Universitat Hamburg
FB Informatik
Vogt-Kolln-Str. 30
22527 Hamburg

SAP R/3

An Overview of its Concepts and
Languages

Studienarbeit
vorgelegt von:
Stephan Ziemer
Ebelingstrafie 1
21073 Hamburg

2z1iemer@informatik.uni-hamburg.de

Betreuer:
Prof. Dr. F. Matthes
TU Hamburg-Harburg
f.matthes@tu-harburg.de

5*P of August, 1997

Contents

Motivation and Goals

1

Concepts and Languages of R/3

1.1 Background and Scope of R/3 L.
1.2 Integrated Analysis, Design and Implementation
1.3 Coexistence of multiple R/3 Clients
1.4 Application and System Evolution
1.5 Running Example: FM Areas and Funds Centers

Concepts at the Analysis Level

2.1 Data Modeling: Entities and Relationships
2.2 Functional Modeling: R/3 Modules
2.3 Process Modeling: R/3 Reference Model and EPCs

Concepts at the Design Level

3.1 Data Modeling: Some Data Ditctionary Objects.
3.1.1 Domains and Data Elements
3.1.2 Tables and Structures oL
303 Viewso

3.2 Process Modeling: Workflows

Concepts at the Implementation Level

4.1 TImplementation-Oriented Data Dictionary Objects
4.1.1 Data Types and Type Groups
4.1.2 TLock Objects
4.1.3 Matchcodes

4.2 Programming in the Large: Development Class Objects
4.2.1 SAP Transactions
422 Reports
4.2.3 Function Modules L
424 Messageso
425 AreaMenus
4.2.6 Other Development Class Objects

4.3 Programming in the Small: Program Objects
431 GUIStatus
4.3.2 The Model for interactive Programs
4.3.3 An Example of a SAP R/3 DynPro
4.3.4 Components and Attributes of DynPros
4.3.5 Characteristics of ABAP/4

16
16
16
17
18
19

20

20

5 Customizing and System Evolution

5.1 Customizing: The Procedure Model
5.2 Customizing: The Implementation Guide
5.3 Technical Realizing
54 Common Problems 0o o0
5.5 System Evolution

6 Architectural Aspects of R/3
6.1 Distributed Architectureo
6.2 Process Architecture
6.3 Gateways to other Systems oL

Conclusion
A Notation: OMT Class Diagrams
B A Meta-Model for R/3

C Source Code of FM22, DynPro 100

Bibliography

35
35
36
37
37
38

39
39
39
42
43
44
46
48

53

Motivation and Goals

SAP was founded in 1972 by five IBM-programmers. They had the idea to
create one program suitable for many companies instead of writing essentially the
same business-software again and again for different companies. They abstracted
from the needs of a concrete company and wrote a program called System R which
implements the processes of an abstract company. To use System R for a concrete
company, it is necessary to ‘customize’ System R, to suit the specific needs. This
kind of software is called ‘standard business software’.

This text presents an overview of the concepts SAP uses in its R/3-system
from a computer scientist’s point of view. The focus is on the properties and the
intended use of the concepts, technical details are omitted wherever possible. The
objective is to show the concepts behind R/3 and to enable the reader to recognize
the concepts when they appear in the concrete system. The intention is not to
replace a handbook or to give a detailed introduction to a specific issue in R/3.

The first chapter gives an overview of the system and different views of the sys-
tem. R/3 is divided into the analysis level, the design level and the implementation
level. The second chapter deals with the analysis level, the third and fourth chapter
deal with the design level and the implementation level, respectively. Chapter five
outlines the customizing and the system evolution in time. In the last chapter the
technical architecture is stated.

The reader should be familiar with the relational data model. Knowledge about
object-oriented modeling is helpful but not necessary.

Chapter 1

Concepts and Languages of

R/3

The purpose of this chapter is to give a rough overview of the scope, the history
and the concepts and languages of R/3.

1.1 Background and Scope of R/3

SAP’s R/3-system is a package of standard international business applications for
areas such as Financial Accounting, Controlling, Logistics and Human Resources.
The R/3 system provides an enterprise solution for all these application areas in
a distributed client/server environment. Using the R/3 system, a company can
manage financial accounting around the world, receive and track orders for goods,
and organize and retrieve employee information and records, among many other
features. Many Fortune 500 companies and high-tech companies (including Ameri-
can Airlines, Chevron, IBM, Mercedes and Microsoft) run their businesses with the
R/3 system. ! The system is available on many hardware platforms and for many
operating systems.

The ‘R’ stands for ‘real time’ which means that the system is interactive. ‘3’
means that it is the third major version of the program, though there has never
been a system called ‘R/1’. ‘R/1’, a retrospective appelation sometimes heard
today, refers to a collection of several applications and has never been called so.

R/3 was introduced in 1992 and by the end of 1995 more than 5,200 R/3 systems

were Installed worldwide.

1.2 Integrated Analysis, Design and Implementa-
tion

This section describes the view R/3 has got of the ‘real world’. ‘Real world’ in this
context means companies and their data.

R/3 uses three levels of abstraction to reflect the real world in the system. At
each level, three views can be taken: a process view, a funtion view and a data
View.

At the top most level, the analysis level, a description of R/3 is given. Processes
are modeled with EPCs(Event-controlled Process Chains) which describe how things

ltaken from [4].

are done. An EPC consists of several states and actions and describes side effects
like informing someone that an action has taken place.

Functions are described in terms of SAP modules, each module serving a special
functional purpose within the company. E.g., the module HR (human resources) is
to manage the staff data.

The data is modeled in a relational way?. SAP uses SERM (Structured Entity
Relationship Model) as modeling technique. SERM was invented by SAP but is
closely related to the common entity relationship model®. The model achieved is
called ‘data model’.

At the second level, the design level, processes are modeled with workflows which
are user-defined EPCs. There is nothing to model functions at this level. The data
model of the analysis level is implemented by relational tables and foreign keys on
this level. The R/3 System has got its own data dictionary, where all meta data is
stored.

At the last level, the implementation level, processes are modeled with develop-
ment classes. A development class is a set of objects that work on the same business
objects. Functions are represented as ABAP /4 programs and reports. Data is mod-
eled by SQL tables and ABAP/4 variables®.

The repository contains all three levels. It is the central place where any meta-
data of the system is stored. In the Repository Information System any object that
can be manipulated is accessible. The data dictionary is a part of the repository as
well as all development class objects are. See figure 1.4.

Most parts of the repository are, as nearly all information in R/3, saved in one
SQL database. Supported databases are, e.g., Informix, Oracle and ADABS D.

Figure 1.1 shows the concepts and languages at each level. Figure 1.2 shows
main objects of each level. Figure 1.3 gives the modules shipped with R/3 3.0.

1.3 Coexistence of multiple R/3 Clients

An R/3 system is split into different clients. A client is a business entity like a
subsidiary. Clients have separate data for customizing and application data. They
share customizing independent data like meta data and global company settings.
Only data can be client-dependent. All meta-data, e.g. table defintions, are globally
defined. Client-dependent data is achieved by adding a certain field to a table
defintion of a table which is to hold client-dependent data. For each row of the
table, this field holds the number of the client to which the row belongs.

In a usual R/3 system several clients exist like the default client (number 0000),
a development client, a testing client and a customizing client. The actual client
used in business should be in a separate system to avoid side effects by changes of
global settings. Compare figure 1.5.

1.4 Application and System Evolution

Application and system evolution is a serious problem in practice. Updates have to
be done in a very short time and customizing adjustments should not be affected.
SAP tries to avoid name clashes by the introduction of naming conventions for
objects.

In the R/3 System, the namespace is global and flat for each object type. E.g.,
tables must have a system-wide unique name, but a program object can have the

2For more information about the relational model see [14].

3see [14] for details about the entity relationship model.

1ABAP/4 is the programming language of the R/3 System. Chapter 4 covers ABAP /4 in more
detail.

