
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Data Engineering and Analytics

Identification and Evaluation of Incentive
Mechanisms for Opening Internal Systems via

Partner APIs

Irena Stoilova

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Data Engineering and Analytics

Identification and Evaluation of Incentive
Mechanisms for Opening Internal Systems via

Partner APIs

Identifikation und Bewertung von
Anreizmechanismen zur Öffnung interner

Systeme über Partner-APIs

Author: Irena Stoilova
Supervisor: Prof. Dr. Florian Matthes
Advisor: M.Sc. Gloria Bondel
Submission Date: 15.07.2020

I confirm that this master’s thesis in data engineering and analytics is my own work and I
have documented all sources and material used.

Munich, 15.07.2020 Irena Stoilova

Acknowledgments

First and foremost I would like to thank the advisor of this thesis M.Sc. Gloria Bondel
from the chair of Software Engineering for Business Information Systems of the Technical
University of Munich for the great support and feedback during the writing of the thesis, for
the discussions and the problem-solving attitude throughout the process. Further, I would
like to thank Dr. Manoj Mahabaleshwar as an advisor from the industry partner side. I want
to thank both for the constructive criticism as well as for the trust.

A special thank you to the supervisor of the thesis Prof. Dr. Florian Matthes for the
given opportunity and the realization of the project with the industry partner.

Last, I would like to thank my life partner Boris Idesman and my family for the support and
encouragement in the last few eventful months.

Abstract

In today’s world the need of inter-connectivity between systems is gaining greater impor-
tance. An enabler of such connections are Application Programming Interfaces (APIs). APIs
allow access to big volumes of data, services and processes. Companies value their strategic
potential and are getting a better understanding of the benefits of building APIs. In today’s
economy organizations do not operate solely, but often collaborate with others to create a
competitive product in the vastly changing business. By opening internal projects via APIs
new partnerships are feasible and by doing so, hidden potentials of existing projects are
realised.

Numerous valuable advantages of APIs in regards to collaborations have been studied.
They provide a high level of data security and management of access. They bring agility,
scalability and accessibility to big data systems. Further, their implementation allows for the
developers of the API to track usage of the services they are providing.

However, many projects end with the development of a functionality for internal use and
rarely the development of an API afterwards lies in the scope of the project. Thus, develop-
ment teams and other key roles involved in the process need to be incentivized to create APIs.
Goal of this thesis is to research and design a process for incentive mechanisms for opening
internal systems via APIs.

The process will focus on defining and overcoming the challenges that exist when developing
an API in internal solutions, e.g. big organizations. Further, existing incentive mechanisms
will be gathered and examined in the context dependencies of a corporation. The resulting
findings of this analysis will be then defined into a list of recommendations for incentivizing
teams to provide partner APIs.

The proposed solution for motivating teams is adapted to the specifics of an organisa-
tion, but takes into account the requirements of interviewees from more than one project.
Twenty one professionals with different roles like software engineers, architects, product
owners and leading positions are interviewed. In total, nine recommendations of action based
on related literature and semi-structured interviews are proposed. They span trough different
aspects, such as providing guidelines and platforms and top management initiatives, and
cover methods from demand to motivation encouragement.

The evaluation of the recommendations of action is done qualitatively by conducting in-
terviews with experts from the field.

iv

Kurzfassung

Heutzutage gewinnt die Notwendigkeit der Konnektivität zwischen Systemen zunehmend
an Bedeutung. Solche Verbindungen sind mittels Application Programming Interfaces (APIs)
möglich. APIs ermöglichen den Zugriff auf große Datenmengen, Dienste und Prozesse.
Unternehmen sehen ihr strategisches Potenzial und haben ein besseres Verständnis für die
Vorteile der Entwicklung von APIs. In der heutigen Wirtschaft, wo sich die Business Trends
schnell ändern, arbeiten Organisationen nicht isoliert, sondern häufig mit anderen zusammen,
um ein konkurrenzfähiges Produkt zu schaffen. Durch das Öffnen interner Systeme über
APIs sind neue Partnerschaften möglich und auf diese Weise wird ihre Wertschöpfung erhöht.

Zahlreiche wertvolle Vorteile von APIs in Bezug auf die Zusammenarbeit wurden rescher-
schiert. Sie bieten ein hohes Maß an Datensicherheit und Zugriffsverwaltung. Sie bieten
Flexibilität, Skalierbarkeit und Zugänglichkeit zu Big-Data-Systeme. Darüber hinaus er-
möglicht ihre Implementierung den Entwicklern, die Nutzung der von ihnen bereitgestellten
Dienste zu untersuchen.

Viele Projekte enden jedoch mit der Entwicklung einer Funktionalität für den internen
Gebrauch und selten ist die Entwicklung einer API im Rahmen des Projekts im Voraus
geplant. Daher müssen Entwicklungsteams, sowie andere am Prozess beteiligte Personen,
dazu inzentiviert werden. Ziel dieser Studie ist es, einen Prozess für Anreizmechanismen
zum Öffnen interner Systeme über APIs zu erforschen und zu entwerfen.

Der Prozess konzentriert sich auf die Definition und Überwindung der Herausforderungen,
die bei der Entwicklung einer API in internen Lösungen, z.B. bei Großunternehmen, bestehen.
Darüber hinaus werden bestehende Anreizmechanismen im Kontextabhängigkeiten eines
Unternehmens gesammelt und untersucht. Die daraus resultierenden Ergebnisse dieser
Analyse werden dann in Handlungsempfehlungen definiert, mit den Teams dazu angeregt
werden, Partner-APIs bereitzustellen.

Die vorgeschlagene Lösung zur Motivation von Teams ist an die Besonderheiten einer
Organisation angepasst, berücksichtigt jedoch die Anforderungen der Interview Partnern
aus mehr als einem Projekt. Ein und zwanzig Fachkräfte mit unterschiedlichen Rollen wie
Softwareentwickler, Architekten, Projekt Owner und Führungskräfte werden interviewiert.
Insgesamt werden neun Handlungsempfehlungen vorgeschlagen, die auf Literaturreschersche
und halbstrukturierten Interviews beruhen. Sie umfassen verschiedene Aspekte, wie z.B.
die Verfolgung von Richtlinien und das Anbieten von Plattformen sowie Initiativen des Top
Managements. Sie decken Methoden von der Anforderung bis zur Motivationsförderung

v

Kurzfassung

ab. Die Auswertung der Handlungsempfehlungen erfolgt qualitativ durch Interviews mit
Experten aus der Praxis.

vi

Contents

Acknowledgments iii

Abstract iv

Kurzfassung v

1. Introduction 1
1.1. Motivation . 1
1.2. Research Objectives . 2
1.3. Research Approach . 3
1.4. Thesis Outline . 6

2. Foundations 7
2.1. API Economy . 7

2.1.1. Types of APIs . 8
2.1.2. Drivers for API development . 8
2.1.3. API Platforms . 9

2.2. API Life Cycle Management . 9
2.3. Profitable Architecture . 10
2.4. REST API Guidelines . 11
2.5. Gamification . 12
2.6. Game Theory . 12

2.6.1. Mechanism Design . 12
2.6.2. Stackelberg Game . 13

2.7. Change Management . 13

3. Related Work 14

4. Challenges 15
4.1. Challenges in API Development and Maintenance - Literature Review 15

4.1.1. Strategy . 15
4.1.2. Design and Implementation . 16
4.1.3. Deployment . 17
4.1.4. Security . 17
4.1.5. Management . 17
4.1.6. Discovery . 18
4.1.7. Monitoring . 19

vii

Contents

4.2. Qualitative Analysis of API Development Challenges 19
4.2.1. Strategy Challenges . 19
4.2.2. Definition Challenges . 21
4.2.3. Deployment . 23
4.2.4. Security . 24
4.2.5. Management . 25
4.2.6. Discovery . 26
4.2.7. Consumption . 26
4.2.8. Monitoring . 27
4.2.9. Monetization . 27

4.3. Comparison of Literature and Interview Challenges 27

5. Analysis of Incentives for API Development and Maintenance 31
5.1. Literature Review . 31

5.1.1. Gamification . 31
5.1.2. Project Management Related Incentives 32
5.1.3. Recognition . 32
5.1.4. Technical . 33
5.1.5. Self-development . 33
5.1.6. Monetary . 33

5.2. Use Cases . 35
5.3. Current Motivation . 37

5.3.1. API Properties . 37
5.3.2. Introducing Features . 38
5.3.3. Transparency . 38
5.3.4. Alignment of Business and IT . 39

5.4. Concept . 40
5.4.1. Data Sharing . 40
5.4.2. Speed . 41
5.4.3. Communication . 42
5.4.4. Top Management Initiatives . 44
5.4.5. Project Organisation . 45
5.4.6. API Gateway Essentials . 46
5.4.7. Guidelines . 47
5.4.8. Development Tools and Environment . 49
5.4.9. Monetization Strategy . 50

6. API Development Process as an Economic Mechanism 52

7. Evaluation 55
7.1. Evaluation Results . 55

7.1.1. Data Sharing . 55
7.1.2. Speed . 55

viii

Contents

7.1.3. Communication . 56
7.1.4. Top Management Initiatives . 56
7.1.5. Project Organisation . 57
7.1.6. Managed API Gateway . 57
7.1.7. Guidelines and Best Practices . 58
7.1.8. Development Tools and Environment . 58
7.1.9. Monetization Strategy . 58

8. Conclusion 59
8.1. Summary . 59
8.2. Limitations and Future Work . 60

A. Appendix 62
A.1. Questionnaire for Requirement Interviews . 62
A.2. Questionnaire for Evaluation Interviews . 63

List of Figures 65

List of Tables 66

Bibliography 67

ix

1. Introduction

1.1. Motivation

In today’s digital economy a strategic application programming interface (API) management
is gaining importance for successful organisations. To fully use the potential value of APIs, a
thorough understanding of their usage, potential business models and monetization strategies
should be present [1]. Many leading companies in the API economy, such as Google with
Apigee, Amazon Web Service with Amazon API Gateway and others, have created API
management platforms that assist them, their partners and their clients to establish a platform
for communication and consumption and also usage analysis [2].

No organisation can prosper innovatively without the engagement of its teams and pro-
fessionals. The way to achieve a new API strategy for a large company spans through various
methods for the engagement and motivation for providing APIs. The famous statement of
Amazon’s CEO Jeff Bezos pressures employees to provide access to functionality explicitly
with interfaces, that further need to be well documented [3], [4]. These requirements are often
seen as the success that followed with Amazon Web Technologies. The fact that the services
provided there have been first widely implemented in Amazon itself, contributed to their
well-designed functionality and met the real needs of professionals worldwide.

The goal of this study is to research the wide range of possible incentive mechanisms
for opening internal systems via partner APIs. It takes into account motivators spanning from
a direct demand as described above to intrinsic motivators. Our research further investigates
the differences that could be present for the various roles involved in the API economy –
developers, architects, product owners and upper management. They have different perspec-
tives on why the establishment of a partnership is valuable to them. The abilities that APIs
give to an organisation advance with the development of technologies. Cloud Computing,
Big Data, Artificial Intelligence and Deep Learning, Internet of Things (IoT) are topics that
are vital for companies to enhance existing systems into innovative digital business solutions
[5], [6], [7].

The different types of APIs bring various benefits depending on the systems, companies
and business they connect. Perhaps the most important step for any organisation, when
identifying its role in the API economy, is locating potential sources of API value and placing
those on within API value chain [1]. The experience gathered with APIs in internal settings is
valuable and is a starting point for many teams, that want to be able to open their systems to
consumers. Partner APIs have multiple definitions in literature [2], [8], [9]. One differentiation

1

1. Introduction

of interfaces is done based in on the business value that they represent. Thus, they are
divided into APIs for system connectivity, APIs for enterprise mobility and productivity,
business-to-customer APIs, APIs for partner collaboration and APIs for revenue generation
[8]. Within a large organisation any of those APIs can be of interest to the context of this
thesis since each and every one of them holds its obstacles and requires different incentives.

1.2. Research Objectives

This thesis intents to study challenges and incentives for creating and maintaining APIs in
large organisations and further for the opening of internal systems via partner APIs. The
research topic is divided into the following four research questions (RQs). Their formulation
and a more detailed explanation of the objective of the question is to be found below:

RQ1: What are the challenges for providing partner APIs in internal solutions?

With this question the identification of challenges, that different roles see for the providing of
partner APIs is desired. Partner APIs technically enable business-to-business relationships.
Towards the answering of this question a research of literature for both API development
challenges and API management challenges is done. The obstacles cover different aspects
of API development and management, e.g. design of an API. A further setting taken into
account is the development of APIs in ecosystems. To refine the results better for APIs in large
organisations, a great portion of the interview phase of this study is dedicated to defining
challenges that professional face in practice.

RQ2: What are existing incentive mechanisms motivating teams to provide
partner APIs?

Main objective here is to find published scientific work for incentivizing the process of API
creation, especially for partner APIs. Incentive mechanisms range from obvious ones, such as
monetary, to social, like gamification methods. This study covers both intrinsic and extrinsic
incentives. Since there is little literature about incentives in regard to developing partner APIs
or APIs in general, the literature review for this question looks into incentives in other areas
of software development such as software process improvement, developer ecosystems, open
source software and service-oriented architecture.

RQ3: What are incentives for providing APIs or API platforms in a large IT
organization?

To answer this question participants from different companies, the majority coming from
large IT organizations, are asked to identify incentives that are already incorporated into their
work environment or try to justify, if any other incentive mechanisms are applicable to their
work. Although the interviewees mention different motivating factors for them, a certain
incentive mechanism could not be established based on this qualitative analysis due to the
differences in the divisions within the organization.

2

1. Introduction

RQ4: What are recommendations of action for incentivizing developers and
architects to provide partner APIs?

A more appropriate way to address the research topic of incentivizing API development and
maintenance is creating a list of recommendations of action, when planning an API initiative
within an organisation. The list incorporates experiences from various companies as well as
from literature. The implications are evaluated by professionals in a follow-up survey.

1.3. Research Approach

A structured literature review has been conducted following the approach proposed in [10].
Goal of the literature review is to identify existing challenges in API development and main-
tenance and further to find incentives mechanisms for providing partner APIs. Aim is to
create a foundation for further research based on interview sessions and identify concepts
that are existing and well-studied. Multiple digital libraries such as ScienceDirect and IEEE
Xplore, as well as Google Scholar, have been searched.

What are obstacles professionals face, when developing an API in a large organisation?
What would help them improve their development and maintenance process? In order to
answer those questions, we conducted a series of interviews with 21 professionals with
different roles - ranging from software engineers, to architects, to team leads. The interviews
included employees of four different companies from diverse businesses. Their input gave us
different interesting insights into how they see the API economy developing in their work
area and what are the needs for further improvement. An overview of the research approach
of this study can be found in Figure 1.1.

In the initial phase, we carried out five conversations with software architects and peo-
ple from the business to explore the different possibilities for an incentive mechanism and
better prepare the questions for the interview phase. This initial phase consists of exploratory
interviews that are informal and unstructured. The main focus of the informal talks has
been to give initial direction as to how professional could be incentivized in practical setting
and what could be leading strategies that are applicable to the company culture of our main
industry partner. A list of the roles and the industry, in which the experts are occupied, can
be found in Table 1.2.

Next, a series of semi-structured interviews with a majority of experts from our main
industry partner and some professionals from other companies has been conducted. In
contrast to the exploratory phase, here a questionnaire has been prepared in advance, such
that the discussions follow a certain structure and cover main points that are part of the scope
of this thesis. Thus, the future analysis towards exploring recurring pattern is possible. The
question catalogue has been constructed based on the literature review done beforehand
and the insights from the exploratory phase. The questions have been discussed with other
professionals to ensure their openness provides enough freedom that interview partners from

3

1. Introduction

different industries can answer and still be analyzed holistically. A list of the roles, their
professional experience in years and the industry in which they are occupied can be found in
Table 1.1.

We interviewed professionals from four different companies – two large IT organisations, a
financial company and a mobility provider. The majority of the participants, 24 to be exact,
are employees of an international large organisation, that is the main industry partner of this
study.

The analysis of the interviews is based on the Grounded Theory methodology [11]. Following
this approach a systematic and traceable way of analysis of the conversations is ensured [12].

Figure 1.1.: Overview of the research approach.

4

1. Introduction

Alias Role Experience Company
A1 Enterprise Architect 14 years Banking
A2 Software Architect 6 years Large tech organisation
A3 Software Architect 4 years Large tech organisation
A4 Software Architect 5 years Large tech organisation
A5 Software Architect >5 years Large tech organisation
A6 Software Architect 2 years Large tech organisation
A7 Software Architect 1 year Large tech organisation
A8 Principal Key Expert 13 year Large tech organisation
A9 Senior Principle Engineer 9 year Large tech organisation
A10 Software Architect 14 years Large tech organisation
D1 Data Scientist 3.5 years Large tech organisation
D2 Developer 8 years Large tech organisation
D3 Lead Customer Engineer 1 year Large IT company
D4 Senior Software engineer 5 years Large tech organisation
D5 Software engineer 1.3 years Large tech organisation
D6 Software engineer 3 years Large tech organisation
D7 Software Engineer 2 years Large tech organisation
D8 Software Engineer 4 years Large tech organisation
P1 Product Owner 1 year Large tech organisation
P2 Team Lead 10 months Large tech organisation
UM1 Director Software Engineering 4 years Mobility

Table 1.1.: IDs, roles, years of experience at the given role and company of the interview
partners from the semi-structured interviews.

Alias Role Company
A12 Senior Software Architect Large tech organisation
A13 Engineer Large tech organisation
A14 Principal Key Expert Large tech organisation
UM2 Head of Digital Service Management Large tech organisation
UM3 Head of Global Process Ownership Large tech organisation

Table 1.2.: IDs, roles and companies of the interview partners from the exploratory unstruc-
tured interviews.

5

1. Introduction

1.4. Thesis Outline

In this section a brief introduction to the purpose of each chapter is presented.

• Chapter 1 outlines the motivation to the research topic, defines the research questions
of the study as well as the research approach for answering them.

• Chapter 2 gives the theoretical foundation required to understand the problem state-
ment in depth and to further introduce some important concept of management and
incentivization of teams.

• Chapter 3 presents related publications in the area of API management and incentive
mechanisms in different software development processes since little academic literature
is given for incentives towards development and maintenance of partner APIs.

• Chapter 4 discusses challenges in regards to API management. The chapter first presents
challenges based on literature and further describes the ones identified in interviews.
The chapter concludes with a comparison of both.

• Chapter 5 provides information about incentives in literature and in interviews. The
incentives that are identified from interviews are separated in the ones that currently
apply to the professional experience of interview partners and the ones that they see
as possible. The possible motivators are modeled as recommendations of action that
an organisation might consider when developing an API strategy for entering an API
ecosystem through partner APIs. Some of the projects of the main industry partner are
presented as their context is important to reasoning why certain incentives are relevant
to developing APIs.

