
Process and Tool-support to Collaboratively
Formalize Statutory Texts by Executable Models

Bernhard Waltl, Thomas Reschenhofer, and Florian Matthes

Software Engineering for Business Information Systems
Department of Informatics

Technische Universität München
Boltzmannstr. 3, 85748 Garching bei München, Germany
b.waltl@tum.de, reschenh@in.tum.de, matthes@in.tum.de

Abstract. This paper describes a collaborative modeling environment
to support the analysis and interpretation of statutory texts, i.e., laws.
The paper performs a case study on formalizing the product liability
act and proposes a data-centric process that enables the formalization of
laws. The implemented application integrates state-of-the-art text min-
ing technologies to assist legal experts during the formalization of norms
by automatically detecting key concepts within legal texts, e.g., legal
definitions, obligations, etc. The work at hand elaborates on the imple-
mentation of data science environment and describes key requirements,
a reference architecture and a collaborative user interface.

Keywords: Formalizing Norms; Semantic Modeling; Computable Law; Data
Analytics; Text Mining; Apache UIMA; Reference Architecture

1 Introduction

Although, several legislations have the ambitious goal that laws should be un-
derstandable by everyone (see [1]), understanding and interpreting legal norms
is a difficult and complex task. Civil law systems have developed complex inter-
pretation canons, that can be used during the interpretation of legal norms to
avoid misinterpretations and to unveil and determine the intrinsic uncertainty
and vagueness [2, 3].

Since the interpretation of laws is a repeating, data-, time-, and knowledge-
intensive task, the lack of appropriate tool-support is counter-intuitive in several
ways. On the one hand, providing tool-support to model and store the result of
the interpretation process is a measure to unveil intrinsic vagueness, inconsis-
tencies, complex regulations. On the other hand, the development of an applica-
tion to collaboratively formalize and refine a semantic model of normative texts
becomes—due to the advances in enterprise information systems engineering and
because of text mining algorithms—more and more attractive [4, 5]. Up to now,
there is a gap between the technological possibilities and the current support of
legal interpretation processes, which holds especially for the legal domain in Ger-
many. In 2015 the dutch researcher van Engers explicitly stated: “While many

attempts to automate law [. . .] have been made before, hardly any attention
has been paid to the ’translation process’ from legal rules expressed in natural
language to specifications in computer executable form.” [6]

It is unlikely, that the interpretation process can be fully automated through
algorithms. Instead, the advances in natural language processing (NLP) and de-
tection of patterns in legal texts are considered to be supportive to legal (data)
scientists and practitioners. The paper’s contribution can be stated as follows:
(i) How does a data-driven process aiming at the analysis and interpretation of
normative texts look like?
(ii) How can prevalent textual representation with normative content, e.g., laws,
be transformed into models?
(iii) What are requirements for an application supporting the collaborative deriva-
tion of models using NLP technologies?

2 Analysis and Interpretation of Normative Texts

The potential of tool-support during the analysis and interpretation of normative
texts and the subsequent formalization in semantic models can be described by
a process model shown in Figure 1.

Activities

Roles

Import Analysis

Import
and Indexing

Data and Text
Mining Engine

Semantic Modeling
Engine

Executable Modeling
Engine

Interpretation

Creation of
Semantic Models

Creation of
Executable Models

Evaluation of
determined patterns

Determination of patterns

Refinement &
creation of patterns

Application

Execution and Reasoning
Engine

Legal Data
Scientist

Legal Data Scientist,
Legal Practitioner,
Legal Scientist

Legal Data Scientist,
Legal Practitioner,
Legal Scientist

Legal Practitioner
Legal Data Scientist,
Legal Practitioner,
Legal Scientist

Services &
Tool-Support

Fig. 1. Structured and data-centric process of collaboratively analyze, interpret, and
model normative texts with specification of clear roles and potential tool-support.

The process is built upon the legal theory and interpretation canon proposed
by Larenz and Canaris (see [2]) and consists of four steps:

1. Import Integration of relevant literature into the system requires a generic
data model representing the particularities of normative texts, such as struc-
tural information. Depending on the case, that a legal expert wants to deal
with, an import of various literature, e.g. laws, contracts, judgments, com-
mentaries, etc., needs to be performed.

