchmark. Of particular note is the
difficulty introduced when a benchmark dataset contains two sen-
tences per data point, which presents an interesting test case for
the utility-preserving capabilities of an MLDP mechanism.

4.1.1 Dataset Preparation. For each dataset in the GLUE bench-
mark, we perturb all relevant columns with 1-Diffractor in both
the train and validation splits, i.e., either a single sentence or a sen-
tence pair. For the larger datasets in the benchmark (MNLI, QNLI,
QQP, SST2), we take 10% of the training dataset. This is justified
due to the large size of these datasets, as well as the fact that all
experiments report relative results to the baseline. In all cases, the
full validation set is used. For MNLI, only the matched split is used.

4.1.2 Baseline Model and Scoring. For all utility tests, we fine-tune
BERT (bert-base-uncased) [9] on the train split, and report the
evaluation performance on the validation split. For both the original
dataset and all subsequent evaluations (perturbed datasets), the fine-
tuning process is run on a V100 GPU (Google Colab) and is repeated
three times, for one epoch each. This is to account for variations
in the training process. Final scores are calculated by averaging
the accuracy scores for the three runs, while also calculating the
standard deviation. All tasks report accuracy scores, except for
STSB, where the Pearson-Spearman Correlation is reported.

4.1.3 Experiment Parameters.

Noise mechanism. We choose: (1) the Truncated Geometric mech-
anism, as introduced in Section 3.1, denoted as 1-D𝐺 , and (2) the
Truncated Exponential mechanism (TEM), introduced by Carvalho
et al. [5], denoted as 1-D𝑇 . In the case of 1-D𝑇 , we adapt the usage
of TEM for one-dimensional space, so as to fit 1-Diffractor. In
particular, 1-D𝑇 operates on a subset of the vocabulary, governed
by a truncation threshold 𝛾 , whose value depends on the chosen 𝜀.

Choice of epsilon (𝜀). We choose the values 𝜀 ∈ {0.1, 0.5, 1, 3, 5, 10},
which upon initial observation of our method, represents the “effec-
tive range” of noise addition, thus allowing for a test of strict privacy
guarantees (e.g., 0.1) as well as weaker guarantees (e.g., 10). As will
be noted in Section 5.3, this range is extended for comparative tests.

1-Diffractor settings. We utilize five embedding models1 and
three list configurations:
• E1: conceptnet-numberbatch [31]
• E2: glove-twitter [27]
• E3: glove-wiki-gigaword [27]
• E4: glove-commoncrawl [27]
• E5: word2vec-google-news [25]
• L0: 1 list for each of E1-5
• L1: 2 lists for each of E1-5
• L2: 1 list, only E1

4.2 Results

Table 1 presents the full results of the 1-Diffractor utility tests,
for all of the above-mentioned experiment parameters. Figure 2
summarizes this information by illustrating the average utility drop
(in percentage points) across all GLUE tasks, for each (mechanism,
𝐿, 𝜀) tuple. Similarly, Figure 3 summarizes the utility results for the
comparative test against the selected previous MLDP mechanisms.

The full scores of 1-Diffractor against the five selected MLDP
mechanisms on three selected GLUE tasks can be found in Table 3.
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Figure 2: Average utility drop (loss) across all GLUE tasks of

1-D𝐺 and 1-D𝑇 with different list configurations and 𝜀 values.

Lower scores imply higher preserved utility.

SBERT. As a final part of our conducted utility experiments,
we employ an SBERT model [29], namely all-MiniLM-L6-v2, to
compare the semantic similarity between original and privatized
sentences. This approach is similar to that proposed in BERTScore
[42] for evaluating text generation. As noted by Mattern et al. [23],
this metric is important for evaluating the ability of a text obfusca-
tion mechanism to preserve the semantic coherence of the original
sentence. The scores, grouped by 𝜀 value, are provided in Table 2.