Analysis Design Implementation

level level level
Event- Business Development
controlled Engeneering class Process
process View
_chain (EPC) | | S 0)
SAP Module
Function
ABAP/4 View
| world SAPSERM | | Data o It
resner Dictionary Data
SQL View
R/3 Repository

D Data Dictionary

Figure 1.1: Concepts and Languages of the R/3 Repository

Analysis Design Implementation
level level level
Event, Workflow Transaction
X Function, } Process
. View
1. ...
Program,
Report, Function
View
Enity, Table, | ABAP/4
Real world Relationship Domain, variable, Data
Foreign key, SQL table, View
Manug|l Manual Tool } n?gi':‘stf;?‘zye
S between levels
R/3 Repository

Figure 1.2: Objects of the R/3 Repository

FlHR TR SD MM PP QM
Maintained
by Programm
objects
SAP
Consultant Customizing
data Data
NN R N BN En objects
Company Application
data
T ;L ;L ;L ;L ;L T ;L
System R/3
Figure 1.3: Logical Partition of R/3 into Modules
Repository
Data) Application
dictionary i Consists Pp
Object ﬁ
Name
Consists Devolpment class
Consists of
ABAP/4 Development class
dictionary object
object
Owner
State Transport
Transport

Figure 1.4: The Repository

Client

Client with
with seperate
data

seperate
data

R/3 system
containing
shared
data

Client
with

Client

with seperate
seperate data
data

Client: A business entity in the R/3 system.

Figure 1.5: Clients in R/3

same name as a table. There are thousands of named objects of all kinds and com-
bined with a strict limitation of length, the names are by no means self-explaining.
To worsen the situation, English and German names and abbreviations are mixed.

SAP decided to leave the ‘name range’ Y* and Z*5 to customer objects. There
are exceptions from this rule leading to some confusion. SAP guarantees (so far)
that there will be no name clashes with SAP objects when a new release is installed.

The example of the namespace dilemma shows what happens to many systems
that have grown in time: Everywhere in the system one can find legacy objects that
nobody dares to remove or -in this case- dares to rename for the consequences are
largely unpredictable.

1.5 Running Example: FM Areas and Funds Cen-
ters

It is not within the scope of this text to describe every feature of R/3. Instead some
features will be shown by example and this example is the FM area and the funds
center.

FM area: A financial management area (FM area) is the commercial organiza-
tional unit, with which commitment accounting is conducted.

Funds Center: A funds center is a commercial responsibility area to which a bud-
get is assigned. ©

A funds center must be assigned to exactly one FM area, several funds centers
can be assigned to the same FM area. A funds center cannot exist without the
superordinated FM area. See [13] for more details.

5all objects which names start either with a Y or a 7.
6 Definitions taken from [13].

’ Financal management area

|

Funds center

Financial management center (FM area):

The FM area is the commercial organizational unit, within which commitment accounting is
conducted.

Funds center:
A funds center is a commercial responsibility area, to which a budget is assigned.

Figure 1.6: FM area and funds center in OMT

Figure 1.6 shows FM area and funds center in the OMT notation 7.
In a university context FM areas could be the departsment, like the department
of comupter science, and the funds centers represent workgroups who have their

own budget.

"see Appendix.

10

Chapter 2

Concepts at the Analysis
Level

The purpose of EPCs and the data model is to document the business processes
and the data relations R/3 implements.

2.1 Data Modeling: Entities and Relationships

The Data Model is a view on the company from a data point of view. There are
two types of objects in the model.

Entity: An entity represents real data like the existing funds centers in a company.
In the graphical notation entities are noted as boxes.

Relationship: Describes relationships between entities. The relationship is

e hierarchical, if the key of one entity, the so called dependent entity, de-
pends on exactly one other entity, the so called source entity. This is the
equivalent to a foreign key relation in the relational data model. In the
graphical notation this is noted with an arrow from the source entity to
the dependent entity. The dependent entity is on the right hand side of
the source entity and the arrow points to the left edge.

e aggregating, if the key of the dependent entity depends on more than
one source entity.

e referential, if non-key fields of a dependent entity depend on other source
entities. This is the equivalent to a foreign key relationship with non-key
fields in the relational model. In the graphical notation such a relation-
ship is noted as an arrow pointing to the lower or upper edge of the
dependent entity. Again, the dependent entity is on the right hand side
of the source entity.

e a ‘is a’ relationship, if one entity is a special instance of another entity.
E.g., the entity ‘Bill’ is a special instance of the entity ‘person’.
A relationship has got a cardinality:
1:1 each entity of the source entity type has exactly one dependent entity.
Noted by a single arrow.

1:C each entity of the source entity type has at most one dependent entity,
noted by a single arrow with a crossing line.

11

’ A

H

Hierarchical |:

Aggregating
EIER

Referential Isa

Figure 2.1: Types of relationships in the Data Model

1:IN each entity of the source entity type has at least one dependent entity.
Noted by a double arrow.

1:CN each entity of the source entity type can have any number of dependent
entities. Noted by a double arrow with a crossing line. !

There cannot be a direct N:M relationship between entities in the data model.

Entities have some additional attributes, like a unique number and flags to
indicate whether the data is changed during customizing or actual use and whether
the underling implementation is a table or a view. See figures 2.1 and 2.2.

Figure 2.3 is an excerpt from the data model for FM areas and funds centers.

2.2 Functional Modeling: R/3 Modules

R/3 provides different applications, so called modules for the different departments
of a company. Examples are the Financial Management (FI), Materials Manage-
ment (MM) and so on. Theses applications work with the same data and are highly
linked to each other. One can hardly use only one module of R/3. One has to use
either a big part of the R/3 System or one cannot use it at all.

This is no doubt a strength and a weakness at the same time. On the one hand
using much of the system means handling data efficiently for no conversations of
data to other programs are needed and the data is handled in a consistent way, on
the other hand the system does not scale for smaller or larger companies, making it
a bit of an overkill for smaller companies. SAP is well aware of this and is currently
looking for possibilities to make the system more scaleable.

!taken from [13].

12

Each entity of the source entity type has exactly one dependent entity:

1

1

>

Each entity of the source entity type has at most one dependent entity:

1

:C

=

Each entity of the source entity type has at least one dependent entity:

1

>

Each entity of the source entity type can have any number of dependent entities:

1

:CM

>

Figure 2.2: Cardinalities of relationships

Generally used data

Entity number
19013 [v View
Language R
12340 [AlV] 12410 [AlV]
Financial H <\ Funds Center
Management [
Area
19031 [AlV]
Currency 0
R

Figure 2.3: Excerpt form the data model

13

2.3 Process Modeling: R/3 Reference Model and
EPCs

The R/3 Reference Model is a representation of the R/3 System using graphical
models. It describes the various aspects of the SAP R/3 software, i.e., the supported
business processes with their possible variants, data and organizational structures.

In the R/3 Reference Model, business processes that can be executed in the R/3
System are described graphically as event controlled process chains (EPCs). An
EPC uses events to show the logical and chronological relationships between R/3
System functions. 2

Four different element types can be used to form an EPC:

Function: describes what is to be done. The symbol is a hexagon.

Events: describing when things are to be done or at which stage the process is so
far. The symbol is a rounded box.

Organization unit type: describes who (which part of the company) is involved.
The symbol is an ellipse.

Information object: describes what kind of information is needed or produced.

Figure 2.4 shows an example of an EPC to create a new funds center.

EPCs are not integrated into the system in a strict sense. They are purely
informational. There is no guarantee that a given EPC is implemented at all.

The semantic of EPCs are defined on an informal base only. Omne can find
many contradictions and irregularities in many EPCs published by SAP and others.
Efforts are being made to formalize EPCs so they can be checked automatically for
inconsistencies. Petri-Nets® have been used to check EPCs.

2after the glossary in [13].
3For details about Petri-Nets see [11].

14

new Funds center
to be created

choose
FM aera

choose
resposible

person

choose
superordinated
funds center

choose
fund

new Funds center
created

Figure 2.4: EPC to create a new funds center

15

Chapter 3

Concepts at the Design Level

At the design level the data models of the analysis level are brought to a more
technical level. Furthermore, the design level is the link between the actual im-
plementation and the analyzing model. Up to a certain point, it guarantees that
different applications work on the same base when they refer to the same analyzing
model.

The main tool of the Design level is the Data Dictionary, holding all meta-data
of the system and the company’s data.

The objects stored in the Data Dictionary (DDic) can be grouped into three
groups:

e data modeling elements, i.e. tables, views, data elements and domains
e grouped data types, covered in chapter 4
e system oriented elements, covered in chapter 4.

The Data Dictionary is part of the Repository and reflects a view on the under-
lying database.

3.1 Data Modeling: Some Data Ditctionary Ob-
jects.

3.1.1 Domains and Data Elements

A domain is a basic elements that hides the technical representation of a piece of
data. It is based on an external type. E.g., the domain FICTR is a sequence of four
characters, the domain FISTL is a sequence of sixteen characters. The external type
is in both cases the type ‘character’.

Domains based on the external types CURR or QUAN are treated in a spe-
cial way. Domains based on CURR and QUAN describe a currency amount or a
quantity. There have to be tables, provided by the system or by the customer,
that contain all valid currencies or quantity units, they are called reference tables.
A field of a table based on CURR or QUAN must refer to an appropriate field of
a reference table, the reference field. The reference field itself is based on either
the external type CUKY (currency key) or UNIT. Tt determines the actually used
currency, e.g. dollar or DM, or unit, respectively.