2. Analysis During the analysis step, legal experts explore and investigate the
key norms and relationships between them. They implicitly determine the
relevance of norms and their applicability by considering particular linguistic
and semantic patterns which indicate whether a norm is relevant in a case,
respectively a set of cases, or not.

3. Interpretation During the interpretation step the textual representation
of norms is transferred into a coherent semantic and normative model (see
Figure 2 and 3). This could be an explication of the mental model of an
experience lawyer or legal scientist might has. The example in Section 3 il-
lustrates how the determination of obligations, exclusions, prohibitions, etc.
can be assisted during the interpretation process. It supports the legal ex-
perts to access the content of the law and prevents him of missing important
norms.

4. Application The models arising from the textual interpretations can be
stored in order to provide access to different collaborating users. Based on the
interpretation and creation of the model the system automatically generates
forms which allow end-users to describe a particular case. Thereby, the user
inputs the known evidence from a fact and the system automatically infers
the solution represented by derived attributes.

3 The Product Liability Act

3.1 Semantic modeling to represent the structure and semantics of
legal norms

Based on linguistic and semantic analysis of legal texts, it is possible to support
the interpretation by proposing important semantic legal concepts.

The act explicitly states that there has to be a product (§2) with a defect
(§3) causing a damage (§3) on a legally protected good (§1). This might be
the life (in case of death) or the physical or psychological integrity (in case
of injury) of a person or items that are possessed by a person. If this is the
case, then the producer of the product (§4) becomes liable for the damage.
The law also specifies reasons releasing the producer from his liability (§1). For
sake of simplicity, we omit attributes of the types described by the legislator,
such as the manufacturing date of a product. Obviously, it is possible—and
depending on purpose of the modeling necessary—to deviate from the textual
representation, by either modeling more or less information than provided in
the text, e.g., interpretation. However, the proposed modeling approach does
not make constraints regarding the quality of the model. This is intentionally
left to the user.

3.2 Executable models representing decision structures and
behavioral elements

Beside the semantic model representing types with their attributes and the re-
lationships among them, the decision structure of norms has to be represented.

Fig. 2. Model based formalization of the product liability act in a web based en-
vironment. Types, attributes, and relations, can be linked with text, which is then
highlighted.

This so-called executable model contains the decision structures, i.e. derived
attributes. Consequently, the models aim at capturing the executable (or com-
putable) logic that can be used to decide whether someone has a claim or not.
Those derived attributes are expressed in a domain specific language (MxL) and
are evaluated at run time based. Those statically type-safe expressions do not
only support the specification of first-order propositional logic but also higher-
order logic and almost arbitrarily complex arithmetical operations.

Figure 2 shows semantic model of the product liability act. Each type in the
model contains different attributes and relations to other types.

Fig. 3. The form is automatically generated and evaluated by the reasoning engine.
End-users have to provided the facts, i.e., filling the form.

Thereby, it is necessary that the set of facts contains a product (§2) and a
producer (§4) who has manufactured the product. In addition, there needs to be
a defect (§3) causing a damage. In principle, producers are liable for damages
that a product manufactured by him has caused. Of course, there are several
exclusions that release the producer from his liability (§1). The existence or
absence of those exclusions decides whether there is an effective liability or not.
So if the producer is effectively liable and if there is a legally protected and
damaged good, then the plaintiff has a claim according to the product liability
act.

4 Technological requirements

The requirements (listed in Table 1) served as the base line for the implementa-
tion of the data science environment. To ensure an easy extension and adaptabil-
ity, the system follows the principle of high cohesion and low coupling regarding
its components. Technologically, the environment was implemented as a web
application and the programming language used in the back-end was Java. Elas-
ticsearch serves as the data storage, which allows an efficient handling of a large
amount of textual data. The execution and reasoning engine, which is already
existing and maintained at our research group, is accessed via a REST API. It
fulfills all technological requirements to store the models [7]. The execution and
reasoning engine integrates a DSL, i.e. MxL, which allows the specification of
complex queries as well as logical and arithmetic operations [8].

5 Concept and implementation of a collaborative web
application

Based on a case study of the product liability act presented in Section 3 and the
process shown in Figure 1, several requirements can be derived that have to be
met by a text mining and semantic modeling environment to foster collaboration.
On this fundament we propose a reference architecture and an implementation.

