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Abstract

Persistent threads are a database programming concept particularly well-suited for
applications that manage long-term, distributed or cooperative activities. We in-
troduce persistent threads as a novel form of bindings from data in persistent ob-
ject stores to activated code and relate them to existing binding concepts found in
database programming. We also describe the integration of persistent threads into
a polymorphically-typed database language and its supporting layered system archi-
tecture with particular emphasis on abstractly-defined thread representations which
support thread analysis, optimization and portability.

Keywords: Persistence, Thread, Binding, Activity Management, Database Programming,
Higher-Order Languages, Persistent Object Stores.

1 Introduction

A noticeable trend in database research and database system development is an increased
interest in behavioral and procedural aspects of information systems. Data models that de-
scribe dynamic processes in addition to static data structures are capable of capturing more
of the application semantics as exemplified by object-oriented models like Taxis [MBW80],
ADAPLEX [SFL83], Galileo [ACRS85] or Fibonacci [AGO91]. Similarly, database systems
that support procedures, methods, rules or triggers in addition to persistent data values are
capable of factoring-out procedural code from individual application programs into shared
databases. The positive effects of eliminating integrity checking, database event detection,
exception handling, or user interface management code from application programs on the
overall system consistency and application programmers’ efficiency have been described
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amply in the literature (see, for example, [ABW190, SRL*90]). Consequently, one can
perceive a shift from passive data stores to more active persistent object systems.

In this paper we focus on the intricate binding issues on the borderline between “active
code” and “passive data” that arise in persistent object systems as soon as one gives up
the classical separation between short-lived transactions expressed in a host language and
long-lived data stored in a database. More specifically, we provide a classification scheme
for bindings from code to persistent data and vice versa and we investigate bindings from
persistent data and code to threads, which exhibit an interesting duality. On the one
hand side threads can be viewed as activities that can be created, executed, synchronized,
suspended, terminated, etc. Alternatively, they can be viewed as passive data that can
be stored persistently, annotated with attributes, associated with other persistent data
structures, moved between nodes in a network, and manipulated by computations.

This duality makes persistent threads a key technology for future persistent object
systems and for applications that manage long-term, distributed or cooperative activities
like computer-aided design, workgroup communication and workflow management. Unfor-
tunately, this duality also invalidates many design assumptions on which today’s volatile
thread implementations are based. Therefore, we also discuss in some detail implementa-
tion aspects of persistent thread bindings.

The specific persistent thread model presented here has been developed within the con-
text of the persistent programming environment Tycoon? [MS93, Mat93] where it serves
as an abstract model to shield programmers and application-oriented tools from details of
the underlying system implementation (object store, database language evaluator, sched-
uler, recovery subsystem) while being sufficiently low-level to support a variety of (possibly
application-defined) scheduling and activity management strategies.

The paper is organized as follows: In section 2 we introduce a terminology for the
description of bindings to data, code and threads in persistent systems which we use
throughout the paper. We then review briefly the evolution of database languages in
terms of their binding patterns between data, code and threads. We argue that the expres-
siveness and usability of a database system model is related directly to the orthogonality
of its binding patterns. In section 4 we propose a next step in the evolution of database
languages by introducing the concept of first-class bindings to threads. We argue that an
explicit and orthogonal handling of threads naturally leads to the concept of persistent
threads, a systems abstraction suitable for novel high-level models for long-term activity
management. Finally, in section 5 we report on our implementation of persistent threads
in the Tycoon system based on an abstractly-defined store protocol, code representation
and thread semantics.

2 Bindings in persistent systems

In this section we introduce a terminology for the description of bindings to data, code
and threads in persistent systems which we will use throughout the paper.

2Tycoon = typed communicating objects in open environments.



A binding is an association between a name and a computational entity from a specific
semantic domain [Str67]. We also say that a name is bound to a computational entity.
An environment is a (possibly ordered) collection of bindings. Names are used to identify
entities in an environment. Different names can be bound to the same entity (sharing,
aliasing). The details of this identification process (static scoping, dynamic scoping, user-
defined conflict resolution) and mechanisms to manipulate environments (import/export,
inheritance, record extension, imperative update [Dea89]) are irrelevant for the purpose of
this paper.

Entities can be atomic (like integers or booleans) or structured (like records, objects or
functions). Structured entities typically consist of environments. For example, the fields
of a record lead to bindings from field names to other entities. Therefore, bindings can be
used to model (recursive) relationships between entities.

Entities can be flat (like records) or nested (like functions in Algol-like languages). In
a nested entity, names bound in a global outer environment are automatically visible in a
local inner environment. As will be seen in sections 3.1 and 3.3, the semantics of bindings
from and to (dynamically) nested entities requires particular attention.

Entities can be transient (like local program variables) or persistent (like database ta-
bles). Virtually all database systems restrict environments of persistent entities to contain
only bindings to other persistent entities since bindings to volatile entities would lead to
“dangling references”. Such constraint violations are avoided in many systems by a transi-
tive reachability rule: Every entity reachable from a persistent entity becomes persistent,
too. In reachability-based systems, there is a so-called “persistent root environment”, for
example, the set of all globally-defined database names in Oy [BDK92]. An entity is made
persistent by making it reachable through chains of bindings (e.g., database definition,
class extent) starting from this persistent root environment.