• Chapter 6 discusses a possible game theory mechanism that could be followed to
identify such recommendations in an new setting.

• Chapter 7 describes the evaluation of the recommendations of action. It presents the
extent to which the concept is seen as applicable and some further refinements are
proposed.

• Chapter 8 concludes the study by outlining the limitations of this thesis. It summarizes
the results and gives direction to future work.

6

2. Foundations

The goal of this chapter is to present the theoretical foundations for the later work of this
thesis. It lays out various terms, concepts and methodologies based on publications relevant
for the context of the study. First, the different types of APIs are defined and aspects of the
API economy and the API life cycle important to the topic are discussed. Then, architecture
concepts that make the creation of APIs easier and some best practices are presented. The
chapter concludes with organisational topics in the development process - gamification, game
theory and change management.

2.1. API Economy

Before giving a definition of API economy, the ones of API and API management are described.
The definition of application programmable interfaces (APIs) is vital for the understanding of
the work presented in this study. When talking about APIs often the intention is set to web
APIs [4]. APIs give access to software components and therefore are seen as digital assets
[8]. APIs can become a starting point for business regardless, if they are invoked inside an
organisation or from external partners [4]. The fact that they enable the sharing of data and
applications based on standards, makes them a "new form of business model innovation",
because they provide functionality for the creating of new offerings [1]. Therefore, in the
context of creating business opportunities, APIs are defined as interfaces that are docu-
mented, consistent and reliable and establish partnerships between the provider and customer
side [13]. The specific type of API, e.g. REST or event-driven, does not influence this definition.

To be able to unlock the capabilities, that APIs can offer, proper API management should be
in place. API management includes the activities around the design and implementation of
the interface, its release and use. Further, some literature sources include the management of
an API ecosystem [9] or the management of developer and business communities [8].

Looking at APIs as enablers, results in placing them in digital ecosystems. When an or-
ganisation starts creating or consuming APIs, it forms new partnerships and creates new
ecosystems [8]. Thus, the API economy can be defined as the "the commercial exchange of
business functions and capabilities using APIs" [1]. The interaction between partners, whether
companies, individuals or open source communities, fosters innovation and changes the way
business is done in the direction of digitalization [4].

7

2. Foundations

2.1.1. Types of APIs

Although different scientific publications do not consent to one differentiation and definition
of the types of APIs, most distinguish between private, partner and public APIs [14]:

• Private APIs pair two processes directly. Those APIs in most cases provide access to
data. Private APIs can also provide integration components.

• Partner APIs represent business relationships.

• Public APIs, also often referred to as open APIs, are publicly available and there is no
limitation in accessing them.

Other sources [13] group private and partner APIs as one and clearly distinguish them
from public APIs, because they see them as much more valuable and as the real driver for
innovation opposed to open APIs. Perhaps the most essential differentiation to be made is to
identify who is the end-user of the interface and defining its value chain [13]. The API value
chain transforms existing business assets into value for the consumers of the endpoint. It is
vital to know what is the business value of those assets and how their owner will benefit from
them. Just as important is the exposure of the business value in a way such that it can be
adopted from the developers, that will consume the API. The consumption comes indirectly
from the solutions build on top of the interface. Those solutions are the ones used by the
end-users. Taking all stakeholders in this value chain in consideration helps for the creation
of a well-designed and successful API. A visualization of the chain is presented in Figure 2.1.

The business value, exposed by an API, can be a further criteria for their type separation [8].
The book [8] presents five different types of APIs in an increasing order based on the visibility
of direct revenue they generate. At the very beginning, as with other publications, are APIs
that expose information assets. Their pay-off depends on the applications on top. Then
come the interfaces that provide access to business processes, resulting in their optimization.
Until here those APIs could be generalized as private. The API value chain continues with
business-to-customer and business-to-business solutions. Here the value of the APIs is much
more quantifiable. The chain ends with APIs for monetization, where the API is a product
with a monetization strategy at hand.

From the different definitions of APIs, we see that opening internal systems to others first
questions who the consumers of the business assets will be – other parties of an organisation
or business partners in the face of third companies.

2.1.2. Drivers for API development

In this section some business aspects as to why organizations aim at API development are
presented. One reason is that they easily provide a shift of focus towards the customer
experience. Further, they create an ecosystem in which partners easily leverage the value of
business assets of others. Another reason is that they significantly reduce the time to market.

8

2. Foundations

Figure 2.1.: API value chain adopted from [13] and extend to the context of an ecosystem as
presented in [15].

[1] Those main advantages that APIs provide fit well to the design of private and partner
APIs. Benefits of private APIs include the enablement of fast and scalable development, the
simplification of access to business assets. They help businesses create value fast, whereas
public APIs mainly contribute to raising the awareness of their benefits. The most important
advantage of open APIs is that they represent the digital products of a company. [13]

2.1.3. API Platforms

Many organisations today strategically aim at the adoption of cloud solutions to become
customer-centric and achieve digital transformation [8]. Reaching this goal often involves
an API platform. Established platforms like Kong [16], offer connection of services to allow
developers use the advantages of the newest design pattern. The most important benefits
of adopting an API platform for an enterprise lie in the secure management, the scalability
and throttling, cashing and monitoring. API platforms assist companies to meet customer
demands in a consistent manner. [17]

This study investigates different aspects of API platforms and API gateways. They have their
challenges, but are still seen as an important enabler for a proper API management within a
company and as vital for creating some visibility and transparency.

2.2. API Life Cycle Management

To be able to have a better overview of the challenges in regard to the processes around API
management, first the API life cycle is to be briefly discussed.

The API life cycle in Figure 2.2 displayed below is two-fold. The producer and the consumer
cycle are captured – both having their own challenges. The consumer cycle is important to us
because we focus on APIs that are to be offered to a partner. It encapsulates the activities of
the API maintainer and the different steps represent the further development of the team’s
strategy. Next, those steps, which are most important to this study, are reviewed.

The whole life cycle starts with the Strategy step, where the market to address is speci-
fied and the goals are set. This step is a focal point not only when it comes to obstacles
around API development and maintenance, but also to the incentives discussed in a later

9

2. Foundations

chapter.

The Design phase, together with the Mock and Test phase are seen as challenging steps
in literature. It is helpful that they are broken down into to 3 separate steps since in practice
these phases could take a longer period of time and are composed of continuous communica-
tion between different stakeholders.

Management is as important in the scope of the study as the creation of an API, since
goal is to research both development and maintenance. This activity encompasses versioning,
deprecation, and retirement.

Figure 2.2.: API Life Cycle Management: a detailed view of the API life cycle. The cycle
is displayed as two-fold, thus represents both the producer and the consumer
related activities. [18]

2.3. Profitable Architecture

In this section software engineering concepts that are important for a good API design and
also facilitate the development of APIs are presented. Here, principles such as loose coupling
and architecture recommendations are discussed.

One important design practice is aiming for loose coupling in a system [19]. Coupling
captures the number of dependencies between modules of a system. When it is loose, the
dependencies are few. In contract, tight coupling refers to many dependencies, which might
sometimes even be unknown. Service-oriented architecture, for example, should be aiming at
loose coupling, so that there are a few and well-known dependencies between the consumers
and the providers. [20] This principle is advantageous for the establishment of partner APIs
as well.

10

2. Foundations

The good practice of loose coupling becomes easily overseen, because an API is usually
build for a specific use case, resulting in an interface with many dependencies with the
underlying system [19]. A possible outcome is to have an infrastructure that is "not portable,
scalable, reliable, or secure" [19]. In respect to partner APIs, this should be avoided. A tightly
coupled architecture hinders the introduction of an API platform, where partners can easily
access different APIs. The reasons for the importance of having such a platform or an API
registry is also discusses elsewhere [21]. The paper [21] talks about good design practices of
enterprise architecture and informs about the advantages of having an enterprise API registry.

The various types of APIs require different types of architecture design. For example,
web APIs profit from RESTful services and from having a service layer in the architecture
[22].

2.4. REST API Guidelines

Throughout this study often the importance of creating APIs of high quality is discussed. In
order to have some common understanding as to what requirements need to be fulfilled in
order for an API to be of good quality, this section presents some key best practices for REST
APIs. There are various existing guidelines for the creation of REST APIs and an overview as
well as a comparison can be found in [23]. The focus lies in REST APIs since they are widely
spread and often referred to in the conducted interviews to this study. Next, a few major
points for good development practices for REST APIs coming from Zalando’s guidelines [24]
are discussed:

• API-first approach: This design practice is shortly defined in the guidelines as “Mi-
croservices development begins with API definition outside the code and ideally in-
volves ample peer-review feedback to achieve high-quality APIs.” [24] By first working
on the specification of an API, a better level of abstraction can be reached resulting in
better design. It also reassures the customer needs are met.

• Standardization: Consistency with other teams’ APIs and global architecture and
obtaining a common look and feel is important especially to external users of company
digital assets.

• API Documentation: A key factor as to how the API is going to be used is the API
documentation. A good API documentation should give information about the imple-
mented methods and endpoints, examples, authorization information and any limits
[25]. Zalando’s guidelines require a specification with Open API.

• Meta information: The API documentation should hold information about the title,
version, description and contact.

• Security: It is required to use standards, such as authorization via OAuth or signatures.

11

2. Foundations

• Versioning: Versioning of an API is a must for the proper maintenance. There are
different recommendations as to how to version correctly and the ones of Zalando are
compared to others published guidelines in detail in [23].

• Deprecation process: The guidelines broadly define a few necessary steps that have to
be followed, when an API is deprecated.

2.5. Gamification

Gamification is defined as the use of game design elements in non-game context with the
goal to increase engagement and to motivate [12], [26], [27]. Gamification is gaining pop-
ularity in the digital economy since its application is transforming the business operations [28].

While there are many publications on how to engage users, in particular developers, to
consume APIs, little has been found about the motivation of API creation and more specifi-
cally partner APIs. The motivation in software development is however an important factor,
directly reflecting in the quality of a software product. The approach has been studied for
software process improvement [12].

2.6. Game Theory

Game theory is a generic language for the analysis of multi-agent systems [29]. It finds its
application in economics, politics and other social situations, where agents have different
preferences and goals [30]. Since the act of providing and consuming APIs includes social
and business aspect beyond the technical requirements for their creation, game theory is
applicable to the API economy as well. Different agents vary from the development team to
the different ecosystem players. Game theory has been previously applied in various software
development projects [31]. Existing approaches from game theory that have been studied in
economics could be applied to API development so that, first, the goals of all people involved
in the process are identified and, second, the process is optimised so that organisations can
maximise their profit.

2.6.1. Mechanism Design

Mechanism design is a special part of game theory that concentrates on "social decisions and
their effects on outcomes" [32]. Here, the social structure of an organisation is investigated
so that "individual incentives of participants can be transformed into the organizational
wide desired goals" [32]. Thus, a manager or designer tries to create a mechanism design
for the social structure of an organisation. The rules that are embedded in a mechanism
design can incentivize individuals to behave in a certain way towards reaching the goals of
an organisation [32].

12

2. Foundations

2.6.2. Stackelberg Game

Stackelberg game [33] is a strategic game in economics, that is non-cooperative and includes
two types of players: leaders and followers. The game proceeds in the way that the leader
announces some kind of information to the followers. They, on the other side, rationalize
their actions based on this decision making [34]. The Stackelberg game approach is presented
in Chapter 6 for the setting of API development.

2.7. Change Management

Change management in the context of organisations is defined as a continuous process of
renewing the organisation’s direction, structure and capabilities so that it adapts to the need of
both internal and external clients [35]. Change management is important for API management
since a successful API strategy drives a development team to become a product-based team.
Two main issues in change management have been identified – the rapid pace of change that
organisations have to deal with in order to stay in business and the fact that change affects all
organisations, regardless if the change is coming from within an organisation or from the
outside [36]. Gill et al. [37] argues about the importance of effective leadership in order for
change to be well introduced and preserved. Different API management and development
roles have to be involved in the change management process, because each one of them has
its own responsibilities in an API program [9].

13

3. Related Work

API Management and API economy: The books "APIs: A strategy guide" [13], "Continuous
API management" [9] and "Enterprise API Management" [8] give a detailed understanding
of APIs as a technology, talk about their potential in the digital economy and cover various
aspects of API management. All three sources are valuable to this thesis since they carefully
explain the different enterprise roles involved in the API management. Further, they give
many insights about looking at APIs as products. They talk about the architecture designs,
implementation patterns and organisation models

API Design: Murphy et al. [38] provides a detailed study on challenges and best practices in
regards to API design. The paper gathers experience from various industries and profession-
als and gives implications of how existing challenges for creating usable APIs could be tackled
and informs on best practices from developers’ experience. Main points in the paper are
designing towards a good API user experience, designing to most important use cases rather
than including all, enabling users to easily begin consuming the API and quick discoverability.

API management challenges in ecosystems: In [39] four main challenges in API management
ecosystems are defined from case studies. An API is investigated from its technical side
and as a business enabler. Although the challenges are defined for internal ecosystems, the
three ecosystems where the case studies were conducted are platforms with both internal
and external partners. Hammouda et al. [15] further studies the challenges of API design in
ecosystems. He stresses on the importance of the continuous development of APIs that are
part of a platform. The paper describes the API value chain in terms of an ecosystem.

Software development incentives: Incentives are studies widely in software areas different
from API management. Baddoo et al. [40] informs on motivators of software process im-
provement. The motivators in that area are insightful for API development and maintenance
as well. The paper stresses on the importance of the motivation of people involved in the
process in contrast to technical factors, that are easy to comprehend and manage. The author
bases his findings on classic motivation theory and divides them across different groups:
developers, managers and senior management.

Haruvy et al. [41] studies the two traditional models of innovation in the setting of open
source development. The author argues that both the private investment model and the
collective action model cannot justify the success of open source software. The given in-
centives could be related to API development in the aspects of monetary incentivization,
self-development and receiving gratitude.

14

4. Challenges

This chapter describes challenges in API development and maintenance and aims to answer
the question of defining obstacles for providing partner APIs in internal solution. Section
4.1 intends to summarize existing challenges discussed in literature. Section 4.2 presents a
qualitative study of challenges, that have been identified in the semi-structured interviews.
Both chapters are structured by the pillars of the API life cycle. Finally, the findings from
literature and interviews are compared.

4.1. Challenges in API Development and Maintenance - Literature
Review

This section presents the results of the literature review. An overview of the challenges can
be found in Table 4.1.

4.1.1. Strategy

Business value

Different strategy applies to the different types of APIs. One can distinguish between pri-
vate, partner and public APIs. However, in some literature, partner APIs are addressed
together with private APIs. When it comes to API strategy, it is important to define the API
value chain [13]. The success of the API is determined by the correct understanding of the
business asset, the API provider, the developers (the ones who consume the API) and the
applications, meaning the end users of the business assets. The value chain can be further
extended by incorporating an API ecosystem [15], which could be a part of an enterprise’s
API strategy. As described in [13] a private API can support a partner relationship, when
it is used for building applications of value to the partner. In case the partnership becomes
more automated, the book categorized the API as a public one. Although partner API as a
term is not used, the strategy regarding the business value chain is still relevant to it. It is
challenging for actors to correctly define the value chain and to continuously deliver value [15].

Quality

In an enterprise setting, the development of new APIs is in the majority of cases part of a
project and done by requirement. However, certain conditions have to be met to be able to
develop a good API (see section 2.4 for a definition of widely applied standards for REST API).
When a platform is also involved, two further challenges arise. First, the API has to meet the

15

4. Challenges

requirements of the ecosystem and, second, a assessment for that has to be established. These
challenges should be addressed in the strategy phase prior to definition and development of
an API. [15]

Ownership

While the goals set for an API are the focus of the strategy step, something else that is not
to be underestimated are the stakeholders involved in the process and more specifically the
development team. There are different strategies if the development team and the mainte-
nance team are the same or two separate groups of people. Finding a person, who will be
responsible for the API design is discussed in [38]. The question of responsibility around
APIs is something that will also be further discussed in the interview results, as it has been
expressed as a concern by multiple professionals from different branches.

4.1.2. Design and Implementation

The design phase of API management is perceived as the one with the most decision-making.
The design decisions made at this step of the process impact the whole life cycle. For example,
an event-based API influences the implementation, deployment, monitoring and documenta-
tion. [9].

Design

One of the main challenges of the design of an API is to determine the use cases that are most
valuable for a good design [38]. The paper suggests that reviews could be very valuable for
developers, which implies that it is currently missing. "Early feedback from users on an API’s
design and future use cases will result in a better design, but was reported to be challenging
to obtain." [38]

For the implementation of an API, guidelines are usually followed. Either from the open
source community or specific to the organisation at question, guidelines can be confusing and
not well fitting to the specific use case, for which the API is designed. This leaves developers
with open questions. [38]. Guidance become even more important, if the API is intended as
part of a platform, because certain standardization has to be created. [15].

A challenge is to decide who is doing the API design – is it coming from the project
manager/project owner or from the developers [38]. An example given in the paper is when
the API is about e.g. financial data. Then it might be better to have the design from the
service manager. On the other hand, when it is an API that is for database engineers, then the
design should come from the development team. In both cases there should be involvement
from both sides.

Developers’ education

Further, the education of the development team is to be taken into account. Good APIs are

16

4. Challenges

designed by experienced developers and the better the quality, the higher the probability
of re-usability of the API since it will have better API usability and better documentation.
This challenge has been discussed in [38] and [39]. The challenge is summarized by [39] in
the sense that regardless of the experience of the developer, the design and evolution, the
whole API life cycle, calls for a different mind set and therefore, continuous education is
advisable. API developers learn best through practice and based on feedback gathered from
peer reviews. The lack of specialization of software engineers in API design is discussed
as well, leading to an API design not oriented to the API user. More training materials are
needed. [38]

4.1.3. Deployment

A good interface is only recognised as such if its documentation is well written. Both cater
for a good user experience resulting into more strategic value [9]. Here, some challenges that
arise for providing a good documentation to the consumers are summarized.

Documentation generation

There has been a concert as to the automatic generation of software development kits and
documentation of APIs. Although there are existing solutions to automate the process, their
fine-tuning is still missing, creating output that does not fulfill requirements. [38].

API Portal

A further challenge is the lack of a portal designed for the developers, who consume the APIs,
where they can find documentation, SDKs and the APIs themselves. [42]

4.1.4. Security

In literature, APIs in different industries are studied. One problem that arises with the
development of technologies is the adequate security of APIs. In internet of things (IoT)
devices, developers are challenged to find new ways of securing communication, since well-
established and studied ways for authentication and authorization cannot be applied to a
device-to-server communication. [42]

4.1.5. Management

Management challenges in regard to API development and maintenance found in literature
are mainly concerning the evolution of an API in the context of a platform or ecosystem.

