
Design and prototypical implementation of a language empowering business users to
define Key Performance Indicators for Enterprise Architecture Management

Ivan Monahov, Thomas Reschenhofer, Florian Matthes
Chair for Informatics 19 (sebis)

Technische Universität München (TUM)
Boltzmannstr. 3, 85748 Garching bei München, Germany

Email: {ivan.monahov, reschenh, matthes}@in.tum.de

Abstract—To measure the achievement of predefined Enter-
prise Architecture Management (EAM) goals, it is essential
to empower business users to define organization-specific Key
Performance Indicators (KPIs). However, to support tool-based
calculation of such KPIs, a formal model-based query language
is required for their definition and calculation.
In this paper we first examine existing general-purpose query
languages regarding their suitability for the definition of
business-user-specific KPIs in a collaborative environment.
Thereafter, we justify the demand for a domain-specific query
language ensuring a balance between the strengths of existing
query languages and the size and purpose of the EAM domain.
Based on this, we outline important design details and a
prototypical implementation of such a language in a EAM tool.
Finally, our language design is being evaluated by the imple-
mentation of suggested EAM KPIs from literature on the one
hand, and by the development of a prototype for the use in an
EU project on the other hand.

Keywords-Enterprise architecture management; key perfor-
mance indicators; domain specific language

I. INTRODUCTION

According to [1], Enterprise Architecture (EA) is the
"fundamental organization of a system [enterprise] embodied
in its components, their relationships to each other, and to
the environment, and the principles guiding its design and
evolution". Hence, EA is understood as a meaningful picture
of the holistic structure of an organization, including all
its business, organization, application, information, infras-
tructure and data aspects. Furthermore, an EA also covers
relations between these components and the relation to the
given organization-specific context [2].
Enterprise Architecture Management (EAM) is a function
for managing the flexibility, efficiency and transparency in
an EA by developing, implementing and controlling those
components and their relations [3].
Since the complexity of an enterprise’s Information Technol-
ogy (IT) has grown immensely during the last decades, tool
support becomes more and more important to support EAM
adequately [4]. Prevalent EAM tools [5] provide methods
for gathering the EA model’s data, modeling techniques for
the EA and guidelines for its visualization [6], [7], [8].
However, the mismatch between unstructured information

sources in EAM (e.g. spreadsheets, slides, text documents),
and the rigid information structures as well as collaboration
mechanisms provided by these EAM tools leads to a major
problem in EAM. To address this mismatch, our research
group introduced the model-based wiki approach Hybrid
Wiki and provided a reference implementation with our
research EAM tool Tricia [9]. More precisely, our tool
is employed as an emergent and collaborative information
management system, allowing an incremental enrichment of
wiki pages with structure (e.g. attributes, types, integrity
rules).
As stated by [10], the development of an EA becomes more
and more difficult by its increasing complexity. Hence, or-
ganizations can use Key Performance Indicators (KPI) [11],
[12] to quantify certain EA characteristics. These KPIs allow
to qualitatively assess the EA and to measure whether or not
certain EAM goals are being achieved.
An enterprise architect not only has to deal with the enter-
prise’s architecture, but also with its dynamics, i.e. system’s
behavior [10]. Hence, the quantification of an EA has to
cover the system’s structural and behavioral aspects.
In practice, Microsoft’s Excel [13] is the de facto standard
to perform calculations based on structured data by business
users [14]. However, in the context of calculations in a
collaborative environment, Excel suffers from major draw-
backs regarding its scalability, collaboration support, and
data modeling capabilities (relations between objects). In the
following sections we provide a detailed overview of Excel
limitations and presents general purpose query languages
important for the design of our solution.
Our aim is the integration of a quantification mechanism
into a EAM tool to support the definition and computa-
tion of KPIs by business users in the EAM domain. This
requires a domain-specific language (DSL) [15] to express
computations and thus the formal definition of KPIs [16].
Such a DSL has to be able to define queries on the EA
model and aggregations of the obtained data. In addition, it
has to provide basic arithmetic and logical operations (e.g.
addition, averaging, comparison).
Consequently, our research interest is dedicated to the
following questions: How can business-users define and

compute KPIs in a collaborative system, how to design and
embed these KPIs in the UI of an EAM tool, and how to
embed these KPIs in the system architecture of a tool.
The remainder of this paper is structured as follows: The fol-
lowing Section II motivates the design of a DSL enabling the
formal definition of KPIs. Thereafter, Section III describes
and justifies the design of such a DSL, whereas Section IV
covers its prototypical implementation in an EAM tool.
Then, Section V provides an evaluation of our solution.
Finally, Section VI concludes the paper and outlines future
research topics.

II. MOTIVATION

This section motivates our research aim to rapidly design
and implement a new DSL for an EAM tool integrating
the benefits of common general purpose query languages
(e.g. SQL, OCL, LINQ) on the one hand, and avoiding
the major drawbacks of Microsoft’s Excel on the other hand.