5 PRIVACY EXPERIMENTS

To evaluate the privacy-preservation capabilities of 1-Diffractor,
we employ a two-fold approach. Firstly, the theoretical privacy
guarantees of the model are tested against previous MLDP mech-
anisms. Next, empirical privacy tests are run on two adversarial
tasks to evaluate the ability of 1-Diffractor to obfuscate text.
1300-dim versions, except for E2 (200-dim)
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CoLA SST2 QQP MRPC STSB (PCS)
Baseline 80.570.6 89.980.5 85.240.2 77.780.8 88.170.6
𝜀 / L L0 L1 L2 L0 L1 L2 L0 L1 L2 L0 L1 L2 L0 L1 L2

1-D𝑇 0.1 68.490.7 68.011.6 69.000.2 69.300.3 67.160.5 69.501.0 73.500.6 73.400.7 73.500.7 68.552.2 69.851.2 70.020.8 39.405.1 41.422.4 41.951.8
0.5 68.650.4 68.940.7 68.141.1 74.731.0 74.541.4 76.450.5 73.951.4 73.791.2 74.980.7 69.122.3 70.420.2 72.390.6 49.832.4 49.670.8 59.340.8
1 68.360.7 69.160.0 70.631.1 77.060.2 76.990.6 81.270.7 77.240.9 76.570.3 78.270.5 74.751.4 72.550.0 72.960.8 59.380.7 64.771.1 69.381.1
3 73.600.5 72.610.8 74.590.2 85.930.7 85.400.3 88.070.7 80.020.6 80.400.3 80.770.5 72.880.9 74.840.7 73.120.8 77.690.4 79.000.8 80.180.8
5 75.741.0 77.210.6 76.800.5 88.230.4 88.570.5 89.790.2 82.980.2 82.400.3 83.280.3 75.821.3 75.821.0 75.411.7 83.130.6 83.650.5 84.800.7
10 80.820.4 81.430.9 80.410.2 89.600.5 89.070.2 89.220.3 84.660.5 84.310.4 84.420.2 78.840.3 80.390.5 77.290.2 87.260.5 87.520.7 87.630.6

1-D𝐺 0.1 68.011.2 67.951.5 68.360.5 69.301.3 70.950.5 71.751.0 73.750.5 74.420.5 74.420.5 70.340.5 70.181.2 68.712.0 42.042.4 44.332.1 45.251.8
0.5 69.101.1 69.220.3 69.420.4 77.100.6 80.430.6 81.461.0 76.730.5 74.921.2 77.060.6 70.590.5 71.571.0 71.080.4 64.061.7 63.400.8 68.600.7
1 71.110.3 70.690.8 71.490.3 82.950.5 81.800.1 85.400.8 77.810.7 78.650.1 80.630.1 75.901.5 72.390.6 74.020.5 71.110.7 73.240.4 76.361.2
3 77.340.6 77.050.7 77.690.4 88.190.6 89.410.7 89.790.7 82.420.4 82.460.4 83.480.3 75.741.2 74.511.0 77.210.7 84.070.5 83.110.7 84.810.4
5 78.620.9 79.450.1 80.250.3 89.410.1 88.881.1 89.370.5 83.910.4 84.030.3 84.610.4 78.101.0 77.940.7 78.920.2 87.000.5 87.060.7 87.880.6
10 81.080.8 79.710.4 80.980.4 89.560.5 88.990.1 89.720.4 83.790.3 84.180.1 84.880.1 77.370.8 77.860.5 78.680.2 87.070.5 87.530.8 88.140.5

(a) Utility Scores (Accuracy) for the Classification and Textual Similarity Tasks of GLUE. Note: for STSB, the (scaled) Pearson-Spearman

Correlation (PCS) is given.