Versioning

Based on the progression of a platform, APIs have to evolve accordingly [15]. An interface
has to change guided by the data gathered from usage. "For the API to evolve, a regular,
systematic, and quantifiable assessment has to be planned." [15] How advanced the API

17

4. Challenges

to interact with the platform is a decision based on the user base of the API and could be
changing as more feedback of consumption is gathered.

In the book "Continuous API Management" [9] the author specifies three main challenges
for the API life cycle management. The first is the strategy of API governance of a central
architecture board. It is difficult to create a strategy that could be applied across many projects
and secure a high level of control over the API quality. Second, the scaling of the team, that is
managing the APIs, has to be according to the growth of APIs in the organisation. Last, it
can be difficult to establish a set of rules for the standardization of the interfaces, that does
not constraint the projects to decide on details based on the specifics of the projects. These
challenges are all with the presumption that an organisation aims at a central API strategy.

A further challenge, in the context of working with partners, is the innovation speed of
evolution. The difficulties come from the different speed with which the partners can migrate.
Their motivation to migrate is bounded by their business goals. [39]

Deprecation

The expected behaviour of an API is that it is created, versioned, deprecated and retired.
These steps are the foundation of its life cycle. While in literature, design and maintenance
are well studied, the deprecation process is often neglected.

In ecosystems, the deprecation of an API needs to follow a clear strategy. This becomes an
obstacle for development teams, since it is expected that the API will be maintained and kept
stable [39].

4.1.6. Discovery

Discoverability of APIs

In the discovery phase, it is important to promote an API so that it reaches consumers and
they start using it. A problem that has been previously encountered is the creation of a
documentation, which makes the use of the API easy. It is important that the documentation
consists of examples and is easy to work with, so that consumers are not put off by it [38].
A detailed study of what makes a documentation useful for the API consumer and aspects
how to overcome obstacles related to API documentation shows that documentation with
intent and scenarios are vital for a good use [43]. The API documentation should be done
with good developer experience in mind, so that they can, first, indicate the functionality of
the API is useful to them and, second, start using it easily.

Discoverability of platforms

The challenge discussed above becomes even more important, if the quality and usability of
the API are a premise for a consumer to be involved with a platform [15]. An API design
that does not satisfy the user needs and has to be changed hinders the platform to become a

18

4. Challenges

provider for stable solutions.

4.1.7. Monitoring

After the release of an API, its providers find it difficult to obtain customer feedback due
to the lack of tools [38]. Even if there is a channel, where information about the usage of
the interface is at hand, the interpretation might be troublesome. The challenge to identify
the usage of an API by the partners in order to optimise it is also discussed elsewhere [39].
The management of dependencies can vary in difficulty based on what kind of platform it is
talked about: centralized or shipping application type.

4.2. Qualitative Analysis of API Development Challenges

In this section the challenges identified in the conducted semi-structured interviews are
presented. The obstacles are from various projects that include developing and maintaining
APIs. As described in 2.1 the API life cycle consists of multiple phases and the challenges are
sorted according to those. An overview is displayed in Table 4.2.

Since in the interview phase specialists from different companies and with different po-
sitions have participated, the described challenges below are further distinguished by those
criteria as well. This is needed since companies are in different stages of their strategy
development when it comes to the API economy and market and, therefore, the difficulties,
that the employees of the firms have, differ.

4.2.1. Strategy Challenges

In the strategy phase of the API life cycle, goals are set. Defining targets includes various
challenges mainly because all parties have to decide on a clear strategy.

Requirements satisfaction

In the case of a project that is in an early phase of definition, interview partners [D2, A2,
A3] have identified as challenging to cover different requirements of different use cases. For
example, creating an API gateway means diverse requirements have to be fulfilled by it,
ensuring all use cases. Further, problematic is ensuring the availability of data at all time
for all use cases. Having multiple use cases also challenges architects to decide on a overall
strategy for the gateway, especially when scenarios come in after initial strategy planning.

"Every app can have different requirements and these requirements need to be
fulfilled by the API gateway. We have to ensure these use cases. The gateway
should be able to communicate to all the services at all time." [D2]

Another challenge expressed by multiple informants is estimating the need of an API before
it creation [A8, A10, UM1]. The need of the API has to be well-justified. This holds for

19

4. Challenges
So

ur
ce

St
ra

te
gy

D
es

ig
n

M
oc

k
Te

st
Im

pl
em

en
t

D
ep

lo
y

Se
cu

re
M

an
ag

e
D

is
co

ve
r

D
ev

el
op

M
on

it
or

W
eb

A
PI

M
an

ag
e-

m
en

t
M

ee
ts

th
e

In
te

rn
et

of
T

hi
ng

s
[4

2]

N
o

p
or

ta
l

to
p

u
bl

is
h

d
et

ai
ls

of
th

e
A

P
Is

,
d

oc
u

m
en

-
ta

ti
on

,
SD

K
s

St
an

d
ar

d
p

ro
to

co
ls

no
t

ap
pl

ic
a-

bl
e

fo
r

al
l

de
vi

ce
s

D
ev

el
op

er
po

rt
al

s
M

on
it

or
in

g
u

sa
ge

co
nt

ro
l

C
on

ti
nu

ou
s

A
PI

D
e-

si
gn

fo
r

So
ft

w
ar

e
Ec

os
ys

-
te

m
s

[1
5]

D
efi

ne
A

P
I

va
lu

e
ch

ai
n;

C
on

-
ti

nu
ou

s
va

lu
e

d
el

iv
-

er
y;

M
ee

t
ec

os
ys

te
m

re
qu

ir
e-

m
en

t;
as

se
ss

m
en

t
of

A
P

I
fo

r
ec

os
ys

te
m

D
es

ig
ni

ng
an

d
im

-
p

le
m

en
ti

ng
A

P
Is

th
at

sa
ti

sf
y

th
e

ec
os

ys
te

m
ab

ili
ty

ne
ed

;

C
on

ti
nu

ou
s

A
P

I
ev

ol
ut

io
n

A
P

I
qu

al
it

y
an

d
us

ab
ili

ty

A
PI

de
-

si
gn

er
s

in
th

e
fie

ld
:

D
es

ig
n

pr
ac

ti
ce

s
an

d
ch

al
-

le
ng

es
fo

r
cr

ea
ti

ng
us

-
ab

le
A

PI
s

[3
8]

L
ac

k
of

d
ed

ic
at

ed
A

P
I

d
es

ig
n-

er
s;

L
ac

k
of

tr
ai

ni
ng

re
so

u
rc

es
;

fi
nd

in
g

re
sp

on
si

bl
e

fo
r

A
P

I
de

si
gn

D
is

ce
rn

va
lu

ab
le

us
e

ca
se

s;
N

o
p

re
vi

ou
s

kn
ow

le
d

ge
of

A
P

I
d

es
ig

n;
G

u
id

el
in

es
no

t
go

od
en

ou
gh

to
d

efi
ne

th
e

w
ho

le
d

e-
ve

lo
p

m
en

t
p

ro
ce

ss
;

L
ac

k
of

co
ns

is
te

nc
y

in
th

e
d

es
ig

n;
G

oo
d

ab
st

ra
ct

io
n

G
et

tin
g

p
ee

r
re

-
vi

ew
s

O
bt

ai
n

ea
rl

y
fe

ed
-

ba
ck

fr
om

cu
s-

to
m

er
s

N
o

ob
vi

ou
s

d
es

ig
n

be
st

pr
ac

ti
ce

s

A
u

to
m

at
ic

ge
ne

ra
-

ti
on

of
SD

K
s

an
d

d
oc

u
m

en
-

ta
ti

on
-

no
t

tu
ne

ab
le

en
ou

gh

C
ha

ng
e

in
th

e
A

P
I

is
ha

rd
d

u
e

to
ex

is
ti

ng
de

pe
n-

de
nt

so
ft

w
ar

e

W
ri

ti
ng

p
ro

p
er

d
oc

u
-

m
en

ta
-

ti
on

to
in

cr
ea

se
d

is
co

ve
r-

ab
ili

ty

U
sa

bi
lit

y
p

ro
b-

le
m

s

G
at

he
r

fe
ed

ba
ck

an
d

in
-

te
rp

re
t

it

C
on

ti
nu

ou
s

A
PI

M
an

-
ag

em
en

t
[9

]

L
ac

k
of

ce
nt

ra
l-

iz
ed

st
ra

te
gy

fo
r

A
P

I
go

ve
rn

an
ce

;
Sc

al
in

g;
St

an
da

rd
-

iz
at

io
n

of
in

te
r-

fa
ce

s
A

PI
m

an
-

ag
em

en
t

ch
al

le
ng

es
in

ec
os

ys
-

te
m

s
[3

9]

L
ac

k
of

d
ev

el
op

er
s’

ed
u

ca
ti

on
;

L
ac

k
of

co
nt

in
u

ou
s

ed
uc

at
io

n

D
if

fe
re

nt
in

no
-

va
ti

on
sp

ee
d

;
M

an
ag

em
en

t
of

d
ep

en
d

en
ci

es
;

L
ac

k
of

d
ep

re
ca

-
ti

on
pr

oc
es

s

Table 4.1.: Challenges of providing partner APIs based on main sources of literature review.
The challenges are sectioned by the phases of the API life cycle.

20

4. Challenges

both directions: having a use case and creating an API out of it or actively searching for a
service or functionality, where the development of an API would be a beneficial investment.
Both are found challenging since they demand communication between different stakeholders.

Challenging topic that the developers themselves see in the strategy phase of API develop-
ment, a key aspect that is recurring in the interviews, is the communication. For example,
communicating the API requirements with different stakeholders such as product owners
and architects can be difficult even when doing a proof of concept (PoC).

Developer community

A strategy obstacle for the establishment of a gateway is also considering that opposed to
other platforms, an API gateway within an organisation has much less developers contributing
to it [A7]. To reach a critical mass on the platform becomes troublesome since fewer people
need to create a lot of value fast.

When working with a monolith system, whose architecture is to be rebuild into a microservice
architecture, the creation of APIs is a task that may come as new for the developers. Thus,
lack of previous experience and lack of guidelines to follow is identified as a challenge that
some teams have to overcome on their own.

Ecosystem needs

From an organisational point of view, challenges are connected to how to become a ecosys-
tem partner without overexposing valuable assets. [UM1, P1, D3] Where there are many
competitors on the market, a discussion arises which APIs are to be opened and which not.
And further, how to protect them. It is challenging to move away from an isolated position
that one company can produce a full stack that is a product and think more of an ecosystem
approach. Interview partners see that it is hard to give up on the intellectual property but
is the only way an ecosystem could exist. But profiting of foreign assets means that one’s
products shift from being isolated products, where the amount of value is limited just by that
one company.

"So, if you book directly on a hotel website, you get some benefit. And this is
basically the war in the travel industry. I mean, you need the aggregator [websites].
On the other hand, you want to fight them a little bit. And this is why we always
have the discussions, if we should open APIs or not." [UM1]

The last challenge, in regard to strategy, is how to measure the business success of an API –
based on consumption, based on increase in revenue or customer gain. [D3]

4.2.2. Definition Challenges

Standardization

Defining standards for the APIs with the responsible teams or the service owner is seen as

21

4. Challenges

problematic [A1, A2, A10, UM1, P1]. This is important for both provider and consumers.
Providing teams have to follow certain standards for the users to have a coherent experience
when consuming different APIs.

"Because, in my view, the challenge with API design is when every project does
if for themselves. Then it is quite likely that every project will also implement a
good API, but if you have them side by side, they have nothing in common. As I
said, that’s why, in my view, the challenge is that the APIs are also to some extent
uniformly designed, ideally based on a domain data model." [A1]

Part of the strategy is also to establish good design practices. It is difficult to ensure
extensibility of the interface, to require developers to put extra effort into designing re-usable
APIs. Discussions arise because although an API that is to be used for multiple use cases is
desired, at the time of design usually one use case is at hand. Thus, many assumptions have
to be made and additional effort is invested without a promise for new use cases. [A1, A3,
A10]

"If I don’t have more number of people or applications that will use this, the extent
of reuse of this API gets limited. This API would essentially be only used for one
or two applications that exactly need these values here. If I need something else,
somebody has to go back and update the connector or build a new connector."
[A3]

However, some [A9] argue that it is better to have the same methods that are in multiple APIs,
but to create role specific interfaces for the different user groups or for the different access
levels of one service.

API Design

The majority of interview partners have identified some main challenges in the definition
phase of the API life cycle, independently of their role. On one hand, it is challenging for
the development team to utilize the requirements for an API as good as possible. [D1, D4,
D5, A6, A8] On the other, defining the API to be understandable by user and providing
a good documentation is also troublesome. Both are next discussed in detail. [A2, A9, A10, D8]

Understanding the specification requirements is challenging because the specification of
APIs is often not detailed enough or not clear enough. When requirements are broad, devel-
opers have to interpret those requirements differently and take ownership of the decisions
made. Often the development team has to convince stakeholders, that the presented solution
is suitable in order to reach some end results. [D4] Developers express that product owners
usually have some requirements that change over time. This introduces a risk for the team
to reach deadlines and to produce a good software. It depends on the team – if they would
stand for the specification or they would be agreeing to changes. [D5] This is understandable
because part of designing an API is making decisions on the proper design of an API, the

22

4. Challenges

granularity of the design of an API, how much to expose from an internal system, at what
level to expose. Further, an open question is if one should create a single API, that exposes a
lot of the data, or more fine-grained APIs, that expose very specific aspects of the data. [A8]

Defining the API to be usable and understandable is further a challenge that developers face.
A good API, that is also to be used by partner, have to ensure high level of usability. [A10]

"One challenge is always the other end point, in this case, the consuming part of
the API, that we establish a common understanding of the API. In this case, we
had a two-way communication, so, he can send messages to me and I can send
messages to him. So, there was a lot of back and forth and redesigning the API
until both parties had a common understanding." [D1]

The API should be built in a way that different attributes are understandable. [A2] An API
has to be usable, that means, especially when it is given to the outside, it is very important
that the API is expressive, so that the intention is visible in its signature. When the method
names are hard to understand or there are very fine-grained methods, the consumer is left
on his own to interpret the API specification and, therefore, there is a lot that can be done
wrong. Another important aspect for the design of an API is not to let users create their
user scenarios by calling multiple methods in a sequence, but to cover as many scenarios as
possible in the definition of the API and have them ready to use. The functionality of the API
has to come from real and concrete workflows. [A9]

Often a documentation that is not detailed enough leaves some open questions, such as
where can the API work, what kind of data can it work with, what does it support and what
does it not. And all those should be documented along with some examples. [D8]

Although there are tools available for creating documentation, usually there is a gap between
the documentation and the implementation of the API. [A6]

A lot of the challenges concern mainly REST APIs since they are widely adopted. However,
one further challenge is to recognise when explicitly defined interfaces, where there is a clear
definition of which method to call to obtain certain output from a service, have to be replaced
by interfaces, which incorporate event storming. It is challenging to orient the development
to domain driven design. [A9]

4.2.3. Deployment

The deployment process also has its obstacles. Depending on the tools used for deployment,
developers do not always see the process as straightforward, for example deploying multiple
instances of the same service in the context of microservice-based architecture.

Cloud services have become widely used, however, there is a lack of proper authentica-
tion for developers to deploy to the cloud, leaving interfaces stored on local machines, where

23

4. Challenges

no visibility could be created. [D5]

4.2.4. Security

Security is an essential step of the API life cycle. Many developers and architects have ex-
pressed different concerns in regard to security – how to strictly follow the security constraints
of their organisation, how to quickly ensure security.

Security standards

Further, it is challenging to come to an agreement on how to best provide security. Both
internally and externally, services need to be exposed securely. [D3] On an organisational
level, questions such as what security protocols, identity and authentication is to be used,
what is a platform that is to be established to securely publish APIs internally and externally
for consumption, are usually still open. Technical teams are missing those decisions to publish
their APIs and get their services to be used. Instead of having a lengthy process, teams
require a way to publish things quickly. However, company policies that are in place prevent
them from publishing APIs directly to external users. For each interface, details like the
Accredited Service Provider (ASP) level of the data and communication though firewall need
to be defined [D1]. There is a lack of authentication and encryption following organisational
guidelines, that would potentially reduce operational costs for e.g. setting an authentication
process. One architect [A6] sees the need of a centralized way for rate limits, billing and
authentication. The issue is that a lot of APIs are available, but then one has to have a special
account, which is to be obtained from the API owner. When a company has an authentication
solution, which covers all cybersecurity requirements, it should not be the case that publishing
API is such a challenge. Further, an identified challenge is that solutions that work within the
intranet of an organisation, have to be adjusted for the internet.

"When we created [the platform], we thought it’s a platform, you install it and
you’re done. But we spent pretty much three years for talking to the security
officer, talking to data privacy officer, to export control people." [A6]

Partner relations

Even if the security from the provider side is good, there are obstacles that arise, when
working with partners. One of the industries, included in the interviews, has already multiple
partnerships at place. However, when the security of their interfaces has to be improved
with some functionality, partners lack the involvement for support. The main reason is the
additional costs from partner side, regardless if the partner provides sophisticated IT solutions
as well. [UM1] Implementing the authentication from partner side can also be a long and
troublesome process. [A2] Further, it is hard to ensure that an API has only the functionality
wished by the consuming part and no further. It is challenging to ensure that a service is
providing only access to a certain data base. [P1]

In a gateway, multiple data sources can be accessed by different consumers. Interview

24

4. Challenges

partners, especially developers [D2, D7], have said they encountered the problem to expose
data to multiple clients. They needed to restrict it in a way to ensure the client who is
requesting data is authorized to get the data from gateway. Further, deploying a project in a
secure way has also been defined as a challenge.

4.2.5. Management

The management phase of an API life cycle includes versioning, deprecation and retirement
of an API.

Versioning

Introducing changes to an interface has been a widely discussed topic from many interview
partners.

Introducing breaking changes is often described as a reoccurring problem, when an API has
to be adjusted. [A4, A8, A9, A10, P2, UM1]. Even when an API is created, such that it satisfies
the initial use case for its creation, when something on customer’s side changes, adjustments
in the API usually need to be introduced as well. When changes become breaking changes,
there is a challenge for the development team. The developer team would prefer to reduce
development and maintenance costs by introducing changes. That is the optimal solution
for it to do the refactoring. However, this way the customer satisfaction goes down. The
other way around is to build something additional, so that the consumers do not have to deal
with breaking changes, and they receive the new code separately, which gives them more
time to integrate it into their system. Which solution to choose, in the context of partner
APIs, becomes a challenge since the goal is to ensure long term stability for the partner. And
further, if not all consumers of an interface are known, then communicating errors becomes
difficult. It is important to ensure support to the users, otherwise if the partner has many
problems using the interface, it is likely that he would not want to further use the software of
the company, since APIs are an important digital asset.