A data element describes the business management use of a domain. One can
think of a data element as a semantical domain. E.g., the data element FIKRS
describe FM areas and uses the domain FICTR. The data element FM_FICTR describes
a funds center and uses the domain FISTL.

16

Ddic object

State

ble View Data Domain
o +1 element
8 Type
™ Join-cond.
[5]
Q
e
o
& +1
I

Defines values

Field [+1
Name (@

Figure 3.1: Data modeling elements in the DDic

3.1.2 Tables and Structures

The table concept of the R/3 System is similar to the relation concept in the re-
lational model of data. An R/3 table consists of one or more fields. These fields
can either be defined directly or in another table or in a structure. A structure is
similar to a table, but it does not contain any data. See figure 4.2. The advan-
tage of defining fields not directly but in another structure/table is, that when the
included table/structure is altered, the definition of the including table is changed
automatically.

A field of a table has got a name and an associated data element. A field can
refer to a check table defining a foreign key relationship. The System does not
guarantee referential integrity automatically. The actual R/3 application has to
take care of that.

Depending on the intended use of a table, it can be realized in different ways in
the database. A table can be

e transparent (being realized as an identical SQL table)

e a pool table (every row of the table is saved with other rows of other pool
tables in the same SQL table)

e a cluster table (the whole table is saved as one row of an SQL table).

Tables for normal use are transparent, tables with only a few rows, which need
not to be accessed from outside the system, can be pool tables. Cluster tables are
normally used for language-dependent tables, e.g. a table that holds a description
of an object in various languages.

It is also possible to define foreign keys. The referring field must be based on the
same domain as the field referred to. The cardinality of a foreign key relationship
1 can be set, this is shown in the Data Modeler, when appropriate entities for the

1See figure 2.2

17

tables have been defined.

Foreign keys are important, because the system often uses so called primary
and secondary tables. A secondary table is linked via a foreign key relationship to
a primary table. The referring table is the secondary table, the referred table is the
primary table.

The technique of customizing includes and append structures are used to modify
standard tables 2.

e Customizing includes are special tables 3, which are included by standard
tables. This is to offer customers the chance to change a standard table and
to keep the changes over later upgrades of the system. Customizing includes
are delivered empty and can be filled during the customizing process.

e Append structures are structures assigned to exactly one table. The append
structure refers to the table, not vice versa. The table does not ‘know’ that
it has a structure assigned. The Data Dictionary knows that and propagates
changes to the table when necessary. This technique should be used to change
a standard table when no customizing includes are provided for that standard
table.

It is not recommended, though possible, to change standard tables directly. The
standard tables could be changed with the next update leading to the loss of the
changes made by the customer.

This points out that versioning is an important issue in practice. The relational
model does not cover this problem, object-oriented systems still have to prove that
they perform better on that. SAP’s solution to the problem may not be very elegant,
but it seems to work.

3.1.3 Views

Views give a special view on a data stored in a database *. Tn R/3, a view consists
of one primary table and any number of secondary tables 5.

In an addition to the concept of views in the relational model, SAP R/3 supports
four types of views:

Database view : A database view is the equivalent to a view in the relational
model of data. If there is more than one table involved, the access is always
readonly. Views of this type are used frequently to represent an entity in the
Data Modeler.

Projection view : A projection view hides some columns of a table (a projection).
The hidden columns will not be sent form the database to the application
server, reducing the data volume to be transported .°

Help view : A help view shows further fields (columns) of a table, when a user is to
specify a value in a foreign key field and requests help for valid inputs. There
can be at most one help view per table. Matchcodes are a more advanced
technique to achieve the same goal.

Maintenance views : Maintenance views enable a business-oriented approach to
looking at data, while at the same time, making it possible to maintain the

2These are tables predefined in the system.

3named CI_*, an exception to the rule that the name range for customers is Y* and Z*.
1see [14] for details.

5at most the number of existing secondary tables, of course.

6Refer to chapter 6 for more details about the database and application servers of R/3.

18

data involved. The data can be maintained by the customizing transactions.
7

3.2 Process Modeling: Workflows

The R/3 system allows the user to define his or her own workflows. The technique
used is the same as the one used for EPCs®.

SAP Business Workflow provides technologies and tools for processing and con-
trolling cross-application processes automatically. This involves primarily the coor-
dination

e of the persons involved
e the work steps required
e the data to be processed (business objects)

Its main aims are to reduce throughput times and the costs involved in managing
business processes and to increase transparency and quality.®.

"taken from [13]
8see chapter 2.
9taken from [13]

19

Chapter 4

Concepts at the
Implementation Level

At the implementation level, the actual business processes are implemented. All
applications are written in ABAP/4!, the R/3 programming language. The user-
front end is written in ABAP/4 as well and can be customized and utilized as far
as required. The complete functionality of R/3, including the ABAP/4 compiler,
is accessible in ABAP/4 programs making, e.g., the generation of programs on
demand possible.

4.1 Implementation-Oriented Data Dictionary Ob-
jects

4.1.1 Data Types and Type Groups
The R/3 System supports five kinds of data types.

External types : They are the foundation of all types and have an equivalent
representation in SQL. Any object that is to be persistent 2, must be converted
to a corresponding object of an external type. Table 4.1 shows the existing
external types.

ABAP/4 data type : Every ABAP/4 variable is based on an ABAP/4 data
type. The types are: C(character), N(numeric character), P(packed numer),
F(floating point), I(integer), X(hexadecimal number), T(time) and D(date).

All external types have a matching definition using ABAP/4 data types.

Header line type : This is an aggregated type. In most cases it is defined by
referring directly to a structure, which is the equivalent concept in the Data
Dictionary. Header lines are used to define variables which are necassary to
exchange data between ABAP/4 and the data base, they serve as buffers.

Internal table type : An internal table is used to store data during the execution
of a ABAP/4 program. 3 Internal tables are not persistent. If the data is to
be persitent, it must be inserted into a database table.

! Advanced Business Application Programming Language, 4" generation.

2Persistence means in this context to be stored in the underlying database. For further details
about persistence and how it can be achieved see also [8].

3 Actually not during the execution of an ABAP/4 program, but during the execution of an
SAP transaction.

20

External type | Description output length
INT1 1 byte integer, unsigned 3
INT2 2 byte integer, used as length description for | 5
LRAW and LCHAR
INT4 4 byte integer, signed 10
FLTP floating point number 16
TMS time (HHMMSS) as 6 characters [CHAR(6)] 6
DATS date (YYYYMMDD) as CHAR(S8) 8
CLNT client number 3
ACCP account period (YYYYMM) 6
CHAR sequences of characters <256
NUMC numerical characters <256
LCHAR same as LRAW but with characters < 65536
RAW sequence of bytes <255
LRAW sequence of bytes beginning with an INT2 as | < 65536
length field
DEC decimal <18
CURR currency field, realized as DEC <18
CUKY key for a currency 5
LANG language key 1
QUAN quantity field <18
UNIT key for a quantity field 2or 3

Table 4.1: External Types in R/3

Type groups are collections of user defined data types or constants in ABAP/4
code. They are stored in the data dictionary for cross-program use.

4.1.2 Lock Objects

Lock objects guarantee the consistency of the database when many users work on
the same data. A lock object can lock one primary table and several secondary
tables.

The lock mode controls the method by which the users are given access to the
same data records at the same time. The system supports the following lock modes:

E (Exclusive, cumulative) : This mode means that locked data may only be
displayed or processed by a single user at the same time. The user owning
the lock can request the lock again.

S (Shared) : This mode means that several users can simultaneously display the
same data. A request for another shared lock is accepted even if it is requested
by another user. A call for an exclusive lock is rejected.

X (Exclusive but not cumulative) : A lock of type X can be called only once.
Any other call for such a lock is rejected, even if the user holding the lock
calls.

The lock mode can be defined separately for each table in the lock object. When
a call for a lock occurs, a corresponding entry is inserted into the lock table of the
system. 4

Special ABAP/4 code, a so called function module, is generated automatically
for every lock object. An ABAP/4 program calls the function module to request a
lock. If the lock is rejected, an exception is thrown.

4taken form [13].

21

DDic object

Domain Type
group
Based 2
on
Data type
External ABAP/4 Header Internal Field-
type data type line O table symbol

Projected to

SQL type

Figure 4.1: Data types in the Data Dictionary

4.1.3 Matchcodes

In the relational model of data, every tuple of a relation is unique and has therefore
identifying attributes. In practice it can happen that all or nearly all attributes
have to be used to identify a tuple. This means a performance penalty, because a
great amount of data must be processed. To perform better, id-attributes like a
unique number or a short string are used to identify tuples.