A. Enterprise as a dynamic system

As stated by Berg-Cross [17], an enterprise is a system,
consisting of its structure and its behavior. The system
structure is the holistic composition of its elements, whereas
the system’s behavior refers to the system’s variables, their
functions or relationships.
According to Forrester [18], a system’s behavior arises from
its structure. However, understanding the relation between
the system’s structure and its behavior is very difficult [19].
Furthermore, enterprises are dynamic systems, i.e. they
undergo changes over time, which makes it even harder
to relate the system’s structure to its behavior [17]. As a
consequence, to predict an enterprise’s behavior over time,
the enterprise architect has to understand the dynamics of
the system’s structure (EA) and behavior to adequately adapt
the enterprise’s model to ensure alignment, integration and
agility of the EA.
To facilitate understanding of EA dynamics, KPIs can be
used to quantify the structure and the behavior of the
system. Moreover, as shown in Figure 1, these two types
of KPIs may be used and managed by a multitude of users
having different viewpoints onto the architecture. Thereby,
the system’s dynamics can be identified by the responsible
users, allowing them to respond immediately to changes.

B. Tool-supported KPI computation

In practice, Microsoft’s Excel is the de facto standard for
business users to define and compute KPIs [20]. Important
advantages of its spreadsheets are their interactive and easy-
to-use interface as well as their flexibility [14]. Business
users can start entering data and formulas before thinking
about the design of the spreadsheet. However, as stated by
Hermans [14], the missing relation between a spreadsheet
and its underlying design is one of its major problems.

System Behavior

System
Architecture

System Behaviour

System
Architecture

Changes

to-be as-is

D
yn

am
ic

St

at
ic

Im
p

lie
s

Im
p

lie
s

t

Example KPIs from the EAM KPI catalog
Application continuity plan availability, IT investment delivering
predefined benefits, SLAs met, Unexpected service interruption
duration, Customer satisfaction index, Business case quality, etc.

KPIs
Business

users

Business goals
reduce costs,
hold deadlines,
monitor results

Example KPIs from the EAM KPI catalog
Audit findings, Business applications compliant with IT architecture
and technology standards, Business domain coverage of target
architecture, Project compliance to target architecture, etc.

KPIs

Enterprise
architects

EA goals
homogeneity,
transparency,
security, etc.

Figure 1. Enterprise architects & business users can use KPIs to quantify
behavioral and/or structural aspects of the EA

Another problem is its limited modeling capabilities in the
sense of insufficient management of relationships and their
constraints, which has already been subject of research of
many authors [21], [22].
To collaboratively manage a spreadsheet, business users of-
ten combine interrelated worksheets in a single spreadsheet.
However, according to Hermans [14], these inter-worksheet
connections make it hard for business users to understand
the data flow and the dynamics in the spreadsheet. Moreover,
Excel does support neither versioning nor historicization of
its data. Hence, Excel is not suitable for computations in a
collaborative environment, since the traceability of changes
of the environment is essential.

C. Towards an appropriate DSL

To the understanding of the authors, an authorized user
wants to specify a function to define a KPI. Hence, an
appropriate domain-specific language (DSL) is required,
which should be able to

• access context information (e.g. attributes, relations,
current time, current user),

• query the EA model, and
• define operations on the gathered data (e.g. aggrega-

tions, arithmetic operations).
The idea of querying models is not new. In recent years
many general purpose query languages have been developed
and employed by academia and industry. To our understand-
ing, following well-known general-purpose query languages
are relevant in the context of business-user-oriented KPIs in
a collaborative environment:

• Structured Query Language (SQL): The standard
language for querying relational databases is SQL. In
the last decades, SQL was the subject in research and
practice, thus it is well understood and widely used.

2

Routed back in the relational algebra, SQL supports
a sufficient set of operators (selection, projection, ag-
gregation), which is an essential requirement for query
languages [23]. However, with the focus on defining
business-user-oriented KPIs in a collaborative environ-
ment, SQL suffers from some essential drawbacks [24],
e.g. its monolithic nature, the lack of support for nested
data model, an intransparent and insufficient support for
user-defined functionality (UDF), and its static schema.

• Object Constraint Language (OCL): OCL [25] is
part of the Unified Modeling Language (UML) and
able to specify constraints and queries on UML mod-
els and is widely accepted and employed in both -
academia and industry. However, as stated by Mandel
and Cengarle [26], OCL does not form an adequate
query language since it is lacking expressiveness to
define all operations of a relational algebra. Hence, as
concluded by Akehurst [27], the use of OCL as an
effective query language requires specific extensions
of the language. Moreover, since the original purpose
of OCL was the definition of formal constraints in
UML models, its expressiveness goes far beyond the
definition of queries.