MNLI QNLI WNLI RTE
Baseline 76.540.5 84.790.5 38.972.4 59.211.4
𝜀 / L L0 L1 L2 L0 L1 L2 L0 L1 L2 L0 L1 L2

1-D𝑇 0.1 54.351.6 54.181.7 54.931.1 67.980.3 67.580.8 69.080.7 48.833.3 41.311.8 46.011.8 54.393.7 56.320.5 54.511.1
0.5 56.871.3 57.361.1 60.331.0 69.181.0 71.330.5 72.990.8 44.135.8 42.722.9 46.952.4 52.350.6 52.350.8 53.554.7
1 61.270.6 60.851.2 63.570.9 73.450.6 72.991.2 76.940.3 42.722.4 44.133.3 42.722.9 53.191.8 54.991.3 55.961.5
3 68.371.0 68.230.9 71.190.4 80.820.6 78.430.8 79.410.8 43.191.3 37.563.7 40.382.4 56.320.8 54.990.3 58.120.6
5 72.770.4 72.780.5 74.120.2 80.370.4 82.310.3 81.160.3 36.152.4 39.442.3 39.911.3 58.480.6 60.292.8 58.972.1
10 76.430.3 75.720.6 76.710.3 83.330.0 84.060.2 82.790.6 36.154.4 38.034.1 38.031.1 59.210.8 60.291.0 60.771.6

1-D𝐺 0.1 55.851.3 54.751.3 56.601.3 66.900.9 68.410.7 69.671.1 52.582.9 47.427.7 45.071.1 53.913.2 52.473.0 55.231.9
0.5 59.901.2 61.340.8 63.911.0 72.710.9 71.891.0 74.180.4 41.314.6 40.382.4 46.956.3 53.912.5 59.332.4 58.970.6
1 64.721.1 65.800.9 67.980.8 74.621.0 76.891.0 80.300.7 38.970.7 38.502.4 39.914.8 58.721.2 54.511.5 57.042.1
3 73.470.7 73.830.5 75.050.5 80.610.7 81.760.4 82.370.7 35.213.0 35.211.1 38.032.3 56.800.9 59.810.9 58.361.2
5 75.540.5 76.100.4 76.790.6 82.000.7 84.360.3 83.040.7 38.501.3 40.381.3 39.442.0 58.360.2 58.840.5 60.770.9
10 76.170.3 76.490.3 77.130.4 85.170.2 85.010.1 84.970.4 38.034.0 38.503.7 38.034.0 60.050.3 61.731.3 59.810.5

(b) Utility Scores (Accuracy) for the Textual Entailment Tasks of GLUE.

Table 1: Utility Scores for 1-Diffractor across the nine GLUE tasks, for six selected 𝜀 values. 𝐿 values denote the three different

list configuration settings that were used for the utility experiments. Scores presented are an average of three separate training

runs, and the standard deviation is also presented for each score (as a subscript).
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Figure 3: Average utility drop across the SST2, MRPC, and

RTE tasks compared to the five selected MLDP mechanisms.

5.1 Plausible Deniability

Following Feyistan et al. [14], we calculate plausible deniability
statistics for our mechanism, which provide an idea of the variation
introduced by a given text perturbation mechanism, for a given 𝜀

value. In particular, there are two statistics:𝑁𝑤 , which measures the

𝜀 0.1 0.5 1 3 5 10 25 50
1 − 𝐷𝐺 0.37 0.57 0.66 0.80 0.82 0.82 0.99 0.99
1 − 𝐷𝑇 0.31 0.48 0.57 0.73 0.79 0.82 1.00 1.00

MVC 0.08 0.08 0.08 0.09 0.10 0.15 0.64 0.77
Gumbel 0.33 0.33 0.33 0.33 0.33 0.33 0.59 0.61
Vickrey 0.08 0.08 0.08 0.09 0.10 0.14 0.42 0.49
TEM 0.10 0.10 0.11 0.38 0.45 0.45 0.83 0.83
Mahalanobis 0.09 0.08 0.09 0.09 0.10 0.14 0.56 0.75

Table 2: Average SBERT cosine similarity scores for (original,

perturbed) sentence pairs of the MRPC, RTE, and SST2 tasks.

1-D variants are averaged for all list configurations (L0-L2).

Best scores for each 𝜀 value are bolded.

probability that a word is returned unperturbed (i.e., is perturbed to
itself), and 𝑆𝑤 , which measures the support of perturbing a certain
word, i.e, how many output words are expected given an input
word. To estimate 𝑁𝑤 and 𝑆𝑤 , we randomly sample 100 words from
the vocabulary of models E1-5. Using list configuration L0, each of
the 100 words is perturbed 100 times through 1-Diffractor.