An alternative approach to persistence management (supported, for example, by Ob-
jectStore [LLOW92]) is to define the lifetime of an entity at data-creation time using
“persistent new”, respectively “volatile new” operations and to replace bindings to volatile
entities at transaction-commit time by a binding to a distinguished NULL entity.

The following three categories of structured entities are of particular interest in extended
(higher-order) database modeling:

Persistent Data (D) describe the persistent state of an information system by a
collection of computational entities related through bindings. The structure (types) of the
persistent entities and their bindings are described by a database schema.

persDB = database
peter = [age = 30, married = true, boss = NULL)],
paul = [age = 30, married = true, boss = persDB.peter], ...
persons = {persDB.peter, persDB.paul, ...}

end

In this example, the name persDB is bound to a database, i.e. a persistent environ-
ment that stores bindings for the database variable names peter, paul and persons. For



Conceptual Model | Language Model | Implementation Model
entity variable data

behavior function code
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Figure 1: Corresponding notions at different levels of conceptualization

example, paul is a name bound to a record (an environment with three bindings). One of
these bindings associates the name boss to the record identified by the name peter within
the environment persDB. The set bound to the name persons defines an environment of
anonymous bindings.

Code (C) is a description of operation sequences that query and update volatile or
persistent entities and bindings.

procedure changeBoss(pers :Pers) = pers.boss:= persDB.paul;
transaction changeAll() = for each p in persDB.persons do changeBoss(p);

Code involves names to describe bindings to other code (changeBoss referenced in
the body of changeAll), bindings to persistent data (persDB.persons, persDB.paul), and
bindings to volatile data (p, pers). In statically-scoped languages, the binding of a name in
a code fragment to a matching name in its environment is determined by a textual analysis
of the code and of the database schema.

A Thread (T) is a representation of code in the process of being executed. A thread
describes a single sequential flow of control in a program. Having multiple threads in a
program means that at any instant the program has multiple points of execution, one in
each of its threads. Unlike operating system processes, multiple threads can execute within
a single (persistent) address space, permitting multiple threads to access shared variables
in addition to local variables.

It may be helpful to compare our terminology with corresponding notions in language
models and conceptual models as summarized in figure 1. Since in this paper we are
interested also in implementation aspects of persistent threads, we are using a rather
system-oriented terminology. In our setting (as opposed to, for example, visual program-
ming), the correspondence between high-level conceptual notions like entities, behavior,
activities, relationships and their system counterparts (data, code, threads, bindings) is
often established indirectly via formal language models expressed in terms of variables,
functions, continuations and names bound in scopes. Our system argument that threads
should be treated as first-class persistent data could therefore be rephrased in high-level
models by requiring activities to be viewed as first-class entities that can participate freely
in abstractions like aggregation and classification.

A thread is created by submitting a non-parameterized code fragment (e.g., the body
of the transaction changeAll) and (persistent) data (e.g., persDB) to an evaluator (eval
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Approach Bindings | Description®

database programming C—D code bound to data
object-oriented databases D—C persistent data bound to code
transactional programming | T—C threads bound to code

activity management D—-T persistent data bound to threads

Figure 2: Predominant binding patterns (see text)

(changeAll, persDB)). As described in section 5 the semantics of the evaluator can be
defined inductively by rules that map thread states to thread states and that perform
side-effects on data. A thread state subsumes bindings to the code fragments currently
being executed and a dynamic environment that records the current bindings from names
occurring in the code to local and global entities. In most programming and query language
implementations thread states are represented as records that reference stacks of so-called
“activation records”, one for each function or query invocation.

The following thread state describes a snapshot of the execution of the transaction
changeAll against the database persDB. More precisely, it describes the state of the trans-
action while executing the function changeBoss during the first iteration of the for each
loop, immediately preceding the assignment of the value persDB.paul to the field boss.

threadl = [result = persDB.paul, dynamicContext = [

code = (pers.boss:= result),

localEnvironment = [pers = persDB.peter],

globalEnvironment = [persDB = database. ..end],

dynamicContext = [
code = (for each p in not Yet Visited do changeBoss(p)),
localEnvironment = [p = persDB.peter, not YetVisited = {persDB.paul, ...}],
globalEnvironment = [persDB = database. .. end, changeBoss = procedure ... ],
dynamicContext =[] | | |

In this example the thread state consists of the result of the current subexpression (the
right-hand-side of the assignment, i.e., persDB.paul) and a dynamic context (continuation)
that describes the code still to be executed together with the bindings valid within this
code. The next instruction to be executed is the assignment (pers.boss:= result). The
binding of the parameter name pers can be obtained from the local environment which
has been established on entry to the function changeBoss. The dynamic context of the
function (the state of its “caller”, i.e. changeBoss) is captured also by a continuation. On
function return, evaluation continues with the bindings of this continuation. The local
variable notYetVisited is used to control the iteration. Since the dynamic context of the
transaction changeAll is empty, the thread will terminate on return from this transaction.

3X bound to Y means that names in entities of category X are bound to entities of category Y, i.e.
that the semantics of X depend on the semantics of Y.