• Language Integrated Query (LINQ): LINQ [28]
is Microsoft’s approach to uniformly access different
types of data sources (e.g. relational databases, XML
structures), whereas in fact a query expressed in LINQ
is translated to the query language of the source (e.g.
SQL, xQuery). Furthermore, LINQ defines a set of gen-
eral purpose Standard Query Operators [29], e.g. where
(selection), select (projection), and orderby. However,
as described in the next section, we require only a
limited subset of operators of this general-purpose
query language, relevant for the domain of EAM.

Our goal is the definition and evaluation of a minimal
domain-specific query language, providing a sufficient ex-
pressiveness (minimal set of query, aggregation, and arith-
metic operators), appropriate readability for business users,
and optimizability. Its design is explained in detail in the
next section.

III. LANGUAGE DESIGN

As motivated above, this section covers the design of a
domain-specific query language.

A. Basic language design

The design of a DSL [15] is always implied by the
language’s domain, which is in this case the definition and
calculation of KPIs by business users in a collaborative
environment. Thus, the following fundamental language
paradigms and properties are implied:

1) Semi-declarative syntax / Functional language: As
stated by Sauer and Härder [24], a semi-declarative syntax
(as supported by OCL and LINQ) allows more flexible

queries than a purely declarative one by allowing the explicit
application of certain query operators (e.g. projection, selec-
tion, ordering, etc.). Therefore, the order of the application
of these query operators is not fixed and may be adapted to
the user’s needs.
A functional language supports these semi-declarative
queries by providing the query operators as higher-order
functions [30], i.e. our language handles functions as first
class objects [31], so that they are usable as parameter
values in other functions. This technique is especially useful
for query operators, e.g. the selection operator will take a
function, which will be applied to each element of a source
sequence and determine, if the element should remain in the
sequence, or not (see Section III-B3).

2) Object-orientation: Object orientation [30], [32] is
implicated by the EAM tool’s representation of EA elements
as entities with attributes and references to other objects. For
example, an instance of type Project may have an attribute
Start date as well as a reference Members to instances of
type Employee. Therefore an object-oriented language (e.g.
OCL, LINQ) provides a convenient and intuitive access to
EA elements, their attributes, related objects and also their
methods.

3) Reflection: Reflection means, that a system is able to
inspect its own state at runtime [30], e.g. an object can
determine its available attributes or methods. Since Tricia
allows schematic changes of the EA model at runtime,
reflection allows to examine the EA model’s schema at
runtime.

4) Strict evaluation: Strict evaluation means, that func-
tion arguments are evaluated before the function itself [30],
or in more general, before a value is bound to a name,
it is evaluated. In LINQ, queries are evaluated non-strictly
(lazy), i.e. the query is performed when the first element of
the result is needed, which enables the possibility of query
optimizations until it is performed. However, non-strict eval-
uation makes it very hard for business users to understand
the query process, e.g. when a query is performed. Hence,
we decided to design our language to be strict.

5) Basic data types: The language provides a set of basic
types, which are listed in Table I.

6) Dynamic type system: The type system of a language
may be either static or dynamic (or a special mix of
both) [32], [30]. In a statically typed language, the type of an
object is known at compile time, whereas in a dynamically
typed language, the type of an object is known at runtime,
e.g., LINQ.
We design our language to be dynamically typed, because
the type of an object, especially the type of EA elements, is
non-rigid [8], i.e. the type of an object can change at runtime
(EA schema can be changed at runtime).

7) Dynamic binding: If a function is invoked on an
object, the dynamic dispatch mechanism, which implements

3

Name Description Examples

Si
m

pl
e

da
ta

ty
pe

s Object Each element of the EA is of type Object.

String Each character sequence encapsulated in quotation marks is a value of type
String

”HelloWorld”, ”1.23”

Number Represents both integers and decimals. Also a string representing a number is
of type Number

1.23,−4.56, ”1.23”

Boolean true and false, but also its string representations are values of type Boolean true, ”false”, ”yes”

Date A string value representing a date is also a value of type Date ”01.01.2000”

C
on

st
ru

ct
or

da
ta

ty
pe

s

Sequence

A sequence of values, written as [element1, element2, ...]. In contrast to the
mathematical term "set" [33], in sequences:

• order matters, e.g. [1, 2] is not equal to [2, 1]
• duplicates are allowed, e.g. [1, 2] is not equal to [1, 1, 2]

[1.0, ”HelloWorld”, true]

Map A fixed collection of key-value-pairs. The notation is similar to the JavaScript
Object Notation (JSON), i.e. {key1 : value1, key2 : value2, ...}

{”name” : ”Joe”, ”age” : 40}

Function
Because the language allows higher-order functions (see Section III-A1), there
are objects of type Function. Anonymous functions can be written as ? (param1,
param2, ...) (any expression)

?(a, b) (a.add(b))

Entity
An entity is a complex object, i.e. an object with attributes and/or references
to other objects. In the EAM tool, each EAM element is represented as such
an entity, i.e. as object of type Entity

Table I
SIMPLE DATA TYPES AND CONSTRUCTOR DATA TYPES IN OUR LANGUAGE

dynamic binding, uses runtime type information to look up
the proper function [34]. Since the most EAM tools provide
either no inheritance or just limited subtype relation capa-
bilities, dynamic binding enhances the reuse of functionality
even in these tools.