Figure 4 displays the results of these tests. For comparison, we
also test five recent MLDP mechanisms, namely: MVC [14], Gumbel
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Mechanism / 𝜀 0.1 0.5 1 3 5 10 25 50

SST2

1-D Best 71.75 ± 1.0 81.46 ± 1.0 85.40 ± 0.8 89.79 ± 0.7 89.79 ± 0.2 89.72 ± 0.4 89.72 ± 0.6 89.72 ± 0.6
MVC 53.78 ± 2.0 55.01 ± 3.0 52.98 ± 1.5 54.32 ± 2.4 57.42 ± 1.2 59.52 ± 0.8 80.05 ± 0.8 86.23 ± 0.8
Gumbel 78.44 ± 0.4 77.06 ± 0.1 75.27 ± 1.4 76.72 ± 1.4 76.61 ± 1.9 76.61 ± 1.2 78.36 ± 1.4 76.41 ± 0.2
Vickrey 53.25 ± 1.7 55.16 ± 0.7 53.90 ± 2.1 53.59 ± 2.0 56.96 ± 0.8 56.88 ± 0.8 71.67 ± 0.5 74.16 ± 1.0
TEM 53.13 ± 0.8 54.97 ± 2.9 51.34 ± 0.7 78.10 ± 0.4 89.26 ± 0.4 89.14 ± 1.5 90.14 ± 0.5 90.21 ± 1.1

Mahalanobis 54.74 ± 3.0 55.01 ± 2.4 54.01 ± 2.2 53.78 ± 1.5 53.82 ± 1.4 59.40 ± 0.7 74.89 ± 0.4 85.32 ± 0.4

RTE

1-D Best 56.32 ± 0.5 59.33 ± 2.4 58.72 ± 1.2 59.81 ± 0.9 60.77 ± 0.9 61.73 ± 1.3 65.00 ± 3.6 63.70 ± 2.7

MVC 52.59 ± 1.0 52.47 ± 1.6 54.51 ± 1.0 50.42 ± 2.5 48.38 ± 1.1 48.86 ± 1.9 55.20 ± 0.0 59.81 ± 3.3
Gumbel 56.32 ± 2.3 54.39 ± 0.3 54.99 ± 2.2 53.67 ± 1.6 52.95 ± 1.2 52.71 ± 2.1 54.99 ± 0.7 51.26 ± 1.8
Vickrey 51.99 ± 0.6 54.15 ± 2.5 51.62 ± 3.1 51.26 ± 2.7 52.59 ± 0.5 49.22 ± 1.5 53.79 ± 0.8 55.60 ± 0.3
TEM 49.94 ± 2.7 53.19 ± 2.2 51.87 ± 3.4 58.84 ± 1.9 59.81 ± 1.0 60.29 ± 1.4 61.50 ± 3.3 62.21 ± 3.8
Mahalanobis 53.43 ± 1.5 51.50 ± 0.9 51.99 ± 1.2 52.23 ± 1.2 51.99 ± 1.6 53.43 ± 1.8 54.63 ± 2.0 59.57 ± 1.3

MRPC

1-D Best 70.34 ± 0.5 72.39 ± 0.6 75.90 ± 1.5 77.21 ± 0.7 78.92 ± 0.2 80.39 ± 0.5 79.24 ± 0.7 79.41 ± 0.9

MVC 69.12 ± 0.6 67.89 ± 1.0 68.87 ± 0.3 67.57 ± 1.3 69.28 ± 0.4 66.67 ± 1.7 69.20 ± 0.7 76.39 ± 0.9
Gumbel 70.59 ± 0.9 71.73 ± 0.5 69.44 ± 1.5 70.92 ± 0.6 71.16 ± 0.8 69.69 ± 1.4 70.10 ± 0.6 69.28 ± 0.2
Vickrey 67.97 ± 3.2 66.99 ± 1.3 68.46 ± 0.5 67.24 ± 0.8 68.38 ± 1.1 67.97 ± 0.6 66.91 ± 1.0 69.93 ± 0.7
TEM 67.40 ± 2.3 69.44 ± 0.8 67.08 ± 2.7 68.87 ± 3.7 78.92 ± 0.5 79.17 ± 0.3 78.35 ± 0.6 78.59 ± 0.3
Mahalanobis 67.65 ± 3.0 67.40 ± 3.0 68.63 ± 0.9 67.24 ± 2.0 69.61 ± 1.0 67.48 ± 0.7 69.93 ± 0.5 74.26 ± 1.2

