A Modeling Language for Describing Enterprise
Architecture Management Methods

Sabine Buckl, Florian Matthes, Christian M. Schweda

Lehrstuhl fiir Informatik 19 (sebis)
Technische Universitidt Miinchen
Boltzmannstr. 3
85748 Garching
{sabine.buckl,matthes,schweda} @in.tum.de

Abstract. Methods for managing the enterprise architecture (EA) are presented in differ-
ent approaches from researchers, practitioners, and standardization bodies. These methods
are thereby often described textually — a fact, which we exemplify with the pattern-based
approach to EA management. A modeling language for EA management methods can
improve the state-of-the-art in documenting the methods and make them more compara-
ble. Aiming towards the establishment of such a language, we discuss the requirements
for describing EA management methods. Along these requirements, we show that well-
established languages from bordering fields are only partially suited and discuss how the
Business Process Model Notation can be extended to a modeling language for EA man-
agement methods.

Keywords: EA management, Methods, Modeling language, Business Process Model No-
tation

Classification: procedure models and modeling languages for the development of refer-
ence models

1 Introduction

Enterprise architecture (EA) management is a challenging management endeavor targeting
the complex and interwoven system of the EA as a whole. As with many management
processes, EA management is likely to be enterprise-specific in the steps taken as well
as the artifacts created and exchanged. This is especially true, as EA management is
intended to address a multitude of different concerns, which distinct enterprises do not
necessarily regard to be equally important (cf. Kurpjuweit and Winter in [KWO07] or sebis
in [Chal0]). This fact is accounted for by the pattern-based approach to EA management
[BEL107, Ern08]. The approach introduces different types of so called EA management
patterns, which are developed to address typical management concerns in the context of
EA management. In accordance to Buckl et al. in [BEL07] these types are:

Methodology patterns (M-Pattern) which define steps to be taken in order to address
given concerns. Further, the methodology patterns provide guidance for applying
the method, statements about the intended usage context, and consequences arising
from utilization.

Viewpoint patterns (V-Pattern) which provide visual languages used by the methodolo-
gies. A viewpoint pattern proposes a way to present data stored according to one or
more information model patterns.

Information model patterns (I-Pattern) which supply underlying models for the data
visualized in one or more viewpoints. An information model pattern conveys an
information model fragment including the definitions and descriptions of the used
information objects.

For the later two types of patterns formal description languages or techniques are widely
adopted, e.g. the Meta Object Facility [OMGO6] for the information model patterns, or
have been proposed, e.g. the visualization model [ELSWO06] and [Ram09] of software
cartography for the viewpoint patterns. In contrast, the methods are typically described
rather informally, mostly by giving textual descriptions of the activities to be taken. In
some cases, these descriptions have been complemented with informal ad hoc visualiza-
tions indicating the sequence of method steps. Such visualizations are notwithstanding
helpful for getting an overview about the method, but are not detailed enough to provide
actual guidance for applying the method. This is especially true, if the semantics of these
ad hoc visualizations is considered, as e.g. aspects of deciding between different steps
are not alluded to. Additionally, these visualizations do neither account for the informa-
tion exchanged between activities nor for actors associated with the execution of a method
constituent, e.g. being responsible, accountable etc. for executing the method step.

We regard such detailed information to be beneficial, e.g. for providing in-depth guidance,
but also for integrating different methods — methodology patterns or method fragments
from different approaches — during the creation of an enterprise-specific EA management
process. This integration is necessary to leverage the proven-practice knowledge, as rep-
resented by EA management patterns, and apply it to an enterprise in a tailored way. In
response to the aforementioned need, we develop a language for documenting EA man-
agement methods starting with an elicitation of requirements, which such a language must
fulfill, in Section 2. Subsequent Section 3 discusses the fulfillment of the requirements by
selected languages for process descriptions, which we regard to be candidates applicable
to describing EA management methods. Having discussed the strengths and weaknesses of
existing languages, we propose a language similar to the Business Process Model Notation
(BPMN) for describing EA management methods in Section 4. Section 5 shows how this
BPMN:-like language fulfills the aforementioned requirements by giving an application
example, i.e. a selected EA management methodology pattern from the EA management
pattern catalog [Chal0] is reformulated in the concepts of the proposed BPMN-like nota-
tion. Final Section 6 concludes this report and provides a critical reflection on the proposed
language.