B. Basic functions in our language

To give a formal definition of a KPI, our language has to
provide a set of basic functions or operators, which can be
classified into arithmetic operators, comparison and logical
operators, query operators and aggregation operators.

1) Arithmetic operators: To support computations, our
language provides operators for the addition, subtraction,
multiplication and division of numbers, as well as operators
for the integer division and modulo.

2) Comparison and logical operators: In addition to
arithmetic operators, our language provides common com-
parison operators, e.g. isNull, equals, greaterThan, and
lessThanOrEqualTo. All these operators return a boolean
value, i.e. either true or false.
Furthermore, our language provides the logical operators
and, or and not to combine and invert the results of the
comparison operators.

3) Query operators: A major purpose of our language
is to express queries on the EA model. As stated in Sec-
tion II, there are already many well-known query languages,
whereas each of them supports a similar set of query
operators. However, since Microsoft’s LINQ was designed
as an uniform access to different types of data sources,
Microsoft already worked out a common set of operators

supported by a multitude of query languages, which they
named the Standard Query Operators [29]. Consequently,
the set of our language’s query operators (listed in Table II)
is based on Microsoft’s Standard Query Operators).
Based on a sequence of all elements of a certain type (e.g.
all instances of type Project), query operators are able to
determine a certain subset of these objects (e.g. all Projects
started before a certain date). Additionally, these operators
empower the language to perform multiple types of joins.

4) Aggregation operators: In contrast to query operators,
aggregation operators may not return sequences, i.e. all
elements of a sequence are folded up to a single value. The
aggregation operators supported by our language are listed
in Table III, whereas they are also inspired by Microsoft’s
Standard Query Operators.

The following Section IV highlights some relevant aspects
of our language’s integration in an EAM tool.

IV. PROTOTYPICAL IMPLEMENTATION

Based on the design decisions from the previous section,
we focus now on a prototypical implementation of our
language in an EAM tool. Although there are many prevalent
EAM tools [4], we decided to implement it in our research
EAM tool Tricia [35], because

• it supports modeling both an EA’s structure and its
behavior (as motivated in Section II-A),

• it supports several collaboration mechanisms, e.g. ver-
sioning, historicization, collaborative editing, modeling

4

Name Parameters Returns Description

where source : T []
pred : T → bool

T []
The where operator filters the source list on base of the given predicate, which
is applied on each element. If the predicate evaluates to true, the element
remains in the resulting sequence, otherwise it will be removed.

select source : T []
map : T → U

U []
The select operator applies the given map function to each element of the source
sequence and returns a sequence containing the results of each individual map
application.

selectMany source : T []
map : T → U []

U []

The selectMany operator is similar to the Select operator, but the map function,
which will be applied on each element of the source sequence, returns a
sequence of elements. The concatenation of all sequences forms the result
of this operator.

take source : T []
n : int

T []
The take operator returns a sequence with the n first elements of the source
sequence.

skip source : T []
n : int

T []
The skip operator returns a sequence with all elements of the source sequence,
except the first n ones.

concat first : T []
second : T []

T []
The concat operator concatenates the first sequence with the second one, i.e.
the resulting sequence contains all elements of the first sequence, followed by
all elements of the second one.

orderby
source : T []
keySel : T → K
descending : bool

T []

The orderby operator sorts the source sequence by the keySelector, whereas
a natural order will be applied. The descending parameter determines, if the
elements should be ordered ascending ("lowest first") or descending ("biggest
first").

groupby
source : T []
keySel : T → K
map : T []→ U

{K,U}[]

The groupby operator determines a key for each element of the source sequence
by applying the keySelector. All elements with the same key form a new
sequence, on which the map function will be applied. The result of the GroupBy
operator is a sequence of objects, whereas each object contains a key and the
related result of the optional map function.

distinct source : T [] T []
The distinct operator removes all duplicates of the source sequence. The
equality of elements will be tested by there equals operator.

intersect first : T []
second : T []

T []
The intersect operator calculates the intersection of the first and the second
sequence, i.e. this operator returns a distinct sequence with all elements, which
are containing in the first and the second sequence.

except first : T []
second : T []

T []
The except operator returns a distinct sequence with all elements, which are
containing in the first, but not in the second sequence.