Table 3: Utility Experiment Results with previous MLDP mechanisms, on three selected GLUE tasks. Scores represent the

average of three runs, and standard deviations are presented. 1-D Best denotes the highest score achieved by a 1-Diffractor

configuration, i.e., (mechanism, 𝐿) pair, from all scores presented in Table 1. Bolded values represent the best scores per 𝜀 value.

[37], Vickrey [39], TEM [5], and Mahalanobis [38], the set of mech-
anisms used for comparative testing in the remainder of this work.
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Figure 4: Empirical 𝑁𝑤 and 𝑆𝑤 statistics for 1-Diffractor

and five selected MLDP mechanisms.

5.2 Empirical Privacy

For empirical privacy tests, we choose two tasks: speaker identifica-
tion and gender identification. The results are visualized in Figure 5
and presented in full in Table 4.

In the speaker identification task (FI), we use the Friends Corpus
[8], which contains the entirety of the script from the TV show
Friends. We take a subset of only the six main characters, and fine-
tune a BERT model to identify a character based on their line. In
the adversarial setting, this model mimics an attacker who wishes
to identify authors based upon publicly accessible textual data.

In the second task (TG), we use a dataset of US-based reviews
on Trustpilot [17]. Each review has been marked with the gender
of the author. From this, we fine-tune BERT to predict the gender
of an author based on the review text.

In both cases, the model acting as our adversary is trained with
an 80% split of the dataset, using a 10% validation set. The 10%
test set is used to obtain the baseline scores for the adversarial
classifier. Next, the test set is perturbed using 1-Diffractor with
the mentioned 𝜀 values, using the L0 configuration. Finally, the
adversarial accuracy is evaluated for each perturbed dataset.

𝜀 0.1 0.5 1 3 5 10

FI

Baseline 33.13
1-D𝐺 21.84 25.68 28.29 31.88 32.56 32.66
1-D𝑇 20.77 20.40 20.73 21.10 30.38 32.39

TG

Baseline 74.34
1-D𝐺 64.03 68.09 71.07 74.06 74.28 74.34
1-D𝑇 61.42 61.20 61.25 61.48 72.59 74.31

Table 4: Complete empirical privacy results (accuracy). FI =
Friends identification task, TG = Trustpilot gender task.
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Figure 5: Emprical Privacy Results. FI = Friends identification
task, TG = Trustpilot gender task.

5.3 A Note on Epsilon

In the comparative analysis presented, it is important to note that
the choice of 𝜀 does not necessarily equate to the same privacy
guarantees across mechanisms. This is due to different distance
metrics being used, which scale the chosen 𝜀 according to MDP.
Therefore, the 𝜀 values in our experiments are chosen for compari-
son, not necessarily to equate the effective 𝜀 values. Nevertheless,
we mitigate this challenge by also testing all mechanisms includ-
ing 1-Diffractor on 𝜀 ∈ {25, 50} in the comparative evaluations,
thereby extending the investigated range. These results can be
found in Tables 2 and 3, as well as in Figures 3 and 4.

6 EFFICIENCY EXPERIMENTS

The final experiments aim to measure the scalability of our pro-
posed 1-Diffractor mechanism, in comparison to previous MLDP
mechanisms. This is performed by measuring the speed and mem-

ory consumption of each mechanism, quantified by the number of
tokens that can be perturbed in a day and memory usage per word
perturbation, respectively. Note that in these calculations, the list
initialization of 1-Diffractor is not included, as the time is negli-
gible (ca. 20 seconds per list on a CPU) with respect to the 24-hour
period, and 150 MiB for the initialization of L0.