2 Requirements

Based on an extensive survey on the utilization of viewpoints for EA management [BELMO08]
and the evaluation of the pattern-based approach to EA management in student projects
[Boh08, BMSS09, Die08, Pl08], we were able to elicit a set of requirements for a mod-
eling language for EA management methods. These application-purpose-specific require-
ments were further complemented with more general requirements for a modeling lan-
guage elicited by Frank in [Fra09] and specific considerations on methods and method
fragments of Kiihn in [Kiih04]. Subsequently, we provide the resulting requirements:

R1. The modeling language must support to model named activities and the informa-
tion flows connecting the activities. Thereby, the language must provide means to
express the direction of information exchange, decisions in the information flow
and optional or alternative activities, i.e. it must be possible to model that different
activities are executed if different circumstances apply. These decisions must be
complemented with rules for deciding which activities should be executed.

R2. The modeling language must support to model named actors, which are associated
to corresponding activities. By this association, the languages expresses that the
actor participates and/or drives the execution of the step.

R3. The modeling language must support to model named artifacts, which are used
by the actors that participate in an activity. The method modeling language must
support to specify the conceptual modeling language used for an artifact.

R4. The conceptual modeling languages should also be usable to specify the input and
output types of an activity, i.e. to make explicit the step’s interface. The method
modeling language should further supply techniques to detail the conceptual mod-
eling language’s notation, syntax, and semantics' as well as their corresponding
utilizations for certain actors, roles, and artifacts.

RS. The modeling language must support to model hierarchic activities, i.e. to model
that an activity on a higher level of abstraction is detailed with a set of activities on
a lower level of abstraction.

R6. The modeling language must support to model named exceptions, i.e. it must allow
making explicit, that one or more activities may fail. Based on these exceptions,
the language must support to model information flows that are triggered by the
corresponding exception.

R7. The modeling language should supply mechanisms to state the concern?, i.e. the

problem, which is addressed by an activity (on a distinct level of abstraction). Com-
plementing the description of the concern, the language should also support to model
the consequences of applying the activity.

I'The terms notation, syntax, and semantics are utilized as defined in [Kiih04].
2The term concern is used in accordance to its definition in the standard ISO 42010 [Int07].

R8. The modeling language should supply mechanisms to optionally describe the exe-
cution context of an activity, i.e. to make explicit environmental factors (forces) that
influence the execution of the step in some way.

R9. The concepts as introduced in the modeling language should correspond to concepts,
which modeling experts from the modeling domain are familiar with. Similarly, the
graphical notation of the language should correspond to prevalent graphical nota-
tions in this modeling domain (cf. requirements U/ and U3 of [Fra09]).

R10. The modeling language should facilitate the development of tools for the creation of
and for providing execution guidance for the described methods. (cf. requirement
A4 of [Fra09]).

R11. The modeling language must offer all the concepts needed to describe methods in the
context of EA management, but must support restriction to exactly these concepts
to prevent the introduction of accidental complexity (cf. requirements A/ and A2 of
[Fra09]).

Within the above list, the key words "MUST”, ’SHOULD”, and "OPTIONAL” are to be
interpreted as described in RFC 2119 [Bra97]. This interpretation yields a distinction be-
tween mandatory and optional requirements, which can be exemplified with requirements
R7 - R10. These have strictly optional character, while most of the other requirements
have both optional and mandatory constituents.

3 Evaluating selected process modeling languages

The requirements from preceding Section 2 give rise to the assumption that process mod-
eling languages might be appropriate for modeling EA management methods. Therefore,
we would identify the activities of a method with the processes or process steps as con-
tained in a process modeling language. This nevertheless points to a subtle complexity
associated with this procedure, as process modeling languages are designed to describe
the sequence of process steps on a rather concrete level, while method descriptions only
describe information flows but do not a priori assume an order of execution. Nevertheless,
we review some prominent examples for process modeling languages and discuss how far
they satisfy the requirements.