Table II
OUR LANGUAGE’S QUERY OPERATORS BASED ON Microsoft’s Standard Query Operators [29]

Name Parameters Returns Description
count source : T [] Number The count operator returns the number of elements in the source sequence.

sum source : T [] Number
The sum operator returns the sum of all numerical values in the source
sequence.

min source : T [] Number
The min operator returns the minimum of all numerical values in the source
sequence.

max source : T [] Number
The max operator returns the maximum of all numerical values in the source
sequence.

average source : T [] Number
The average operator calculates the average of all numerical values in the
source sequence.

first source : T [] T
The first operator returns the first element of the source sequence, if the
sequence has at least 1 element, otherwise the operator throws an exception.

firstOrNull source : T [] T
The firstOrNull operator returns the first element of the source sequence, if the
sequence has at least 1 element, otherwise the operator returns null.

single source : T [] T
The single operator returns the first element of the source sequence, if the
sequence has exactly 1 element, otherwise the operator throws an exception.

aggregate
source : T []
f : (T, U)→ U
seed : U

U

The aggregate operator provides a mechanism to define a custom aggregation.
The function func will be applied on each element, whereas the second
parameter is the result of the application on the previous element, or in the
case of the first element, the seed value. The result of the final application will
be returned as result of the aggregate operator.

Table III
THE AGGREGATION OPERATORS OF OUR LANGUAGE BASED ON Microsoft’s Standard Query Operators [29]

5

Figure 2. A TxL custom function, which determines the number of
a project’s members. Moreover, this function is using the name binding
construct let to bind the list of members to the name employees.

on runtime as well as the management of relations
between model elements, and

• we can access and modify its source code.

We named our concrete implementation Tricia Expression
Language (TxL), and outline the most important implemen-
tation details of our prototype in the next paragraphs.
Tricia is a plugin-based software. The core functionality of
Tricia is contained in the plugin platform. The integration
of TxL in Tricia was done by adding a new plugin named
script, which contains the three logical components

• Script core,
• Embedded script, and
• Derived attributes.

A. Script core

The component script core covers the functionality to
scan, parse and evaluate a TxL expression, i.e. it contains
the TxL interpreter as well as the TxL evaluation environ-
ment. Furthermore, the script core component includes all
operators covered by Section III-B.

1) Extensibility: One of the major drawbacks of SQL
mentioned in Section II is its intransparent support for user-
defined functionality. Addressing this drawback, TxL allows
the definition of Basic functions (implemented in the tool’s
implementation language Java) as well as the definition of
Custom functions (implemented in TxL).
While Basic functions provide access to tool related and
contextual information, Custom functions can be defined at
runtime, allowing the user to encapsulate reusable function-
ality. Figure 2 depicts an exemplary custom function, which
could be invoked as follows:

a n y P r o j e c t . getMembersCount ()

2) User interface enhancements: The script core compo-
nent supports in-browser code editing and provides syntax
highlighting and auto completion (c.f. Figure 3). Our code
editor uses the JavaScript component CodeMirror [36].

Figure 3. TxL code editor in action.

Figure 4. A Tricia page and its basic parts

B. Embedded script

A page in Tricia is a hybrid entity [35], i.e. it contains
structured as well as unstructured information. The unstruc-
tured part is a regular web page (HTML markup), whereas
the structured part is a set of attribute-value pairs as well
as type annotations. Figure 4 depicts a typical Tricia page
and explains its parts. If a TxL expression is evaluated
in the context of a page, this page can be accessed in
the expression by the this keyword. The embedded script
component allows the embedding of single TxL expressions
into the rich text content. We defined following syntax to
embed TxL expressions in HTML markup:

$ [e v a l () $ a TxL e x p r e s s i o n $ e v a l] $

For example, the content

1 + 2 = $ [e v a l () $ 1 . 0 . add (2 . 0) $ e v a l] $

would result in the following output (browser representation
of the above code):

1 + 2 = 3

Moreover, these embedded TxL expressions are able to
render HTML markup, allowing the user to define custom
visualizations based on the evaluated value of TxL expres-
sions. E.g., a user may embed the following TxL expression
to show different images depending on the outcome of a
TxL function (by using a conditional construct of the form
<boolean condition> ? <evaluate if true> : <evaluate if
false>):

i s R a i n y ()

6

Figure 5. The definition of the Age attribute as an example for a derived
attribute

? " "
: " "

C. Derived attributes

In contrast to the embedded script component, the derived
attributes component extends the structured part of a page.
As Figure 4 depicts, a Tricia page can have two types of
attributes:

• Typed attributes: An attached type can define at-
tributes, which will be suggested for each instance the
type is applied to (e.g. in Figure 4, the attribute Birth
date is specified in type Employee).

• Free attributes: Each page may have an arbitrary
number of free attributes, which are not specified by
any attached type (e.g. in Figure 4, Place of birth is a
free attribute).

Regardless of whether an attribute is typed or free, it may
be of type TxL, which allows the definition of an attribute
whose value is not static, but derived from contextual infor-
mation (e.g. other attributes of the current element) and/or
queryable EA data from other attribute values. For example,
a type Employee may have the attribute Birth date from type
Date, but also an attribute Age from type TxL defining an
expression to calculate the difference between the Birth date
and the current date. Figure 5 depicts the suitable attribute
definition, whereas Figure 4 shows its application on an
instance of type Employee.