Using id-attributes is good for the performance but bad for human users. Users
are often requested to identify a tuple by giving the id-attribute, e.g. when pro-
cessing an incoming order the customer address is requested and the user has to
type in the customer-id, which, e.g., is a number. The purpose of matchcodes is to
help the user to find the information by displaying non-identifying attributes, which
are useless for the system but meaningful to humans. In the example, a matchcode
could display existing customer-ids and additional information, such as name, street
and town.

A matchcode has got a primary table, in which the requested attribute is con-
tained, and it can have secondary tables to show associated attributes (fields) of
other tables. Furthermore a matchcode can show different sets of attributes, each
set constitutes a so called matchcode-id.

Matchcodes are no database indices. Differences are:

e A matchcode can contain fields from several tables. An index contains fields
from only one table.

e Matchcodes can be built on the basis of both transparent tables stored in the
underlying database and using the special table types pool and cluster.

e The matchcode structure can be restricted by stipulating selection conditions.

e Matchcodes can be used as entry aids in the context of the SAP help system.

22

Ddic objekt

Status

Includes Includes
Table’g Structurw Data Match-
[| element code
objekt
Appends Primary " Secondary !
table table Primary ’ Secondary
table | | table
+1 +1 : 1-36
Field Field D
L
Name Name
Projection
Select
condition

__

Figure 4.2: System oriented elements

4.2 Programming in the Large: Development Class
Objects

A development class is a set of logically related development objects. Such a set of
objects could be, e.g., all objects necessary to manipulate funds centers.
Figures 4.3 and 4.4 show the development class objects in OMT notation.

4.2.1 SAP Transactions

A SAP transaction covers a logical process in R/3 (e.g. generating a list of cus-
tomers, changing the address of a customer, booking a flight reservation for a cus-
tomer, executing a program). From the point of view of the user, it represents a
self-contained unit. In terms of dialog programming, it is a complex object which
consists of a module pool, screens, etc. and is called with a transaction code. °

It is helpful to think of a SAP transaction as one basic business process, which
cannot be interrupted or half fulfilled. SAP transactions are sometimes called logical
units of work(LUW), a LUW can involve more than one database transaction (DB-
TA).

SAP transactions can be programmed to comply with the ACID condition 7.
This is achieved by postponing all actual database changes an SAP transaction
wants to perform till the end of the SAP transaction and then doing all changes
within one database transaction.

5 differences taken from [13].
taken from [13].
7 Atomity Consistency Isolation Durability, see [14] for details.

23

[Development class object|

[Gen

erate |

Starts

[

l l [

[Program object Function Message Logical
Version group class database
Authon_'ization Message
object ’ Number
Report Function module
(REPORT/PROGRAM) (FUNCTION-POOL)

Interface

Figure 4.3: Development class objects (1)

[Development class object|

Generate |
Business Dialog box SET-/GET- ’ Area menu ‘ ’CATT procedure‘
engeneering- par
objekt Interface
Calls
Uses 1
Programm objekt ’ GUI status ‘ ’Transactions‘
’ Workflow ‘ ’Data model‘

Figure 4.4: Development class objects (2)

24

To coordinate many users working with the same data, lock objects must be
used. Lock objects lock the data the moment they are called and release it by
default when the SAP transaction is finished and all the changes in the database
have been done. Please note that the data is locked at the time the user works
with the data which can be much ahead of the time when the actual change in the
database is carried out.

4.2.2 Reports

Reports are ABAP/4 programs. They will be explained in more depth in the
ABAP/4 section of this chapter.

4.2.3 Function Modules

A function module is a routine in ABAP/4. In addition, it has got an interface
which is stored in the Data Dictionary. The concept of function modules is one of
the most important concepts in R/3.

Function modules can

e be called from any other ABAP/4 program,
e be called via RFC® from programs outside the system,

e delay all database transactions till the end of the SAP transaction and build
by that the fundamental base for fulfilling the ACID condition.

According to the different purposes, there are different types of function modules,
called process types:

Normal : The function module can be called from inside the system only. Database
transactions are performed immediately.

RFC supported : The function module can be called via RFC from outside the
system.

Update with start immediately : The database transactions are delayed un-
til the next ‘COMMIT WORK’ event. Should a database transaction fail,
retrying is possible. This is a V1-booking.

Update immediately : The database transactions are delayed until the next
‘COMMIT WORK’ event. Should a database transaction fail, retrying is
not possible. This is also a V1-booking.

Update with start delayed : The database transactions are performed (booked)
after all V1-bookings have been performed. This is a V2-booking.

Sammellauf : The database transactions can be booked with other V2-bookings
at one time. This is a V2-booking.

Function modules are written in normal ABAP/4 code and can use the full
functionality of R/3. This is of special interest when a function module is called
form outside the system, making it possible to control the system from outside.

So called ‘batch input’ can be provided. This is data stored in special tables and
the system interprets the data as input for the system. With batch input everything
that can be done interactively can be simulated.

Function groups are a set of logically related function modules. The function
library stores all function modules and allows to search for specific modules.

8Remote Function Call, see [6] for details.

25

4.2.4 Messages

A message in R/3 is a string. Messages are prompted to the user in a modal dialog °.
Every message has got a unique number in the message class it is part of. A message
class is a collection of messages which are used in the same program. Nevertheless,
it 1s possible for a program to use many message classes.

The R/3 system supports 5 types of messages:

Error (E) : The user made an invalid input and as soon as he or she has acknowl-
edged the message, is forced to reenter the required information.

Warning (W) : The user may have made possibly invalid input, but can decide,
whether to reenter the information or to proceed.

Information (I) : The user has to acknowledge the message and can proceed.

Success (S) : This message is not displayed in a modal dialog, but in the bottom
line of the next screen. A message of this type is purely informational and
need not be acknowledged.

Abort (A) : A critical error has occurred, a reentering of the information is not
possible. The current SAP transaction is aborted. In most cases, technical
reasons cause this kind of message to be prompted.

Message classes are maintained with a special tool, in terms of ABAP/4 this
tool is an interactive report. Messages should be language dependent, of course.

4.2.5 Area Menus

As stated before, the ABAP/4 programs can use the full functionality of the SAP
front end, including the menus. An area menu is a menu which triggers SAP
transactions. Area menus can call any SAP transaction defined in the system. Area
menus are not assigned to an ABAP/4 program and are invoked by a transaction
code.

4.2.6 Other Development Class Objects

Logical databases are used to write reports. They consist of one or more database
table(s), which are linked by user-defined conditions. Logical databases make
reporting easier, not more powerful.

Dialog boxes are dialogs, which are used quite often in the system. It is possible
to define new dialog boxes or to use predefined, standardized dialog boxes.
Several kinds of standard dialog boxes are available:

e Confirmation prompt dialog boxes

e Dialog boxes for choosing among alternatives
e Data print dialog boxes

e Text display dialog boxes

10

SET-/GET-parameters are used to exchange data between SAP transactions.
Their main purpose is to set values for input fields on the screen.

9dialogs are displayed in separate windows. A modal dialog blocks the system until the user
has reacted to the dialog. Non-modal dialogs allow the user to continue working with the system,
the user can react to the dialog whenever he or she wants to.

10¢taken from [4].

26

Program object

Type, Version

Logical
database

Transaction
Code

Module pool
in ABAP/4

Starts with

il . Y
DynPro PBO PAI Subroutine Global GUI
module module (Form) data title
Number

Type Code

Screen
| cans
Executes
+1 _
DynPro field Data exchange by equality of names

Figure 4.5: Program objects

CATT-procedure : CATT stands for Computer Aided Test Tool. This tool helps
the user to test self-written programs or parts of the system functionality with
special test data.

4.3 Programming in the Small: Program Objects

Figure 4.5 shows program objects in detail.

A program object consists of a module pool, written in ABAP/4, one or more
DynPros, and some GUI stati. A program object can also use at most one logical
database, the program object will then be a report.

The ABAP/} modules are called by the flow logic and can call other subroutines,
called forms, which cannot be invoked directly by the flow logic. Modules and forms
can have their own local data and have full access to all global variables. The global
variables can be used for internal purposes and are the interface to all database
objects.

The data exchange between DynPro fields and ABAP/4 variables is done au-
tomatically. Before a screen is displayed, the PBO modules fill ABAP/4 variables,
which have the same name as the DynPro fields, with the appropriate data. The
DynPro interpreter then transfers the data into the DynPro fields and after input,
it transfers the data back into the ABAP/4 variables.