Extended event driven process chains (€EPC) [KNS92] are widely used for modeling busi-
ness processes. Due to their focus, they are quite well suited for describing a set of named
process steps together with the corresponding actors and the information objects, which
are created and exchanged during the process. Nevertheless, in respect to modeling infor-
mation flows a complexity exists; two process steps might be connected via an information
object, but have to additionally be connected with at least one triggered/triggering event.
Furthermore, the eEPCs do not provide means to specify all language aspects (notation and
semantics) of the artifacts. Process hierarchies are supported by eEPCs, named exceptions
are not, but could be realized using specialized events. The same is true for a dedicated
execution context concept, which can be realized by a textual comment.

The business process modeling notation (BPMN) [Gro09] is an open standard for model-
ing business processes for some years now and has become a widely accepted and used
technique. The language provides means for modeling named process steps, named ac-
tors, named artifacts, and process hierarchies. The language aspects of the artifacts can be
annotated textually — notation, syntax, and semantics are not directly considered. Notes
can be used to supply the execution context for a process step; named exceptions are not
directly present in the modeling language but can be modeled utilizing errors or signals.
A process modeled in the BPMN can be made executable, e.g. as a mapping to BPEL (see
below) exists. Furthermore, open source tools for web-based BPMN modeling exists (cf.
Decker et al. in [DOWO0S]).

The business process execution language (BPEL) [Com09] has been developed as a lan-
guage for describing executable business process based on web-services. We subsequently
discuss the language concepts of BPEL, as they might be semantically interesting for our
considerations; it has to be noted, that BPEL does not comprise a standardized graphical
notation. BPEL supports to model named process steps, named and typed artifacts, as well
as named actors, although these are initially designed to be realized as web-service agents.
While XML-Schema is used as the rich type-system for the artifacts, neither semantics
nor notation for the artifacts is especially alluded to. Process hierarchies are not directly
supported by BPEL, although certain extensions as BPEL-SPE exist. With the focus on re-
alizing executable business processes, the concept of the named exception is prominently
present in the specification. Further, comments provide means to supply the execution
context of a process step. BPEL is backed by strong industry support, although the user
community is mostly centered on developers and people from technical provenience.

Also of a rather technical origin is the UML notation of activity diagrams [(OMO04]. Their
language allows specifying process steps and named information objects, while named
actors are not supported. Discussions on the language, which the artifacts are modeled
in, are only partially undertaken, although a binding to other UML concepts exists. This
could be employed to model the artifacts’ syntax. Named exceptions can be specified, the
execution context can be described using comments.

Petri-nets (cf. e.g. [Bau96]) have a long history in describing processes, especially if ques-
tions of concurrency are concerned. Their mathematical background supports a formally
defined execution semantics, which Petri-nets are well accounted for in the mostly techni-
cally oriented environments, they are used in. Nevertheless, without extensions, these nets
do not well satisfy the requirements. In particular, neither named process steps, nor named
actors are supported. Via the extensions of colored or Object Petri-nets [MAQO] a typing
of artifacts could be achieved. Finally, Petri-nets have become less frequently used, albeit
their undisputed facilities for simulation.

The integrated definition for process description capture method (IDEF3) [MMP195] is
a scenario-driven language for modeling processes with a long usage and development
history. The language is somewhat inspired by the Petri-nets technique, such that named
states are used instead of process steps. Named actors are not part of the specification;
named artifacts can be realized. A language specification for the artifacts is not alluded
to; named exceptions are also not supported. Notes allow supplying information on the
execution context of a process step textually.

Activity diagrams | BPEL | BPMN | eEPC | IDEF3 | Petri nets | YAWL
R1 + + + + 0 0 o
R2 - ++ ++ ++ - - -
R3 - - - 0 - - -
R3 + + ++ ++ 0 - -
RS + + ++ ++ - - +
R6 ++ ++ + - - - -
R7! 0 o o o o - -
RS 0 0 o o 0 - -
R9 + + + ++ - o -
R10 ++ ++ + + - + +
R11 + ++ + ++ - - o

! Concern and execution context can mostly be supplied only by textual annotations.