V. EVALUATION OF TXL

To provide an evaluation of our language design, we first
ensured all suggested EAM KPIs from literature [37], [11]
can be implemented by our language.
Then, we employed our prototypical implementation TxL
in an EU project called SmartNet Navigator [38]. In this
project, over 30 companies from the German textile industry
participate in a collaborative innovation management pro-
cess.
Although this project does not belong to the classical EAM

+Name : Text

Development Project

+Management Activity : Management Activity Type
+process Phase : Process Phase

Activity Type

+Control
+Execution
+Planning

«enumeration»
Management Activity Type +I - Creation of ideas

+II - Concept development
+III - Prototyping
+IV - Sampling
+V - Production and Marketing

«enumeration»
Process Phase

+getStatus() : Status

+Starting date : Date
+Deadline : Date

Task

+getStatus() : Status

+Date : Date
+Agenda : Text

Meeting

+Open
+In progress
+Finalized

«enumeration»
Status

+Activity status

1..*

*

+Activity status

1..*

*

+Part of development project

1..*

*

+Part of development project

1..*

*

Figure 6. An excerpt of the SmartNet information model

domain, it contains all relevant challenges of a typical EAM
project - plenty of different stakeholders, a lot of collabora-
tive tasks and decisions, and last but not least, information
from different sources. In this context, a business-user-
specific KPI expressed as visualization had been developed
with our prototype in order to support decision making.

A. Description of the SmartNet Navigator

The SmartNet Navigator is the automated generation of
the visualization of a project’s progress. Basically, in this
context, a project consists of tasks and meetings, which
are assigned to several activity types (see Figure 6). Each
activity type is in turn associated with a process phase as
well as a management activity type.
Based on a project’s tasks and meetings, the SmartNet
Navigator visualizes the progress of a project, whereas the
status of tasks and meetings gets stepwise aggregated to an
activity type status, to a module (tuple of process phase and
management activity) status, to a process phase status, and
finally to the project status. Figure 7 depicts an excerpt of
the SmartNet Navigator of an exemplary project. The status
of an element is indicated by its color as listed in Table IV.

Color Status Aggregation

Grey Open If the status of each sub-element of an
element is Open, the elements status is
Open as well

Green Finalized If the status of each sub-element of
an element is Finalized, the elements
status is Finalized as well

Orange In progress If the status of an element is neither
Open nor Finalized, it’s In progress

Table IV
COLOR ENCODING AND AGGREGATIONS OF THE STATUS OF THE

PROJECT, A PROCESS PHASE, A MODULE, AND AN ACTIVITY TYPE

7

Figure 7. An excerpt of the SmartNet Navigator of an exemplary project. The rows are the management activity types (e.g. "Planning"), the columns are
the process phases (e.g. "Creation of Ideas"), the cells are the modules (e.g. "Planning in phase ’I - Creation of Ideas’), and the items in the cells are the
activity types (e.g. "Identification of problems, needs and opportunities").

For more detailed description of the implementation and
evaluation of the SmartNet Navigator in the context of this
EU project we refer to the publication of Hauder et al. [39].

B. Implementation of the SmartNet Navigator

Based on the model in Figure 6 and an appropriate test
data set, we defined custom TxL functions for the stepwise
visualization and aggregation of a project’s status. For exam-
ple, the computation of a process phase’s status is depicted
in Figure 8, which in turn is used for the definition of
the status table’s header (e.g. by specifying the background
color of the column). Therefore, by executing the function
statusTable on an element of type Development Project, this
function generates the HTML markup defining the SmartNet
Navigator (see Figure 7), which can be embedded in any
Tricia page. The execution of the status aggregation and
visualization functions is depicted in Figure 9. Since the
definition of the data model as well as the definition of
custom TxL functions is done at runtime, TxL allows the
definition of complex visualizations and computation at
runtime, as shown by the implementation of the SmartNet
use case.
To sum up, this experiment was so successful and useful for
the involved business users, that a German industry company
(infoAsset AG [40]) is implementing a spin-off from this
prototype for industrial use.

