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Abstract

In the rapidly evolving field of biomedical natural language processing (BioNLP), knowledge-
enhanced language models (KELMs) have emerged as promising tools to bridge the gap
between large-scale language models and domain-specific knowledge. KELMs can achieve
higher factual accuracy and mitigate hallucinations by leveraging the potential of knowledge
graphs (KGs). This work delves into the evaluation of such models within the biomedical
domain. It aims to guide future research to ensure that BioNLP evolves in a manner most
beneficial to the healthcare system. The thesis is structured in three parts, the main results of
which are as follows Literature Review: First, a novel systematic literature review on adapter-
based approaches to knowledge-enhancement gives an overview of the methodologies in
the field. We explore the strengths and potential shortcomings of related work. We find
that both open-domain and closed-domain approaches have been frequently explored along
with a multitude of downstream tasks. We discovered that the biomedical domain has been
the most frequently explored domain-specific field in the last four years, signifying our
work’s relevance. With the literature review, we provide an extensive resource for researchers
exploring adapter-based KELMs. Model Experiments: In the second part of the thesis, we
leverage the insights gained from the literature to design a pipeline for model experiments.
Our industry partner, OntoChem, provided us with access to a novel knowledge graph for
this section. We propose two sets of sub-graphs, "Onto20Rel" and "OntoType20Rel", with
which we inject renowned biomedical large language models (LLMs). Our methodology
leads to solid results on several downstream tasks, predominately "HoC", "PubMedBERT",
and "BioASQ7b". For the BioASQ7b task, we report the best performance of all related
works. We give a detailed interpretation of the results and report valuable insights. Research
Survey: The final part of the thesis comprises a survey addressed to medical students and
professionals. The survey sheds light on the implications of BioNLP in practice and sets
the stage for further research in this domain. In particular, we find a growing adoption of
NLP technology in the medical community. The survey discovers several anticipated and
recognized applications of LLMs, particularly to reduce the time clinicians have to spend
on monotonous tasks. At the same time, participants shared significant concerns, primarily
surrounding data security and the sanctity of the fiduciary doctor-patient relationship. The
survey results underscore the balance that needs to be struck between innovation and trust as
we venture further into the realm of BioNLP in healthcare.

Keywords: Natural Language Processing (NLP), Pre-trained language models, Knowledge
Graphs, Domain Knowledge, Knowledge Enhancement, Adapters, Biomedicine
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Kurzfassung