4.3.1 GUI Status

A GUI status describes which menu bar and buttons should be represented to the
user at a certain time.

The menu bar holds the menus. Two menus are always present: The system
menu and the help menu. Menus themselves can contain menu items, e.g. ‘Quit’,
which trigger actions or further submenus, like ‘Create Object...’, which lead to

27

GUI status

[

[

|

Toolbar

Application
toolbar

i

i

Function key
assignment Menu bar
Code l
Menu

Function key

Function key

+1

Code

Code

References

+1

Menu item

Figure 4.6: GUI status

other menus and menu items. A menu can cascade to a depth of three.
The tool bar holds a set of application independent buttons, the application tool
bar holds a set of application dependent buttons.

4.3.2 The Model for interactive Programs

To understand the programming concept of R/3 it is necessary to understand the
model for interactive programs. The R/3 system is mainly event driven, events can
be triggered by the system itself or by the user.

The model is screen-oriented, the cycle is processed for every called screen (Dyn-

Pro).

1. At the beginning of the cycle, everything assigned to the PBO'! event is
executed. In most cases this will be actions to prepare data to be presented

to the user.
2. Next, the user does the actual input.
3. Depending on how the user ended the input,

e additional information is displayed,
e another transaction is executed,
o the EXIT-COMMAND-event is triggered,

o the PAT!'? event is triggered, which is the normal case.
4. The actions assigned to the triggered event are performed.

Figure 4.7 shows a usual basic cycle, figure 4.8 gives the possible execution steps
of the DynPro interpreter.

H Process Before Output.
12Process After Input.

28

ABAP/4 ABAP/4 ABAP/4 ABAP/4

module module | . | module module
oA DyProa A A DyProB A
S — S — S — S —
DB-TA DB-TA DB-TA DB-TA

Figure 4.7: The Model for interactive Programs

Leave to
transaction

Process
screen
F4?
F1?
ransfer data) Y
from ABAP/4 Give
variables into help
DynPro fields,

Lock certain
DynPro fields

OK-CODE
type E?

Transfer data from
DynPro fields into
ABAP/4 variables

Next

PBO

Sub-
routines

MESSAGE
type E?

Sub-
routines

Figure 4.8: Execution steps of the DynPro interpreter

29

Finanzslelle anlegen: Anforderungsbild

Finanzstl Bearbeiten Springen Zusdtze Umfeld System Hilfe

V|| N NS A A i e T R ke i F=l =l

Finanzkreis IFB18|EI
Finanzstelle IDBIS 1

Figure 4.9: Transaction FM2I, DynPro 100

4.3.3 An Example of a SAP R/3 DynPro

This text is not intended to be a handbook for ABAP/4 programming. Instead,
some of the features will be shown through an example, typical of R/3 applications.

The example is the DynPro 100 of the function group FM22. The function group
provides functionality to maintain funds centers, like the transaction FM2I, which
creates a new funds center. Other transactions are FM2S (shows an existing funds
center) and FM2U (updates/changes an existing funds center). It is very common
in R/3 to have such three transactions (insert/show/update) for one object.

In DynPro 100, shown in figure 4.9, the user has to type in the funds center
(Finanzstelle) and the superordinated FM area (Finanzkreis) he or she wants to
insert or update or look at. This DynPro will be explained in same depth at the
end of this chapter, the source code is given in appendix C.

4.3.4 Components and Attributes of DynPros
A DynPro'? consists of several components:

DynPro attributes tell the DynPro number, the number of the DynPro that
should follow it by default , and some other attributes

Screen layout tells what fields should appear in the DynPro and where
Field attributes tell the properties of each field in the DynPro

Flow logic tells what ABAP/4 routines should be called for the DynPro
14

The single components will be explained by the example of DynPro 100, Trans-
action FM2I (insert).

13Dynamic Program.
Mtaken form [13], slightly modified.

30

DynPro Attributes

Main attributes are:

Attribute Value FErxplanation

Progam SAPLFM22 | to every function group there exists a program
object named SAPL. ..

Number 100 this is DynPro number 100

Original Language | D the language the DynPro has originally been
created in, in this case is was created in Ger-
man

Description o short description of what the DynPro does

Type normal this is a normal DynPro, no special function-
ality

Next DynPro 100 by default the succeeding DynPro is number
100, itself.

Screen Layout

The screen layout is designed with a special tool, the screen painter. The required
fields are inserted and placed on the screen. This mask will be used later by the
DynPro interpreter.

Field Attributes

DynPro 100 has got the following fields:

Field Name Type | Format | Length | Remark

IFMFCTR-FIKRS | Text | CHAR 15 shows the string ‘Finanzkreis’.
IFMFCTR-FIKRS | /O | CHAR 4 in this field the FM area is
typed in. Tt has got the match-
code FIKRS assigned.
IFMFCTR-FICTR | Text | CHAR 15 shows the string ‘Finanz-stelle’.
IFMFCTR-FICTR | I/O | CHAR 10 in this field the funds center is
typed in. It has got the match-
code FIST assigned.
OK_CODE OK returns function code.

The OK-field serves a special purpose: Buttons have got a function code as-
signed. Whenever a button is pressed, the input is ended and the function code
of the pressed button is written into the OK-field. When the input is ended by
pressing the return-key, the value of the OK-field is SPACE.

Flow Logic

The flow logic consists of key words marking the beginning of a section to be pro-
cessed at an event, module calls and error handling.

Consider the flow logic in figure 4.10: the module DO100_JINDEPENDENT is
called after the PBO event has occurred. The module DO100_EXIT is called when
the user wants to exit the current transaction, the module DO100_OK_CODE is
called at the PAT event and the input is valid.

When an error message is issued, all fields enumerated by the FIELD-command
can be reentered. The CHAIN-ENDCHAIN-command defines a block in which the
FIELD-COMMAND is valid.

31

PROCESS BEFORE OUTPUT.
MODULE D0O100_JINDEPENDENT.
MODULE D0100-MODIFY_SCREEN.
MODULE D0100_SET_PF-STATUS.

PROCESS AFTER INPUT.
MODULE D0100_EXIT AT EXIT COMMAND.
CHAIN.
FIELD: IFMFCTR-FIKRS, IFMFCTR-FICTR.
* check for illegal characters
MODULE CHECK_SONDERZEICHEN.
* store key of FM area in a gobal variable
MODULE D0100_.DB_KEY _NOTICE.
* is the user entitled to do the transaction?
MODULE AUTHORITY_CHECK
* set a lock on the table FMFCTR, holding the funds centers
MODULE FMFCTR_ENQUEUE.
* read attributes of funds center
MODULE FMFCTR_LESEN.
ENDCHAIN.
* set next DynPro to be erecuted

FIELD OK_CODE MODULE D0100.OK_CODE.

Figure 4.10: Flow Logic of DynPro 100, Program SAPTL.FM22

4.3.5 Characteristics of ABAP/4
Some of the ABAP/4 charcteristics are:
e ABAP/4 code is interpreted
e the syntax reminds the user of COBOT and BASIC

e the syntax is context-sensitive
e more than 200 key-words in version 3.0C, with an increasing tendency
e little orthogonality.

From a computer scientist’s point of view, the language is very old- fashioned
and not well designed. Its size and complexity has grown in time and SAP was not
able, or did not want to, redesign the language. This has led to a language full of
contradictions and irregularities. Nevertheless, in ABAP/4 there are some concepts
worth having a closer look at. For a detailed introduction to ABAP/4 see, e.g., [5],
[, [7] or [10].

Consistent Definitions of ABAP /4 variables and DDic Objects

A major problem of every programmable database system 1is to keep the definitions
of program variables consistent with the definitions made in the database, in the
case of R/3 the Data Dictionary.

In R/3 variables can be defined with the ‘LIKE’-operator, which has the form
‘variable LIKE DDic object’. This causes the ABAP/4 interpreter to look up the
definition of the DDic object and to use that definition for the ABAP/4 variables.

32

CALL FUNCTION ’ENQUE_EFMFCTR’
EXPORTING
FIKRS = G_FIKRS
FICTR = G_FICTR
EXCEPTIONS
FOREIGN_LOCK =1
SYSTEM_FAILURE = 2

Figure 4.11: Invocation of a Locking Object

E.g. the ABAP/4 statement ‘DATA G_FIKRS LIKE FMO01-FIKRS .’ 15 defines
a variable called G_FIKRS which has got the same definition as the field FIKRS in
the table FMO1. Since ABAP/4 is interpreted, every time the variable G_FIKRS
is defined, it has got the same definition as the field FM0O1-FIKRS in the Data
Dictionary.