Since entities of each of the three categories above — data, code and threads — may
contain bindings, there are nine possible binding patterns between computational entities
in fully orthogonal object systems. In figure 2 we list four of these binding patterns which
we regard as “historic” milestones in the development of persistent system models:

e In database programming languages it is possible to write algorithmically-complete
code that establishes C—D bindings to persistent data and that modifies the state
of persistent entities and their relationships expressed as D—D bindings. However,
code is still separated strictly from persistent data in the sense that reverse bindings
are not supported.

e This restriction is lifted in object-oriented databases where D—C bindings extend
the semantics of data entities to also include code fragments (method code) which
express behavioral aspects. Similarly, in active databases it is possible to attach code
(conditions and actions) as triggers to persistent data (relations, classes).

e In multi-user (database) systems there are multiple concurrent user sessions access-
ing shared data via transactional code. Each active transaction corresponds in our
terminology to a single thread that is bound (via a T—C binding) to application code
which in turn is bound to shared (persistent) data. However, threads are strictly sep-
arated from persistent data and code in the sense that a thread cannot access (query,
store, update) the set of code or data bindings held by itself or by other threads.

e In this paper we argue that threads understood as dynamic environments of bindings
are highly relevant for novel, activity-oriented applications and, therefore, should
gain first-class status in future database models and not be hidden behind a specific
built-in binding pattern (transactions). As detailed in section 4.3, mechanisms to
establish bindings from code, from data, and from threads to threads are very helpful
to manage cooperative and distributed activities. In particular, D—T bindings from
names in persistent data to threads naturally lead to the concept of persistent threads
in reachability-based persistent systems, which we regard as highly relevant to long-
term activity management.

The semantics and the implementation of pure D—D bindings like the binding of the
name persDB.paul.boss to the entity persDB.peter in persDB (on p. 2) and of pure C—C
bindings like the binding of the name changeBoss in the function changeAll are sufficiently
well understood that we restrict ourselves in the following discussion to the binding patterns

highlighted in figure 2.

3 From data-oriented modeling to object-orientation

In this section we review briefly the evolution of database languages in terms of their
binding patterns. We argue that the expressiveness and usability of a database system



model is related directly to the orthogonality of its binding patterns and that, in retrospect,
many ad-hoc binding restrictions found in database systems are simply based on the choice
of an improper implementation technology.

3.1 Binding names in code to persistent data

All database management systems with a programming language interface support C—D
bindings. In a third-generation language, a C—D binding to a database is established at
program run-time using an explicit operation similar to the SQL connect statement. C—D
bindings to individual elements in a database collection are established using explicit cursor
manipulation operations, typically embedded into program loops.

In fourth-generation languages like Ingres/Windows 4GL [Ing90] or PL/SQL [Ora91]
and in database programming languages like DBPL [SM92, SM94] or E [Ric89], the out-
ermost program environment already contains bindings to persistent entities which are
therefore directly accessible in statements and expressions. Moreover, these languages
provide bulk data types [AB87, MS91] with operations that work on collections of (anony-
mous) bindings at once. As a consequence, programming with persistent bulk data in these
languages is as effortless as programming with volatile data in 3GLs.

Two more pitfalls have been encountered in the implementation of C—D bindings.

The first problem results from ill-designed interfaces between programming languages
and DBMS which are unable to handle control structures found in modern programming
languages properly. For example, several commercially available embedded SQL versions
are based on statically allocated database communication areas for cursors and query ex-
pressions and therefore do not support recursively nested cursor loops, as they appear
in many DB applications like the classical bill of material example. Other SQL versions
avoid this particular problem using a stack discipline for the management of C—D bind-
ings. Unfortunately, the preprocessor of these systems which inserts stack-manipulation
operations on block entry and exit does not handle block-structured exceptions as found in
C++, ADA and Modula-3 correctly. Only very few DBMSs support a non-block-structured
control flow as it occurs in languages with coroutines, multiple threads or asynchronous
interrupts.

A second problem facing database programmers is the lack of type-independent per-
sistence management (the possibility to make data of any type persistent [AB87]). For
example, in order to store a binding to a single boolean variable in a relational database
management system it is necessary to create a table that holds a single tuple with a single
boolean attribute since the binding structure of the relational data model does not match
the type algebra [AB8T] of standard programming languages. Similar problems occur with
union types (variant records) and function types in more advanced, object-oriented models.

3.2 Binding names in persistent data to flat code

An object in an object-oriented database can be modeled as an environment of bindings
and a (hidden) object identifier.



peterObj :PersonObject = object age = 30, married = true, boss = NULL,
changeBoss = method(newBoss :PersonObject) self.boss:= newBoss
end

Attributes like age, married or boss lead to standard D—D bindings to persistent state
variables while a method definition is a D—C binding from a method name (changeBoss)
to a code fragment (self.boss:= newBoss). In most object-oriented models, a method is
bound in an environment attached to an object class; however, some systems (e.g., O3)
also support so-called “exceptional objects” where methods can be overridden by bind-
ings established on a per-object basis. Message names in code, like changeBoss in the dot
expression peterObj.changeBoss(... ), are bound dynamically to matching method code
identified by D—C bindings attached to the object itself (peterObj), its class (PersonOb-
ject) or its transitive superclasses.

D—C bindings are also supported by active database systems where it is possible to
bind a trigger consisting of a condition (a code fragment that returns a boolean value)
and an action (a code fragment that performs a side-effect) to a persistent data structure
(typically a global collection variable). Views as attribute values in Postgres [RM87] and
“viewers” as proposed in [SMR193] are a third form of D—C bindings that attach code
fragments (returning bulk data values) to individual persistent data items.