In dem sich rasant entwickelnden Bereich der biomedizinischen natürlichen Sprachverarbei-
tung haben sich wissensgestärkte Sprachmodelle (sogenannte "KELMs") als vielversprechende
Werkzeuge herausgestellt, um die Lücke zwischen großen Sprachmodellen und domänen-
spezifischem Wissen zu schließen. KELMs nutzen das Potential von Wissensgraphen um
eine höhere faktische Genauigkeit zu erreichen und Halluzinationen von Sprachmodellen
zu reduzieren. Diese Masterarbeit setzt sich mit der Evaluation solcher Modelle im biomedi-
zinischen Bereich auseinander. Die Arbeit zielt darauf ab richtungsweisend für zukünftige
Forschung zu sein. Die Arbeit ist in drei Teile gegliedert, deren Hauptergebnisse wie folgt
sind: Literaturanalyse: Zunächst gibt eine neuartige systematische Literaturanalyse über
adapterbasierte Ansätze zur Wissensverstärkung einen detaillierten Überblick über die existie-
renden Methoden und Ansätze in diesem Feld. Wir untersuchen die Stärken und Schwächen
von verschiedenen Ansätzen in der Literatur. Wir stellen fest, dass sowohl Ansätze in offenen
Dömanen, sowie domänenspezifische Ansätze häufig auftreten. Des Weiteren, wird eine
Vielzahl an downstream-tasks in der Literatur erforscht. Wir haben festgestellt, dass der
biomedizinische Bereich in den letzten vier Jahren das am häufigsten untersuchte domänen-
spezifische Feld war, was die Relevanz unserer Arbeit unterstreicht. Mit der Literaturanalyse
bieten wir eine neue, umfangreiche Ressource für Forscher, die adapterbasierte KELMs erkun-
den. Modell-Experimente: Im zweiten Teil der Arbeit nutzen wir die gemachten Erkenntnisse
aus der Literatur, um eine Pipeline für Sprachmodellexperimente zu entwerfen. Für diesen
Abschnitt der Arbeit gab uns unser Industriepartner OntoChem Zugang zu einem neuartigen
Wissensgraphen. Über unsere Methologie haben wir zwei Sets an Teilgraphen entwickelt:
Onto20Rel und OntoType20Rel. Mit diesen konnten wir eine Anzahl an renommierten biome-
dizinische großen Sprachmodelle mit Wissen injizieren. Unsere Methodik führt zu soliden
Ergebnissen bei mehreren downstream-tasks, insbesondere HoC, PubMedBERT und Bio-
ASQ7b. Im Fall von BioASQ7b haben wir die beste Modellperformanz unter allen verwandten
Arbeiten erreicht. Forschungsumfrage: Der letzte Teil der Thesis besteht aus einer Umfrage,
welche an Medizinstudent*innen und medizinisches Fachpersonal gerichtet ist. Die Umfrage
beleuchtet die Auswirkungen von biomedizinischer natürlicher Sprachverarbeitung in der
Praxis und legt den Grundstein für weitere Forschung in diesem Bereich. Insbesondere stellen
wir eine wachsende Nutzung von NLP-Technologie in der Biomedizin fest. Die Umfrage legt
verschiedene mögliche Anwendungen von Sprachmodellen offen. Teilnehmer*innen sehen
großes Potential dabei die Zeit zu reduzieren, welche Ärzt*innen für monotone Aufgaben
aufwenden. Gleichzeitig teilten die Teilnehmer*innen erhebliche Bedenken, besonders bei
Datensicherheit und dem treuhändeischen Arzt-Patienten-Verhältniss. Die Umfrageergebnisse
unterstreichen ein Gleichgewicht, welches zwischen Innovation und Vertrauen gefunden
werden muss, um das Gesundheitswesen mithilfe von Sprachmodellen verbessern zu können.
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1. Introduction

Time and health are two of our most valuable resources. Being short on either leads to
strain and stress in our lives. We rely on medical professionals for healthcare; they rely on
the healthcare system to enable them to work under good conditions. However, medical
professionals worldwide are notoriously overworked and short on time, often due to the
bureaucracy they have to deal with every working day. For example, a membership survey of
the Marburger-Bund (2022) found that 60 percent of doctors in Germany spend three hours
or more per day on documentation and administrative tasks. A nationwide study in the
US (Overhagea & McCallie, 2020) led to similar results where, on average, physicians spend
approximately 3.3 hours on electronic health records (EHRs), an average of 16 minutes and
14 seconds per encounter. While EHRs are important, they take away from the time spent on
actual patient care and are one of the major factors physicians dislike about their profession
(Overhagea & McCallie, 2020).

It is, therefore, an important task to relieve medical professionals of as much documentation
work and administrative duties as possible so we can reduce stress and strain for patients
and physicians alike. Recent advancements in the development of large language models
(LLMs) could prove to be a significant aid in this task, especially if they are tuned for use in
medicine and bio-medicine. For instance, specialized biomedical LLMs can help automate
tasks such as analyzing medical records or generating reports based on patient data, allowing
healthcare professionals to work more efficiently and effectively. Biomedical LLMs can also
help improve communication between healthcare providers and patients, for example, by
writing drafts to answer patient questions and mail inquiries. Overall, the progress of large
language models has the potential to revolutionize how we approach healthcare, making it
more personalized, efficient, and tailored to individual needs.