"Especially when you have a lot of partners out there and a lot of partners with
legacy systems as well. For them it’s not just okay, upgrade to a new API contract
version. For them it takes years to adopt. And this is also very challenging there."
[UM1]

Therefore, introducing changes has to have solid reasons and the API has to stay stable,
if possible, when extending it, adding new features, refactoring and introducing breaking
changes.

Backward compatibility is another challenge developers and architects have to tackle [A4,
A5, A8, A9, D7]. Again, it would be demanding for maintenance to change a method in a
widely used interface, because everyone is affected. Providing more specific interfaces, means
more maintenance work. However, if a change of a method that is only in one, for example,

25

4. Challenges

role-specific interface, only the users that have the specific role are affected. Teams need to
ensure that evolution is possible in an interface, for example, by using extension methods,
extension interfaces and other patterns or language properties and only then consumers who
are really interested in the change are affected.

Some architects do not see how one framework for API management would be feasible
for a whole enterprise. They thinks that maybe a central gateway for each business unit is
doable, but different business unit have different speed and this would be a problem for
the projects, which work in shorter time periods and, thus, with different cycles, because
the requirements would slow them down. Their differences in strategies requires different
approaches. [A4]

Deprecation

Deprecation is part of the API life cycle, that interview partners rarely have touched upon,
since most APIs they own are internal ones. However, one informant [A10], that is part of a
platform with different consumers, discussed that deprecation is challenging since partner
APIs are expected to run always. But this is not executable and so it is to be decided case by
case what deprecation strategy will be assigned for the API at question.

4.2.6. Discovery

How to make an API visible within the organisation and where to publish it has been
identified as a challenge [A6, A13, A12, A14, UM3]. Big leaders in the API economy have
dedicated platforms for APIs, such as Google and GitHub. In the context of the industry
partner even existing standardized interfaces currently have no place where they could be
discovered.

"It’s always a struggle to find who can provide the data or the API. There are
some APIs, but not documented, and they are very hard to use." [D1]

Further, challenges for exposing an API outside of an organisation come in terms of export
controlling customs, open source software clearings. This is where development teams would
rather leave the responsibility to the business side. [A3]

4.2.7. Consumption

One challenge is assuring data availability. [D2, D4, D7, P1] In the case of an API gateway,
this becomes a challenge since it is enough for one underlying service to be unavailable so
that the whole transaction has to be rolled back. It is hard to make that layer more robust. In
a microservice-based architecture developers need to ensure availability of the data and have
to deal with concurrency.

A central gateway has to filter out parameters that are not of interest to the customer
and to also provide different names for parameters coming from different connectors.

26

4. Challenges

Developers also struggle to achieve a stateless behavior it terms of a call of a REST API.

4.2.8. Monitoring

Developers find monitoring of microservices difficult, when talking about a workflow rather
than the separate services. For this they lack the appropriate tool. Although some open
source solutions are available, a lot of additional work from the developer’s side is needed.

4.2.9. Monetization

Some interview partners have expressed that they see a lack of monetization strategy [A3,
A6, UM3]. For a monetization strategy to come in question, there should be indicators that
there is a customer base, however, this usually takes time. Without a critical mass, there
are lengthy discussions about what the base for monetizing should be. Although APIs are
recognised as important, the lack of business plans of how to monetize such APIs postulates
creating a front-end and maybe a mobile application for it. This is seen as one roadblock,
which prevents from exposing an API to the outside world.

4.3. Comparison of Literature and Interview Challenges

When comparing the challenges from literature review and semi-structured interviews carried
out in the scope of this study, it is important to keep in mind that most of the challenges in the
interviews are regarding internal APIs, whereas the literature review prioritized challenges
for providing partner APIs.

Even with this main difference, the results in regard to the strategy phase of API man-
agement are quite similar. An example is the continuous value delivery in an ecosystem – our
interview partners fear that an organisation is a community not large enough to provide new
features in a timely fashion. In literature, the challenge is more focused on how not to lose
control of valuable assets in the platform and keep them evolving according to the evolution
of an ecosystem.

Both sources define a need for better education of developers. A similarity is that both
suggest that a development team is capable of technically providing an API. It is rather the
knowledge of good API design that is intended.

Something that is missing in the literature review, but is discussed in the interview ses-
sions, is the need of an API. This difference comes mainly from the fact that the literature
sources are gather with the intend to created end-points to be exposed to third parties, while
in practice, teams want to spare additional costs for the creation of an API and thus always
question the need of such. This should not be seen as a setback since it provides a higher
level of quality.

27

4. Challenges
D

efi
ne

d
by

:
A

rc
hi

te
ct

s
D

ev
el

op
er

s
A

rc
hi

te
ct

s;
D

ev
el

op
-

er
s

A
rc

hi
te

ct
s;

D
ev

el
op

-
er

s;
U

pp
er

M
an

ag
e-

m
en

t

Pr
od

uc
tO

w
ne

rs
;U

p-
pe

r
M

an
ag

em
en

t

St
ra

te
gy

Fe
w

er
d

ev
el

op
er

s
on

in
te

rn
al

pl
at

fo
rm

C
om

m
u

ni
ca

ti
ng

re
qu

ir
em

en
ts

w
it

h
st

ak
eh

ol
d

er
s;

ho
w

to
m

ea
su

re
su

cc
es

s;
L

ac
k

of
gu

id
el

in
es

,
la

ck
of

ex
pe

ri
en

ce

C
ov

er
d

if
fe

re
nt

u
se

ca
se

s
Es

ti
m

at
e

ne
ed

of
A

PI
O

ve
re

xp
os

in
g

va
lu

-
ab

le
as

se
ts

;
C

ha
ng

e
m

an
ag

em
en

t:
ec

os
ys

-
te

m
pl

ay
er

D
es

ig
n

E
xt

en
ci

bi
lit

y;
D

es
ig

n
w

it
h

re
sp

ec
t

to
re

-
u

sa
bi

lit
y;

D
at

a
p

ro
-

te
ct

io
n;

G
ap

be
tw

ee
n

d
oc

u
m

en
ta

ti
on

an
d

im
pl

em
en

ta
ti

on

Sp
ec

ifi
ca

ti
on

to
o

br
oa

d
;

R
eq

u
ir

e-
m

en
ts

ch
an

ge
ov

er
ti

m
e;

W
ri

ti
ng

go
od

do
cu

m
en

ta
ti

on

U
sa

bi
lit

y
D

efi
ni

ng
st

an
da

rd
s

D
ep

lo
y

N
o

au
th

en
tic

at
io

n
fo

r
cl

ou
d

d
ep

lo
ym

en
t;

D
ep

lo
yi

ng
m

u
lt

ip
le

in
st

an
ce

s
Se

cu
re

In
te

rn
et

an
d

in
tr

an
et

d
if

fe
re

nc
es

;
no

ce
n-

tr
al

iz
ed

w
ay

of
au

-
th

en
ti

ca
ti

on

P
ro

vi
d

e
d

at
a

ac
ce

ss
to

co
rr

ec
t

u
se

rs
;p

la
t-

fo
rm

w
it

h
se

cu
ri

ty
pr

ot
oc

ol
s

fo
llo

w
or

ga
ni

sa
ti

on
re

st
ri

ct
io

ns
;

Se
cu

re
qu

ic
kl

y

P
ar

tn
er

s
no

t
co

lla
bo

-
ra

tin
g

fo
r

en
su

ri
ng

se
-

cu
ri

ty

M
an

ag
e

N
o

d
ep

re
ca

ti
on

st
ra

t-
eg

y
B

ac
kw

ar
d

s
co

m
p

at
i-

bi
lit

y
In

tr
od

uc
in

g
br

ea
ki

ng
ch

an
ge

s;
co

m
m

u
ni

-
ca

ti
ng

er
ro

rs
to

co
n-

su
m

er
s

P
ar

tn
er

s
ad

op
t

sl
ow

to
ch

an
ge

s

D
is

co
ve

r
O

SS
cl

ea
ri

ng
s

V
is

ib
ili

ty
:

p
u

bl
is

h
A

P
I

an
d

d
oc

u
m

en
ta

-
ti

on
M

on
it

or
M

is
si

ng
to

ol
s

fo
r

m
on

it
or

in
g

M
on

et
iz

at
io

n
N

o
m

on
et

iz
at

io
n

st
ra

te
gy

Table 4.2.: Challenges of providing partner APIs based on semi-structured interviews. The
challenges are sectioned by the phases of the API life cycle.

28

4. Challenges

The design in both sources is mainly discussed in terms of usability. Both stress on the
fact that the design should be with intention to consumers. While experts from our interviews
worry more about the proper communication, when presenting and reviewing an API with
different stakeholders, literature sources report that there is a lack of a steady review process
at all.

In contrast to literature, interviewed professionals expressed their concern to create a docu-
mentation that is understandable. Some literature sources strategically inform on a challenge
one step further, namely writing documentation that makes the API discoverable. Both talk
about the lack of sophisticated enough software to automatically create documentation out of
implementation, that allows creators to fine-tune the output.

The challenge of deploying a service in practice differ from literature. Developers included in
the interview phase face problems accessing cloud platforms for deployment, while literature
resources inform on the lack of a dedicated platform at all.

Security is studied in two very different aspects in literature and in the semi-structured
interviews. Experts have to overcome obstacles with respect to the organisational require-
ments, that they have to follow, to secure their services. They inform on the lack of a
standardized authentication process within their organisation or on the slow speed with
which the security is provided. On the other hand, literature sources cover more technical
aspects of security.

Regarding management of APIs, both sources discuss similar aspects that are rather technical.
It is important that the evolution of services is carried out well to support the customers.
While literature resource talk of changes as a necessary step for APIs to evolve and continue
being used, our interviewees comment on changes as a direct requirement of users.

While in literature, the need of a clear deprecation strategy is reported, interview part-
ners say that it depends more on the specific case and it is not applicable to have a standard
process in that regard.

The discovery phase of the API life cycle is as vital for creating revenue of the API’s business
value as is the API itself. Both sources report of a missing dedicated developer portal, where
APIs could be made visible.

Both comments of interview partners and results from the literature review show that
there is a lack of tooling for monitoring. In literature, further the strategy of how to correctly
interpret monitoring data is discussed. Interviews do not have such information with excep-
tion to one industry partner, that states this is an important point for the future development
of teams and products.

29

4. Challenges

None of the literature resources talk about monetization directly. One of them reports
on the importance of defining a proper API value chain, which could indirectly be associated
to monetization, but is seen more as a strategy aspect. In practice, missing monetization plans
hinder the proper establishment of partnerships based on a service.

30

5. Analysis of Incentives for API Development
and Maintenance

This chapter presents an analysis of the motivation for creating APIs, existing incentives and
a concept proposition for incentivizing developers and architects to provide APIs. The results
of the literature review that aims to identify existing incentive mechanisms motivating teams
to develop partner APIs are presented first in Section 5.1. For the better understanding of
the incentives that come from industry partners, a few projects that part of the interview
participants have been contributing, are introduced in Section 5.2. Next, current motivating
factors based on the semi-structured interviews conducted in the scope of this study are
summarized in Section 5.3. Those are compared to literature findings in Section ?? Last,
recommendations of action for incentivizing developers and architects to provide partner
APIs is suggested in Section 5.4.

5.1. Literature Review

A systematic literature review is performed in order to research available sources for the
topic area of incentivizing API development and API management. To date no scientific
publications are found that fit the research criteria. Therefore, other areas of software
engineering, such as software process improvement, developer ecosystems and others have
been studied. Incentives from those, that would be applicable to the development and
maintenance of APIs, are presented in this section. An overview of the incentives can be
found in Table 5.1.

5.1.1. Gamification

To incentivize developers to develop specific tasks, often gamification is applied since it
enables us to define mechanisms to encourage motivation. In one publication [12] the creation
process of a gamification network for software process improvement (SPI) is described. Afridi
et al. [44] discusses an approach to effectively reward developers, contributing to open source
software (OSS). However, the lack of gamification frameworks for providing APIs of any kind
and the feedback we have received in the exploratory interviews, has shifted the focus of
incentive mechanisms for providing partner APIs away from gamification and towards other
strategies to maximize the developers’ commitment.

31

5. Analysis of Incentives for API Development and Maintenance

5.1.2. Project Management Related Incentives

In the context of SPI, motivating factors have been studies according to classic motivation
theory [40]. The author lists the most common motivators for three types of positions –
developers, managers and senior management. The paper divides influencing factors in
extrinsic and intrinsic. Extrinsic factors are maintaining factors and as such they do not
provide satisfaction with work. Intrinsic factors are motivational factors and they attain
satisfaction. The leading motivators from the publication [40] are visible success for all
three groups and additionally bottom-up initiatives as well as top-down commitment for the
developers. Visible success is defined as evidence of benefits [40], which is also applicable
to partner APIs, since some existing and successful partnership should be at hand in the
organisation. Creating visible success by having a few high-profile products attracts other
developers [45].

An incentive for developers to create APIs is to enable them to generate revenue. One
way is to provide them with a platform, where awareness is created and marketing strategies
are available. This gives them a financial motivation to contribute to a platform. [45] Further,
it is important to create a feeling of contribution to a successful platform. One way to do so is
to create developer programs based on the crowd-source approach [45]. In the context of open
source software (OSS), successful stories also are identified as incentivizing to the contributors.
Because there are many projects that indicate success, programmers are motivated to work
on OSS. [46] The paper also distinguished the motivation behind bigger and smaller projects,
which are altruism and the act of gift-giving accordingly. While creating successful stories
about APIs within an organisation is achievable, the latter two motivators are intrinsic and
do not fit so well to API development.

Service-oriented architecture (SOA) and APIs are comparable design practices [9]. Iden-
tified incentives for developers in SOA are the creation of innovation and the shift of mindset
towards IT value [47]. The reason behind is that those architecture designs enable automation
of processes and speed up innovation.

5.1.3. Recognition

Empowerment is an important incentive for project managers and is defined as "practices
within the SPI program that empower staff to take decisions on changing processes" [40].
This could be applied to API development as well, because the project managers are the ones
who best know what the business value of a potential API would be and should be empow-
ered to prioritize the creation of an end-point along with other tasks of a project. Project
managers from the publication [40] also speak about process ownership as a motivating factor.

Some incentives from open source development could be considered for API enterprise
development. For example, undermining the power of large software houses in OSS can be
understand as ownership culture in API management where employees want their company

32

5. Analysis of Incentives for API Development and Maintenance

to be a competitor on the market. [41]

The fact that open source software initiatives and API development can be used as tools for
providing innovation in a system makes some incentives of OSS applicable to API creation
[41]. The paper defines ego gratification and self-fulfillment as private investment model mo-
tivators. They apply to corporate development as long as there is a platform for a developer
to receive gratitude for his work – either from peer reviews or from management.

Even though small gifts are not the best approach to incentivize developers, some more
advanced techniques of showing gratitude like creating challenges that are rewarded with
badges show some positive outcome [45].

5.1.4. Technical

Since providing partner APIs as a strategic asset is in a sense additional work to a project that
is not vital to it, it would be understandable that having sufficient time and resources allocated
to API development would be motivating to teams. This motivator has been well-identified
across all three roles studied in [40].

There are various platforms on the market designed for APIs. However, for a developer portal
to thrive, there is the need of a constant evolution and activity. Technical motivators to commit
to using such a platform are, for example, simplicity of integrating software. Developers
should be incentivized by engaging them with "self-service access to developer materials",
developer programs, sample code and technical support [45].

When researching incentives to provide better security measures for software development,
Halderman et al. [48] stresses on the importance of transparency. An incentive, which applies
to API development is the transparency of the processes which is achieved by introducing
best practices.

5.1.5. Self-development

Beyond having online resource for self-improvement or webinars and online conferences
[49] it is even more valued to have trainings on site, developer gatherings and to foster
the exchange of ideas by creating a community. This is also a good way for starting new
collaborations. [45] Evidence for motivators like exchanging knowledge and creating new
forms of cooperation are also found in topics like open source development [41].

5.1.6. Monetary

The paper [41] defines the incentives for contribution to open source project under two
categories – the private investment model and social considerations. Private incentives include
monetary motivators, such as job prospects, promotions and bonuses. Developers contribute

33

5. Analysis of Incentives for API Development and Maintenance
So

ur
ce

P
ro

je
ct

m
an

ag
e-

m
en

t
R

ec
og

ni
ti

on
Te

ch
ni

ca
l

Se
lf

-d
ev

el
op

m
en

t
M

on
et

ar
y

M
ot

iv
at

or
s

of
So

ft
w

ar
e

P
ro

ce
ss

Im
p

ro
ve

m
en

t:
A

n
an

al
ys

is
of

p
ra

ct
i-

ti
on

er
s’

vi
ew

s
[4

0]

V
is

ib
le

su
c-

ce
ss

;
m

ee
ti

ng
ta

rg
et

s;
bo

tt
om

-
u

p
in

it
ia

ti
ve

s
an

d
to

p
-d

ow
n

co
m

m
it

m
en

t

R
ec

og
ni

tio
n

by
se

-
ni

or
m

an
ag

em
en

t;
em

p
ow

er
m

en
t;

p
ro

ce
ss

ow
ne

r-
sh

ip

R
es

ou
rc

es

B
u

ild
in

g
a

d
ev

el
op

er
ec

os
ys

te
m

:
W

ha
t

ve
n-

d
or

s
d

o
to

at
tr

ac
t

yo
u

to
th

ei
r

pl
at

fo
rm

s
[4

5]

H
el

p
w

it
h

m
ar

-
ke

ti
ng

;
cr

ea
ti

ng
aw

ar
en

es
s;

ex
-

is
ti

ng
su

cc
es

sf
u

l
st

or
ie

s;
cr

ow
d

-
so

ur
ce

ap
pr

oa
ch

;

Sm
al

l
gi

ft
s;

ch
al

-
le

ng
es

w
it

h
pr

iz
es

;b
ad

ge
s;

E
as

y
so

ft
w

ar
e

in
te

gr
at

io
n

in
to

p
la

tf
or

m
;

sa
m

p
le

co
de

;q
ua

lit
y

te
ch

su
pp

or
t;

D
ev

el
op

er
p

ro
-

gr
am

s
av

ai
la

bl
e

on
p

re
m

is
e;

fr
ee

d
ow

nl
oa

d
s

fo
r

se
lf

-d
ev

el
op

m
en

t;
co

m
m

u
ni

ty
an

d
co

lla
bo

ra
ti

on

In
ce

nt
iv

es
fo

r
D

ev
el

op
-

er
s’

C
on

tr
ib

u
ti

on
s

an
d

P
ro

d
u

ct
P

er
fo

rm
an

ce
M

et
ri

cs
in

O
pe

n
So

ur
ce

D
ev

el
op

m
en

t:
A

n
E

m
-

pi
ri

ca
lE

xp
lo

ra
ti

on
[4

1]

R
ec

ei
vi

ng
gr

at
-

it
u

d
e

-
fr

om
p

ee
rs

or
m

an
ag

e-
m

en
t;

ow
ne

rs
hi

p
cu

lt
ur

e;

E
xc

ha
ng

in
g

kn
ow

le
d

ge
;c

re
at

-
in

g
ne

w
fo

rm
s

of
co

op
er

at
io

n

Jo
b

p
ro

sp
ec

ts
,

p
ro

m
ot

io
ns

,
sa

la
ry

in
cr

ea
se

s

If
O

p
en

So
u

rc
e

C
od

e
Is

a
P

u
bl

ic
G

oo
d

,W
hy

D
oe

s
P

ri
va

te
P

ro
vi

si
on

W
or

k(
O

r
D

oe
s

It
)?