D—C bindings add a new dimension to data modeling since it becomes possible to at-
tach behavior to shared and persistent data and to adopt a data-centristic execution model.
In this view, the application logic is no longer hard-wired statically in “structured” appli-
cation code that drives the passive database system via read/write instructions. Instead
of this, the application logic can be divided into semantically rich and loosely coupled
conceptual classes attached to persistent data structures, and the application system is
“driven” by messages dispatched dynamically by the DBMS.

In all systems mentioned so far, the code participating in a D—C binding has to come
from a flat environment. For example, the object-oriented programming languages Eiffel,
C++, Modula-3 and Trellis as well as the object-oriented database systems ObjectStore
and Oy have syntax and scope rules that make it impossible to bind a function that is
nested within another function as a method to a database object. As a consequence, the
only bindings available inside method code are static global D—D or D—C bindings, and
dynamic bindings established via explicit method arguments (newBoss), and the dynamic
binding of the distinguished identifier self to the receiver of the message. Analogous
restrictions hold for stored database procedures written in fourth-generation languages
and triggers in active databases.

The rationale behind these restrictions is to simplify the implementation of D—C bind-
ings.

A typical implementation of a D—C binding from persistent data to flat code consists of
a volatile object code address plus a persistent symbolic persistent code reference. The lat-
ter could be a pair consisting of an object library file name (/usr/local/lib/libperson.so.1.0)
and a code label name (person_changeBoss) that identifies machine code stored in a dy-
namic link library outside the object store itself. Code generators for high-level program-



ming languages generate unique code label names based on message name, class name
and an encoding of the method parameter types (“name mangling”) [ES90]. Augmenting
code label names with object file names makes it possible to distinguish between method
definitions that occur in disjoint versions or variants of a system derived from the same
source text.

A more elegant implementation of D—C bindings to flat code is achieved in object-
oriented database systems like O, that manage executable code in the object store itself. In
these systems D—C and D—D bindings are implemented uniformly as intra-object-store
bindings exploiting the concept of persistent object identity.

3.3 Binding names in persistent data to nested code

The increased modeling power of orthogonal D—C bindings that also handle nested code
correctly has been demonstrated by higher-order programming languages like Lisp, Scheme,
Standard ML, Dylan and Haskell (higher-order functions) but also by Smalltalk (first-class
blocks) and CLOS. As a consequence there is a clear evolution in the family of higher-order
database languages from PS-algol [AM85], Napier88 [DCBMB89], Galileo [ACRS85], P-Quest
[MMS92], Fibonacci [AGO91] to Tycoon [MS92] allowing programmers to treat functions,
procedures and transactions as first-class computational entities that can be passed as
arguments, returned as results, and embedded into persistent data structures.

Here, we focus on the semantics of D—C bindings to nested code and do not discuss
the relative advantages of full higher-order models over plain object-oriented models (see
[SM93]). The following simple example shows a parameterized transaction disallowBoss
that overrides an existing method binding defined for the message changeBoss of a per-
son object thisPerson. The new D—C binding relates changeBoss to a nested method
code fragment that depends on the parameter value thisBoss of its enclosing transaction
(see [ACY4] for a detailed discussion of the expressive power of statically nested method
definitions).

transaction disallowBoss(thisPerson, thisBoss :PersonObject) = begin
let oldMethod = thisPerson.changeBoss
thisPerson.changeBoss:= method (newBoss :PersonObject)
if newBoss != thisBoss then oldMethod(newBoss)
else raise illegalBossException end
end

This transaction can be called with person objects as arguments, for example, to raise
an exception if paulObj is to become the boss of peterObj or if an attempt is made to
delete the boss of paulObj:

disallowBoss(peterObj, paulObj)
disallowBoss(paulObj, NULL)



A correct representation of the D—C binding for the name changeBoss has to consist
not only of a binding to the nested method code but it has also to record the environment
of global C—D bindings valid for the nested code (bindings for the parameter thisBoss and
the variable oldMethod of the enclosing transaction). Such a [code, environment]-pair is
called a (function) closure. The two transaction calls above yield the following closures:

peterObj.changeBoss = [
code = (if newBoss != thisBoss then oldMethod(newBoss) else ... end),
globalEnvironment = [thisBoss = paulObj, oldMethod = ...] ]
paulObj.changeBoss = [
code = (if newBoss != thisBoss then oldMethod(newBoss) else ... end),
globalEnvironment = [thisBoss = NULL, oldMethod = ...] ]

Although the code bound to peterObj.changeBoss.code and paulObj.changeBoss.code
is shared, the global environments differ such that the execution of the method code in
these different environments has different semantics.

4 Activity-oriented programming with persistent threads

Based on the discussion of the previous section we propose a next step in the evolution
of database languages by introducing the concept of first-class bindings to threads. The
concept of threads (continuations, sessions, running transactions) is either non-existent
or only implicitly available in today’s database systems. We argue that an explicit and
orthogonal handling of threads naturally leads to the concept of persistent threads, a
systems abstraction suitable for novel high-level models for long-term activity management.

In a nutshell, we propose to repeat the successful “trick” of object-oriented DBMSs,
namely to adapt an existing, well-understood programming language concept to the specific
requirements of long-lived data-intensive applications and to develop its supporting system
technology based on clean semantic foundations.