Of course, the use of language models does not come without risks. LLMs, in general,
tend to lack knowledge awareness and are prone to so-called "hallucinations", which can
lead to inaccurate predictions and make the models unusable. This issue is especially
precarious in a high-risk domain such as healthcare. One possible solution to counteract
hallucinations and improve the reliability of LLMs is knowledge enhancement: By leveraging
expert knowledge from knowledge graphs (KGs), structured knowledge can be injected into
LLMs. Such knowledge-enhanced language models (KELMs) are a promising approach to
more factual accuracy and less hallucinations (Colon-Hernandez, Havasi, Alonso, et al., 2021;
Wei, Wang, Zhang, et al., 2021). This thesis aims to research KELMs and their application in
the biomedical domain.

1



1. Introduction

1.1. Context

The starting point for this thesis was the opportunity to experiment with novel data from
OntoChem, an industry partner of the chair of Software Engineering for Business Information
Systems (sebis) at the Technical University of Munich (TUM). OntoChem provided us with
access to vast amounts of structured biomedical knowledge in the form of entity-relation-
entity triplets. We noticed that most research on KELMs in the biomedical domain relies on
the publicly available "Unified Medical Language System" (UMLS) ontology (Bodenreider,
2004), suggesting that the field could profit from research that is leveraging different and
more modern sources. During further investigation of the topic, we noticed two additional
gaps in the field of biomedical KELM: A lack of a comprehensive study on adapter-based
approaches and the non-existence of a survey that addresses medical professionals directly
and involves them in the research in the field. This came as a surprise to us since the area
of biomedical LLMs is subject to an ever-rising amount of research. Yet, it seems to miss a
connection to the practicality of the results in clinics and medical centers. Eventually, our
investigations and initial literature review led to three research questions (RQs), which will be
stated in the following. The thesis is connected to the VeriSci research project at sebis. VeriSci
is part of the Software Campus Framework sponsored by the Federal Ministry of Education
and Research (BMBF).

1.2. Research Questions

Deducted from the context and initial literature review mentioned above, this thesis will focus
on the research and methods that will answer three (RQs):

RQ1 What adapter-based approaches to knowledge-enhancement exist, and how do they
compare to each other?

RQ2 Can we improve existing approaches with new methods and data from a private
ontology?

RQ3 Is the research on biomedical KELMs relevant to medical professionals, and what
factors hinder or support the deployment of the technology in practice?

1.3. Outline

This work is structured into five chapters. After the introduction in chapter 1, chapter 2
addresses past and ongoing research in biomedical NLP with a focus on KELMs. The third
chapter explains the research questions and methods of the thesis. It describes the settings of
the literature review, the model experiments, and the research survey addressed to medical
professionals. Chapter 4 presents and discusses the previous chapter’s results and answers
the thesis’s research questions. Finally, chapter 5 concludes the thesis by giving a concise
summary and addressing possible shortcomings and further research opportunities. All
supplementary material is provided in the appendix.

2



2. Background and Related Work

Few fields of research have been more active over the last decade than (bio)medicine and
natural language processing (Cimini, Gabrielli, & Labini, 2014; Nwagwu, 2022). Since this
thesis is nested right in between those two fields, it comes as no surprise that there is a
significant amount of relevant literature. This chapter introduces the reader to past and
ongoing research on biomedical NLP and KELMs and explains domain-specific terminology.

This chapter aims to lay the groundwork for understanding the methods and findings
discussed in the later chapters of this work. For the systematic literature review on adapter-
based approaches to knowledge enhancement, see chapter 3 and 4.

2.1. Natural Language Processing

The capacity to achieve fluency in a language, allowing comprehension and processing of
spoken and written words, has historically been viewed as a distinctly human trait. Yet, in
the past few decades, machines have made significant progress in this domain through NLP,
a subdomain of computer science and linguistics that falls under the umbrella of artificial
intelligence. Most individuals unknowingly interact with NLP systems daily. Prominent
voice assistants rely on NLP to offer, for example, speech-to-text or translation services on
smartphones or through home speakers. The same applies to the auto-correct functions and
the customer service chatbots we commonly talk to on websites (Jurafsky & Martin, 2023). In
the following, we will give an overview of NLP, highlighting the fields that are most relevant
to the understanding of this work.

