
Chair of Software Engineering for Business Information Systems (sebis)
Faculty of Informatics
Technische Universität München
wwwmatthes.in.tum.de

Modelling and Implementation of Access Control Mechanisms in Ethereum
Smart Contracts
Thomas Hain, 01/20/2020, Master's Thesis - Final Presentation

Outline

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 2

Motivation

Research Questions

Blockchain Basics

Approach

Evaluation

Conclusion & Future Work

Motivation

© sebis

High financial incentive to attack Smart Contracts
● Smart Contracts often contain cryptocurrency
● Alteration of currency balances needs to be protected

Low Adaptation of Access Control Mechanisms in Ethereum
Existing solutions are rather limited

⇒ potential to advance the community’s understanding of Access Control

Using existing approaches in distributed environment
⇒ Testing Access Control’s historical advances against Blockchain technology

Data Privacy is heavily debated
⇒ Discussion even involves Ethereum’s founder Vitalik Buterin

200120 Thomas Hain - Master's Thesis Final Presentation 3

Outline

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 4

Motivation

Research Questions

Blockchain Basics

Approach

Evaluation

Conclusion & Future Work

Research Questions

What are current challenges regarding the implementation of access control on a Blockchain?

What is the current state of implementations regarding access control in Solidity?

Which advantages does using Blockchain technology provide for access control?

How can an extendable access control system be modelled and implemented?

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 5

1

2

3

4

Outline

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 6

Motivation

Research Questions

Blockchain Basics

Approach

Evaluation

Conclusion & Future Work

Blockchain Basics

© sebis

Ethereum and Bitcoin are known as public Blockchains

⇒ All messages are passed between nodes within a peer to peer network

Ethereum is based around accounts identified by a public key
● Externally Owned Accounts (e.g. a user)
● Contract Accounts

Smart Contracts are stack-based executable programs stored on Ethereum’s Chain

⇒ Messages between accounts are not encrypted and can be read by every node

200120 Thomas Hain - Master's Thesis Final Presentation 7

The information they carry includes:
● Transfer of currency
● Function calls to interfaces of Smart Contracts
● Arbitrary data

These messages are called:
● transactions (originating from EOA)
● messages (originating from contract)

Both contract accounts and EOAs can hold and transfer currency

Communication is stored within “Blocks”
A Block is a data structure containing integrity protected transactions

Chaining Blocks these together leads to the name “Blockchain”

Blockchain Basics

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 8

Blockchain Basics

© sebis

Each node holds a copy of the Blockchain
⇒ Multiple coexisting chains on different nodes

The mechanism on how they agree on a state is known as finding “consensus”

Thus the network shares understanding
● about how much balance each account carries
● the general state of data within the network*

This includes the state of contracts stored on the Blockchain

⇒ Blockchain’s maximize transparency (consensus) and availability (peer to peer)

But: conflict between transparency and privacy

200120 Thomas Hain - Master's Thesis Final Presentation 9

Outline

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 10

Motivation

Research Questions

Blockchain Basics

Approach

Evaluation

Conclusion & Future Work

Approach - Literature Research & Source-Code Analysis

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 11

Literature Research

Source-Code Analysis

Modelling Phase

Implementation

Evaluation

Approach - Current State of the Art

© sebis

Due to their transparency data privacy on Blockchains is heavily debated

Ultimately this lead to
● the introduction of private and permissioned Blockchains

⇒ possibility to exclude nodes or limit their rights
● heavy use of storing sensitive data off the chain (“off-chaining”)

In addition off-chaining is further motivated by storage and transaction fees

In Ethereum they are referred to as “gas costs”
● They are paid in order to pay for computational steps
● Increase with the amount of data to be stored on the chain

Transactions can include arbitrary data

But: Consensus requires data replication

⇒ Storage is costly

200120 Thomas Hain - Master's Thesis Final Presentation 12

Approach - Current State of the Art

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 13

MedRec
● Restricts access to Electronical Health Records by storing SQL queries in contracts
● Queries are linked to Ethereum accounts
● They reflect the permissions of said user for off-chain databases

Attribute-Based Signatures
● Data is encrypted and requires keys linked to certain attributes for decryption
● E.g. (hasActiveSubscription) AND (isStudent))