5.1 Reference architecture

Based on the requirements from Table 1 and on the framework proposed in [9])
it is possible to define a reference architecture focusing on the analysis of legal
texts and the creation of semantic and executable models.

The data and text mining engine is the central component of the platform
supporting the modeling process by unveiling linguistic and semantic patterns.
Since the main task consists of the creation of semantic and executable models
based on textual descriptions that are usually of normative character, the assis-
tance during the analysis and interpretation consists in parts of the automated
detection of relevant sentences and phrases (patterns).

Within the data and text mining engine, several components have to be
provided, e.g., dictionaries and pattern definitions (see also Section ??). The

Semantic Model
Store

Modeling

Model-based expression
language (MxL)

Processing
Pipeline

Executable Modeling
Component

Semantic Modeling
Component

Modeling Component

Execution and Reasoning Engine

Pattern
Definitions

Exporter

Search
Engine

Database

POSTagger

Complex Pattern
Recognizer

Lemmatizer NERecognizer

Tokenizer

User Interface

Exploration

Data and Text Mining Engine

Navigation

Importer

Data Store

Dictionaries

Data Access Layer

Visualization

Information Extraction Component

Fig. 4. The reference architecture for collaborative modeling of normative texts based
on linguistic and semantic text analysis (extension of [9]).

legal language has some particularities that make it well suited for the analysis
by NLP [10], for example the usage of particular linguistic patterns (phrases
or words) that indicate particular legal ideas or concepts. This is what makes
pattern determination valuable for the legal domain (see also [11]). In order to
determine patterns which are more elaborate than common regular expressions,
it is necessary to integrate a component that allows the specification of patterns
which can easily nest, reuse and recombine those pattern specifications (rules).
Our implementation integrates Apache Ruta (rule-based text annotation), which
shows some great potential as a linguistic pattern definition technology [11].

Modeling component The modeling engine offers the required function-
ality to access, create, refine, maintain, and delete models. The differentiation
between the semantic model and the executable model is necessary. In con-
trast to the semantic model, the executable model requires the definition of
the executable semantics, i.e., functions and operators, between model elements,
i.e., defining derived attributes based on atomic attributes. Figure 2 shows the
types which are input, namely producer, product, etc., whereas “legally pro-
tected good” is a type, which is the output (relevant intermediate result) of an
operator. The semantics of these operators can be expressed using an existing
model-based expression language (as described above).
The modeling engine is also capable of managing the associations between model
elements and text phrases. It offers proper technical functions and services, and
is also the component that observes changes in the textual representation that
might lead to changes within the semantic and executable models.

Execution and reasoning engine The execution of the model is done by
an existing reasoning engine. Heart of the engine is a model-based domain spe-
cific expression language (MxL), that was developed at our research group [8].
It is a type-safe functional expression language, implemented in Java and hosted
within a web application that can be accessed via a REST API. This expression
language allows the specification of almost arbitrarily complex logical and nu-

merical operations. These operations accept typed input values (integer, string,
boolean, model elements, etc.) and compute a typed output. The operations are
part of the interpretation process and can therefore be linked to the text.

6 Conclusion

In this paper we have developed a collaborative data-driven process that struc-
tures the analysis and interpretation of normative texts by leading to executable
models of statutory texts, i.e., laws.

We have identified four phases that are required to formalized legal norms:
Import, analysis, interpretation, and application (see research question i). For
each step we have identified and implemented tool-support.

In a case study we have shown the approach by formalizing a basic claim
arising from the product liability act. Based on the proposed data- and tool-
centric process we have derived key requirements. Finally, we showed how the co-
existence of these semantic models and the corresponding textual representation
can be implemented in a collaborative web environment.

References

1. Bundesministerium des Innern, “Gemeinsame Geschäftsordnung der Bundesmin-
isterien,” Berlin.

2. K. Larenz and C.-W. Canaris, Methodenlehre der Rechtswissenschaft. Berlin [u.a.]:
Springer, 1995.

3. J. Hage, “A theory of legal reasoning and a logic to match,” Artificial Intelligence
and Law, vol. 4, pp. 199–273, 1996.

4. A. Rotolo, Legal knowledge and information systems: JURIX 2015 : the twenty-
eighth annual conference, ser. Frontiers in artificial intelligence and applications.
Amsterdam: IOS Press, 2015.