The LIKE-operator can be used with any DDic object, especially tables and
structures. This is very important, because when new fields are added or the defini-
tion of fields are altered, older programs using the table or structure will still work.
Otherwise the process of customizing would not only include the altering of tables
but also the altering of all applications using these tables. This would obviously be
not feasible.

Locking of Database Tables

To guarantee data consistency, database tables must be locked the moment they
are used. As described before, this is done by locking objects and the system
automatically generates function modules to request (enqueue) and to end a lock
(dequeue). Figure 4.11 shows an example for the invocation of a locking object.

In ABAP/4, database tables cannot be locked directly, all locking must be done
via locking objects. Again, the indirection pays off when definitions or dependencies
in the Data Dictionary are changed. Old programs will still work after a locking
object has been changed.

Persistency

The underlying SQL database is the persistent store for ABAP/4. In addition,
ABAP/4 can handle files, but this is recommended for temporary data or informa-
tion interchange with other programs only.

ABAP/4 has got a built-in dialect of SQL, the so called Open SQL language.
Open SQL is similar to the usual SQL'®, there are some modifications due to the
tight integration in ABAP/4.

It is also possible to use the SQL language of the underlying database, the
language 1s called Native SQL. Tt is not wise to use Native SQI, for the applications
may not be usable in other R/3 systems.

Dynamic Screen Modification

Different groups of users are interested in the same objects, but they all want to
manipulate it from their point of view. Databases take that into account by views,

15 excerpt from the include LFM22DEC.
6 for further information about SQL,, see, e.g., [9] or [16].

33

MODULE D0100.MODIFY_SCREEN.
LOOP AT SCREEN.
7/ if ((Feldname = ’Finanzkreis’) und (TA ist abhdangig))
IF ((SCREEN-NAME = 'TFMFCTR-FIKRS’)
AND (FLG.CALLD = CON_.DEPENDANT_TA)).
”/ Feld dient nur zur Anzeige
SCREEN-INPUT = 0. "/’0A’ in HEX
MODIFY SCREEN.
ENDIF. "/ SCREEN-NAME
ENDLOOP. ”/ SCREEN.
ENDMODULE. "/ D0100_-MODIFY_SCREEN

Figure 4.12: Dynamic Screen Modification

R/3 allows to change the screen mask during execution. This is done in a PBO
module, figure 4.12 shows an example.

34

Chapter 5

Customizing and System
Evolution

Customizing is a method intended for

e implementing the R/3 System
e cnhancing of the R/3 System

e undertaking a release upgrade and system upgrade.
Customizing

e provides the procedure model, the work breakdown structure for implementa-
tion and enhancement of the R/3 System

e provides tools for system configuration and the necessary documentation

e provides the customizing project which gives the user tools for management,
processing and evaluation of his or her implementation or enhancement projects

e gives configuration recommendations and tools to enable this

e helps to transfer the System configuration from the development environment
into the production environment

e gives a set of tools for system upgrades and release upgrades.

To implement the system means in the customizing context, to introduce R/3
in the actual company.

5.1 Customizing: The Procedure Model

The procedure model is the basic element of customizing. The aim of the procedure
model is a structured organization of the R/3 implementation. 2 Tt is a high level
description of what is to be done.

The procedure model consists of four phases:

!taken from [13].
2taken from [13].

35

Organization and Detailed Design / Preparations for ¥ Productive
Conceptual Design and System Set-Up / Going Live ~ Operation

Interfaces
EIER Global
Enyiron:
ment
Train Company l
Team) Structure |[e—— — - Support
- Ap i Pro-
Prepa- P g
d . cation || System duction
Archiving System j| Admin, System
ol Processes N - Optimize

I Authori-

check |
— s 1 e i Transfer
FSTaS zation Data
ol

Processes
B Fina Test

Project Management

System Maintenance and Release Upgrade

Figure 5.1: The Procedure Model

1. Organization and conceptual design. The focus when creating the con-
ceptual design is to use the R/3 reference model to help to work out how
the R/3 business application components support the company’s processes
and functions. Other steps are e.g. to train the project team and to design
interfaces and enhancements.

2. Detailed design and system setup. The result of the phase ‘Detailing and
Implementation’is the checked company-specific application system which will
be released for phase 3 (production preparation).

3. Preparations for going live. The result of the ‘Production Preparation’
phase is a checked and released production system.

4. Productive operation. The result of the phase ‘Production’ is the organiza-
tion and execution of a continuous optimization and support of the productive
operation.

3 Figure 5.1 shows the steps of the procedure model in R/3 3.0C.

5.2 Customizing: The Implementation Guide

The implementation guide (IMG) describes what has to be done concretely and is
related to the actual customizing project. Furthermore, it contains the necessary se-
quence of activities and the user can start the appropriate customizing transactions.
The IMG is the central element of the customizing process.

Of course, there need to be different IMGs for different companies and projects.
SAP introduced four levels of IMGs:

3result descriptions are taken from [13].

The SAP Reference IMG contains documentation on all the business applica-
tion components supplied by SAP.

The Enterprise IMG is a subset of the SAP Reference IMG and contains docu-
mentation for those components to be implemented only.

Project IMGs are Enterprise IMG subsets containing just the documentation for
Enterprise IMG components to be implemented in particular Customizing
projects

Upgrade Customizing IMGs are based either on the Enterprise IMG or on a
Project IMG and show, for a given release upgrade, all the documents that
are linked to a release note.

4 IMGs are created by the execution of special SAP transactions.

5.3 Technical Realizing

Customizing is realized by filling in data into certain customizing tables or leav-
ing them with the default data. R/3 standard modules react to customizing data,
standard code should not be changed. In same ABAP/4 modules, R/3 provides
‘gateways’ to user-defined ABAP/4 functions. Obviously this is restricted to fore-
seen cases only. But within the implementation process it may prove necessary to
add additional functionality to the system where no ‘gateways’ or customizing is
provided. The only way is to write programs which are highly linked with standard
code, which can lead to trouble when SAP decides to change some of the standard
code.

5.4 Common Problems

A big problem when implementing R/3 is to find out which SAP modules ® and
functions provide the required functionality. E.g., employees may be modeled best
as suppliers when coming to controlling matters. ©

A top-down-approach to the problem is

1. to read the functional description of a module in the SAP documentation on

a high level
2. to read the documentation ‘Functions in Detail’, provided by SAP
3. to analyze the EPCs
4. to analyze the data model
5. to check the functionality with appropriate testing data.

Customizing is a long process which involves a lot of reading. The pure amount
of documentation for customizing and the problem of finding out the required infor-
mation and functions shows that this way of customizing a large system is a dead
end.

4 descriptions taken from [13].
5FT, TR, HR,. ..
6See [3] for details.

37

5.5 System Evolution

In an R/3 system, there exists exactly one original object and any number of copies.
The Workbench Organizer takes care, that no copies of an object can be changed.
To propagate changes of the original object in the system, the so called transport
system 1s used. Tt replaces old copies of the original object with new copies.

The transport system is used for a system upgrade as well. All changes are
transported from the SAP original objects into client 0, the default client. From
there, the changes can be transported to the required destinies in the system. De-
velopment classes are the basic objects, that can be transported.

38

Chapter 6

Architectural Aspects of R/3

In this chapter, R/3’s technical construction will be sketched briefly. System R was
first implemented on mainframes and the resulting structure 1s still clearly visible.

6.1 Distributed Architecture

Every R/3 System consists of three tiers or layers:

Presentation layer : The graphical user interface (SAPGUI) is run on this layer.
No application logic is processed.

Application layer : This layer executes the application logic, like DynPros and
ABAP/4 modules. Tt sends the data to be presented to the user to the pre-
sentation layer.

Database layer : This layer holds the system-wide database and the central book-
ing process.

All three layers must exist, but they may be on one computer. In ‘normal’ R/3
systems, the layers will be on separate computers. Figure 6.1 shows the three layers
and the communication between the most important components. '

TCP/IP is used as the communication protocol within R/3. With LU 6.2 it
is possible to communicate with IBM mainframes. Figure 6.2 shows protocols in
R/3.2

On top of the communication protocol, a presentation protocol is used for data
exchange between the presentation layer and the application layer. This SAP proto-
col is to minimize the amount of data to be exchanged for a switch from the current
screen to the next.

Remote SQL is used to exchange data between the database and the application
layer.

6.2 Process Architecture

Figure 6.3 gives a representation of R/3 in OMT.

An R/3 System consists of at least one presentation server, at least one appli-
cation server and exactly one database server. R/3 does not support distributed
databases. SAP claims that distributed databases are not safe enough for practical
use.

lexample taken from [15].