OpenZeppelin
● Is a library used for different purposes including Access Control
● Provides Smart Contracts for basic role assignment and rights enforcement
● Includes an Implementation of Ownership Pattern

Approach - Current State of the Art

© sebis200120 Thomas Hain - Master's Thesis Final Presentation

RBAC-SC
● Stores string-based role of users within a publicly accessible contract
● The Smart Contract only serves as a publicly accessible register
● User needs to prove to an institution that he has the account’s private key
● Showcases another approach in solving the issue of data privacy
● Enforcement of request is delegated to the institution itself

⇒ Possibly off-chain
⇒ Request parameters require no publishing to Blockchain
⇒ Can be transmitted securely, e.g. via HTTPS

14

Approach - Current State of the Art

© sebis200120 Thomas Hain - Master's Thesis Final Presentation

Both OpenZeppelin and RBAC-SC use “function modifiers”

● Are used to annotate functions
● They include an underscore statement “_;”
● The modifier’s underscore statement is being replaced by the functions body

⇒ Require statement throws an exception if it evaluates to false
Example: Sender of msg is not in array userId

In other words: The user is not registered

15

Approach - Current State of the Art

© sebis

Smart Policies
Compiles access policies into executable Smart Contracts: “Smart Policies”
Smart Policies encode callable access control decision functions
Enforcement handled by an off-chain Java Program
This program is responsible for updating these contracts

Downsides:
● Enforcement of Access Control is handled off-chain only
● Updating policies requires redeployment and deactivation of old Smart Policies
● Programmers require knowledge about additional programming language

Advantages:
● Policies offer more flexibility than modifiers
● Based on XACML language, which is being maintained by the OASIS Consortium

200120 Thomas Hain - Master's Thesis Final Presentation 16

Approach - Current State of the Art

© sebis200120 Thomas Hain - Master's Thesis Final Presentation

XACML - eXtensible Access Control Markup Language

● Policies are grouped into “Policy Sets”

● Policies contain “Rules”
⇒ They state effects (e.g. “Permit”)

● Rules contain “Targets”
⇒ Are matched against Subjects, Resource & Action

Storing policies on a Blockchain is difficult
● Conflict resolution can be computationally expensive
● Rather verbose ⇒ require much storage

17

Approach - Current State of the Art

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 18

XACML Architecture

Policy Enforcement Point
● Responsible for handling all incoming requests (responds)
● Queries Decision Point
● Executes request if Decision Point responds with a grant

e.g. “delete all movies from database”

Policy Decision Point
● Retrieves Policies from Repository and combines them with Information
● Arrives at a decision (based on request, policies and information)
● Informs Enforcement Point of decision (e.g. grant / deny)

Policy Enforcement Point Policy Decision Point

Policy Repository Information Points

DecisionRequest

Approach - Current State of the Art

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 19

Results
● There are few adaptable access control solutions
● Many works implement their own strategies
● Data Privacy is enforced by encryption or by communicating off-chain

But one question remains:
“How can data privacy be combined with Blockchain technology?”

Quorum
● “Permissioned Blockchain”

⇒ Allows removal, addition & modification of nodes
⇒ Offers hierarchical node organization

● Can be hosted both privately and publicly
● Is based on Ethereum
● Allows private transactions & contracts

However using private Smart Contracts leads to loss of transparency
⇒ breaks public verifiability

Approach - Modelling, Implementation & Evaluation

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 20

Literature Research

Source-Code Analysis

Modelling Phase

Implementation

Evaluation

Requirements
Analysis

Detailed Design

Concept

Integration Test

Implementation

Unit Test

System Test

Modelling, Implementation and Evaluation
⇒ Based on insights from research phase
⇒ Structured according to V-Model

Approach - Modelling, Implementation & Evaluation

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 21

Requirements
Analysis

Detailed Design

Concept

Integration Test

Implementation

Unit Test

System Test

Concept
● Flexible Access Control framework
● Allowing both on- and off-chain solutions
● Being fully based on Smart Contracts to support Quorum
● Simplified XACML language - simplified policies

Approach - Modelling, Implementation & Evaluation

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 22

Requirements Analysis

Detailed Design

Concept

Integration Test

Implementation

Unit Test

System Test

Approach - Modelling, Implementation & Evaluation

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 23

Functional Requirements
User
UR 1) ...shall be able to send a request
UR 2) ...shall be able to verify the state of his request