[4
6]

Su
cc

es
s

st
o-

ri
es

;
p

ro
m

is
e

of
su

cc
es

sf
ul

w
or

k

To
st

re
ng

th
en

se
cu

ri
ty

,
ch

an
ge

d
ev

el
op

er
s’

in
-

ce
nt

iv
es

[4
8]

G
ui

de
lin

es

Th
e

fu
tu

re
of

en
te

rp
ri

se
ap

pl
ic

at
io

ns
[4

7]

In
no

va
ti

on
;

sh
if

t
m

in
d

se
t

to
w

ar
d

s
IT

va
lu

e

Table 5.1.: Incentives found in literature based on various software processes.

34

5. Analysis of Incentives for API Development and Maintenance

to a project to signal their ability to potential employers. In the setting of an organisation,
where a developer is already employed, his incentive would be to show potential and interest
for further development in the firm and would expect a salary increase or promotion in his
already existing position. The motivation of career advancement has been found in different
papers about incentives in OSS and have been summarized by [50].

5.2. Use Cases

Many of the challenges and incentives, identified by the interview partners coming from the
main industry partner, have based their examples of three main projects. In contrast, infor-
mants from other companies have talked about various examples from their work experience.

API Gateway

The first project is about the establishment of an API gateway within a company. For the

Figure 5.1.: Customer Relationship Management Architecture

purposes of this paper, a toy example for customer relationship management architecture is
displayed in Figure 5.1. The three data bases in the architecture are taken from [51].

Important for the scope of this study are the places in the architecture, where APIs are
developed. In the bottom part of the architecture different heterogeneous systems are dis-
played. These are raw data sources. If some application wants to access this data, they should
know how to connect to the source, to know the schema of the data sources. The gateway

35

5. Analysis of Incentives for API Development and Maintenance

aims to represent that particular data in the underlying source as a conceptual model and
expose this to the end applications. This is done across all data sources of interest. Further,
the access to the data is encapsulated in the architecture. That is how the application can
access the data though an end-point. Next, the gateway provides an abstraction, where
applications directly talk to a semantic model instead of having to query the data sources
individually and then do the aggregation within the application logic.

Therefore, there are two main places, where APIs play an important role. One is to provide
data from the data sources to the gateway and second is to provide data to the applications.

API Developer Portal

The second project is already in operation, even though its initial design (see Figure 5.2) has

Figure 5.2.: Overview of an API platform

not taken place and is currently constricted to a static web page. The project aims to form a
centralized API platform within the organisation. Key features of the architecture are to have
a central authentication service, an API gateway and a billing system [52]. The project also
foresees a developer portal for application development.

A important feature of the project is the conduction of peer reviews for all APIs listed
on the platform. Thus, a higher level of quality is reassured.

API Platform

The last project is an established platform, which is oriented towards providing APIs to

36

5. Analysis of Incentives for API Development and Maintenance

partners. The topics included in the platform are all related to the internet of things (IoT).
The offerings hold ready-to-use APIs and services. The platform is cloud based and provides
extensive support for developers and also offers a partner program for developers with
incentives, such as trainings, marketing and revenue generation.

5.3. Current Motivation

In this section some motivating factors that did not find application in the concept of
recommendations 5.4 are discussed. They have been mentioned in the interview round
and either have to do with the advantages of using APIs or the intrinsic motivation of the
professionals.

5.3.1. API Properties

Monolithic Architecture to Microservice-based Architecture

In total 5 architects, 3 developers and one person from upper management mentions the
benefits of APIs as a technology as a motivating factor for them [A1, A2, A3, A4, A6, D4, D5,
D6, UM3]. It is a common pattern for large organisations to have multiple legacy systems,
that have monolithic architecture. The complexity of the existing systems is challenging for
a migration to take place. To lower the complexity, APIs are often used. This is where a
lot of interview partner see the potential of APIs and also have gathered their professional
experience.

Developers know that REST APIs are easy to implement and that they are a suitable technol-
ogy to support this migration. The good community support and documentation available
gives a certain level of comfort, when reducing the complexity. With the modularity of a
microservice-based architecture the system becomes easier for maintenance because of the
reduction of the number of dependencies. Introduction of changes to the system also becomes
less complicated since not the complete application has to be newly deployed. One should
instead deploy the particular microservice, where the change occurs.

While introducing breaking changes, when providing an API is a difficulty, defined by
many, it is easy to find errors when using APIs and, therefore, one can easily keep the service
in check. The overall traceability of APIs makes them widely used. APIs have the advantage
that one can easily monitor them. Calls can be traced, and the API usage can be traced.
From there the load can be detected. An example is the tracing solution of Amazon Web
Services (AWS) called AWS x-ray. For cloud-based applications such a tool gives transparency
about usage of application. It is not always the case that more important APIs are the most
expensive, so costs can be saved based on the monitoring. Participants see the possibility that
monitoring can be strategically used for identifying future development of the project or the
team.

37

5. Analysis of Incentives for API Development and Maintenance

Overall, the granularity that APIs bring as a technical advantage results in less effort in
development and testing and intentional communication with product owners of specific
modules or domains rather than the whole systems. Also, the granularity ensures no depen-
dence on a single technology and gives the opportunity to choose from a range of technologies.

API are, on one hand, an easy starting point for a project, when developing software,
on the other, they are simple to communicate with other stakeholders within the project.
After an agreement on them, more sophisticated modules of the project can be discussed,
such as a front-end application.

5.3.2. Introducing Features

The introduction of new features is seen as motivating mainly by developers [D3, D5, D6,
UM1].

Development teams recognise the need for introducing new features. Simple, but valu-
able smaller software, in the form of APIs, gives teams the possibility to enter an ecosystem.

An example is digitalization architectures. APIs are how teams are to offer their services
in the future. With all the digital offerings and digital solutions that are coming through
and also all across business use cases that are available today, APIs are the basic building
block that are needed to be offered in order for such solutions to come into play. With more
demands of such cross-domain use cases coming in and more demands of web technologies
for digital offerings, it becomes extremely important to have access to such building blocks.

Teams stay aware of what already exists, identify a need for further development and
study how to proactively engage customers with new features based on trends in the industry
before there is a requirement for such. There is a constant interplay between innovation and
demand and successful teams usually work closely together to correctly prioritize the two.

5.3.3. Transparency

Reaching a high level of transparency has been identified as a main motivation for the
involved parties by many. [A4, A6, A8, A12, A13, P2, UM2]

The best incentive mechanism for the developers would be for them to know what is the
customer value that they bring by developing an API. Currently this is not the case. The
product owner is the one selling the product and developers do not have the chance to
understand where their input is going [A12].

Seeing the API usage data as a key performance indication could further be motivating.
It shows how well the developed product is being adopted, how much it is being consumed.
[D3]

38

5. Analysis of Incentives for API Development and Maintenance

"And I think that’s also kind of where the incentive comes for developers. So they
actually see: hey, what they’re doing is going to be used and can be really easily
used." [A6]

Transparency fosters the intrinsic motivation of developers and is very important for an
organisation, if it wants to move forward in an innovative way. The understanding of the
purpose of a project and how it is being used is how new potential for further development
can be identified.

Transparency is one of the main incentives as to why large organisations target to establish an
API platform other than all technical advantages of such platforms. Based on the consumption
of an API from a platform, the extent to which the API is integrated in other projects and
the way user interact with it, insights, as to how well the professionals behind the API are
working, can be obtained. Experts, who are part of this study, find this as an important
incentive for their future work, even when there is no explicit customer feedback. To see that
their time and energy investment pays off is just as important.

Through APIs the altruistic motivation can be enhanced as well. Being both provider and
consumer at the same time, being able to exchange expertise available via APIs within the
organisation.

5.3.4. Alignment of Business and IT

One of the companies included in this study is a multinational technology company, that is
currently one of the leading enterprises in the API economy, and also offers its solutions and
experience to others. Its experience regarding alignment of business and IT towards a cohesive
API strategy is presented below. Some other interview partners also have commented on the
alignment of business and IT [A6, UM1].

It is an important step to have business and IT aligned and to build the same strategy
for them to follow. The consultancy tries to always position both the business value side or
the organizational aspect and the technical side. From a business perspective it is important
to consider what is being published and how it is being consumed – internally and externally.
They provide API-coaches in the team who work with the business side of customers on
the API strategy and the importance of APIs in today’s world. Thus, through evangelism
API initiatives are created within the business and the organisation. The technical side is
being addressed on topics such as security of publishing APIs both for internal and external
use, authentication, identity, platform where to publish. The end goal is bringing together
business and tech in the organization and having a holistic view of APIs as important strategic
assets that can be build out. [D3]

39

5. Analysis of Incentives for API Development and Maintenance

5.4. Concept

5.4.1. Data Sharing

In today’s digital economy, companies increasingly work together with ecosystem partners.
Data has become a valuable resource and the more resources are available, the better and
more precise insights are to be found. Research communities have been developing strategies
to incentivize openness within the community [53]. Although Morey et al. [53] discusses the
importance of data sharing in science, the approach that is described could find its application
in the API economy as well.

"An aspect that’s very important is moving away from an isolated position that one
company can produce the full stack that is the product and thinking more of an
ecosystem approach. Because APIs offer the integration with your partners, with
customers, with even competitors that increase your value proposition immensely."
[D3]

There are different platforms that have recognised the importance of data sharing within
an enterprise [54], and also between multiple companies [55]. The described platform [55]
lists several advantages of having a single data platform for sharing data. Some of the main
benefits are reaching a high level of security, subscription verification, prevention of resource
duplication and analytics for consumption.

A previous study [52] within the context of the industry partner of this paper has drawn five
main conclusions that developers of APIs want to have "unauthenticated access to resources
(documentation, SDK and code samples)", "active and responsive community (large user/con-
sumer base)", "local independent testing", "login with an existing account" and "delivery of
applications (e.g. hosting, updates)". The first of the above is the main goal of data sharing,
while the latter are preconditions for such a data exchange to take place.

Taking into account the interviews conducted for this study, multiple professionals have
expressed that they see having an active data exchange through APIs within the organisation
would incentivize them to also actively provide their data, that is of value. In particular, two
architects, three developers and one person from upper management commented on the topic
[A6, A12, D1, D3, D4, UM1].

"...altruistic motivation. But also with GitLab we are both provider and consumer
at the same time. And we create the whole API topic because we want to consume
it. If you have so many really talented people at the company, which are skilled in
their specific topic and making their expertise available via API so that we can
consume it. That’s really awesome." [A6]

Another quote from a data scientist also providing APIs:

"What needs to be done [...] is to have a meta-data repository for the data sources
around the company. This is step number one. We have some data scattered

40

5. Analysis of Incentives for API Development and Maintenance

around and we need a central place where the data is described - where it resides,
who is the data owner, some sample queries." [D1]

Based on all of the above, a possible solution for nurturing the creation of APIs for opening
existing internal systems is creating a central place for data exchange. A must in the context
of APIs is having the documentation. A good documentation is required for high acceptance
of an API. Developers, in the sense of consumers of an API, expect an easily accessible, well-
written documentation with various code examples. Having code examples in the language
of programming enables consumers to incorporate an API fast. Otherwise, the use of an API
could only be based on a demand. A data sharing platform should also include the way
of getting access to the interface since multiple experts have expressed their concern that
obtaining access is based purely on personal networks.

Recommendation: A central place for data sharing will encourage the professionals to open
their systems. A platform should the least hold the data description, data owner and a way
to access the data.

5.4.2. Speed

Time to market is a central point when working with partners. Here, both the speed of the
developing process and the speed of adopting an API by the customers is discussed. The
topic of speed has been mentioned by four architects, one software engineer from a leading
company in the API economy, one product owner and two people from management [A2, A3,
A6, A7, D3, P1, UM1, UM3].

Interview partners from different enterprises [A7, D3] have talked about the importance of
external access by self-service where any customer, who wants to integrate existing solutions,
can immediately go to an API portal and be in the position to start testing APIs. A next
step would be to register and get access to APIs. All those steps should be supported in a
self-service way, so that less time is spent on communication and better customer engage-
ment is achieved. One architect [A6] pointed out that this is would be beneficial within the
organisation, where he is working.

The majority of the participants in the interview round have gathered their experience
in API management and development from internal systems, where a trusted network is
at hand. An important aspect of opening those internal systems to partners is exposing
functionality in a secure way. This easily becomes a blocking point. Becoming an API provider
goes hand in hand with publishing and managing APIs in a secure way. Thus, it is important
that an organisation willing to enter the API economy and to work with partners, enables
development teams to publish securely. There are existing cloud solutions that provide such
functionality or an in-house solution could be established. Either way, a platform, where the
APIs can be exposed becomes necessary for ensuring a high speed to market.

"Technical teams want to publish their APIs. And they want to update and move

41

5. Analysis of Incentives for API Development and Maintenance

fast and publish things quickly. On the other hand, you have the security and
the IT and other stakeholders who have the opposite view. That things have to
first be totally secured. Of course, which is important, no question, but there are
company policies in place that just prevent teams from publishing APIs directly
to external users." [D3]

Further, both customers and developers should be able to easily understand the given APIs to
start working on their own user stories. [P1] Having some interfaces available to the customer,
already enables him to solve certain problems. It solves the connectivity problem and the
authentication problem. It solves how one can represent a scheme. One can directly extend
such interfaces and does not have to figure out the whole process from scratch. Therefore, it
is much faster to build a custom API by extending some generic solution, where a template
or source code is available. [A3] This approach provides a way for departments inside an
organization to publish APIs quickly, effectively, automatically, without any manual interven-
tion. [D3]

Recommendation: Speed is determining in today’s digital economy. Therefore, both API
providers and consumers should be able to interact fast. Developers should be able to publish
APIs securely and to provide authentication in a simple manner. Customers should be able
to quickly understand the APIs and with the help of self-service engage with the provided
solutions.

5.4.3. Communication

Creating a usable API, therefore, an API that can be easily adopted by partners, depends on
having a clear vision together with stakeholders. Since partner APIs are limited to specific
partners in contrast to open APIs, where the consumers are unknown, communication with
potential or existing users can be established. The experience of our informants is mainly
based on the creation of internal API, however, some implications relevant to partner API
could be made. Four developers, four architects and two other professionals have expressed
their opinion about communication [A2, A3, A5, A6, D1, D5, D6, D7, P1, UM1]. Our ex-
ploratory study identified transparency as one of the main incentives when it comes to
API development. Active communication can be separated in communication between the
development team and the different stakeholders in the design phase of the API and com-
munication between the API providers and consumers in the case of establishing a partnership.

Each role, that is involved in the process, has different responsibilities and thus has pointed
out different important aspects. Developers find it important to closely work with product
owners and iteratively discuss the design of an API [D5, D6, D7].

As an example, when re-building a monolith system into a microservice-based system,
developers decide on an approach by doing a proof of concept (PoC) and presenting and
discussing it to architects and product owners within the project. By working closely with the

42

5. Analysis of Incentives for API Development and Maintenance

domain expertise of product owners and the technical knowledge of architects, developers
feel that they narrow down possible development decisions and test the best ones. By doing
so, an agreement on how to proceed with the project is reached.

Efficient communication with product owners is especially important to developers not
only to stay on the right track, but also do deliver value on time. Both developers and
architects have recognised APIs as small building block that are easy to create. Therefore, an
API is the first thing that a developer team can actually show to the customer. They give a
base for both sides to start a discussion and proceed with more advanced and time-consuming
development such as a front-end application, which involves user experience and user in-
terfaces and can become challenging to make it right from the first attempt. However, since
product owners have some requirements that change over time, it is a task of the developers
team to decide to that extent they would be working with the initial specification and where
they would agree to adjust their work in order to implement new ideas.

"REST APIs are also not that easy, but at least it’s sometimes, in the initial phases,
it is easy to modify it, if you have implemented something wrong." [D5]

Both architects and product owners, who are informant is the semi-structured interviews,
acknowledge the importance of communicating with the customers or partners as well:

"Because we try to really be customer focused. I don’t really mean like customer
be the one who defines our product but also like who consumes our API. We had
the feeling that if you already start coding around and then, you know, just see
the interface finished, the Swagger file and the artefact, you might end up with
an API, which is quite easy to implement, but it’s not really what the customer
wants."[A6]

It is challenging to establish a common understanding of an API and explain the API itself to
the users. This usually ends up in long discussions with partners. [A2] In order to create a
usable API some architects implement peer reviews, when developing APIs.

Communicating with partners also helps receive support in their business domain as to
what kind of conceptual model is to be exposed and what semantics are to be build on top.
Therefore, architects see a trend, where successful teams work agile and closely with experts
with domain knowledge. [A5]

Organisational roles see the importance of communication for teams as an incentive, since
often the demand for an API comes from the business. That is why one has to redefine what
is a team and to include the business and the engineers into one team and that is how making
business becomes the incentive for the engineers as well. [UM1, P1]

Recommendation: Transparency is a key factor for the motivation of development teams.
An efficient communication between stakeholders and developers to get feedback on time

43

5. Analysis of Incentives for API Development and Maintenance

should be planned. Working together with the business or with people with understanding
of the domain, especially in the design phase, is important for creating a good API design
taking re-usability and the business value of the API in account.

5.4.4. Top Management Initiatives

While in literature, stories of existing success are identified as an incentive for developers
[46], [40], interviewees that have won awards for innovation for their API initiatives within
their organisations [A1, A6], say that is it a great starting point, but a lot of support is needed
further in time in order to establish a change in strategy for a bigger community. In both
companies the award is given for projects and the focus has been on opening up internal
ecosystems to the customer. The opportunity to monetize existing data and services as well
as the role of APIs as enabler has been recognised.