Table 1: Fulfillment of requirements of the selected process modeling languages

Table 1 summarizes the extent to which the process modeling languages fulfill the require-
ments from Section 2. The language YAWL [BDO07], which was assessed by us, is not
discussed in detail in the article as it is not widely used. The symbols used throughout the
table range from ++ indicating complete fulfillment over o indicating medium fulfillment
to —indicating total lack of support. Based on the evaluation results, we present a language,
which on the one hand reuses BPMN notations where possible but on the other hand ex-
tends the notation if necessary for modeling EA management methods in the subsequent
section.

4 Developing a modeling language for EA management methods based
on BPMN

In response to the requirements as discussed in Section 3, we introduce the modeling
concepts, which we regard necessary to support modeling for EA management methods.
These concepts are meant to provide the basis for the language’s meta-model. If a corre-
sponding concept is available in the BPMN specification 2.0 a mapping is given in brack-
ets.

Activity (activity) An EA management method consists of different steps, so called ac-
tivities. The step exposes an interface to its environment, can be decomposed to
child activities and may employ notations to present the utilized artifacts to the par-
ticipating or driving actors.

Activity decomposition (atomic and compound activities) An activity can participate
in an activity hierarchy, e.g. can specify, that it is part of a more detailed description
of an activity on a higher level in the hierarchy.

Activity interface An activity has input and output information objects (including its syn-
tax and semantics definition). The input and output objects form the interface of the
corresponding activity, specifying, which type of input is demanded and which type
of output can be expected. The type of input or output can be described by refer-
encing an I-Pattern. Whereas, no direct concept representing an activity interface
is given in BPMN, the concept of a data objects is introduced, which defines the
information an activity requires to be performed and/or what it produces.

Actor Activities are executed by acting systems or persons, of which the later — in a well
defined method — act in a distinct role, e.g. CIO, project manager, etc. The pool
element of the BPMN can be used to represent the actor.

Artifact An artifact is a representation of information, e.g. a visualization or a question-
naire. The artifacts are presented to the activity’s associated actors in an appropriate
fashion and are considered by them during the execution of the activity. The artifacts
are further modeled in accordance to a selected modeling language.

Exception The execution of a process step can lead to exceptional situations, in which the
execution cannot be completed. In such a situation, an exception is raised. Although
exceptions are not directly contained in BPMN but can be modeled using special
types of triggers, as e.g. signal or error.

Information flow The different activities constituting a method are connected via infor-
mation flows. An information flow specifies that information objects are handed
over from a source to a target. The sequence flows of BPMN can be re-defined to
model information flows. Two specializations of the information flow concept exist:

[Deciding information flow (gateway)] The information flow is not necessarily
linear, but may contain points, where decisions take place. The subsequent activities,
which receive information, are decided based on optional guards associated with the
different options. If the guard is omitted, it is assumed to be true.

[Merging information flow (gateway)] Information flows originating from dif-
ferent activities are integrating via a merge.

Notation definition In accordance to the understanding of modeling languages as pre-
sented in [Kiih04], a modeled artifact uses a certain notation to display its contents
in the context of an activity to a dedicated actor.

Semantics definition An artifact is modeled using a distinct modeling language. The
semantics of this language’s concepts is provided in the semantics definition of the
modeling language.

Syntax definition A modeling language for artifacts provides a defined set of concepts to-
gether with rules, how these concepts can be related. The syntax definition presents
this set and the corresponding rules for the modeling language as associated with an
artifact. The BPMN specifies a syntax, which must at certain points be extended in
order to address the aforementioned requirements.

In the above list of concepts, the constituents of a conceptual modeling language — no-
tation, syntax, and semantics — have been introduced separately, as they might supply
different relationships to actors, artifacts, and activities, respectively. This becomes es-
pecially obvious, when the explanation of the notation definition is revisited. A notation
definition forms a ternary relation concept, which determines,

e how a distinct information is presented as an artifact
e in the context of one activity

e to a specific actor.

Together, notation, syntax, and semantics form the different EA modeling languages used
throughout the EA management process. These languages are built on the idea of pat-
terns (cf. Section 1), especially the V- and I-patterns, of which the former make up the
notation descriptions. The latter comprise the syntax description and provide a textual se-
mantics described in the glossary of terms referenced in the I-patterns. Complementing
the theoretic discussion of an BPMN-like language, we present an example illustrating the
applicability of the language in the subsequent section.