Figure 8. Implementation of the function for the computation of a process
phase’s status. A description for the aggregation operator can be found in
Table III

VI. SUMMARY, CONCLUSION AND OUTLOOK

As motivated in Section II, a collaborative environment re-
quires the support for the definition and computation of KPIs
by business users. Since Microsoft’s Excel suffers from some
major drawbacks in this context (e.g. missing collaboration
support), we decided to integrate a quantification mechanism

8

Development Project::
statusTable()

Development Project::
statusTableHeader()

Development Project::
statusTableRows()

Development Project::
statusTableFooter()

Development Project::
statusTableHeaderCell()

Development Project::
statusOfProcessPhase (pp : Process Phase)

Development Project::
statusOfActivityType (at : Activity Type)

Development Project::
statusOfMeetings (at : Activity Type)

Development Project::
statusOfTasks (at : Activity Type)

Development Project::
statusTableRow (mat : Management Activity Type)

Development Project::
statusTableCell (mat : Management Activity Type, pp : Process Phase)

Development Project::
statusOfModule(mat : Management Activity Type, pp : Process Phase)

Figure 9. Depiction of the execution of the status aggregation and
visualization functions of the SmartNet Navigator

into a collaborative EAM tool, which, however, requires an
appropriate domain-specific query language to define and
compute KPIs. Because of our aim to implement a domain-
specific query language, which provides a minimal, but
sufficient expressiveness, appropriate readability for business
users as well as optimizability, we designed a new language
instead of integrating an existing one.
The language (Section III covers its basic design as well
as its supported operators) is inspired by the context of
defining and computing business-user-oriented KPIs in a
collaborative environment on the one hand, and by existing
general-purpose languages (e.g. SQL, OCL, LINQ) on the
other hand. Its prototypical implementation in our research
EAM tool, covered in Section IV, enables derived attributes
of entities as well as embedded expressions. Moreover, since
integrated in a web-based tool, our language supports the
definition of user-specific, rudimentary visualizations by the
generation of HTML markup.
To evaluate the language (see Section V), we implemented
the KPIs of the EAM KPI Catalog [37] as well as the
SmartNet Navigator, computing and visualizing a project’s
status based on related tasks and meetings.
As stated in Section II, a non-collaborative tool (e.g. Ex-
cel) is not suitable for the business-user-oriented definition
and computation of KPIs in a collaborative environment.
However, the integration of an appropriate query mechanism
in a collaborative EAM tool enables the definition and
computation of KPIs. The integration of our language in an
EAM tool (see Section IV) allows embedding of expressions
in the rich text content of a page as well as the definition
of derived attributes for types on schema level. This enables
user-defined visualizations on the one hand, and extends the
modeling capabilities of the EAM tool by enabling derived
attributes on the other hand.

Although the evaluation of our language highlights the
capability of defining, computing and visualizing KPIs in a
collaborative environment, it is not yet clear, if the language
is practicable for business users, which have at least some
experience with Microsoft’s Excel. Therefore, further evalu-
ation has to be done in order to improve the language and its
syntax, especially regarding its suitability for business users.
Apart from this, further new questions emerged during our
research, which should be tackled in future research:

• Authorization concept: An authorization concept for
the DSL has to be implemented to control the use of
TxL, e.g. studying the interplay between KPI computa-
tion and role-based access-protections of the underlying
data entities.

• Query analysis and optimization: Since we think, that
TxL can be employed in any Big Data scenarios, per-
formance issues have to be considered, i.e. optimization
of operator application, materialization of evaluated
values, etc.

• Time series: To support time series over the value of a
KPI, a version history of the evaluated value of a TxL
expression is required.

• Visualizations: To visualize the results of a TxL ex-
pression representing a KPI in an appropriate way,
the language has to be extended by certain visualiza-
tion constructs to depict the evaluated results in user-
friendly way, e.g. as a diagram or as traffic lights.

• Further evaluation: Both, the language and its im-
plementation have to be evaluated in practice. For this
purpose, we plan an operational use in our teaching
activities and in our Wiki4EAM community [9]

REFERENCES

[1] The Open Group. TOGAF Version 9.1: Section
2.2. http://pubs.opengroup.org/architecture/togaf9-doc/arch/
chap02.html, October 2012.

[2] Sabine Buckl, Thomas Dierl, Florian Matthes, and Chris-
tian M. Schweda. Building Blocks for Enterprise Architecture
Management Solutions. 2010.

[3] Frederic Ahlemann, Eric Stettiner, Marcus Messerschmidt,
and Christine Legner. Strategic Enterprise Architecture Man-
agement. Springer-Verlag, 2012.

[4] Florian Matthes, Sabine Buckl, Jana Leitel, and Christian
Schweda. Enterprise Architecture Management Tool Survey
2008. 2008.

[5] Robert A. Handler and Chris Wilson. Magic
Quadrant for Enterprise Architecture Tools.
http://imagesrv.gartner.com/media-products/pdf/reprints/
ibm/external/volume4/article28.pdf, 2011.

[6] Sabine Buckl, Alexander M. Ernst, Josef Lankes, and Florian
Matthes. Enterprise Architecture Management Pattern Cat-
alog (Version 1.0, February 2008). Technical report, Chair
for Informatics 19 (sebis), Technische Universität München,
Munich, Germany, 2008.

9

[7] Sabine M. Buckl. Developing Organization-Specific Enter-
prise Architecture Management Functions Using a Method
Base. Dissertation, Technische Universität München,
München, 2011.