Authentication
AU 1) ...shall be able to register a User within a User Storage

Storage Contracts
XS 1) ...shall provide interfaces for CRUD via URIs
XS 2) ...shall notify Subscribers when CRUD data

XACML
Enforcement Point
XE 1) ...shall be able to enforce requests on-chain
XE 2) ...shall be able to notify off-chain Enforcement
XE 3) ...shall notify Subscribers about a Grant
XE 4) ...shall notify Subscribers about a Deny

Decision Point
XD 1) ...shall be able to read from a User Storage
XD 2) ...shall be able to include retrieved User information
during decision
XD 3) ...shall notify Subscribers about a Deny
XD 4) ...shall notify Subscribers about a Grant
XD 5) ...shall notify Subscribers when its connections to Information
Points change
XD 6) ...shall notify Subscribers when its connection to Policy
Repository changes

Information Points
XI 1) ...shall be able to respond to the Decision Point

Policy Repository
XP 1) ...shall be able to respond to the Decision Point

Non-Functional Requirements
NF 1) Extendability
NF 2) Security
NF 3) Availability

Approach - Modelling, Implementation & Evaluation

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 24

Requirements Analysis

Detailed Design

Concept

Integration Test

Implementation

Unit Test

System Test

Approach - Detailed Design

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 25

Each of the components’ interactions need to be protected,
All functions are exposed to the public
Without protection any user could
● alter the Policy Repository or its address to provide own conditions
● manipulate Information Points to provide false attributes
● ….

⇒ State altering functions need to be exclusively limited to
● Their administrator (the deployer)
● Its interacting components

⇒ Protected Contract

Approach - Detailed Design

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 26

Protected Contract

Consequently each component inherits from “ProtectedContract”
⇒ Implements modifier isProtected for sensitive functionality

Approach - Detailed Design

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 27

Indexed Storage

⇒ System requires Storage of Subjects, Resources, Actions and Policies + Conditions
⇒ Their index serve as an identifier
⇒ A user’s request is defined as Request(resourceIndex, actionIndex)

Basic storage is necessary if enforcement is fully transparent and on-chain
However, the system supports off-chain enforcement as well

Approach - Detailed Design

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 28

Enforcement Point

By default the Enforcement Point only responds
to a request with the Decision Points Decision

And emits a grant or deny event

Allows Off-Chain Enforcement programs to subscribe

If full on-chain Enforcement is required
⇒ linking to an “ActionStorage” is necessary

An ActionStorage is a variation of an AddressStorage
⇒ Stores addresses of contracts
⇒ Contracts implementing an execute-function

Approach - Detailed Design

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 29

Decision Point
● The Decision Point was attached a UserStorage (AddressStorage)
● This storage can be used to determine a user’s registration status
● Decision function can be overridden via inheritance
● Possibly queries Policy Repository & Information Points

Approach - Implementation

© sebis

No XACML Policies

Instead bytes32 based attributes + conditions

Can be converted to string (e.g. “isAdmin”)

PolicyRepos & Information Points inherit from same contract
⇒ Implement function processRequest()
⇒ Responds with array of conditions or attributes (bytes32[])

Implementation conducted in programming language Solidity (Version Pragma 0.5.0^)

In total it includes 26 Smart Contracts

Everything is based on Smart Contracts ⇒ Fully usable in Quorum

200120 Thomas Hain - Master's Thesis Final Presentation 30

Requirements
Analysis

Detailed
Design

Concept

Integration Test

Implementation

Unit Test

System Test

Outline

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 31

Motivation

Research Questions

Blockchain Basics

Approach

Evaluation

Conclusion & Future Work

Evaluation: Testing

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 32

Requirements
Analysis

Detailed Design

Concept

Integration Test

Implementation

Unit Test

System Test

Testing
● Truffle Testing Suite
● Testing based on Javascript frameworks Mocha & Chai
● Assertion-based

Evaluation: Testing

© sebis

In total 41 different Test Cases
● Storage Operations
● Interactions: Storages & XACML components
● Deny if user is unregistered & User Registration
● Full System Tests based on inheritance

Custom Decision Point
⇒ Overridding decision function

Static Information Points & Policy Repository
⇒ Returning fitting / unfitting sets of conditions etc.