5 Exemplary application of the method modeling language

In order to show the suitability of the proposed BPMN-like language for modeling EA
management methods, an application example is given in the following, which explicates
an existing method for addressing standardizations concerns, which was initially proposed
by Buckl et al. in [BEL107] and further developed in [Chal0]. The method, which serves
as an application example addresses the following concern:

How can standards for the application landscape be defined and enforced?

In order to address the above stated concern, different method steps as illustrated in Fig-
ure 1, which utilizes the presented method language, need to be executed. The different
method steps as well as the exchanged information flows, the participating actors, and the
used artifacts are detailed on in the following.

The method starts by gathering information about the current state of the architecture.
This information can e.g. be extracted from specialized EA management tools, existing
application documentations, or elicited via interviews. In our example the information is
gathered via revisiting existing documentation and filling a questionnaire. Thereby, the
enterprise architect has to decide, which information should be gathered, e.g. information
about applications and the used technology in our example where homogenization from a
technology perspective is regarded. In order to validate the gathered information, the filled
questionnaire needs to be reviewed by the application owner.

Based on the information gathered about the current landscape the technology homogene-
ity is analyzed. Thereby the enterprise architect is the responsible role and uses the view-
point Standard Conformity (V-5). The analysis results are used in the following phase by

the standard manager to create, update, or delete standards. Thereby, i.e. bar charts like
e.g. Effects of Project Proposals on Technology (V-38) are used. The subsequent process
step, applying standards, is concerned with defining which business application should
conform to one of the aforementioned standards. Thereby, the enterprise architect utilizes
viewpoints like Clustering by Standards (V-6), which detail on the environment of the used
technology, e.g. the using business application and their usage context. The enforcement
of standards, the next process step, can be performed either via vertical or horizontal es-
calation (see [BELT09]). A typical decision criterion for horizontal vs. vertical escalation
is the estimated budget of the project. In our example the vertical integration is chosen, if
the project budget is more than 100000 €, then the decision about the future of the appli-
cation is handed over to a EA board, which uses reports like Technology by Architectural
Standard (V-23) or Standard Conformity Exception (V-67). In the case where horizontal
escalation is used, the enterprise architect is allowed to impose obligations e.g. budgeting
(see [BELT09]). These obligations are documented utilizing reports or word documents.
In case of a horizontal escalation defined errors may occur, e.g. if the imposed obligations
are not followed.

6 Critical reflection and outlook

In this paper, we discussed the importance of a language for modeling EA management
methods and explained how such language can be used to complement the pattern-based
approach to EA management presented in [Ern08]. Based on the analysis of the method
patterns, we elicited requirements, such modeling language has to fulfill and evaluated to
which extent current process modeling approaches can be re-used in this context. Having
discussed the advantages and shortcomings of the current process modeling languages, we
found none of these languages fully satisfactory in respect to the requirements and pro-
posed notation, syntax, and semantics for a dedicated EA management method language.
Therefore, we propose an extension to the BPMN language. This language extension was
exemplarily applied on a selected method pattern from the EA management pattern cata-
log [Chal0]. Although the exemplary application succeeded, a validation of the modeling
language in practice is yet still to be undertaken. Further, the documented method pattern
comprehensively covers different typical EA management activities for a given concern,
ranging from documentation over analysis to planning and enacting. Therefore, the under-
lying proven-practice is not designed as a composed activity, whereas the decomposition
performed during the creation of the method model lacks practical validation. Neverthe-
less, the existence of method pattern purely designed for one EA management activity,
such as documentation [MJBS09], advocates for the applicability of the decomposition
approach.

In describing the make-up of the artifacts used in and the kind of information exchanged
between the single method steps, we prominently relied on the viewpoint and information
model patterns presented in the EA management pattern approach. While therefore, both
the information flows and the visualized information throughout the described method are
clearly consistent, one cannot expect this to be the case, if the method models for the dif-

Enterprise architect Application owner | Standard manager EA board

Revisit
application
documentation

Questionnaire

Review
information

-Quesnonnane

Analyze current
landscape

V-5

Create, update,
delete standards

Applying
standards
V-6

[project budget >= 100.000€]

[project budget < 100.000€]

Enforcement Enforcement via
via horizontall vertical
escalation escalation

[Reports, word documents|

Figure 1: Exemplary method model

ferent activities are developed independently. This raises an interesting question for future
research: how can the method modeling language be complemented with a tool-set for en-

suring that a composed EA management method is consistent in respect to information ex-
change and utilization. Similarly, questions how the modeling language can support such
consistency checks should be analyzed further. Here, the works of [Kiih04] and [Der06]
provide interesting insights, which might prove helpful in answering the questions.