2picture taken from [2], translated.

39

"

Window = =
manager . X-Terminals .

PC SAPGUI SAPGUI SAPGUI
process process process
-~ A __» Presentation server
AN)
\ \ /
DynPro processor Dispatcher DynPro processor
ABAP/4 interpreter| | A A » |ABAP/4 interpreter
Workprocess Workprocess
\ / Application server
-~ N I4

Central ——
booking RDBMS
process

Database server

Figure 6.1: Three Tiers in an R/3 System

Application
layer

Presentation RFC (remote function calls)
layer CPI-C (SAP implementation)

Session
layer

APPC
Transport

layer LU 6.2

Network TCP/IP

Data Link X.25
layer
Ether- Token- Ether- Token-

Physical net ring net ring
layer

Figure 6.2: Communication Protocols used in R/3

40

R/3 system

+1 +1

Presentation server ’ Application server ‘ ’ Databse server ‘

’ Dispatcher ‘ ’ Message server ‘ ’ Gateway server ‘

+1

Workprocess

Figure 6.3: R/3 in OMT notation

Every application server has got one message server which handles the commu-
nication with other system servers. There can be at most one gateway server in
a R/3 System, which handles the communication with other systems, either other
R/3 Systems or systems form other vendors.

The central element of an application server is the dispatcher which controls the
workprocesses. The dispatcher assigns the jobs to the appropriate workprocess.

The workprocesses (WP) do the actual work, having their own taskhandler,
DynPro processor, ABAP/4 processor and database interface. One can imagine a
WP as ‘R/3 in a nutshell’, being specialized on special jobs.

Dialog WPs : Execute DynPros and ABAP/4 modules which are called in the
flow logic. At the beginning of a basic cycle 3 the dispatcher assigns the re-
quest by the presentation server to an idle Dialog WP, which then does all
preparations for screen output, like executing the ABAP/4 modules assigned
to the PBO event. After transmitting the new screen layout to the presenta-
tion server, the Dialog WP is idle again. When the user has ended the input,
the dispatcher will again look for an idle Dialog WP to execute the requested
actions.

Batch WPs : Batch WPs are used instead of Dialog WPs when the input is a
batch input.

Spool WPs : They do the internal spooling, like printing or transferring data to
the database.

Enqueue WPs : An Enqueue WP is specialized on the locking of DDic objects.

Figure 6.4 shows workprocesses in OMT notation.

3see chapter 3.

41

Dialog

Batch

Workprocess Spool

Enqueue
Taskhandler

DynPro
processor
ABAP/4
processor

Database
interface

Booking

Message

i
(i

Figure 6.4: Workprocesses

6.3 Gateways to other Systems

R/3 has interfaces to all layers.
e Presentation layer: Intelligent Terminal

e Application layer: Files, CPI-C, RFC, OLE (Windows only), email, EDI,
Business API (BAPI, not implemented in R/3 3.0C)

e Database layer: ODBC, Remote SQL.

The interfaces to the application layer have distinct control possibilities, e.g.:

Data import | Data export | Control from Control of
outside external Software
Files X X
RFC X X X X
OLE X X X X
ODBC, X X
remote SQL

The best way to interact with R/3 on a program to program base is the RFC
mechanism for 1t has full control and is platform-independent. Function modules
can be called via RFCs, they prove again to be a useful concept. *

4please refer to [6] for further reading about RFCs and R/3.

42

Conclusion

In R/3, SAP implemented some good concepts and ideas:

e The idea of customizing has proved invaluable to business software. It i1s a
further step in the concept of re-usability of software components, brought to
a level that even non-programmers can handle.

e The concept of ACID transactions not only on the level of databases but on
the level of business processes overcomes a shortening of the relational model
of data. SAP transcations are far nearer to the real world.

But, as always, there less favourable aspects, too:
e The technical realizing of customizing is a dead end.

e The ACID property of SAP transactions is not supported by any high-level
programming concept, leaving the fulfillment of the ACID property entirely
to the programmer.

e ABAP/4 is irregular and contains many useless concepts.

e R/3 does not scale in a real sense.

43

Appendix A

Notation: OMT Class

Diagrams

In this text OMT! class diagrams are used to model R/3 itself. Figure A.1 shows
a short summary of OMT symbols.

A class has got a name, attributes and operations. A class student,e.g., could
have number as attribute and graduate as operation. An instance would be a
concrete student.

The class person could be a super-class of the class student meaning that
every student is a person as well.

The class student could be associated with the class tutors and the class
student aggregates over the class registration data. Note the difference between
an aggregation and an association: When an instance is deleted, associated instances
are not deleted, aggregated instances are deleted. Figure A.2 shows the appropriate
OMT class diagram.

See [12] for further details of the OM'T Notation.

LOMT is a abbreviation for ‘Object orientated Modeling Technique’.

44

Class: Class name

Attributes

Operations

Instance:
(Class name)
Instance name

Association:

Generalization:

A
’Subclass-1 ‘ ’Subclass-Z‘

Multipicity of associations:

Association name W Exactly one
Class 1 Class 2 -
Role 1 Role 2

Aggregation:

Assembly class

’ Part-1-class ‘ ’ Part-2-class ‘

Many (=0)
Optional (0 oder 1)
One or more
Numerically

specified

Figure A

.1: The OMT notation

Person

Name

A

Student

Number

Graduate

{

Registration
data

b Tutor

Figure A.2

: The Example Screnario

45

Appendix B

A Meta-Model for R/3

Figure B.1 states the R/3 client/server architecture in an OMT diagram. Figure
B.2 shows all R/3 objects mentioned in this text in one diagram.

R/3 system

+1 +1
Presentation server Application server Databse server

‘ Dispatcher ‘ ‘ Message server ‘ Gateway server
Dialog
Batch
+1
Workprocess

Spool

Enqueue
Taskhandler

Booking

DynPro
processor

Message

(oG

ABAP/4
processor

Database
interface

|

Figure B.1: The R/3 System Architecture

4

[@x)

-

:
:

sovuy

[

- 7 anon 7

Y

palqo-sniers IS

SIS N9

,._,_...4:3, , e ,‘__ ,.h“ ,

s

P

Jouno

palgo

ssep uawtonag

sanjen saujeq

ams

alqo
euogop

vidvay

ssep awdonag

uorjeayddy

E)

)

wemoa |

s

Keuopolp
aeq

Kioysoday

-Model for R/3 Objects

Figure B.2: An Meta

47

Appendix C

Source Code of FM 22,
DynPro 100

The complete source code can be found in the program SAPLFM22. The code given
here is a subset which is executed during DynPro 100. The reader should get an
impression of what ABAP /4 programs look like.

* Programmkopf
FUNCTION-POOL FM22 MESSAGE-ID FI.

* Interne Tabelle fr die Finanzstelle zur Datenhaltung
* und zur Datenbergabe zwischen den Dynpros
DATA: BEGIN OF I_FMFCTR OCCURS 10.
INCLUDE STRUCTURE IFMFCTR.
DATA: END OF I_FMFCTR.

* Sicherung unbearbeitetes Dynpro
DATA: BEGIN OF I_OLD_FMFCTR.

INCLUDE STRUCTURE IFMFCTR.
DATA: END OF I_OLD_FMFCTR.

TABLES:
"/ Finanzkreis
FMO1,
"/ Texte zum Finanzkreis
FMO1T,
"/ Finanzstelle
FMFCTR,
"/ Interne Tabelle fr die Dynprofelder der Finanzstelle
IFMFCTR.

48

¥ Feldleiste fr die Finanzstelle
DATA: BEGIN OF FFMFCTR.

INCLUDE STRUCTURE IFMFCTR.
DATA: END OF FFMFCTR.

DATA:
"/Finanzkreis
G_FIKRS LIKE FMO1-FIKRS,
"/Finanzstelle
G_FICTR LIKE FMFCTR-FICTR,
"/Transaktionscode
G_TCODE LIKE SY-TCODE,
"/Flag um zu signalisieren, ob die TA / Function abhngig aufgerufen wurde.
FLG_CALLD LIKE SY-CALLD VALUE 0.

MODULE DO100_MODIFY_SCREEN.

e *
* Dynamische Bildmodifikation fr Dynpro 0100:

* - Feld ’Finanzstelle’ auf Lnge 10 reduzieren

* - Feld ’Finanzkreis’ ist bei Neuanlage aus der Grafik heraus *
* nur ein Anzeigefeld

A *
A *

"/ Schleife ber alle Dynprofelder
LOOP AT SCREEN.
"/ if ((Feldname = ’Finanzkreis’) und (TA ist abhngig))
IF ((SCREEN-NAME = ’IFMFCTR-FIKRS’)
AND (FLG_CALLD = CON_DEPENDANT_TA)).
"/ Feld dient nur zur Anzeige
SCREEN-INPUT = 0. "/’0A° in HEX
MODIFY SCREEN.
ENDIF. "/ SCREEN-NAME
ENDLOOP. "/ SCREEN.