200120 Thomas Hain - Master's Thesis Final Presentation 33

Requirements
Analysis

Detailed
Design

Concept

Integration Test

Implementation

Unit Test

System Test

Evaluation: Comparison with Smart Policies

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 34

Smart Policies Implementation

XACML

X1) Includes Full On-Chain Enforcement - +

X2) Supports On-Chain Policy Decisions + +

X3) Supports Dynamic Addition of Information Points ~ +

X4) Supports Complex XACML Policies + -

Utility

U1) Includes Basic Authentication Contract - +

U2) Supports Resource Abstraction - +

U3) Uses Events to notify Subscribers + +

U4) Allows public Auditability + +

Evaluation: Comparison with Smart Policies

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 35

Smart Policies Implementation

Privacy

P1) Can be deployed on Quorum - +

P2) Includes Off-Chain Enforcement Point + -

Extendability

E1) Promotes Reusability by Design - +

E2) Separation between Private and Public
Enforcement

- +

Outline

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 36

Motivation

Research Questions

Blockchain Basics

Approach

Evaluation

Conclusion & Future Work

RQ1) What are current challenges regarding the implementation of access control on a Blockchain?
● Data Privacy vs. public Verifiability (and Auditability)
● Storage and computation Limitations

RQ2) What is the current state of implementations regarding access control in Solidity?
● Few public frameworks and often only modifier based
● Lots of off-chaining
● Sometimes attribute-based encryption

RQ3) Which advantages does using Blockchain technology provide for access control?
● Public verifiability of both execution and enforcement if pure on-chain
● Proof of access right if only decision is on-chain but enforcement off-chain

RQ4) How can an extendable access control system be modelled and implemented?
Inheritance & Interfaces can be leveraged

Conclusion

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 37

Future Work

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 38

Extension by an Access Control Front End
Allows easier monitoring (events are already in place)
Could potentially resolve conflicting policies

Evolving Encryption Techniques
⇒ Zero-Knowledge Proofs - “zk-SNARKs” are being used for Authentication

Evolution of Solidity
⇒ Structs currently can’t be passed between Contracts ⇒ likely to be included in the future
⇒ Template Programming / Generics are unsupported ⇒ unlikely to be included

Possible Synthesis with MedRec / Smart Policies, ...
⇒ SQL Queries could be managed by on-chain enforcement
⇒ Compiling a “better” policy language with Smart Policies

Literature
1. Samarati, Pierangela, and Sabrina Capitani de Vimercati. "Access control: Policies, models, and mechanisms." International School on Foundations of Security Analysis and

Design. Springer, Berlin, Heidelberg, 2000.
2. Jason Paul Cruz, Yuichi Kaji, and Naoto Yanai. “RBAC-SC: Role-based access control using smart contract.” In:IEEE Access6 (2018), pp.

12240–12251.issn:21693536.doi:10.1109/ACCESS.2018.2812844.
3. Rui Guo et al. “Secure attribute-based signature scheme with multiple authorities for blockchain in electronic health records systems.” In:IEEE Access6 (2018),pp. 11676–11686
4. Cruz, Jason Paul, Yuichi Kaji, and Naoto Yanai. "RBAC-SC: Role-based access control using smart contract." IEEE Access 6 (2018): 12240-12251.
5. A. Azaria et al. “MedRec: Using Blockchain for Medical Data Access and Permission Management.” In:2016 2nd International Conference on Open and Big Data(OBD). Aug.

2016, pp. 25–30.doi:10.1109/OBD.2016.11.
6. Gavin Wood et al. “Ethereum: A secure decentralised generalised transaction ledger.” In:Ethereum project yellow paper 151.2014 (2014), pp. 1–32.
7. Rahat Masood, Muhammad Awais Shibli, Muhammad Bilal, et al. “Usage controlmodel specification in XACML policy language.” In:IFIP International Conference on Computer

Information Systems and Industrial Management. Springer. 2012, pp. 68–79.
8. Jacob Eberhardt and Stefan Tai. “On or off the blockchain? Insights on off-chaining computation and data.” In:European Conference on Service-Oriented and Cloud Computing.