Finally, the methods as described in terms of the modeling language, presented above,
remain on an intermediate level of generality: they are concern-specific, i.e. somehow
redundant in respect to general EA management activities as documentation. But, they
are also not tailored to the specific needs of an applying enterprise, i.e. there remain
alternative and optional information flows, which have to be decided upon, if the method
is implemented to an EA management function. We nevertheless see two reasons, why the
language supports further development to both an increased level of generality and to a
more detailed process description. On the one hand, generalization of activity descriptions
may be possible by converting syntax and semantics of the modeling language used by the
corresponding method to free variables of the method model. Thereby, method templates
are created, which can work on arbitrary languages and support arbitrary concerns. On the
other hand, further the specialization of the activity descriptions to concrete and enterprise-
specific process models can be supported based on the method modeling language, by
introducing configuration and adaption mechanisms as e.g. proposed in [Del06].

References

[Bau96] Bernd Baumgarten. Petri-Netze. Grundlagen und Anwendungen. Spektrum Akademis-
cher Verlag, 2™ edition, 1996.

[BDO7] Lindsay Bradford and Marlon Dumas. Getting Started with YAWL, 2007.

[BELT07] Sabine Buckl, Alexander M. Ernst, Josef Lankes, Kathrin Schneider, and Christian M.
Schweda. A pattern based Approach for constructing Enterprise Architecture Manage-
ment Information Models. In Wirtschaftsinformatik 2007, pages 145-162, Karlsruhe,
Germany, 2007. Universitidtsverlag Karlsruhe.

[BELT09] Sabine Buckl, Alexander M. Ernst, Josef Lankes, Florian Matthes, and Christian M.
Schweda. State of the Art in Enterprise Architecture Management 2009. Technical re-
port, Chair for Informatics 19 (sebis), Technische Universitdt Miinchen, Munich, Ger-
many, 2009.

[BELMOS] Sabine Buckl, Alexander M. Ernst, Josef Lankes, and Florian Matthes. Enterprise Ar-
chitecture Management Pattern Catalog (Version 1.0, February 2008). Technical report,
Chair for Informatics 19 (sebis), Technische Universitit Miinchen, Munich, Germany,
2008.

[BMSS09] Sabine Buckl, Florian Matthes, Christopher Schulz, and Christian M. Schweda. Teach-
ing Enterprise Architecture Management — A Practical Experience. Technical report,
Chair for Informatics 19 (sebis), Technische Universitit Miinchen, Munich, Germany,
2009.

[B6hO08] Martin Bohme. Softwarekartographie — Analyse und graphische Visualisierung von
Teilen der Anwendungslandschaft des Klinikums der Universitit Miinchen. Bachelor’s
thesis, Fakultit fiir Informatik, Technische Universitit Miinchen, Munich, Germany,
2008.

[Bra97]
[Chal0]

[Com09]

[Del06]

[Der06]

[Die08]

[DOWO08]

[ELSWO06]

[Ern08]

[Fra09]

[Gro09]

[Int07]

[KNS92]

[Kiih04]

[KWO07]

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels, 1997.

Chair for Informatics 19 (sebis), Technische Universitit Miinchen. EAM Pattern Cata-
log Wiki. http://eampc-wiki.systemcartography.info (cited 2010-02-25), 2010.

OASIS WSBPEL Technical Comittee. WS Business Process Execution Language Ver-
sion 2.0, 2009.

Patrick Delfmann. Adaptive Referenzmodellierung - Methodische Konzepte zur Kon-
struktion und Anwendung wiederverwendungsorientierter Informationsmodelle. PhD
thesis, Universitdt Miinster, Faculty of Economics, 2006.

Gernot Dern. Management von IT-Architekturen (Edition CIO). Vieweg, Wiesbaden,
Germany, 2006.