5. ICAIL ’15: Proceedings of the 15th International Conference on Artificial Intelli-
gence and Law. New York, NY, USA: ACM, 2015.

6. T. M. van Engers and R. van Doesburg, “First steps towards a formal analysis of
law,” Proceedings of eKNOW, 2015.

7. T. Reschenhofer, M. Bhat, A. Hernandez-Mendez, and F. Matthes, “Lessons
Learned in Aligning Data and Model Evolution in Collaborative Information Sys-
tems,” Proceedings of the International Conference on Software Engineering (ac-
cepted for publication), 2016.

8. T. Reschenhofer, I. Monahov, and F. Matthes, “Type-safety in EA model analysis,”
IEEE EDOCW, 2014.

9. B. Waltl, F. Matthes, T. Waltl, and T. Grass, “LEXIA: A data science environment
for Semantic analysis of german legal texts,” Jusletter IT, 2016.

10. E. Francesconi, Ed., Semantic processing of legal texts: Where the language of law
meets the law of language. Springer, 2010.

11. M. Grabmair, K. D. Ashley, R. Chen, P. Sureshkumar, C. Wang, E. Nyberg, and
V. R. Walker, “Introducing LUIMA: An Experiment in Legal Conceptual Retrieval
of Vaccine Injury Decisions Using a UIMA Type System and Tools,” in ICAIL ’15:
Proceedings of the 15th International Conference on Artificial Intelligence and Law.
New York, NY, USA: ACM, 2015, pp. 69–78.

Import

1 Flexible import
structure

Baseline for the analysis and interpretation is the consideration
of various literature (laws, judgments, contracts, commentaries,
etc.) that is present in different sources (xml, html, pdf, etc.).

2 Mapping and index-
ing of legal data

The legal literature has to be indexed and mapped to a data
model, that does not only preserve the content, i.e. text and
metadata, but also structural properties, such as references and
nested content.

Analysis

3 Preserving textual
representation

Enabling users to access the content, i.e. legal literature. The
visualizations of legal literature has to show the structural in-
formation, such as nestedness and links between articles and
documents.

4 Collaborative cre-
ation and mainte-
nance of patterns

The creation, refinement and deletion of the required pattern
definitions should be done collaboratively in the application, so
that different users are able to share their knowledge and con-
tributions.

5 Lifecycle manage-
ment of pattern
descriptions

Support of the full lifecycle of the pattern specifications, namely
creation, refinement, evaluation, and maintenance.

6 Automated pattern
detection

Automated identification of linguistic and semantic patterns
through data and text mining components.

7 Reuse of existing
NLP components

Building of NLP pipelines, that allow the easy reuse and sharing
of highly specified software components for NLP.

8 Evaluation of anno-
tation quality

Possibility to view the annotations, to examine precision and
recall manually, or to export this information to compare against
a manually tagged corpus.

9 Manually annotating
and commenting of
legal texts

Users should be able to manually add relevant semantic infor-
mation and comments to the legal literature.

10 Storing of annota-
tions

Storing and indexing the automatically determined and manu-
ally added annotations.

Interpretation

11 Creation of seman-
tic and executable
model elements

Step-wise definition of model elements (types, attributes, rela-
tionships, operators) for semantic and executable models.

12 Lifecycle support for
semantic models

Defining, maintaining and storing of static model elements, such
as types, attributes, relationships.

13 Lifecycle support for
executable models

Defining, maintaining and storing of executable model elements,
such as types, relationships, operators.

14 Connecting model
elements with text
phrases

Creation of connections between model entities and the relevant
(interpreted) text. Thereby various levels of the interpreted text
should be linkable to model elements, such as words, phrases,
sentences, sections, and documents.

15 Domain specific lan-
guage (DSL) to ex-
press semantics of
operators

Specification of the operations and executable semantics of re-
lationships with a model-based expression language.

Application

16 Access to existing
models

Viewing and exploring of semantic and executable models to
grasp the result of prior interpretation processes.

17 Application of deci-
sion models

Executing the defined models through intelligent form-based or
spreadsheet-based reasoning.

Table 1. Main requirements for collaborative tool-support to model the semantics of
statutory texts structured into four phases.