Springer. 2017, pp. 3–15.
9. Quorum - Enterprise Ethereum Client.https://docs.goquorum.com/en/latest/. Accessed: 01/14/2020

10. Proof of Stake FAQ.https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ. Accessed: 01/09/2020
11. Raft-based consensus for Ethereum/Quorum.https://github.com/jpmorganchase/quorum/blob/master/docs/Consensus/raft.md. Accessed: 01/11/2020
12. "Testing Your Contracts".https://www .trufflesuite.com/docs/truffle/testing/testing-your-contracts. Accessed: 01/09/2020
13. Vitalik Buterin.Privacy on the Blockchain.https://blog.ethereum.org/2016/01/15/privacy-on-the-blockchain/. Accessed: 01/10/2020
14. Which OAuth 2.0 Flow Should I Use?https://auth0.com/docs/api-auth/which-oauth-flow-to-use. Accessed: 01/17/2020
15. Access Control.https://docs.openzeppelin.com/contracts/2.x/access-control, Accessed: 01/13/2020
16. Karl Wüst and Arthur Gervais. “Do you need a Blockchain?” In:2018 Crypto Valley Conference on Blockchain Technology (CVCBT). IEEE. 2018, pp. 45–54.
17. D. Di Francesco Maesa, P. Mori, and L. Ricci. “Blockchain Based Access ControlServices.” In:2018 IEEE International Conference on Internet of Things (iThings) andIEEE Green

Computing and Communications (GreenCom) and IEEE Cyber, Physical andSocial Computing (CPSCom) and IEEE Smart Data (SmartData). July 2018, pp.
1379–1386.doi:10.1109/Cybermatics_2018.2018.00237

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 39

https://github.com/jpmorganchase/quorum/blob/master/docs/Consensus/raft.md
https://blog.ethereum.org/2016/01/15/privacy-on-the-blockchain/

Technische Universität München
Faculty of Informatics
Chair of Software Engineering for Business
Information Systems

Boltzmannstraße 3
85748 Garching bei München

wwwmatthes.in.tum.de

Thomas Hain
B.Sc.

ga46hom@mytum.de

http://wwwmatthes.in.tum.de/

Backup - Processing

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 41

Processing

Backup - TextAction

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 42

TextAction

Takes argument of generic bytes
⇒ Returns bytes

Most basic form of action ⇒ More complex implementations are possible

Backup - OpenZeppelin

What are the advantages of OpenZeppelin’s contracts?
+ Flexibility, e.g. via inheritance
+ Simple to use

Disadvantages:
- No policies
- Each protected function requires modifier annotation

Since OpenZeppelin is a framework its advantages underline its adaptability

Both contracts are rather basic
⇒ E.g. No separation of decision and enforcement

Most importantly
⇒ They don’t accommodate any data privacy considerations

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 43

RBAC-SC
• Keeps a user array, Users are defined as structs
• Users have a string property “role”
• A modifier onlyOwner protects the functions to add and remove users

Similarity to OpenZeppelin’s RBAC.sol

But it introduces no modifiers like “hasRole” etc.

Because:
● Enforcement happens off-chain
● User has to prove his role membership to another entity
● E.g. he owns the private key linked to the registered public key (his account)

Advantages & Disadvantages:
+ Includes Privacy Considerations - No policies
+ Simple to implement - Only off-chain enforcement possible

Backup - RBAC-SC

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 44

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 45

Backup - Full System Test

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 46

System Test with TextEnforcementPoint
● Randomly generated between 1 and 10 information Points
● Each of them provided between 1 and 20 different attributes
● The Decision Point’s Policy Repository was added a single condition
● Test Case A) hid a fitting attribute within all the randomly generated attributes

 B) did not

Multiple iterations over both test cases
⇒ Assertion including fitting attribute corresponds to grant otherwise deny

Both scenarios were run 50 times

The Enforcement Point then acted accordingly

Backup - Tessera

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 47

How is this achieved?