"People now are really looking for reusable asset or building blocks, call them
however you like. I think the awareness is necessarily there in higher management,
I would say also our product managers. People learned a lot more of how to
monetize APIs. So suddenly we have a monetary and project related incentive
ongoing." [A6]

Management involvement is especially important since there is a shift in the way of work
and the way the organisation is perceived. Top management initiatives have been described
as important by 5 architects, 3 developers and two further experts [A1, A3, A6, A12, A14,
D1, D3, D8, P1, UM1]. To enter the digital economy, new structures should be established,
focusing on the people and engaging them to reshape their old way of work by increasing
their involvement in their topics. For this to happen, top down initiatives should take place,
because it is sufficient when a few people do not support the topic of API management for it
to have enormous issues to move forward. [P1] Therefore, it is important to at least create a
virtual space, where successful stories and valuable experience is shared and where the API
topic is highlighted as with the awards, discussed in the beginning of this section. This way
an API initiative in the organization is started, bringing together tech, business, IT, security.
This is an existing strategy of leading companies in the field [D3]. They have seen that the
importance of APIs is well known in the technical teams, but they do not feel understood
from business or from the organizational side.

Success within the API economy is based on working on both business value and organisa-
tional aspect. For the development teams it is vital to identify the assets that are published,
their consumption patterns by internal and external partners. On the other hand, the business
side should discuss on the API strategy, if APIs are included in the business strategy at all
and where the focus lies. By doing so an API initiative is created in a company and it is being
stressed on the importance of APIs. [D3]

"There are several ways of spreading the awareness. One could be for example we
have groups in our communication platform, which are there. So you could have

44

5. Analysis of Incentives for API Development and Maintenance

an API community within there, where the best practices of APIs are documented
there or some information is provided there. That would be a good way to create
an API community, at least which increases the awareness." [D8]

Companies that have already established active partnerships based on opening their internal
systems via partner APIs, talk about future steps, that would not be possible without top
management involvement:

"So basically, that’s even a business strategy. Basically, go away from being a car
rental company into becoming a provider mobility platform." [UM1]

Recommendation: There is the need of a strategy shift towards API economy on an organisa-
tional level for teams to actively engage in the topic.

5.4.5. Project Organisation

For a successful strategy to enter the API ecosystem, a shift in the mindset of development
teams is seen as vital by various interview partners. In total, three architects, 6 developers and
two people from upper management and a product owner have expressed the importance of
a proper project organisation [A1, A2, A3, D1, D3, D4, D5, D6, D7, P1, UM1, UM2]. Teams
have to change their strategy towards delivering a product.

It is important that when developing an API, the end-to-end process is thought trough.
The main question should be “Where is my product standing?” and that only after identifica-
tion of the business value, it can be proceeded to architecture and development. The existing
functionality of a team and where it is standing in the value chain should be a motivating
factor for the creating of an API, that results in an offering of a product. [UM2] This change
results in a product-based team: the API developers should be a part of a multi-disciplinary
team, that is organised by product. It should be based on the product life cycle and not
project phases, working towards continuous delivery. [P1]

Further, change in the way of thinking is desired, namely by working with the unknown
rather than presenting a well-known solution. Everyone in the team should take ownership
of the delivered value instead of leadership taking over ownership. [P1]. This is a key aspect
because when an API is delivered based on existing requirements, the specification can be
very broad, resulting in people having to interpret those requirements differently and not
wanting to make a decision. [D5]

"But we don’t want to lose speed in what we’re developing. So, a lot of times we
have to make assumptions and assumptions that this might be relevant, or this
might be important. And we start building it. But parallel also crosscheck with
the concrete business unit whether this is useful or not." [A3]

Further, multiple developers, that have participated in the interviews, have pointed out that it
is vital to think domain driven, when discussing about their API-related projects. [D4, D6,

45

5. Analysis of Incentives for API Development and Maintenance

D7] Especially when working with microservices, working more in depth makes it possible
to deliver high productivity with a particular module. This helps that particular microservice
to evolve more. A well-developed microservice in a specific domain can be then distributed
horizontally in different domains, for example, a separate service, which is responsible for
authorization or authentication.

Recommendation: The project organisation should centre around the creation of a product.
Tech, business, IT, security should work together and move away from the strategy of an
isolated player to the idea of an ecosystem player through APIs.

5.4.6. API Gateway Essentials

In the exploratory interview phase of this study, some participants have pointed out that a
platform, where an API could be made visible, is crucial for teams to provide partner APIs.
In this section the extent to which it is applicable in various projects is discussed. A gateway
is seen as advantageous by 7 architects, three developers and two further people, who have
participated in the interviews [A1, A2, A3, A4, A6, A7, A14, D2, D3, D6, P1, UM1].

Interviewees from different businesses have commented that for them an API gateway
should cover technical aspects, such as authentication and authorization. [A1, A4] On the
other hand, domain functionality should be out of the scope of a gateway, resulting in a split
of the technical side from business side, thus, having a simpler API gateway. In the context
of working with a lot of partners, [UM1] expressed that the way a API gateway is used in
their firm is for defining internal quality gates. An API needs to be versioned. If someone
encloses something to the public and if they change something in the infrastructure, they
need to introduce a version. Another feature is a centralized locking for the APIs, which
means monitoring the number of requests coming in, the load of the underlying clusters.

One of the projects, on which some interview partners have been working, includes an
API gateway and has the following design:

"Apart from the connectors themselves and the semantic mapping itself, in future
we are also going to provide a monitoring end-point that will let you monitor
what you have deployed in terms of its heartbeat, how it is performing, some
measurements and KPIs." [A3]

For an API gateway to function and teams to willingly publish their APIs on a gateway, there
should already be some working interfaces existing on it. Building an API gateway means to
consider the following:

"As a developer, you will do something if you see that is going to pay off. And so,
there’s an initial problem of starting up an ecosystem - is where you don’t have
anything in the ecosystem." [A7]

46

5. Analysis of Incentives for API Development and Maintenance

It is essential to reach a critical mass, before establishing an API gateway within an organ-
isation. [A1] A first step is to have enough existing APIs operating as services and then
make the next step towards building an ecosystem. But once this critical mass is reached, the
partnership between a provider and consumer moves its focus from actively reaching out to
integrate consumers to getting the consumer to utilize the services provided. [UM1]

Different projects call for different adoption of an API gateway. It needs to be consid-
ered that not all projects are suitable for such a context. An ecosystem thrives when there is
no manual work involved, so one needs to have self-service. Big consulting projects do not fit
well, because of the underlying complexity. Their complexity is not a negative feature but
rather the quality of such projects and products. [A7] When products are too complicated
and represent different systems, it is preferred to have separate platforms for each one of
them instead of a centralized one. [UM1] However, an API gateway is meaningful in a
microservice-based architecture, where each service has a specific task and consumers cannot
have the overview of all the available functionalities. Thus, the level of granularity is a key
factor as to when an API gateway is meaningful.

Recommendation: An API gateway contributes to establishing internal quality gates, to provide
versioning, to do monitoring, to have authentication and to secure availability. The aspect of
security is leading for both architects and developers, so that the authentication is according
to the organisation’s requirements.

5.4.7. Guidelines

At all organisational levels guidelines and best practices are seen as obligatory. However,
what practice will be applied depend on the specific use case. Seven architects, four devel-
opers, two people with management roles and one product owner, speak about guidelines
in the interviews of this study [A1, A3, A4, A6, A9, A10, A14, D2, D4, D6, D7, P1, UM1, UM3].

The majority of developers [D2, D4, D6, D7], who participated in the semi-structured inter-
views, already follow some guidelines for developing APIs, but seek the help of architects
when issues arise. They find it important to have good community support and documen-
tation available and to be able to get guidance from architects, who worked on different
domains and have a broader view of the technology. Their broader knowledge also helps
developers identify projects with similar issues, that were already encountered.

Since some technologies, such as RESTful APIs, are more mature and therefore have better
documentation and best practices available, newer technologies such as GraphQL require
more support until they prove as sufficient to many services by the evaluation of the status
of those services in real time. [D7] Another example is the fact that domain-driven design
is something that is more and more asked for in order to break a monolith structure, but
engineers struggle to think in event-driven design and go back to developing REST APIs,
which are sometimes not used at all or are even hindering the project. Thus, guidelines and

47

5. Analysis of Incentives for API Development and Maintenance

best practices have to be schooled in a very hands-on way to be really taken into practice.
[A9]

From an architects’ perspective, guidelines are essential to ensure a certain quality of the
APIs. Partner-APIs have to be created at a standard since once they are published, changes
require additional communication with consumers. Thus, quality specification and standards
are to be followed, e.g. in an API gateway [A4]. Architects, that have tried to establish a
platform within their organisation, have also done multiple workshops with global architects
of several divisions to define guidelines and systematize the creation of APIs. Guidelines do
not need to be very specific, since that would make them inapplicable to a wider community
of developers. Having some ground requirements towards the quality of the APIs helps to
further estimate, if an API is actually needed. [A6]

A successful way of working is leaving the development to the project team rather than
having a central API development team. However, once there is a need of an API, the require-
ment should be evaluated outside of the team. In order to best implemented a specification
in an API, some guidance should be given, reassuring better quality [A1, A10].

Non-technical roles such as product owners [P1] and leads [UM1] have also pointed out that
for them it is important to have a centralized architecture board, that ensures a certain level
of standardization. Without such a mechanism, that secures a minimal set of rules, an API
catalogue would be impractical to customers.

An important remark is that all participants in the interview phase of this study have
been chosen so that they have experience with API development. However, guidelines and
best practices are vital for teams that want to enter the API economy by opening up their
system.

Recommendation: Creating a minimal set of best practices and standards with the help of
experienced professionals to be followed within a organization is essential for a company to
later provide new and existing APIs to partners.

Re-usability

Although re-usability of APIs is not highly prioritized when creating an API, multiple infor-
mants have pointed out that re-usability should be encouraged and that a balance between
use case specific and too generic interfaces should be found.

When architects talk about complex system with various applications, they see the pos-
sibility of reducing the complexity by creating re-usable APIs. Their experience shows that
they have been able to identify cases, where requirements are very similar, e.g. when obtain-
ing data from a system. [A1, A3] Guidance in this case is needed in order to have an API
that is not too generic. [A10] A very generic interface without actual consumers will result in

48

5. Analysis of Incentives for API Development and Maintenance

extra cost in terms of development and testing.

When asked about what kind of interfaces (connectors), with respect to re-usability, are
looked for in an API gateway, the following has been shared:

"One way we are approaching it is to provide generic connectors which are not
bound to application specific terminology. And that way we encapsulate the
protocol and we encapsulate provider generic model. The more generic you get, it
means that use cases might not be able to use it directly. So they will have to have
a semantic connector on top of the generic connector we provide, additionally. For
us, one goal is to promote reuse of such connectors, so that everybody does not
have to develop from scratch. But when you provide anything generic, you will
always have this challenge that it is not tailored to my specific need and you have
to do some effort on top of it." [A3]

One architect [A5], involved in a more mature system, which receives requirements for APIs
from customers directly, commented that their approach is to always adjust the demand in a
way that the API is generalized, so that the requirements could be further applied to other
customers of the system as well.

Implication: Re-usable API reduce the complexity of a system and save development and
maintenance costs to teams. Therefore, it is advisable to design an API as re-usable without
making is too generic for the initial use case.

5.4.8. Development Tools and Environment

Technical challenges, although much easier to overcome in comparison to others, are not to
be underestimated. Four developers, three architects and a product owner, who are interview
partners, have commented on the topic [A2, A3, A6, D3, D4, D5, D7, P1]. Making tools for
API development and maintenance available for the developers is a necessary step to enable
teams to publish quickly, securely and in a managed way.

REST APIs are widely used and a lot of tooling is already available. Informants in the
semi-structured interviews wish for more support and access to such [D5, A2]. Otherwise,
the development process becomes more problematic and complicated, resulting in time loses.

When commenting on future plans of further development of an API platform, architects
include aspects in regard to API maintenance:

"In future we are also going to provide a monitoring end-point that will let you
monitor what you have deployed in terms of its heartbeat, how it’s performing,
some measurements and KPIs." [A3]

Such tools are vital for a company to be prepared to offer its APIs to partners and although
licensing costs will arise, the benefits of such tools should be explained, similar to the advan-
tages of the cloud-based services, that are now part of most teams work [P1].

49

5. Analysis of Incentives for API Development and Maintenance

Recommendation: Development environment should be enhanced with necessary tools for
teams to easily create and maintain APIs of high quality.

Closing the gap between documentation and implementation

Especially in big systems, where there are a lot of APIs, architects have experienced that it is
hard to keep the implementation and documentation at the same level.

Even with existing established solutions, such as Swagger, there have been some minor
problems, that should be solved in the future.

"We wrote the Swagger documentation and used it for the code. So that is kind
of the one or the other way. And with both ways, we actually noticed that there
was always a small gap when it comes to action documentation versus what is
really implemented. It is not something bad or hindering or critical. But it’s just
something which we struggled with. I would say automation in that area is not
that great at the moment." [A6]

Recommendation: There is a need for a tool that enables API developers to automatically create
documentation out of implementation or vise versa with very high accuracy.

5.4.9. Monetization Strategy

Monetization is part of the API life cycle and is especially relevant for partner APIs. When
asked about their monetization strategy, most participants do not have an answer since their
work is in the context of internal APIs. However, having initial monetization strategy at hand
means future intention to enter the API economy as an ecosystem player. Two people at
leading positions, three architects and one developer have talked about monetization [A1, A3,
A6, D3, UM1, UM3].

„But with our business management, the sales, we are not really there that we
can monetize an API. [...] We kind of seen the importance of APIs, but we had no
business plans of how to monetize such an API rather than creating a front-end
and maybe a mobile application for it. And really leveraged the API’s way to scale
and iterate quickly rather than actually earning money with it. That was certainly
one roadblock, which prevented us from opening up an API to the whole world.“
[A6]

The monetization strategy is not to be left completely to the business but should be collab-
orative work of different roles involved in the process. Experience from established API
platforms suggests approaching the topic by first seeing what the actual usage of an API
is. By putting out new APIs and obtaining the data of first users using them, analysis to
see where monetization can be effective can be done. A strong monetization strategy at the
beginning or in the wrong ways will result in a lot of users put off using the APIs, and thus

50

5. Analysis of Incentives for API Development and Maintenance

will increase the barrier to entry. A better approach is to first publish APIs that can used, or
any registered developer can use, so that enough data about consumption is gathered. [D3]

Once consumption is evaluated and usage has intentionally grown, tears or base offer-
ings that anyone can use are to be introduced. Afterwards, the monetization strategy should
be evolving and be flexible instead of having fixed ratings. Such data-driven model makes
the whole team to reach better business decisions in a fast manner and be more flexible
to the changes in market. The way APIs are consumed requires an understanding of how
reoccurring revenue works. This is a necessary change in the way business is perceived in
order to understand how digital revenue models work opposed to license-based models or
traditional models.

Seeing APIs as products, which could be priced, means having a multidisciplinary team, that
does not separate development from maintenance, bur rather works on all aspects. [P1] The
decision of which interface is to be provided to partners should be made by the ones who
have the business insights and have identified potential use cases. [A1]

Monetization is key aspect of the way a platform is developed. Mature platforms follow the
business strategy to build and offer everything as a service. [A3] Starting an API platform
at a company, where APIs are to be provided to partners, calls for potential customers
to be identified and also decide on which assets are to be monetized, such as connectors,
applications, usage. A decision at what level of granularity will the pricing take place has to
made.

The incentive is to be able to offer a visible and transparent plan how maintainers of complex
systems can monetize their changes and how they can get payments for the traffic. There is a
need for a process of commercial marketing that enables providers to make their APIs visible
fast and also to enable consumers to be also to get access to the APIs fast. [UM2]

Recommendation: The monetization of an API is not to be underestimated. This step of
the API life cycle calls for the domain expertise of the business to support teams. The business
side needs to adjust its monetization strategy to the way APIs are consumed.

51

6. API Development Process as an Economic
Mechanism

As a result of the literature review and interview result, it is visible that APIs in large IT
organisations are often created on demand, sometimes to introduce new features based on the
expertise of developers and architects involved in the process and rarely to purposefully ex-
pose the business value of an internal system for the sake of creating new business possibilities.

Incentives vary from business to business and from product to product. Therefore, it is
of interest to know how one can model such mechanisms and apply the approach to a specific
case. Since, based on this study, the business value is key factor for the creation of partner
APIs, software economics should be considered and game theory as a theoretical framework
could be applied for optimal decision making and maximization of productivity.

To date, no specific game theory methods have been found for the development of APIs,
however, Yilmaz et al. [56] proposes an economic mechanism design to improve software
development process, which fits very well to the scope of this study. The aim of the mecha-
nism is to "find ways to adjust the incentives and disincentives of the software organization to
align them with the motivations of the participants in order to maximize the delivered value
of a software project" [56].

Identifying the need or the potential interest for an endpoint relies on communication
with stakeholders and working with different use cases, thus, it could be considered as a re-
sult of a set of social activities. [57] Social aspects, such as knowledge sharing and motivation,
make the application of economic modelling useful for designing a game theoretic model for
the API life cycle. [58]

What makes the economic mechanism presented in [56] suitable for the social setting of
API development is the fact that information is considered of economic value, which in our
case is the information given by the API. The development and maintenance can be looked
at as a production and distribution of organizational services, which makes it an economic
activity based on information exchange economy. Based on those similarities one can model
the development process as a Stackelberg game [33], which is an interaction model, consisting
of leaders and followers in terms of game theory. In this particular model the leader chooses
a strategy at first and followers then act second as to maximize the outcome. APIs are part
of software products, which are usually developed by teams consisting of team leads and
developers. This means that in the economic model the team lead is the leader and the

52

6. API Development Process as an Economic Mechanism

developers are the followers, who have the main objective to maximize the business value of
the project by creating an API. The team leader could also be a software architect in some
cases. The Stackelberg game is formed by a manager, who in this particular scenario should
be the product owner.

Next, the steps to reach equilibrium and thus have an optimal payoff as presented in [56]
are listed, but adjusted to the development of APIs in particular. The steps aim to reveal the
goals, preferences and skills of participants and then decide on the social outcome. The steps
are visualised in Figure 6.1 in a simplified manner.

Figure 6.1.: Information exchange in Stackelberg form. The graphic is adopted from [56].

• First, team leads identify their preferences. Team leads establish a team strategy set
based on possible motivators and demotivators, from both the perspective of the team
leads and team members. Aligning this set with other activities of the team, the team
leads prioritize the development of an API accordingly to create an incentive for the
team effort.

• Team members also classify motivators and demotivators for the development of an
API and inform the product owner (the one who forms the game).

• The product owner announces the given information to the teams leads and the devel-
opers sequentially.