4.1 Threads in persistent systems

As mentioned in section 2 (see also figure 2), threads and T—C bindings already exist im-
plicitly in transactional multi-user DBMSs. For example, running transactions in a DBMS
correspond to isolated threads (bound to transaction code) that are activated, suspended
or aborted under the control of a centralized scheduling “master thread” that gains control
whenever these threads access shared database entities. On an implementation-level, a
transaction descriptor in the scheduling subsystem is a record that aggregates bindings to
a (suspended or running) thread with additional information relevant for synchronization
purposes, like the shared (read-only) bindings and the exclusive (updated) bindings held
by the thread, bindings to other threads waiting for resources of this thread, or the cost of
the operations executed by the thread so far. Database systems (like Ingres) that support
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named checkpoints inside transactions provide an additional mechanism to store multiple
“frozen” thread states that can be reactivated at the user’s discretion.

Novel transaction models (see, e.g., [BK91, GR93]) propose to give “power users” the
ability to extend the semantics of the “master thread” by introducing additional scheduling
concepts like lock modes and by triggering the execution of user-defined code fragments
whenever two threads access a shared persistent object concurrently. This code can use an
algorithmically-complete language to decide when to abort, suspend or notify the conflict-
ing threads.

While threads managed by a DBMS scheduler are volatile (they are limited to the
lifetime of their corresponding operating system processes), a limited form of persis-
tent threads can be found in the (single-user) persistent higher-order systems Napier88
[DCBMB89] and PQuest [MMS92] that have an atomic stabilize operation. This operation
can be called anywhere inside a program to define a consistent persistent system state.
This state not only consists of the global database state variables but also includes the
state of the program evaluator. If a system crash occurs during program execution, the
execution can be resumed in the state valid at the last stabilize operation.

procedure p(x:Int) = begin stabilize(), print(”leave p, x=", x) end
procedure main() = begin print(”call p”), p(3), print(”; return from p”) end

For example, assuming that during the execution of main the system crashes after
returning from p. On system restart, program execution would resume with the first
statement after the stabilize operation, and the output would be leave p, x=3; return from
p-

To summarize, these systems already have a hidden persistent thread functionality that
is, however, severely limited to a single top level thread.

4.2 Threads as first-class persistent entities

In this section we illustrate how threads fit as first-class computational entities into per-
sistent object systems. Our presentation is based on the thread abstraction available in
the Tycoon system, a polymorphic persistent programming environment developed in the
FIDE project by our group at Hamburg University [MS93, Mat93].

In Tycoon, computational entities (data, code, threads) are either bound in the scope
of individual programs or in the scope of persistent modules. The execution of a Tycoon
program code c invoked from an operating-system shell leads to the creation and execution
of a Tycoon thread bound to cin an initial environment that contains C—D bindings from
all module names imported by ¢ to corresponding linked persistent module values.

Users or applications at the operating-system level can create independent Tycoon
threads running against a shared set of persistent modules. Conceptually, the computa-
tional entities of all Tycoon threads and modules reside in a common persistent object
store. This seamless integration of volatile and persistent store simplifies the access to
databases represented as persistent modules. Furthermore, it facilitates the exchange of

11



data, code and threads between threads via shared variables. These variables are bound in
the scope of persistent modules and are typically protected by synchronization mechanisms
like transactional locks, semaphores, monitors, or message queues.

The following simplified excerpt of the Tycoon system library interface Thread defines
the basic functionality of a corresponding module thread which exports a parameterized
abstract data type thread.T' and operations to inspect, create and execute multiple threads
from within Tycoon programs.

interface Thread export
T(R <:0k) <:0k
(* T(R) is the type of threads that on termination return values of type R. *)
Let State = Tuple case suspended, running, terminated, aborted, blocked end
(* An enumeration type that describes the possible thread states. *)
new(LR <:0Ok code :Fun(:I):R input :I) :T(R)
(* Return a new, suspended thread to execute code(input). *)
self(R <:0k) :T(R)
(* Return a descriptor for the thread that executes thread.self{). *)
copy(R <:Ok thread :T(R)) :T(R)
(* Return a shallow copy of thread. The execution of thread does not affect copy(thread).
However, entities bound in the code executed by thread and copy(thread) are shared. *)
run(R <:Ok thread :T(R)) :Ok
(* If thread is suspended then resume execution until execution terminates, aborts with
an exception, is suspended or blocked. thread and self{) execute concurrently. *)
state(R <:Ok thread :T(R)) :State
(* Return the state of thread that may change dynamically if running or suspended. *)
join(R <:Ok thread :T(R)) :R
(* Block until thread terminates or aborts. Return the result or propagate its exception. *)
end

The module thread encapsulates the representation of threads, the semantics of the
Tycoon evaluator (thread.run, see section 5) and the details of the mapping from threads
to physical processing units. Since some versions of the Tycoon system are based on
persistent object stores which allow multiple workstations to access a Tycoon object store
concurrently, multiple physical processing units (workstations) may be involved in thread
execution.*

The type thread.T and all functions exported from the interface above are polymorphic,
i.e. they have an explicit type parameter R that has to be instantiated with a subtype
of the trivial “top type” Ok [MS92]. Threads are polymorphic data structures since they
can describe the execution of code that returns values of an arbitrary result type R. This
type R has to match the return type of the code function passed as an argument to the
thread.new function.