Quorum Introduces a Privacy Technology “Tessera”
Each Node is extended by
● A Transaction Manager (TM)

⇒ Passes private data to other nodes’ TMs via HTTPS
● An Enclave

⇒ Program encrypting and decrypting private transaction payloads
⇒ Only interacts with own Transaction Manager
⇒ Encrypts transaction payloads if necessary
⇒ Decrypts if transaction is intended to be read by current node

However using private Smart Contracts leads to loss of transparency
⇒ breaks public verifiability

Backup - Tessera

https://docs.goquorum.com/en/latest/Privacy/Tessera/How%20Tessera%20Works/

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 48

Backup - Advantages OpenZeppelin

What are the advantages of OpenZeppelin’s contracts?
+ Flexibility, e.g. via inheritance
+ Simple to use

Disadvantages:
- No policies
- Each protected function requires modifier annotation

Since OpenZeppelin is a framework its advantages underline its adaptability

Both contracts are rather basic
⇒ E.g. No separation of decision and enforcement

Most importantly
⇒ They don’t accommodate any data privacy considerations

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 49

Backup - Basic Authorization

© sebis200120 Thomas Hain - Master's Thesis Final Presentation

Authorization can be rather simple

Example:

If (request.user == “admin”){
//execute protected functionality

}

But it can consist of multiple different “rules” or “policies”
⇒ They can be structured hierarchically
⇒ Rules can potentially conflict each other

Policy framework is XACML (“eXtensible Access Control Markup Language”)

It is being developed by the OASIS Consortium

⇒ It provides both an architecture as well as a policy language

50

Backup - Client-Server

© sebis200120 Thomas Hain - Master's Thesis Final Presentation

Is there anything to learn from Client-Server?

Access Control by is also found within Client-Server systems

Traditionally it is subdivided into two parts
Authentication: Linking of user’s identity with an internal representation (e.g. ID)

⇒ Client-Server: Database index mapping to hashed password
⇒ Ethereum: E.g. user array, mapping user’s address to boolean values, ...

Authorization: What rights / permissions does the user have?
⇒ Client-Server: complex access control frameworks
⇒ Ethereum: often rather simple, patterns involve off-chain storage

Modern systems often don’t rely on only a single server
⇒ Instead multiple connected API’s
⇒ Authorization for all services can be handled by a single server (OAuth2)

51

Backup - Client-Server vs. Blockchain

© sebis

Summarizing Requests on a Blockchain
● Users send public transactions to contracts
● Addresses can be used to store users
● Authorization either off-chain or rather simple because of gas consumption

In requests to REST-API’s can be encrypted via HTTPS

⇒ They can contain sensitive data

But Smart Contract Interfaces are called via public transactions

So what is the current state of the art?
● How do RBAC-SC and OpenZeppelin implement Access Control?
● Do they approach Data Privacy or not?

200120 Thomas Hain - Master's Thesis Final Presentation 52

Backup - OAuth2

© sebis200120 Thomas Hain - Master's Thesis Final Presentation

OAuth2 is an Authorization Framework often used in Client-Server

It involves more than one app interacting with APIs.

Authorization Code Flow
Resource Owner (e.g. user)

Client (e.g. third party application)
Wants to interact with a user’s resources

Resource Server (e.g. Google Drive)
Interacts with both the Resource Owner and the Cilent
⇒ Client can request to resources via the Resource Server
⇒ The Resource Server prompts the user informing him about the request
⇒ If user grants access the Client receives an expiring access token

53

Backup - DecisionPoint

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 54

RequiredAttributesDecisionPoint

⇒ Every condition needs to be fulfilled by matching attribute
⇒ Maximum required condition threshold then grant by default
⇒ Otherwise deny

Backup - UML Gesamt

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 55

Backup - OpenZeppelin RBAC

© sebis190520 Thomas Hain - Master's Thesis Kick-Off Presentation 56

https://docs.openzeppelin.org/docs/ownership_rbac_rbac

https://docs.openzeppelin.org/docs/ownership_rbac_rbac

Backup - OpenZeppelin

OpenZeppelin
Ownable.sol
● Contract contains a state variable “owner”
● It is initialized with the deployer’s address during its construction
● It includes a modifier “onlyOwner”

⇒ Exception before function call if a transaction’s sender is not the owner

Roles.sol
● Allows Role assignment to user addresses
● This is realized by chaining mappings
● A role is defined as a string
● Each role contains a mapping from type address => boolean to indicate membership
● Additionally it includes a modifier “onlyRole(role)” to protect functions

© sebis200120 Thomas Hain - Master's Thesis Final Presentation 57