[8] Christian M. Schweda. Development of Organization-Specific
Enterprise Architecture Modeling Languages Using Build-
ing Blocks. Dissertation, Technische Universität München,
München, 2011.

[9] Florian Matthes and Christian Neubert. Wiki4eam - using
hybrid wikis for enterprise architecture management. 2011.

[10] Frederik Ahlemann, Eric Stettiner, Marcus Messerschmidt,
and Christine Legner. Strategic Enterprise Architecture Man-
agement. Springer-Verlag, 2012.

[11] Matthias Stutz. Kennzahlen für Unternehmensarchitekturen:
Entwicklung einer Methode zum Aufbau eines Kennzahlensys-
tems für die wertorientierte Steuerung der Veränderung von
Unternehmensarchitekturen. Verlag Dr. Kovac, 2009.

[12] Josef K. Lankes. Metrics for Appilcation Landscapes. Dis-
sertation, Technische Universität München, München, 2008.

[13] Microsoft Excel - Office.com. http://office.microsoft.com/
en-us/excel, March 2013.

[14] Felienne Frederieke Johanna Hermans. Analyzing and Visu-
alizing Spreadsheets. PhD thesis, Software Engineering Re-
search Group, Delft University of Technology, Netherlands,
2012.

[15] Martin Fowler. Domain Specific Languages. Addison-Wesley
Longman, 2010.

[16] Viara Popova and Alexei Sharpanskykh. Modeling organiza-
tional performance indicators. 2010.

[17] Gary Berg-Cross. Improving representation and conceptual-
ization for enterprise architectures. International Conference
on Enterprise System Theory, 2007.

[18] Jay W. Forrester. Principles of Systems. Wright-Allen Press,
1968.

[19] Alan Karl Graham. Principles on the relationship between
structure and behavior of dynamic systems. Dissertation,
Massachusetts Institute of Technology, Cambridge, 1973.

[20] Ray Panko. Facing the problem of spreadsheet errors.
Decision Line, 37, 2006.

[21] Jacome Cunha, Joao Saraiva, and Joost Visser. From Spread-
sheets to Relational Databases and Back. 2008.

[22] Gregor Engels and Martin Erwig. ClassSheets: Automatic
Generation of Spreadsheet Applications from Object-Oriented
Specifications. 2005.

[23] C. J. Date. An Introduction to Datebase Systems. Addison-
Wesley, 8 edition, 2003.

[24] Caetano Sauer and Theo Haerder. Compilation of Query
Languages into MapReduce. Datenbank Spektrum, 13:5–15,
2013.

[25] OMG Object Constraint Language (OCL). http://www.omg.
org/spec/OCL/2.3.1/, 2012.

[26] Luis Mandel and Maria Vistoria Cengarle. On the Expressive
Power of the Object Constraint Language. FM ’99 Pro-
ceedings of the Wold Congress on Formal Methods in the
Development of Computing Systems, pages 854–874, 1999.

[27] David H. Akehurst and Behzad Bordbar. On Querying UML
Data Models with OCL. 2001.

[28] Don Box and Anders Heijlsberg. LINQ: .NET Language-
Integrated Query. http://msdn.microsoft.com/en-us/library/
bb308959.aspx, 2007.

[29] Anders Heijlsberg and Mads Torgersen. The .NET Standard
Query Operators. http://msdn.microsoft.com/en-us/library/
bb394939.aspx, 2007.

[30] Peter Varn Roy and Seif Haridi. Concepts, Techniques, and
Models of Computer Programming. MIT Press, 2004.

[31] Michael Scott. Concepts of Programming Languages. Morgan
Kaufmann Publishers, 2001.

[32] Robert W. Sebesta. Programming Language Pragmatics.
Addison Wesley, 2006.

[33] Robert R. Stoll. Set Theory and Logic. Dover Publications,
1979.

[34] Scott Milton and Heinz W. Schmidt. Dynamic Dispatch in
Object-Oriented Languages. 1994.

[35] Florian Matthes, Christian Neubert, and Alexander Steinhoff.
Hybrid wikis: Empowering users to collaboratively structure
information. 2011.

[36] CodeMirror. http://codemirror.net/, October 2012.

[37] Florian Matthes, Ivan Monahov, Alexander Schneider, and
Christopher Schulz. "eam kpi catalog v1.0". 2011.

[38] Heiko Matheis. SmartNet Navigator and application guide-
lines. Sehenth Framework Programme, 2013. SmartNets -
The Transformation from Collaborative Knowledge Explo-
ration Networks into Cross Sectoral and Service Oriented
Integrated Value Systems.

[39] Matheus Hauder, Sascha Roth, Florian Matthes, Armin Lau,
and Heiko Matheis. Supporting collaborative product devel-
opment through automated interpretation of artifacts. 2013.

[40] infoAsset AG. www.infoasset.de, October 2012.

10