Thomas Dierl. Models, Methods, and Visualizations for Complicance Management.
Bachelor’s thesis, Fakultit fiir Informatik, Technische Universitdt Miinchen, 2008.

Gero Decker, Hagen Overdick, and Mathias Weske. Oryx — An Open Modeling Plat-
form for the BPM Community. In Marlon Dumas, Manfred Reichert, and Ming-
Chien Shan, editors, Business Process Management, 6th International Conference,
BPM 2008, Milan, Italy, September 2-4, 2008. Proceedings, volume 5240 of Lecture
Notes in Computer Science, pages 382—-385. Springer, 2008.

Alexander M. Ernst, Josef Lankes, Christian M. Schweda, and André Wittenburg. Us-
ing Model Transformation for Generating Visualizations from Repository Contents —
An Application to Software Cartography. Technical report, Technische Universitit
Miinchen, Chair for Informatics 19 (sebis), Munich, Germany, 2006.

Alexander Ernst. Enterprise Architecture Management Patterns. In PLoP 08: Proceed-
ings of the Pattern Languages of Programs Conference 2008, Nashville, USA, 2008.

Ulrich Frank. The MEMO Meta Modelling Language (MML) and Language Architec-
ture (ICB-Research Report). Technical report, Institut fiir Informatik und Wirtschaftsin-
formatik, Duisburg-Essen, Germany, 2009.

Object Management Group. Business Process Model and Notation (BPMN) — FTF
Beta 1 for Version 2.0, 2009.

International Organization for Standardization. ISO/IEC 42010:2007 Systems and soft-
ware engineering — Recommended practice for architectural description of software-
intensive systems, 2007.

G. Keller, M. Niittgens, and A.-W. Scheer. Semantische Prozessmodellierung auf der
Grundlage Ereignisgesteuerter Prozessketten (EPK). Veroffentlichungen des Instituts
fiir Wirtschaftsinformatik (IWi), Heft 89, Universitit des Saarlandes, January 1992,
1992.

Harald Kiihn. Methodenintegration im Business Engineering. PhD thesis, Universitit
Wien, 2004.

Stephan Kurpjuweit and Robert Winter. Viewpoint-based Meta Model Engineering. In
Manfred Reichert, Stefan Strecker, and Klaus Turowski, editors, Enterprise Modelling
and Information Systems Architectures — Concepts and Applications , Proceedings of
the 2" International Workshop on Enterprise Modelling and Information Systems Ar-
chitectures (EMISA’07), St. Goar, Germany, October §8-9, 2007, LNI, pages 143-161,
Bonn, Germany, 2007. Gesellschaft fiir Informatik.

[MA00]

[MJBS09]

[MMP795]

[(OMO04]

[OMGO6]

[P108]

[Ram09]

Zapf Michael and Heinzl Armin. Ansétze zur Integration von Petri-Netzen und objek-
torientierten Konzepte. Wirtschaftsinformatik, Vol. 42(1), 2000.

Christoph Moser, Stefan Junginger, Matthias Briickmann, and Klaus-Manfred Schone.
Some Process Patterns for Enterprise Architecture Management. In Software Engi-
neering 2009 — Workshopband, pages 19-30, Bonn, Germany, 2009. Lecture Notes in
Informatics (LNI).

Richard Mayer, Christopher Menzel, Michael Painter, Paula deWitte, Thomas Blinn,
and Benjamin Perakath. Information Integration for Concurrent Engineering (IICE)
IDEF3 Process Description Capture Method Report, 1995.

Object Management Group (OMG). UML 2.2 Superstructure Specification
(formal/2009-02-02), 2004.

OMG. Meta Object Facility (MOF) Core Specification, version 2.0 (formal/06-01-01),
2006.

Katharina Pfliigler. Evaluation and Extension of the EAM Pattern Catalog in a German
Insurance Company. Bachelor’s thesis, Fakultit fiir Informatik, Technische Universitit
Miinchen, 2008.

René Ramacher. Entwurf und Realisierung einer Viewpoint Definition Language (VDL)
fiir die Systemkartographie. Diplomarbeit, Fakultit fiir Informatik, Technische Univer-
sitdt Miinchen, 2009.