We first estimate efficiency by capturing the amount of time it
takes to perturb a random set of 1000 words from the list vocabulary.
Next, we measure efficiency empirically by using each mechanism

to perturb the complete SST2 dataset. The number of perturbed
tokens is divided by the elapsed and then extrapolated to 24 hours.

The second set of experiments focuses on the memory consump-
tion of the word perturbations. To measure this, we measure the
memory needed to perturb the same set of 1000 words as introduced
above, using the Python memory-profiler package.

The results are summarized in Figures 6-7 and Table 5. All ex-
periments were run on a single 8-core Intel Xeon 2.20 GHz CPU.
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Figure 6: Comparison of number of tokens that can be pro-

cessed per day by calculating the speed over 1000 words and

extrapolating to 24 hours (denoted by 1000 words). Dataset is
derived from the perturbation of the SST2 dataset.

1-D𝐺 1-D𝑇 MVC Gumbel Vickrey TEM Mahalanobis

total 0.05 0.01 206.89 118.96 170.44 81.34 78.08
per-word 0.00005 0.00001 0.207 0.119 0.170 0.081 0.078

Table 5: Memory consumption (in MiB) for 1000 words per-

turbed. Note that for both 1-Diffractor settings, the con-

sumption does not include the initial list configuration, as

this is a one-time cost, and does not accumulate per word.

7 DISCUSSION

Analysis of Experiments. Leading the discussion on the mer-
its of 1-Diffractor, analysis begins with the basis of our one-
dimensional word lists at the basis of the mechanism. The effect
can be seen in Figure 4, where including double the number of lists
(L1) provides a slight increase in privacy (plausible deniability) over
only one list per model (L0). This comes with a negligible difference
in utility loss (Figure 2), thus prompting further investigation into
the usage of an even greater number of lists simultaneously.

With the use of only 1 model, 1 list (L2) in the case of both
1-D𝐺 and 1-D𝑇 , the L2 configuration provides clearly better utility
preservation, at the cost of lower privacy protection, as shown in
Figure 4. Thus, one can begin to observe the notion that while a
greater number of (embedding) lists may increase empirical privacy,
a carefully selected single list may be best for utility preservation.

Looking to the impact of 𝜀, the utility performance across 𝜀 val-
ues exhibit a clear “privacy-utility trade-off curve”, with an average
utility drop of around 15 percentage points at 0.1, and near baseline
performance for values above 5. The benefit of 1-Diffractor is

30



1-Diffractor: Efficient and Utility-Preserving Text Obfuscation IWSPA ’24, June 21, 2024, Porto, Portugal.

Figure 7: Memory consumption of all compared mechanisms

as a function of words perturbed, using the per-word rates

of Table 5. For the 1-Diffractormechanisms, the memory

required for initial list configuration is accounted for (see

Section 6). In addition, the two 1-Diffractor variants are

plotted on the same line, due to their negligibly small dif-

ference in memory required. Note that these plots assume a

linear growth in memory consumption over time.

made salient by these results: within a relatively small range of 𝜀
values, one can observe high levels of perturbation (measured by
𝑁𝑤 ) and considerably lower utility scores, and vice versa. The ef-
fectiveness of this obfuscation is solidified by the empirical privacy
results, showing that it reduces the predictive power of adversaries.

As opposed to other tested mechanisms, 1-Diffractor exhibits a
much “tighter” 𝜀 region, mademost clear by Figures 4 and 5. This can
be attributed to the reduction to one dimension, where the overall
magnitude of noise added is less as compared to MLDP mechanisms
operating on distance metrics in higher dimensions. The simplicity
of 1-Diffractor thus leads to much smaller, interpretable privacy
budgets, which follow a “graceful” degradation in privacy (and
increase in utility) as the 𝜀 value increases.While onemay argue that
this is simply a matter of scale, the benefit of such a bounded region
can be interpreted as a clearer range of acceptable privacy budgets.
This would certainly be necessary for adoption into practice.