2.1.1. Overview

To begin with, we will summarize the most important developments in NLP methodologies.
For further reading on the mentioned methods and developments, please refer to Dan
Jurafsky’s and James H. Martin’s work on Speech and Language Processing (Jurafsky &
Martin, 2023). They provide free access to their comprehensive and regularly updated book
on all forms of NLP.

Traditional Methods Before the dawn of deep learning and its profound impact on the realm
of NLP, various traditional techniques formed the bedrock of language-based algorithms
and applications. These methodologies heavily relied on linguistic rules, pattern matching,
statistical modeling, and symbolic approaches. With a mix of traditional methods, the
automatic question-answerer "BASEBALL" proposed by Green, Wolf, Chomsky, and Laughery

3



2. Background and Related Work

(1961) was already able to read a baseball-related question from a punched card, process it,
and print out an answer. Another famous system, ELIZA, often recognized as the first chatbot,
simulated conversation by pattern matching and substitution methodology (Weizenbaum,
1966). Its most renowned variation, "DOCTOR", emulated a Rogerian psychotherapist,
formulating its responses based on the user’s input. While rule and pattern matching can
be very precise for well-defined tasks, corresponding methods can be brittle and limited
in handling the complexities and ambiguities of natural language. Each new linguistic
phenomenon or exception could require the addition of new rules, making the system
intricate and cumbersome. Moving away from hand-coded rules, statistical models started
playing a significant role in NLP during the late 20th century. For example, Markov models
and chains have been widely used for part-of-speech tagging, named entity recognition, and
speech recognition (Almutiri & Nadeem, 2022). Their strength lies in their capability to
consider context through state transitions, enabling them to effectively model sequential data
like text or speech.

Modern Neural Networks and Transformers With the start of the deep learning boom,
which was driven by the increasing affordability and accessibility of computing power and
data, Recurrent Neural Networks (RNNs) and Long Short Term Memory (LTSM) emerged as
leading techniques in NLP for a limited period of time. However, since the invention of the
transformer by Vaswani, Shazeer, Parmar, et al. (2017), transformer-based language models
are considered the state-of-the-art (SOTA) base architecture of NLP systems. These modes
are usually pre-trained to give them a general understanding of natural language before
"fine-tuning" them for a specific downstream purpose.1 Devlin, Chang, Lee, and Toutanova
(2019) presented BERT (Bidirectional Encoder Representations from Transformers), a then
novel method of pre-training language representations bidirectionally that set new standards.
Their pre-training approach, so-called "masked language modeling" (MLM), was to mask
15 percent of all input words of a sentence, feed the sequence to a bidirectional transformer,
and finally predict the previously masked words. BERT became outstandingly successful
and dominated most downstream tasks and applications in NLP over the more traditional
machine learning text classification approaches (Gonz’alez-Carvajal & Garrido-Merch’an,
2020). Subsequently, a whole family of BERT-based models has been created since, some of
which will be used in the experimental part of this thesis (see chapter 3).

Growth of Large Language Models After the described invention-driven leaps in NLP,
the general trend for LLMs (and deep learning models in general) became to grow in size
rapidly. For instance, while at its original publication, the largest version of BERT had 340
million parameters, more recent language models like GPT-3 (Brown, Mann, Ryder, et al.,
2020) or PaLM (Singhal, Azizi, Tu, et al., 2022) already have 175 and 540 billion parameters,
respectively. While this growth comes with significant performance boosts, experimenting
with LLMs of this size is only possible for large tech companies that have access to vast

1From this point onward, any reference to LLMs inherently implies pre-trained large language models, unless
otherwise specified.

4



2. Background and Related Work

amounts of computing power. As a consequence, researchers and data scientists with fewer
resources now depend on parameter-efficient models and training algorithms.