ENDMODULE. "/ DO100_MODIFY_SCREEN

MODULE DO100_EXIT.

e *
* Funktionen, die die aktuelle Bearbeitung beenden *
* ohne die PAI-Module, -Prfungen zu aktivieren.

* LEAVE TO TRANSACTION lst automatisch das Freigeben aller

* Sperren der Transaktion aus! *
e *

"/ Zwischenspeichern des OK_CODE
SAV_OK_CODE = OK_CODE.
CLEAR OK_CODE.
"/ Auswerten des OK_CODE
CASE SAV_QOK_CODE.
"/ ENDE = Beenden
WHEN ’ENDE’ .

49

SET SCREEN O.
LEAVE SCREEN.

"/ EINS = In Anlegen-TA verzweigen
WHEN ’EINS’.

"/ Rufe Transaktion ’Anlegen’
LEAVE TO TRANSACTION TR_FICTR_INS.

ENDCASE.

ENDMODULE. "/ DO100_EXIT

MODULE CHECK_SONDERZEICHEN INPUT.

FIELD-SYMBOLS <F>.

IF SY-TCODE = TR_FICTR_INS
OR SY-TCODE = TR_FICTRHI_MNTN.
IF IFMFCTR-FICTR CA CON_SONDERZEICHEN.

ASSIGN IFMFCTR-FICTR+SY-FDPOS(1) TO <F>.
MESSAGE E669 WITH <F>.

ENDIF.
ENDIF.

ENDMODULE. " CHECK_SONDERZEICHEN INPUT

MODULE DO100_DB_KEY_NOTICE.

*

Schlssel der Finanzstelle in globalen Variablen merken
"/Finanzkreis

CONDENSE IFMFCTR-FIKRS NO-GAPS.

G_FIKRS = IFMFCTR-FIKRS.

"/Finanzstelle

CONDENSE IFMFCTR-FICTR NO-GAPS.

G_FICTR = IFMFCTR-FICTR.

"/if (TA ist unabhngig)

IF (FLG_CALLD = CON_INDEPENDANT_TA).

"/Variablen initialisieren, die bei abhngigem Aufruf aus der Grafik kommen.
"/Lese den Finanzkreis

SELECT SINGLE *

FROM FMO1

WHERE FIKRS = G_FIKRS.

"/0bjektnummer des Finanzkreises bernehmen
G_FMA_OBJNR = FMO1-OBJNR.

"/Einfgen ohne kopieren

FLG_COPY = CON_NEIN.

"/Variable initialisieren

CLEAR G_REF_FICTR.

ENDIF.

ENDMODULE. "/ D0O100_DB_KEY_NOTICE

MODULE FMFCTR_ENQUEUE INPUT. "/Prozedur zum Sperren einer Finanzstelle aufrufen

PERFORM FMCTR_ENQUEUE.

ENDMODULE. "/ FMFCTR_ENQUEUE

FORM FMFCTR_ENQUEUE.

50

"/ if (Anlegen oder ndern einer Finanzstelle)
CHECK ((G_TCODE = TR_FICTR_INS)
OR (G_TCODE = TR_FICTR_UPD)).
"/ Sperre fr eine Finanzstelle anfordern
CALL FUNCTION ’ENQUEUE_EFMFCTR’

EXPORTING
FIKRS = G_FIKRS
FICTR = G_FICTR
EXCEPTIONS
FOREIGN_LOCK =1

SYSTEM_FAILURE = 2.
CASE SY-SUBRC. "/ Fehlerbehandlung
WHEN 1. '"/bereits von anderem User gesperrt (FOREIGN_LOCK)
MESSAGE E641 WITH G_FICTR.
WHEN 2. "/ SYSTEM_FAILURE bei einer Sperranforderung
MESSAGE A521 WITH G_FICTR.
ENDCASE. "/ SY-SUBRC
ENDFORM. "/ FMFCTR_ENQUEUE

MODULE FMFCTR_LESEN.
PERFORM FMFCTR_LESEN. "/ Aufruf der Prozedur zum Lesen der Finanzstelle
ENDMODULE. "/ FMFCTR_LESEN.

FORM FMFCTR_LESEN.
DATA: L_FMFCTR_EXISTS LIKE CON_JA. "/Flag Finanzstelle existiert
IF (G_TCODE = TR_FICTR_UPD OR G_TCODE = TR_FICTR_SHOW).

PERFORM FMFCTR_LESEN_UPD USING G_FIKRS "/VALUE
G_FICTR "/VALUE
CHANGING L_FMFCTR_EXISTS. "/VALUE
ELSE.
PERFORM FMFCTR_LESEN_INS USING G_FIKRS "/VALUE
G_FICTR "/VALUE
FLG_COPY "/VALUE

G_REF_FICTR. "/VALUE
ENDIF. "/G_TCODE
ENDFORM. "/FMFCTR_LESEN.

FORM FMFCTR_LESEN_INS USING VALUE (P_FIKRS)
VALUE(P_FICTR)
VALUE (P_COPY)
VALUE(P_REF_FICTR).

IF (L_FMFCTR_EXISTS = CON_JA). "/ Fehlermeldung und im Dynpro bleiben
MESSAGE E642 WITH P_FIKRS P_FICTR.

ENDFORM. "/FMFCTR_LESEN_INS

MODULE DO100_OK_CODE INPUT.

e e e P *
* Auswertung der Benutzerkommandos im Dynpro 100 *
- *

51

"/ Zwischenspeichern des OK_CODE
SAV_OK_CODE = OK_CODE.
CLEAR OK_CODE.

"/ Auswerten des OK_CODE
CASE SAV_OK_CODE.
"/ ENTER
WHEN SPACE.
"/ Folgedynpro 200 aufrufen
SET SCREEN 200.
LEAVE SCREEN.
ENDCASE.

ENDMODULE. "/ D0100_0K_CODE

52

Bibliography

[1] E.F. Codd, ‘A Relational Model of Data for Large Shared Data Banks’, Com-
munications of the ACM, Vol. 13, No.6 (June 1970)

[2] Ridiger Buck-Emden, Jirgen Galimow, Die Client/Server-Technologie des
Systems R/3, Addison-Wesley, Bonn 1994

[3] Marko-Andreas Fricke, Stephan Frolich, Flexible Haushaltsplanung und Mittel-
Controlling fur einen Modellfachbereich, Diplomarbeit, Universitat Hamburg,
1997.

[4] R. Kretschmer, W. Weiss, Developing SAP’s R/3 Applications with ABAP/},
Sybex, San Francisco, Paris, Dusseldorf, Soest, 1996

[5] Christian Koch, Einfihrung in die ABAP/4 Entwicklungsumgebung, research
paper, 1996

[6] Sebastian Lutz, Eine polymorph-typisierte Schnittstelle zwischen SAP R/3 und
Tycoon, Master-Theses, Universitat Hamburg, 1997.

[7] Florian Matthes, Betriebswirtschaftliche Informationssysteme am Beispiel
SAP R/3, lecture notes, Technische Universitit Hamburg-Harburg,
http://www.sts.tu-harburg.de, 1997

[8] Florian Matthes, Persistente Objektsysteme, Springer-Verlag, 1993
[9] E. Lynch, Understanding SQL, MacMillan, London England, 1990

[10] Bernd Matzke, ABAP/4: Die Programmiersprache des SAP Systems R/3, Ad-
dison Wesley, Bonn, 1996

[11] J. Peterson, Petri Net Theory and the Modelling of Systems, Prentice Hall,
Englewood Cliffs, Nj., 1981

[12] Rumbaugh, Blaha, Permerlani, Eddy, Lorensen Object-Oriented Modeling and
Design, Prentice Hall, Englewood Cliffs, New Jersey 1992

[13] R/3 System Release 3.0C, Online Documentation, March 96

[14] Matthes, Schmidt, ‘Datenbankmodelle und Datenbanksprachen’ in: Schmidt,
Lockemann, Datenbankhandbuch, Springer-Verlag, 1997 (to appear)

[15] Liane Will, R/3- Administration, Addison-Wesley, Bonn 1995

[16] Stephan Ziemer, SQL, 1995, http://www.sts.tu-harburg.de/ people/st.ziemer.

53