The Privacy-Efficiency Trade-off. The design of MLDP mecha-
nisms often is evaluated for utility and privacy, sparking debates on
the privacy-utility trade-off, yet the literature has largely ignored
the question of efficiency, which would reasonably be required for
such mechanisms to be employed in practice and at scale.

Our results show that 1-Diffractor greatly outperforms previ-
ous methods in terms of the speed at which words are perturbed.
This is particularly the case with our 1-D𝐺 variant, which achieves
immense speedups over previousMLDPmechanisms: over 15x from
a theoretical estimate and over 90x from an empirical measurement
(see Figure 6). Furthermore, these speedups can be realized on ev-
eryday hardware, i.e., a standard laptop CPU.

Such a speedup of course comes with a trade-off. As shown in
our privacy experiments, 1-D𝐺 exhibits lower theoretical privacy

guarantees (via plausible deniability statistics) and demonstrates
less effectiveness at lowering adversarial advantage. This is placed
in juxtaposition to 1-D𝑇 , which operates at a considerably slower
rate, yet demonstrates higher privacy benchmarks.

In the memory consumption benchmarks, 1-Diffractor also
shows significant improvements over previous mechanisms, even
when accounting for the memory required to initialize the word
lists (see Figure 7). This can be attributed to the fact that post-
initialization, 1-Diffractor does not need to perform expensive
nearest neighbor searches for each word, which must be done in
all other compared mechanisms. The resulting difference can be
clearly observed in the per-word rates of Table 5. As can be seen in
Figure 7, after only 2000 words perturbed, 1-Diffractor already
begins to use less memory than all other mechanisms.

The Question of an Optimal Obfuscation Mechanism. In analyzing
1-Diffractor, it is clear that even at lower 𝜀 values, not as many
tokens will be perturbed away from the original token. For example,
at 𝜀 = 1, only around 60% of tokens are perturbed, as per the 𝑁𝑤

statistic, which is still significantly lower than other mechanisms
even at higher values such as 10 (e.g., Mahalanobis 𝑁𝑤@10 = 0.92).

The debate here becomes how to interpret a “good” obfusca-
tion mechanism. If nearly 100% tokens are perturbed, this may
grant high plausible deniability, but the utility will be impacted
significantly. This is especially true in the case of high-dimensional
perturbations, where privatized words may be far in meaning from
the original word due to the effect of noise across many dimensions.

Mattern et al. [23] echo the need for balanced obfuscation, namely
not only with a high perturbation rate, but also in the preservation
of semantic meaning and relatedly, utility in downstream tasks
and empirically demonstrable privacy. In this work, we add to this
notion, arguing that efficiency (speed) is also a key factor.

With 1-Diffractor, we demonstrate such a balance, as themech-
anism successfully preserves privacy via word perturbations, mea-
sured via plausible deniability and empirical privacy, while still
allowing for the utility to remain intact. This is due not only to how
often words are perturbed, but also how words are perturbed.

Open Challenges. Our evaluation of 1-Diffractor verifies its
utility- and privacy-preserving capabilities, as well as a significant
speedup over previous methods, yet a discussion of its merits must
be accompanied by an analysis of open questions.

A major limitation of word-level MLDP methods comes with the
inability to preserve grammatically correct sentence structures, due
to the lack of context in single-word perturbations. To a degree,
1-Diffractor preserves sentence coherence in the way that the
lists are built: similar words functionally will (ideally) be sorted near
each other. Nevertheless, this does not always hold, particularly
at smaller 𝜀 values.The strength of 1-Diffractor over previous
MLDP mechanisms, however, is clearly demonstrated in our results.
As an added limitation due to the word-level nature, our method
cannot construct obfuscated outputs of differing length from the
original sentence, another issue highlighted by Mattern et al. [23].