As a minimal example of (volatile) thread programming, the following Tycoon program
creates a thread t to evaluate the function code that returns a value of type Int. This

4Currently, a call thread.run(:R t) executes t and self{) on the same processing unit.
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result is computed by adding the statically-bound data value and the dynamically-bound
parameter value.

import thread :Thread

let data :Int = 3

let code(parameter :Int) :Int = data + parameter
let t :thread.T(Int) = thread.new(:Int :Int code 4)
thread.run(:Int t)

let result :Int = thread.join(t) (*= 7 %)

Remember that the thread bound to t is a first-class entity in Tycoon — it can be
passed as a function argument, returned from a function, bound to a name in the scope
of a persistent module, exported to a portable data file, or sent across a communication
channel.

The generalization of first-class threads from volatile to persistent has the following
semantic implications:

e The definition of persistence has to be revised. In addition to all persistent modules
also all active threads act as “roots of persistence”. Moreover, the transitive reach-
ability rule introduced in section 2 has to be extended to also include T—C, T—D

and T—T bindings.

e The semantics of the shallow and deep copy operation has to be extended properly
to values of type thread.T.

e In activity-intensive applications, it is desirable to be able to attach additional infor-
mation to thread values (user id, transaction group id, access rights, authentication
key, parent thread, ...). This extensibility is achieved in Tycoon by adding a second
type parameter D to the thread signature. A value of type thread.T(D R) is a thread
that computes a value of type R and that has a descriptor attribute of type D. De-
scriptors are exploited heavily by higher-level scheduling and activity-management
algorithms but can also be made visible to application-level code.

4.3 Programming with persistent threads

Having threads as computational entities in a database language, programmers can benefit
from the potential of multi-threaded programming [Nel91], like

e a better exploitation of existing processing resources (e.g., workstation clusters or
multi-processor workstations);

e a better support for multiple activities of human users within a single application
(e.g., a database query tool can process multiple independent queries);

13



e a reduced latency of operations by deferring re-organization tasks (e.g., an inser-
tion into an index structure returns control to the caller immediately and spawns a
separate thread to perform the index reorganization if necessary);

e a better responsiveness of servers in distributed systems by allocating multiple server
threads to handle client requests.

By making a thread reachable from persistent data (persistent modules) and by check-
pointing the state of the persistent store it becomes possible to protect long-running ac-
tivities from system failures. After a crash, the thread can be restarted explicitly in the
state that was valid at the last checkpoint.

More importantly, persistent threads support directly an activity-oriented style of in-
formation system modeling as promoted by scripts in Taxis [BMS93], by process-centered
specifications in Estelle, Lotos or SDL [Tur93], or by (visual) process languages of work
flow management tools like Regatta [Swe93].

As a highly simplified example, a paper submitted to a workshop can be represented
by the following data type that contains a (persistent) thread attribute:

Let Paper = Tuple title, authors, abstract, text :String
reviewer :Person rating :Rating refereeActivity :thread.T(Ok)
end

From the viewpoint of the PC chair, each paper has to be reviewed individually, and
the set of submitted papers has to undergo the following reviewing activity.

for each p in db.submittedPapers do
p.refereeActivity:= thread.new(:Paper :Ok reviewPaper p)
thread.run(:Ok p.refereeActivity)

end

joinAll(select p.refereeActivity of each p in db.submittedPapers)

Reviewing the set of all submitted papers is modeled by creating and executing one
p.refereeActivity per paper p which can then run concurrently without interference. Stan-
dard query language notations can be used to perform bulk operations on sets of threads,
for example, to wait until all threads attached to db.submittedPapers have terminated.
The user-defined function joinAll takes a sets of threads and blocks the current thread
until all of the threads have terminated.

let joinAll(threads :set.T(thread. T(Ok))) :Ok =
for each t in threads do thread.join(:Ok t)
end

The activity of individual reviewer assignment and review recording is modeled by the
following code:

14



let reviewPaper(p :Paper) :Ok = begin
repeat p.reviewer:= chooseReviewer(availableReviewers)
until acceptedByReviewer(p.reviewer p)
sendPaperToReviewer(p.reviewer p)
try p.rating:= waitForReview(p.reviewer)
when reviewerNotAvailableException then reviewPaper(p)
end

end

Contrary to current database practice, the progress of the reviewing process is not
captured by a passive relational table that stores a state attribute for each paper which
is then updated by separate transactions to values like unassigned, assigned, sentOut,
returned, . ... Instead of this, an activity- and goal-oriented script modeled by database
language code describes directly the possible states and state transitions. This example
makes use of several control structures (loop, recursion, exception handling) for sequential
activities and uses thread for long-term concurrent activites. Note that the thread above
depends crucially on global bindings (to parameter values, global data, and global code).

In this example, thread synchronization has to be employed to coordinate parallel
activities (the assignment of reviewers to individual papers that implies access to the
shared variable availableReviewers) and to wait for the termination of subactivities.

Persistent threads do not lead necessarily to an imperative, deterministic style of activ-
ity management. Instead of this, higher-level activity models can be supported directly by
factoring-out synchronization tasks (parallelDo, tryOneOf, atomicDo, compensatingDo)
from applications into higher-order thread libraries.

5 On thread implementation and formalization

Several important requirements on persistent thread implementations differ substantially
from volatile thread implementations, for example:

1. Thread state representations have to be made relocatable and portable in the sense
that states need to be abstractly interpretable without reference to a specific machine
architecture (e.g., SPARC register files).