• Based on the preferred motivators, given by leaders and followers, a decision is reached.

The motivation of development teams has been widely researched in this study, based both
on literature and semi-structured interviews with professionals from different projects and
different industries. These insights could be applied as a starting point as described in the

53

6. API Development Process as an Economic Mechanism

design on the economic mechanism.

In section 5.4 a concept is discussed, which is based on the challenges and incentives
that interview partners have shared. In chapter 7 an evaluation of the concept is discussed.
Therefore, one could argue that the concept is to some extent based on this design mechanism.
The actual application of the concept is the missing point from the list above and is part of
future work. However, this study shows that the design mechanism presented in this chapter
is applicable to studying the incentives of API development in an organisation.

54

7. Evaluation

In this section the quality and credibility of the results is discussed. To estimate how well the
concept in section 5.4 of this study captures challenges and incentives in API development
and maintenance, a follow-up round of interviews is conducted, where participants are
asked to further comment on the recommendations additionally to the questions of the initial
interview questions.

7.1. Evaluation Results

A total of 5 interviews included an evaluation section of the recommendations. Three of the
participants are working as software architects, one is a team lead, and another is a data
scientist. All participants work within the organisation, which is the main collaborator in the
scope of this thesis. The recommendations, as stated in the interviews, can be found in A.2.

7.1.1. Data Sharing

When asked about the need of a platform for data sharing, participants overall support the
idea and have made a few remarks. A few projects that have a similar approach and are
currently ongoing in the organisation have been listed. However, a concern would be that one
could lose the control over the data, in case all of it is gathered on one platform. Thus, data
would be exposed at risk because of the size of the organisation. Another concern in regard to
the volume of the data is that a platform would become overbuilt and a possible solution to
this would be to distribute the data by domains. This idea of distribution has been supported
by further participants and has been mentioned as a concern in the first interview round,
making it an important point to take into consideration. A further advantage of distributing
the data is the data latency.

7.1.2. Speed

Self-service for customers with little technical background is evaluated positively especially
for data that is not too complex. The reason behind is APIs that provide more complex data
are connected to behavior and are not easy to understand.

Self-service is a vital point when it comes to projects with external partners. It is also
important that the API documentation and the API specification are on the same version.

55

7. Evaluation

Further remarks made for the concept of speed is that there has to be API user experi-
ence design. Customers should be able to understand if an API is relevant to them. It should
also be included a way for the customer to understand the sequence in which an API works
in a complex system.

7.1.3. Communication

When discussing the efficient communication between the development team and the stake-
holders, the leading aspect, that interviewees have had in mind, is communication towards
high quality interfaces. From their experience, informants have said that it is the case that
team members should communicate frequently, but prefer not to, conditioned on their ex-
pertise. This could strongly hinder the creation of an API that is intended as a partner
or as a public one. However, the idea that communication is important has been overall
supported. Especially the design phase of the API development is where there should be real
feedback from users and where the specification of APIs should be cleared. New requirements
should also be well-communicated and since most teams nowadays work in an agile fashion,
communication should be reoccurring.

Overall, the quality of the communication and the way it is organised depends on the
team. To assure that products are usable, the developers that are consumers of APIs should
be taken into account. A lot of user stories should be collected in the design phase for a good
API to be created. In case the API is not created for an existing use case, potential clients
should be contacted.

From working experience, it has been stated, that some development teams make inter-
nal reviews, pre-versions and workshops in order to ensure high quality APIs. An important
factor, that has not been stated before is that when new members come to a team, the
inner-organisation of the team restarts until the people within the team adjust to working
together. This is not only critical, for the development of new APIs, but for their maintenance
as well. An existing API of good quality could easily be made complex by implementing new
requirements into existing logic that do not fit well into that logic.

7.1.4. Top Management Initiatives

The main focus of top management initiatives is creating awareness within an organisation
of the key role of APIs as part of the strategic software assets of a company. While most
comments on this point have been positive, an opinion has been expressed that such initiatives
might not be needed, because employees are aware of APIs’ advantages and their use is part
of good software development practices.

On the other hand, the majority of people evaluating this idea, agree on the importance of
creating awareness, especially when talking about APIs that are to be used outside of the
company. Once such an API is published, the existing implementation cannot be changed.

56

7. Evaluation

Having APIs that are not easy to use, would make people stop using the software of that
company. Thus, awareness is vital for standardizing the process and should occur at domain
level if not at organisational.

Further, the awareness for API gateways has been covered.

"API gateways are pretty good. So I think that as architects, as developers, we
need to be aware of this. We need to understand about the pros and cons." [A8]

Another point that has been brought up, when commenting on top management initiatives, is
raising the awareness of collaboration within the organisation.

7.1.5. Project Organisation

In general, the participants in the evaluation agree with this proposition. Thinking domain-
driven is a point that one of them also further commented, namely in going from the
explicit RESTful interfaces to event-driven design. It has been stressed on the fact that even
experienced API developers are challenged by designing an API that uses eventing. The
change in this direction is, however, necessary because event-driven API architectures have
various advantages and become mandatory for specific use cases, e.g. in applying machine
learning algorithms in real time, as one interviewee explained. Although ownership culture
often lies within the values of big enterprises, people agree that more light should be shed
into that direction.

7.1.6. Managed API Gateway

When talking about a managed API gateway, people have not only agreed that this is a
meaningful recommendation, but further expressed different important aspects about them.

"We see a lot of API orchestration, that is done via API gateways. And API
gateways are also very popular now [...] as a way to realize digital platforms.
Everybody is creating some or the other value-added services in the business
world, in the research world. People want their services to be discoverable by
others, to be used by others, to put together contact specific solutions. Because
what I may create may address a very small problem. But the customer has
really bigger problem. And we need a combination of such services to target that
problem. These are really cases that keep coming up in the real world." [A8]

It has been further stated that API gateways may become a design pattern.

Other advantages listed are that an API gateway is a way to bring together multiple cloud
platforms, that such a gateway will be necessary to ensure the security of the data. Further,
open questions were also mentioned, such as how would such a solution work in a real-time
system and what should the exact functionality of the gateway be.

57

7. Evaluation

7.1.7. Guidelines and Best Practices

The proposition of having best practices and standards to be followed within an organisation
has received acceptance to some extend with some important remarks. Some say that there are
good guidelines in the software community that is outside the boundaries of the organisation
and in the open source community. Standardization might not be applicable due to language
specifics, as well as the fact that APIs can be specific to a given use case. Others agree that
this is relevant, that standardized documentation with examples is necessary as well as a lot
of API governance to ensure, for example backward compatibility. Code reviews has also
been mentioned as an advantageous element of API development.

Projects given as positive examples, that have been described in the interviews, all provide
reviews. Thus, a extensions of this recommendation would be to conduct such reviews. They
are not only needed to ensure a certain level of quality of the API and backward compatibility,
but also estimate the need of the API in an already existing system, its meaningfulness.

7.1.8. Development Tools and Environment

The importance of having an environment where developers can publish quickly and securely
and have tools for API development and maintenance has been differently evaluated due to
the work specifics of the participants. Those, who work in research and development, do
realize that there are such tools and it would be relevant to raise the awareness of standards.
Others, that work with productive systems, say a lot is currently missing, such as tools for
testing, for mocking, for module concept development. Developers lack knowledge how to
maintain an interface even when the API is well-designed and implemented, e.g. how to go
from on-premise to cloud solutions and how to extend an interface with new requirement
that do not fit the existing implementation.

More experienced professionals see the need of trainings for teams, that are project spe-
cific and focus on real projects, rather than just concepts because concepts are not so well
applied in practice, when learned only in theory.

7.1.9. Monetization Strategy

An important remark to the proposition of developing a monetization strategy for providing
APIs to customers is that the participants in the evaluation phase have primarily experience
in projects, where APIs have been used internally. Therefore, they see monetization as an
important step, but think that there should be some initial awareness created around that
topic and the specifics should be designed to the project accordingly.

58

8. Conclusion

In this chapter final remarks to the study are made. First, the results of the work presented in
this thesis are summarized, followed by limitations and an outlook for future work.

8.1. Summary

A summary of each of the defined research questions, as described in chapter 1, is presented
below:

RQ1: What are the challenges for providing partner APIs in internal solutions?

The research on challenges for opening internal systems via partner APIs shows that there
are different obstacles at each step of the API life cycle. The strategy for providing APIs is
concerning both software engineers and management roles. The developers’ education should
be taken into consideration and the overall organisation of teams has to be planned in a way
that new tasks are properly addressed. API design holds many challenges documented in
literature and discussed in the semi-structured interviews. The main concern, when designing
a partner API, is balancing between the creation of a generic interface and one that is specific
to a single use case. Writing documentation that is clear to follow and easily to understand is
challenging for many. Other topics, such as API maintenance and monetization strategies,
that come later on in the API life cycle hold further challenges. Technical obstacles, like
versioning with the introduction of breaking changes as little as possible and providing
the right security measurements, and organisational ones, like deciding on a monetization
strategy, are faced by professionals of this study.

RQ2: What are existing incentive mechanisms motivating teams to provide
partner APIs?

An important result for this research question is that there is very little academic literature
about existing incentives for providing partner APIs. Therefore, other software development
topics have been studied and rationales about the application of existing incentive mecha-
nisms from them has been given. Gamification, an approach widely applied for motivating
developers, is not seen as suitable for API development. Other incentives, e.g. showing
projects that are successful and creating awareness, could find their application in large IT
organisations in the context of API economy.

RQ3: What are incentives for providing APIs or API platforms in a large IT
organization?

59

8. Conclusion

Surprisingly, little has been identified as a direct incentive for developing and maintaining
APIs in practice. Professionals consider the technical advantages of APIs as a leading
motivator as to why they incorporate them in their solutions. The granularity of APIs
enables experts to reduce the complexity in existing legacy systems and maintain those easier.
They see the potential to better optimize systems and to introduce new features with less
effort. Interview partners have talked about the transparency as an incentive for developers.
The better understanding of business processes through APIs and the direct overview of
the consumption of their products are factors that contribute to the future evolution of
development teams.

RQ4: What are recommendations of action for incentivizing developers and
architects to provide partner APIs?

In total nine recommendations of action are proposed in this thesis. Some are providing a
platform for data sharing and a managed API gateway. Essential is to help development teams
by establishing guidelines and ensuring they have the needed tools and environment for API
development and maintenance. In the aspect of working with partners, it is important to give
consumers access to valuable assets in a self-service manner and to think about monetization
strategies. Finally, at every organisational level, some management changes are advisable.
Top management initiatives support an overall digitalization strategy, where APIs are in
focus. Projects should be reshaped so that teams start thinking domain-driven and as an
ecosystem player. Also, the communication between all people involved in the process should
be planned, so that better efficiency is ensured.

8.2. Limitations and Future Work

Different limitations impact the results of the study. Many interview partners of the semi-
structured interviews and the exploratory phase, conducted in this thesis, are working at the
main industry partner. A few other professionals from three other companies are included.
However, the limited number of participants and projects covered in the study, makes the
generalization of the findings hard. The lack of literature resource that match the topic exactly
has further resulted in limitations of the results.

Another limitation is the time frame for the study. In the given time, the recommenda-
tions of actions have been defined. A longer time period would have allowed for a more
detailed evaluation of the concept and also for the usage of it in practice.

It is important to consider that the results of the thesis are influenced by the technical
specifics of RESTful APIs as they are widely used in the studied projects. In general, many
informants have experience in working with private APIs and less with partner APIs. The
proposed strategies could be further refined according to the API types.

Last, many of the studied APIs are created on demand. APIs are usually coming from

60

8. Conclusion

specific use cases and it is hard to incentivize someone to create an API without having a use
case at hand. Having an existing use case directly identifies the potential customers of the
interface and the foreseen resource for its creation and maintenance are easily justified.

Consecutive work of the findings of this thesis would be towards overcoming the limi-
tations described above. The realization of the recommendations of action in an organisation
will reveal their strengths and flaws and will produce base for further refinement. A prac-
tical setting will define which recommendations contribute most to the incentivization of
development teams. Based on different businesses, the business value chain might vary, and
the needs of partners might differ. Future work is foreseen in the adjustment of the concept
to such cases and its adoption to the structures of different companies. The concept should
evolve so that organisations can effectively utilize and offer services, generate new revenue
streams and new business models.

61

A. Appendix

A.1. Questionnaire for Requirement Interviews

Introduction:

Thank you for accepting the invitation to participate in an interview to the topic “Iden-
tification and Evaluation of Incentive Mechanisms for Opening Internal Systems Via Partner
APIs”.

The master thesis is in cooperation with Siemens (CT, Research in Digitalization and Au-
tomation, Software and System Innovation, Architecture Definition Management/CT RDA
SSI ADM-DE) and TU Munich, the chair for Software Engineering for Business Information
Systems.

With this interview I aim to understand your position about API management challenges and
existing and possible motivating factors when it comes to API development and maintenance.
The research topic concentrates more on the social aspect of API management, in the roles of
the people involved in the process rather than the technical one.

A bit more information about my research topic – APIs have become an important as-
pect of today’s digital economy. Their ability to provide access to data, services and processes
has been recognized as a valuable advantage from many organizations. My goal is to, first,
understand the requirements for a possible incentivizing process and second, try to create one.

It would be interesting to know what the current situation at <name-of-company> is and to
understand what are driving forces for API development and maintenance.

From this point on this session will be recorded. If you have any disagreement to this,
please state it now.

General:

1. Which of the roles below is applicable to you (developer/project owner/team lead/ar-
chitect)?

2. How many years have you been practicing this role?

Overview of the API-related project(s):

62

A. Appendix

1. Briefly, what API related projects did you work on?

a) Why: What was the reason to develop an API?

b) What is the goal of the API? (Who is using it?)

c) What is the current status of the API?

d) What are future plans?

2. How was the API designed?

a) Was there a defined process? Why?

b) Did you use guidelines?

3. What challenges did you face?

a) Why?

b) API life-cycle? (e.g. during design, implementation, deployment, monitoring,
deprecation)

4. How did you overcome those challenges?

a) Did it work? Why?

b) What would you do different now if you could start over?

5. Which incentive mechanisms would have helped solve the challenges?

a) Would incentivizing help at all? Why? Why not?

b) Which mechanisms would work?

6. What is motivating to you for API management?

a) Why?

A.2. Questionnaire for Evaluation Interviews

Recommendations to evaluate:

1. Platform for data sharing - data description, data owner, how to access the data

2. Communication - plan efficient communication between stakeholders and developers to
get feedback on time. Work together with the business/person with understanding of
the domain on the design

3. Top management initiatives - create awareness within the organization

4. Project organization - organize the people in a project-based team; think domain-driven;
think as a player within an ecosystem; encourage ownership culture.

5. Managed API Gateway - key point is to enable easy authentication; others are e.g.
availability, security, version control.

63

A. Appendix

6. Guidelines - create best practices and standards to be followed within the organization;
keep re-usability in mind in the design phase

7. Development tools and environment - enable developers to publish quickly, securely
and in a managed way; provide tools for API development/maintenance

8. Monetization strategy - readily designed by the business unit

9. Speed - key factor for both developers and customers (enable developers to create APIs
fast and self-service for customers with little technical background)

64

List of Figures

1.1. Overview of the research approach . 4

2.1. API value chain . 9
2.2. Something else can be written here for listing this, otherwise the caption will

be written! . 10

5.1. Overview of a CRM architecture . 35
5.2. Overview of an API platform . 36

6.1. Information exchange in Stackelberg form . 53

65

List of Tables

1.1. IDs, roles, years of experience at the given role and company of the interview
partners from the semi-structured interviews. 5

1.2. IDs, roles and companies of the interview partners from the exploratory un-
structured interviews. 5

4.1. Challenges of providing partner APIs based on main sources of literature
review. The challenges are sectioned by the phases of the API life cycle. 20

4.2. Challenges of providing partner APIs based on semi-structured interviews.
The challenges are sectioned by the phases of the API life cycle. 28

5.1. Incentives found in literature based on various software processes. 34

66

Bibliography

[1] R. Narain, A. Merrill, and E. Lesser. Evolution of the API economy Adopting new business
models to drive future innovation IBM Institute for Business Value. Tech. rep. 2016. url:
https://public.dhe.ibm.com/common/ssi/ecm/gb/en/gbe03759usen/gbe03759-
usen-03_GBE03759USEN.pdf.

[2] M. Careem. “Building an API Strategy Using an Enterprise API Marketplace”. In: June
(2017). url: https://wso2.com/whitepapers/building-an-api-strategy-using-an-
enterprise-api-marketplace/.

[3] The API Mandate – Install API Thinking at your Company. url: https://api-university.
com/blog/the-api-mandate/),.

[4] S. Willmott, G. Balas, and D. Weiss. “Winning in the API Economy”. In: Journal (2013),
p. 69. url: http://www.3scale.net.

[5] K. Lee and N. Ha. “AI platform to accelerate API economy and ecosystem”. In: Inter-
national Conference on Information Networking. Vol. 2018-Janua. IEEE Computer Society,
Apr. 2018, pp. 848–852. isbn: 9781538622896. doi: 10.1109/ICOIN.2018.8343242.

[6] R. Malcolm, C. Morrison, T. Grandison, S. Thorpe, K. Christie, A. Wallace, D. Green, J.
Jarrett, and A. Campbell. “Increasing the accessibility to Big Data systems via a common
services API”. In: Proceedings - 2014 IEEE International Conference on Big Data, IEEE Big
Data 2014. Institute of Electrical and Electronics Engineers Inc., Jan. 2015, pp. 883–892.
isbn: 9781479956654. doi: 10.1109/BigData.2014.7004319.

[7] S. Kubler, J. Robert, A. Hefnawy, K. Främling, C. Cherifi, and A. Bouras. “Open IoT
Ecosystem for Sporting Event Management”. In: IEEE Access 5 (2017), pp. 7064–7079.
issn: 21693536. doi: 10.1109/ACCESS.2017.2692247.

[8] L. Weir. Enterprise API Management: Design and deliver valuable business APIs. Packt
Publishing Ltd, 2019. isbn: 1787285618.

[9] M. Medjaoui, E. Wilde, R. Mitra, and M. Amundsen. Continuous API Management:
Making the right decisions in an evolving landscape. O’Reilly Media, 2018. isbn: 1492043524.

[10] S. Keele. “Guidelines for performing systematic literature reviews in software engineer-
ing”. In: Technical report, Ver. 2.3 EBSE Technical Report. EBSE (2007).

[11] M. Wiesche, M. C. Jurisch, P. W. Yetton, and H. Krcmar. “Grounded Theory Methodology
in IS Research”. In: 41.3 (2017), pp. 685–701. url: http://www.misq.org.