In continuing the discussion of Section 5.3, it is important to
keep in mind the limitation of interpreting 𝜀 across different MLDP
mechanisms. The variation of underlying metrics makes evalua-
tion challenging, as there exists no standard way of evaluating
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cross-metric DP mechanisms. Nevertheless, we address this short-
coming by testing on a wide range of 𝜀 values. In this, we show
that 1-Diffractor remains competitive across all tested values,
albeit with a diminishing theoretical privacy guarantee at higher
values (i.e., 25 and 50). A concrete improvement is shown with 1-
Diffractor, in both versions, against the directly comparable TEM
[5], where our method consistently achieves higher utility scores
while maintaining similar privacy levels. As mentioned above, this
of course comes with the added benefit of higher perturbation
speeds regardless of 𝜀 value. Comparing once again to the original
TEM of Carvalho et al. [5], one can observe in Figure 6 the effects
of the dimensionality reduction offered by our list structure, where
our 1-D𝑇 performs significantly faster than the original TEM.

A final point comes with the question of dataset and task depen-
dence. In our tests, we focus on a variety of tasks, from sentence
similarity to textual entailment, yet we do not study the effect of
each specific task. For example, one can see from Table 1 that the
entailment tasks are most affected in terms of utility (see MNLI and
QNLI). In addition, regression tasks (i.e., STSB) are also affected
more severely as opposed to classification. Factors like these call for
more in-depth analyses of MLDP mechanism design and evaluation.

8 RELATEDWORK

The notion of word-level Metric (Local) DP was introduced by Fer-
nandes et al. [12]. This inspired several follow-up works [5, 14, 15,
37–39], which investigate the usage of various noise mechanisms or
metric spaces. These works rely on embedding perturbations, which
are carried out with DP to achieve private embeddings [16, 20].

At the same time, other earlier works diverged from the word-
level MLDP notion, focusing instead on private model training
[1], differentially private word replacement selection [7, 40] or
privacy-preserving neural representations of text [2, 22]. A critique
of earlier methods, particularly at the word level, by Mattern et al.
[23] highlights several shortcomings, as noted previously in this
work. Other works [13, 20] echo some of these challenges.

In light of these limitations, further works investigate the inte-
gration of DP in more advanced NLP models, such as earlier works
on encoder(-decoder) models [3, 28]. Other works extend beyond
the word level to the sentence and document level [24]. In recent
state-of-the-art approaches, DP is achieved in combination with the
training and fine-tuning of language models [10, 30], or in directly
adding noise to the latent representation, such as in DP-BART [18].

Recent methods address the issue of DP-rewritten sentences
with grammatical correctness [28, 33, 35, 41]. However, such meth-
ods rely on the utilization of computationally expensive language
models, thus lacking scalability. Other methods, such as DP-BART
[18], rely on noise addition in high dimensions, thus leading to
very large privacy budgets. Here, the “individual” more complex,
as opposed to a word vocabulary with discrete and finite members.

Building upon these previous works, we follow in the footsteps
of existing word-level MLDP mechanisms, focusing on efficiency
while avoiding the usage of computationally expensive language
models. In this way, we hope to advance the field of text privatiza-
tion by emphasizing the design of utility- and privacy-preserving
mechanisms that are lightweight and accessible to run.

9 CONCLUSION

In this work, we introduce 1-Diffractor, a novel word-level MLDP
mechanism for text obfuscation. 1-Diffractor is built upon a
simple and intuitive method of sorting words in one-dimensional
lists, which serve as the basis for word privatization via Metric DP,
achieved through a diffraction of noise along this dimension. In
a three-part evaluation, our method exhibits utility- and privacy-
preserving capabilities, while notably demonstrating significant
efficiency improvements over previous MLDP mechanisms.

Our findings illustrate the merit of researching novel ways of rep-
resentation for text privatization, showcasing that word-level per-
turbations are effective on the utility and privacy fronts, while also
possessing the ability to be deployed at scale. This lightweightness
makes a salient case for further research and future improvements.

We see three paths of further research to build upon our work,
as well as its perceived limitations: (1) exploration into the effect
of different word embedding models, as well as their combination
and the use of multiple lists, (2) work on the creation of a uniform
benchmark for word-level MLDP mechanisms, regardless of the un-
derlying metric, and (3) relatedly, in-depth research into the design
and implementation of utility and privacy-preserving mechanisms,
that also can be practically deployed at scale.
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