2. It is desirable to have automatic garbage collection that reclaims the storage of
terminated or orphaned threads.

3. It is necessary to formalize in sufficient detail the effects of thread execution on
shared entities in the persistent store, in particular, if these entities have a complex
structure. Only then reliable support can be provided for concurrency, recovery, or
garbage collection.

4. Store access in distributed persistent memory has different performance figures than
store access in centralized shared-memory architectures.
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5. In data-intensive applications, the thread state can vary dramatically in size, for
example, to accommodate the numerous temporary bindings that arise during query
evaluation. Clearly, simple thread implementations based on fixed-sized stacks are
not acceptable.

6. Built-in schedulers have to be able to work with a number of persistent threads that
may exceed the number of volatile threads by two to three numbers of magnitude.

In this section, we first report on our implementation of persistent threads focussing
on the issues (1) through (4) since the remaining investigations are beyond the scope
of this paper. We then sketch thread formalization with a clear emphasis on abstract
representations of machine code (Tycoon Machine Language, TML), machine states and
on explicit modeling of machine-store interactions (Tycoon Store Protocol, TSP).

In our experience, a formalization on an appropriate level of abstraction and with an
intensive flavor of “constructivity” is absolutely essential for any good implementation of
a conceptually rich system abstraction, such as persistent threads.

5.1 The Tycoon thread implementation

The Tycoon thread implementation is divided into subtasks solved by three distinct layers
of the Tycoon system architecture:

1. The Tycoon compiler front end performs the type checking and code generation of
application programs. Due to the polymorphic nature of Tycoon’s type system, no
extensions of the Tycoon compiler front end are required to support user-defined type
constructors like thread. T(R) described in section 4.2.

Tycoon uses a uniform (tagged) polymorphic data representation. Therefore, no
modifications to the Tycoon code generator are required to support operations on
first-class persistent threads. The binding of the operations thread.new, thread.run,
etc. to processor-specific compiled C code implementing thread creation, thread ex-
ecution etc. is accomplished by standard Tycoon language mechanisms.

2. The Tycoon compiler generates abstract machine code (TML). For every hardware
architecture there is a separate Tycoon evaluator, implemented as an interpreter or
a pair of a target object code generator and a runtime library that dynamically loads
the target code into the process address space. The execution of Tycoon threads
is performed by TML evaluators that read code held in the Tycoon object store
and that are able to store their evaluation state in a portable format in the object
store. Thereby, it is possible to exchange suspended evaluator states between different
hardware architectures and to represent bindings to threads by standard object store
identifiers with the usual sharing semantics.

3. The Tycoon object store allows evaluators to abstract from the lifetime and storage
details of all computational entities (data, code, threads). The store encapsulates
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Figure 3: Interaction between TML evaluators

buffer management, garbage collection, cache coherence management and recovery
management. Tycoon evaluators access the Tycoon store via an abstract store pro-
tocol (TSP) implemented as a collection of standardized C functions.

Figure 3 shows the interaction between multiple Tycoon threads accessing a shared per-
sistent object store (possibly partitioned into disjoint repositories). It shows two operating-
system processes, each executing a TML evaluator that manages a set of Tycoon threads.
Thread states consist of a machine state (a register set) and a dynamic context of vari-
able size. Active threads are cached in local process memory. Furthermore, the object
store permits TML evaluators to fix (pin) persistent objects in local process memory. It is
the object store’s responsibility to ensure the coherence between thread states and other
persistent objects cached in multiple process address spaces.

5.2 On thread formalization

A thread formalization has to define invariants maintained by the scheduling operations
exported by the interface Thread (see section 4.3) and it has to specify the semantics of
individual threads by an inductive definition of the bindings and store side-effects per-
formed for each instruction executed by a thread. The first issue has been treated already
in the literature, for example, chapter 5 of [Nel91] gives a complete Larch specification of
the Modula-3 thread package that is very similar to Tycoon’s Thread interface. Here, we
concentrate on the second issue. The TML/TSP specification sketched in the remainder of
this section not only affects the granularity level on which thread operations (e.g. run, join)
are performed, but also the degree to which further requirements on threads as enumerated
at the beginning of section 5 can be supported.
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function closure value access
object store variable acess
local variable assignment
function closure initialization
object store assignment
function closure allocation
local variable allocation
function application
sequential evaluation
repeated evaluation

loop termination

exception handling
exception generation
builtin function application
multi-way case analysis
case labels

Figure 4: Abstract TML syntax

Tycoon’s RISC-style TML code representation is shown in figure 4. This instruction
set suffices to implement the full Tycoon language as defined in [MS92] (and similar higher-

order programming languages like Fibonacci or Napier88). We are currently moving to an

even more reduced, continuation-passing style (CPS) [App92] code representation that sim-

plifies the static and dynamic program analysis and optimization tasks that are performed

by the compiler, run-time query optimizer and thread scheduler (side-effect analysis, shar-

ing analysis, inlining, dead code elimination, etc.) [GBM94]. However, CPS code needs to

be normalized (closure converted, exception converted) prior to execution to achieve good

executions on standard hardware architectures.
The semantics of TML programs involves syntactic entities that are denoted by indexed