67

https://public.dhe.ibm.com/common/ssi/ecm/gb/en/gbe03759usen/gbe03759-usen-03_GBE03759USEN.pdf
https://public.dhe.ibm.com/common/ssi/ecm/gb/en/gbe03759usen/gbe03759-usen-03_GBE03759USEN.pdf
https://wso2.com/whitepapers/building-an-api-strategy-using-an-enterprise-api-marketplace/
https://wso2.com/whitepapers/building-an-api-strategy-using-an-enterprise-api-marketplace/
https://api-university.com/blog/the-api-mandate/),
https://api-university.com/blog/the-api-mandate/),
http://www.3scale.net
https://doi.org/10.1109/ICOIN.2018.8343242
https://doi.org/10.1109/BigData.2014.7004319
https://doi.org/10.1109/ACCESS.2017.2692247
http://www.misq.org

Bibliography

[12] E. Herranz, R. Colomo-Palacios, A. de Amescua Seco, and M. L. Sánchez-Gordón.
“Towards a gamification framework for software process improvement initiatives: Con-
struction and validation”. In: Journal of Universal Computer Science 22.12 (2016), pp. 1509–
1532. issn: 09486968.

[13] D. Jacobson, D. Woods, and G. Brail. APIs: A Strategy Guide. 2012, pp. 4–46. isbn:
9781449308926.

[14] A. Nordic. Developing the API mindset: a guide to using private, partner, & public APIs
(2015).

[15] I. Hammouda, E. Knauss, and L. Costantini. “Continuous API Design for Software
Ecosystems”. In: Proceedings - 2nd International Workshop on Rapid Continuous Software
Engineering, RCoSE 2015. 2015, pp. 30–33. isbn: 9781479919345. doi: 10.1109/RCoSE.
2015.13.

[16] Kong: Next-Generation API platform for Microservices. url: https://konghq.com/.

[17] S. Gadge, P. Architect, V. Kotwani, and S. Engineer. “Microservice Architecture : API
Gateway Considerations”. In: (2017), p. 13. url: https://www.globallogic.com/paper/
microservice-architecture-api-gateway-considerations/.

[18] Full API lifecycle management: A primer - Red Hat Developer. url: https://developers.
redhat.com/blog/2019/02/25/full-api-lifecycle-management-a-primer/.

[19] The Importance of Loose Coupling in REST API Design. url: https : / / dzone . com /
articles/the-importance-of-loose-coupling-in-rest-api-desig.

[20] M. H. Valipour, B. Amirzafari, K. N. Maleki, and N. Daneshpour. “A brief survey of
software architecture concepts and service oriented architecture”. In: 2009 2nd IEEE
International Conference on Computer Science and Information Technology. 2009, pp. 34–38.

[21] Yale Yu, H. Silveira, and M. Sundaram. “A microservice based reference architecture
model in the context of enterprise architecture”. In: 2016 IEEE Advanced Information
Management, Communicates, Electronic and Automation Control Conference (IMCEC). 2016,
pp. 1856–1860.

[22] Design patterns for modern web APIs. url: https://blog.feathersjs.com/design-
patterns-for-modern-web-apis-1f046635215.

[23] L. Murphy, T. Alliyu, A. Macvean, M. B. Kery, and B. A. Myers. “Preliminary Analysis
of REST API Style Guidelines”. In: PLATEAU’17 Workshop on Evaluation and Usability
of Programming Languages and Tools (2017), pp. 1–9. url: https://codeplanet.io/
principles- good-restful- api-design/%20http://www.cs.cmu.edu/~NatProg/
papers/API-Usability-Styleguides-PLATEAU2017.pdf.

[24] Zalando SE. Zalando RESTful API and Event Scheme Guidelines. 2017. url: https://
opensource.zalando.com/restful-api-guidelines/%20https://zalando.github.
io/restful-api-guidelines/#100.

[25] 9 Best Practices to implement in REST API development. url: https://www.merixstudio.
com/blog/best-practices-rest-api-development/.

68

https://doi.org/10.1109/RCoSE.2015.13
https://doi.org/10.1109/RCoSE.2015.13
https://konghq.com/
https://www.globallogic.com/paper/microservice-architecture-api-gateway-considerations/
https://www.globallogic.com/paper/microservice-architecture-api-gateway-considerations/
https://developers.redhat.com/blog/2019/02/25/full-api-lifecycle-management-a-primer/
https://developers.redhat.com/blog/2019/02/25/full-api-lifecycle-management-a-primer/
https://dzone.com/articles/the-importance-of-loose-coupling-in-rest-api-desig
https://dzone.com/articles/the-importance-of-loose-coupling-in-rest-api-desig
https://blog.feathersjs.com/design-patterns-for-modern-web-apis-1f046635215
https://blog.feathersjs.com/design-patterns-for-modern-web-apis-1f046635215
https://codeplanet.io/principles-good-restful-api-design/%20http://www.cs.cmu.edu/~NatProg/papers/API-Usability-Styleguides-PLATEAU2017.pdf
https://codeplanet.io/principles-good-restful-api-design/%20http://www.cs.cmu.edu/~NatProg/papers/API-Usability-Styleguides-PLATEAU2017.pdf
https://codeplanet.io/principles-good-restful-api-design/%20http://www.cs.cmu.edu/~NatProg/papers/API-Usability-Styleguides-PLATEAU2017.pdf
https://opensource.zalando.com/restful-api-guidelines/%20https://zalando.github.io/restful-api-guidelines/#100
https://opensource.zalando.com/restful-api-guidelines/%20https://zalando.github.io/restful-api-guidelines/#100
https://opensource.zalando.com/restful-api-guidelines/%20https://zalando.github.io/restful-api-guidelines/#100
https://www.merixstudio.com/blog/best-practices-rest-api-development/
https://www.merixstudio.com/blog/best-practices-rest-api-development/

Bibliography

[26] A. Mora, D. Riera, C. Gonzalez, and J. Arnedo-Moreno. “A Literature Review of
Gamification Design Frameworks”. In: VS-Games 2015 - 7th International Conference on
Games and Virtual Worlds for Serious Applications. Institute of Electrical and Electronics
Engineers Inc., Oct. 2015. isbn: 9781479981021. doi: 10.1109/VS-GAMES.2015.7295760.

[27] P. Hagglund. “Taking gamification to the next level”. In: (2012), p. 37.

[28] I. Blohm and J. M. Leimeister. “Gamification: Design of IT-based enhancing services
for motivational support and behavioral change”. In: Business and Information Systems
Engineering 5.4 (Aug. 2013), pp. 275–278. issn: 18670202. doi: 10.1007/s12599-013-
0273-5. url: http://freshdesk.com/gamification-of-support-help-desk/..

[29] M. Tennenholtz. “Game-theoretic recommendations: Some progress in an uphill battle”.
In: Proceedings of the International Joint Conference on Autonomous Agents and Multiagent
Systems, AAMAS. Vol. 1. 2008, pp. 13–19. isbn: 9781605604701. url: www.ifaamas.org.

[30] R. B. Myerson. Game theory. Harvard university press, 2013. isbn: 0674728610.

[31] M. Grechanik. “Analyzing software development as a noncooperative game”. In: In-
stitution of Engineering and Technology (IET), July 2006, pp. 29–34. doi: 10.1049/ic:
20040282.

[32] M. Yilmaz and R. V. O’Connor. “A software process engineering approach to improving
software team productivity using socioeconomic mechanism design”. In: ACM SIGSOFT
Software Engineering Notes 36.5 (2011), pp. 1–5. issn: 0163-5948. doi: 10.1145/2020976.
2020998. url: http://doi.acm.org/10.1145/2020976.2020998.

[33] H. v. Stackelberg. “Theory of the market economy”. In: (1952).

[34] H. Jiang and J. Ruan. “The stackelberg power control game in wireless data networks”.
In: Proceedings of 2008 IEEE International Conference on Service Operations and Logistics,
and Informatics, IEEE/SOLI 2008. Vol. 1. 2008, pp. 556–558. isbn: 9781424420131. doi:
10.1109/SOLI.2008.4686458.

[35] J. W. Moran and B. K. Brightman. “Leading organizational change”. In: Career develop-
ment international 6.2 (2001), pp. 111–119. issn: 1362-0436.

[36] R. T. By. “Organisational change management: A critical review”. In: Journal of Change
Management 5.4 (Dec. 2005), pp. 369–380. issn: 1469-7017. doi: 10.1080/14697010500359250.
url: https://www.tandfonline.com/doi/full/10.1080/14697010500359250.

[37] R. Gill. “Change management–or change leadership?” In: Journal of Change Management
3.4 (Dec. 2002), pp. 307–318. issn: 1469-7017. doi: 10.1080/714023845. url: https:
//www-tandfonline-com.eaccess.ub.tum.de/doi/abs/10.1080/714023845.

[38] L. Murphy, M. B. Kery, O. Alliyu, A. Macvean, and B. A. Myers. “API designers in the
field: Design practices and challenges for creating usable APIs”. In: Proceedings of IEEE
Symposium on Visual Languages and Human-Centric Computing, VL/HCC. Vol. 2018-Octob.
2018, pp. 249–258. isbn: 9781538642351. doi: 10.1109/VLHCC.2018.8506523.

[39] S. Andreo and J. Bosch. “API Management Challenges in Ecosystems”. In: International
Conference on Software Business. Springer, 2019, pp. 86–93.

69

https://doi.org/10.1109/VS-GAMES.2015.7295760
https://doi.org/10.1007/s12599-013-0273-5
https://doi.org/10.1007/s12599-013-0273-5
http://freshdesk.com/gamification-of-support-help-desk/.
www.ifaamas.org
https://doi.org/10.1049/ic:20040282
https://doi.org/10.1049/ic:20040282
https://doi.org/10.1145/2020976.2020998
https://doi.org/10.1145/2020976.2020998
http://doi.acm.org/10.1145/2020976.2020998
https://doi.org/10.1109/SOLI.2008.4686458
https://doi.org/10.1080/14697010500359250
https://www.tandfonline.com/doi/full/10.1080/14697010500359250
https://doi.org/10.1080/714023845
https://www-tandfonline-com.eaccess.ub.tum.de/doi/abs/10.1080/714023845
https://www-tandfonline-com.eaccess.ub.tum.de/doi/abs/10.1080/714023845
https://doi.org/10.1109/VLHCC.2018.8506523

Bibliography

[40] N. Baddoo and T. Hall. “Motivators of Software Process Improvement: An analysis
of practitioners’ views”. In: Journal of Systems and Software 62.2 (2002), pp. 85–96. issn:
01641212. doi: 10.1016/S0164-1212(01)00125-X. url: www.elsevier.com/locate/jss.

[41] E. Haruvy, F. Wu, and S. Chakravarty. Incentives for Developer’s Contributions and Product
Performance Metrics in Open Source Development: an Empirical Exploration. April. 2005.
isbn: 1075-2730. doi: 10.1176/appi.ps.57.7.1035. url: http://115.111.81.83:
8080/xmlui/handle/123456789/6277.

[42] P. Fremantle, J. Kopecký, and B. Aziz. “Web API management meets the internet of
things”. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). Vol. 9341. Springer Verlag, 2015, pp. 367–
375. isbn: 9783319256382. doi: 10.1007/978-3-319-25639-9{_}49.

[43] M. P. Robillard and R. Deline. “A field study of API learning obstacles”. In: Empirical
Software Engineering 16.6 (2011), pp. 703–732. issn: 1382-3256.

[44] H. G. Afridi. “Empirical investigation of correlation between rewards and crowdsource-
based software developers”. In: Proceedings - 2017 IEEE/ACM 39th International Conference
on Software Engineering Companion, ICSE-C 2017. 2017, pp. 80–81. isbn: 9781538615898.
doi: 10.1109/ICSE-C.2017.149.

[45] E. Schindler. Building a developer ecosystem: What vendors do to attract you to their platforms.
2013. url: https://www.itworld.com/article/2704738/building-a-developer-
ecosystem--what-vendors-do-to-attract-you-to-their-platforms.html.

[46] D. R. Agrawal. “If Open Source Code Is a Public Good, Why Does Private Provision
Work (Or Does It)”. In: LBJ J. Pub. Aff. 18 (2005), p. 55.

[47] “The future of enterprise applications”. In: AMR Research, pp. 1–1. isbn: 9780978592813.
doi: 10.1109/icis.2013.6607805. url: https://books.google.de/books?id=
3O1Z7boX8ZEC.

[48] J. A. Halderman. “To strengthen security, change developers’ incentives”. In: IEEE
Security and Privacy 8.2 (Mar. 2010), pp. 79–82. issn: 15407993. doi: 10.1109/MSP.2010.
85.

[49] Evans Data Corporation | Five PitFalls to Avoid in a Developer Program. url: https:
//evansdata.com/reports/viewRelease.php?reportID=36.

[50] S. Liu. “Research on Token Incentive Mechanism of Open Source Project - Take Block
chain Project as an Example”. In: IOP Conference Series: Earth and Environmental Science.
Vol. 252. 2. IOP Publishing, 2019, p. 022029. doi: 10.1088/1755-1315/252/2/022029.
url: http://dx.doi.org/10.1088/1755-1315/252/2/022029.

[51] C. R. Ramesh, K. N. Prasad, H. H. P. K. Bhuravarjula, and V. V. D. N. Krishna. “Cus-
tomer Relationship Management System with {USCM-AKD} Approach of {D3M}”. In:
International Journal on Computer Science & Engineering 1.6 (2010), pp. 2036–2040. issn:
09753397. url: https://www.researchgate.net/publication/49620491_Customer_
Relationship_Management_System_with_USCM-AKD_Approach_of_D3M.

70

https://doi.org/10.1016/S0164-1212(01)00125-X
www.elsevier.com/locate/jss
https://doi.org/10.1176/appi.ps.57.7.1035
http://115.111.81.83:8080/xmlui/handle/123456789/6277
http://115.111.81.83:8080/xmlui/handle/123456789/6277
https://doi.org/10.1007/978-3-319-25639-9{_}49
https://doi.org/10.1109/ICSE-C.2017.149
https://www.itworld.com/article/2704738/building-a-developer-ecosystem--what-vendors-do-to-attract-you-to-their-platforms.html
https://www.itworld.com/article/2704738/building-a-developer-ecosystem--what-vendors-do-to-attract-you-to-their-platforms.html
https://doi.org/10.1109/icis.2013.6607805
https://books.google.de/books?id=3O1Z7boX8ZEC
https://books.google.de/books?id=3O1Z7boX8ZEC
https://doi.org/10.1109/MSP.2010.85
https://doi.org/10.1109/MSP.2010.85
https://evansdata.com/reports/viewRelease.php?reportID=36
https://evansdata.com/reports/viewRelease.php?reportID=36
https://doi.org/10.1088/1755-1315/252/2/022029
http://dx.doi.org/10.1088/1755-1315/252/2/022029
https://www.researchgate.net/publication/49620491_Customer_Relationship_Management_System_with_USCM-AKD_Approach_of_D3M
https://www.researchgate.net/publication/49620491_Customer_Relationship_Management_System_with_USCM-AKD_Approach_of_D3M

Bibliography

[52] R. Meier. “Business Model for a Developer Eco-System”. PhD thesis. Swiss Research
Institute of Small Business and Entrepreneurship, 2017, p. 58.

[53] R. D. Morey, C. D. Chambers, P. J. Etchells, C. R. Harris, R. Hoekstra, D. Lakens, S.
Lewandowsky, C. C. Morey, D. P. Newman, F. D. Schönbrodt, W. Vanpaemel, E.-J.
Wagenmakers, and R. A. Zwaan. “The Peer Reviewers’ Openness Initiative: incen-
tivizing open research practices through peer review”. In: Royal Society Open Science
3.1 (Jan. 2016), p. 150547. issn: 2054-5703. doi: 10.1098/rsos.150547. url: https:
//royalsocietypublishing.org/doi/10.1098/rsos.150547.

[54] Enterprise. url: https://rapidapi.com/enterprise.

[55] AWS Data Exchange - Access Third-Party Data In The Cloud - Amazon Web Services. url:
https://aws.amazon.com/data-exchange/.

[56] M. Yilmaz, R. V. O’Connor, and J. Collins. “Improving software development process
through economic mechanism design”. In: Communications in Computer and Information
Science. Vol. 99 CCIS. 2010, pp. 177–188. isbn: 3642156657. doi: 10.1007/978-3-642-
15666-3{_}16.

[57] Y. Dittrich, C. Floyd, and R. Klischewski. Social Thinking–Software Practice. Mit Press,
2002. isbn: 0262042045.

[58] E. S. Yu. “Social Modeling and i”. In: Conceptual modeling: Foundations and applications:
Essays in honor of John Mylopoulos. 2009, pp. 99–121.

71

https://doi.org/10.1098/rsos.150547
https://royalsocietypublishing.org/doi/10.1098/rsos.150547
https://royalsocietypublishing.org/doi/10.1098/rsos.150547
https://rapidapi.com/enterprise
https://aws.amazon.com/data-exchange/
https://doi.org/10.1007/978-3-642-15666-3{_}16
https://doi.org/10.1007/978-3-642-15666-3{_}16

	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	Introduction
	Motivation
	Research Objectives
	Research Approach
	Thesis Outline

	Foundations
	API Economy
	Types of APIs
	Drivers for API development
	API Platforms

	API Life Cycle Management
	Profitable Architecture
	REST API Guidelines
	Gamification
	Game Theory
	Mechanism Design
	Stackelberg Game

	Change Management

	Related Work
	Challenges
	Challenges in API Development and Maintenance - Literature Review
	Strategy
	Design and Implementation
	Deployment
	Security
	Management
	Discovery
	Monitoring

	Qualitative Analysis of API Development Challenges
	Strategy Challenges
	Definition Challenges
	Deployment
	Security
	Management
	Discovery
	Consumption
	Monitoring
	Monetization

	Comparison of Literature and Interview Challenges

	Analysis of Incentives for API Development and Maintenance
	Literature Review
	Gamification
	Project Management Related Incentives
	Recognition
	Technical
	Self-development
	Monetary

	Use Cases
	Current Motivation
	API Properties
	Introducing Features
	Transparency
	Alignment of Business and IT

	Concept
	Data Sharing
	Speed
	Communication
	Top Management Initiatives
	Project Organisation
	API Gateway Essentials
	Guidelines
	Development Tools and Environment
	Monetization Strategy

	API Development Process as an Economic Mechanism
	Evaluation
	Evaluation Results
	Data Sharing
	Speed
	Communication
	Top Management Initiatives
	Project Organisation
	Managed API Gateway
	Guidelines and Best Practices
	Development Tools and Environment
	Monetization Strategy

	Conclusion
	Summary
	Limitations and Future Work

	Appendix
	Questionnaire for Requirement Interviews
	Questionnaire for Evaluation Interviews

	List of Figures
	List of Tables
	Bibliography