(4,7, k,n,m) variable names as follows:

c € Code

b,lit,g,p,l € BVal = Z U {nil}
E=1[lit go...gn Po---pm] € Env
L=1l...ly] € Loc

v € Val = SVal U {ok, exception(p), exit(p)}

TML instructions (see Fig. 4)
base values

dynamic environments

local environments
evaluation results

The semantics of a Tycoon object store is defined as a partial mapping from a domain
of (tagged) object identifiers Ref (disjoint from the set of base values BV al) to fixed-sized
arrays of state values. A state value is either an object identifier or a base value.
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Figure 5: The TML machine model

r,lit € Ref object identifiers
sv,l,p,g € SVal =BValU Ref state values
S € Store = (Ref x Z EALN SVal) object store
x(Ref g, Code)
x(Ref 12 2)
For example, the operation init returns the store value ({},{},{}) while the store
operation new is defined by

new((StV, StC, StS),n) = (StV', StC, StS")
where

r & Dom(StV)
StV = StV 4+ {(r,0) = nil} + {(r,1) — nil} + ...+ {(r,n — 1) > nil}
StS" = StS+{r—n}

It takes a store (StV,StC,StS) and a size n and returns a new store that contains a
new, nil-initialized store vector of size n that can be identified by its unique OID r. The
remaining store operations get, set, newclosure, fixexecute are defined analogously.

The state of a TML thread executing a Tycoon function f consists of a quadruple
E,S, L,c where E aggregates a reference to an immutable vector lit (that holds the string,
longreal, ... literals of f), the immutable global bindings go, .. ., ¢, of f, and the immutable
actual parameter pyg,...,p, of f. S describes the current state of the object store. L
describes those bindings in f that are inaccessible to other threads, and ¢ describes the
instruction of f that is currently being executed. Figure 5 depicts the relationship between
these thread components.
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The precise semantics of each TML instruction can now be described by its impact on
TML thread states and by the operations executed on the persistent object store [Mat93]
(structured operational semantics [Plo81]). This semantic definition is “constructive” in the
sense that it provides a precise starting point for the implementation of TML interpreters.

The evaluation of a TML instruction is described using the following notation:

E,Sl,[/l Fec = <SQ,L2,’U>

The execution of the (composite) instruction ¢ in a dynamic context £, an object store
state S; with local state variables L; leads to an object store state S,, local state variables
Ly and an evaluation result v. This definition implies that an instruction cannot modify
its dynamic context F.

For example, the deduction rule [Eval seq] defines that the execution of the sequential
composition ¢; ;¢ in an environment F, against a store Sy, with local state variables [
is equivalent to the evaluation of ¢; in this thread state returning a (possibly modified)
object store Sy, a (possibly modified) set of local state variables Ly, and a value v, followed
by the execution of ¢; in this modified environment, again returning a (modified) object
store S5, (modified) state variables Lz, and a value v'.

[Eval seq]
E S, L1 F g = (Ss, Ly, v)
E, Sy, Ly ¢y = (S5, L3, v')
E, S, LiFcisea = (S5, La, v')

Note that the evaluation result v of the first instruction is discarded and that the
evaluation result of the instruction sequence is the result v’ of the second instruction. This
is typical for an imperative programming style, where statements do not compute a result
but simply perform side-effects on the store.

The semantics of TML function applications is defined as follows: In a first step, an
object store reference r is computed which identifies a function closure in the object store
Sy with code ¢, literals lit and global variable bindings ¢g...¢,. In a next step, the
actual parameters pg . ..p,, are evaluated (strict left-to-right evaluation order). The code
¢’ is executed in a newly-allocated dynamic context consisting of lit, go ... ¢, and pg ... pn,.
After ¢’ has been evaluated, the dynamic context of the calling function is restored as it
has been left behind by the evaluation of the last argument.

[Eval apply]
E, S, LiFc= (S, La,1)
fixexecute(Sy,r) = (¢, lit, go, .. ., gn)
E,SH_Q,LH_Q Fe¢ = <S¢+3,Li+3,pi> 1=0...m
[(lit go...Gn Po-- Pm)y Smass Lmys B ¢ = (S, Lyya,v)
E S, LiFcle...cm) = (S, Lints,v)
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6 Concluding remarks

This paper gives an abstract view of the evolution of database models and languages in
terms of bindings between code, data and threads. We argue that the next logical step
in this evolution is an improved support for activity-oriented applications by introducing
first-class persistent threads. We also report on our work in formalizing, implementing and
using persistent threads in the polymorphic Tycoon database programming environment.

Our distinction between nine patterns of bindings in persistent systems makes it possible
to classify database systems based on their support for persistent data, object, and activity
management. Moreover, our presentation of the pitfalls encountered in the implementation
of C—D and D—C bindings in existing systems is intended as a hint to implementors
of D—T bindings not to under-estimate the intrinsic complexity of persistent threads
and to realize the relative simplicity of the proposed Tycoon execution model and its
implementation architecture.

Finally, it should be noted that persistent threads are an expressive and efficient, but
rather low-level concept for the management of cooperative activities. Therefore, we are
currently investigating related database synchronization and communication models that
have been proposed in the literature [GMS87, Reu89, BDS*93] and how such models
can be realized as polymorphic libraries encapsulating Tycoon’s persistent threads. This
approach to a flexible reconciliation of system and user needs has proved to be highly
successful in modern programming and operating environments which offer several higher-
level models like monitors, ACID transactions, transactional RPCs and communicating
processes on a common, standardized thread abstraction available on multiple system

platforms [POS90, OSF93].
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