2.1.2. Biomedical Natural Language Processing

Biomedical natural language processing (BioNLP) is an interdisciplinary field that combines
NLP and biomedical science. It involves using computational techniques to analyze and
interpret large volumes of biomedical text data such as electronic health records (EHRs),
scientific literature, and clinical notes (Kalyan, Rajasekharan, & Sangeetha, 2022; B. Wang, Xie,
Pei, et al., 2021). BioNLP has been used for various down-stream tasks such as information
extraction (IE), text classification (TC), named entity recognition (NER), relation extraction
(RE), and question answering (QA) (Gu, Tinn, Cheng, et al., 2020). The abundance of
biomedical text data coupled with advances in NLP is resulting in novel BioNLP applications.
Like in other NLP domains, BioNLP relied on rule-based systems and statistical models.
However, nowadays, BioNLP is equally reliant on the availability of domain-specific LLMs
that are trained on massive amounts of data (B. Wang, Xie, Pei, et al., 2021). An excellent
reference for the change of the BioNLP field over the years is given by a survey on clinical
natural language processing in the United Kingdom covering the period from 2007 to 2022
(Wu, Wang, Wu, et al., 2022).

Some of the challenges in BioNLP include the complexity of biomedical language, which
often contains technical terms and jargon not commonly used in everyday language. Also,
biomedical text data is often unstructured and noisy, making it difficult to extract meaningful
information from it. Other challenges include the lack of standardization in biomedical
language and the need for domain-specific language models. In the following, specialized
biomedical LLMs will be discussed in preparation for their use in this thesis.

Biomedical Large Language Models

It was long assumed that for domain-specific applications, the open-domain pre-training
of standard BERT models should be combined with fine-tuning (or further pre-training) on
in-domain data ("mixed approach") for maximum performance. However, (Gu, Tinn, Cheng,
et al., 2020) challenged this approach and showed that "domain-specific pre-training from
scratch substantially outperforms continual pre-training of generic language models, thus
demonstrating that the prevailing assumption in support of mixed-domain pre-training is not
always applicable". They used the biomedical domain as a running example for their study
and proposed "PubMedBERT", a model based on the original BERT architecture (Devlin,
Chang, Lee, & Toutanova, 2019), but solely pre-trained on papers from PubMed2, a free
resource containing more than 36 million citations and abstracts of biomedical literature.
PubMedBERT set new standards in biomedical NLP and consistently outperformed mixed
approaches like BioBERT (Lee, Yoon, Kim, et al., 2019) or SciBERT (Beltagy, Lo, & Cohan,
2019).

2https://pubmed.ncbi.nlm.nih.gov/
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2. Background and Related Work

Just like other LLMs, biomedical LLMs have been growing in size rapidly. For example, the
SOTAs on many biomedical benchmarks (see following section) is constantly improved by
ever larger models like BioGPT. Notably, one descendant of the BERT family of LLMs seems
to be still competing (e.g., on the PubMedBERT benchmark on "PapersWithCode" 3 with
much larger and more modern biomedical LLMs: BioLinkBERT. BioLinkBERT builds upon
the LinkBERT (Yasunaga, Leskovec, & Liang, 2022) architecture, a self-supervised pre-training
approach that is itself based on BERT (Devlin, Chang, Lee, & Toutanova, 2019). BioLinkBERT
was created by incorporating citation links from academic papers in the pre-training process,
enriching the model’s understanding of knowledge dependencies that span a variety of
papers (Yasunaga, Leskovec, & Liang, 2022). Because of its parameter/performance ratio and
the limited computing resources available for this thesis, we decided to include BioLinkBERT
in our methodology for the experimental section of our work (see chapter 3.

Benchmarks and State-of-the-art

There are various ways to assess the capability of BioNLP models. Apart from evaluating
models on single specific downstream tasks, there exist two widely used comprehensive
benchmarks combining a multitude of downstream tasks: The "Biomedical Language Under-
standing Evaluation" (BLUE) benchmark and the "Biomedical Language Understanding and
Reasoning Benchmark" (BLURB) created at Microsoft Research (Gu, Tinn, Cheng, et al., 2020).
Both benchmarks consist of a set of classic NLP tasks, such as Named Entity Recognition
NER, Relation Extraction RE, and Question Answering QA, but set in the biomedical domain.
In this work, we will run experiments on four of the tasks included in BLURB, namely
HoC (Baker, Silins, Guo, et al., 2015), PubMedQA (Jin, Dhingra, Liu, et al., 2019), BioASQ7b
(Nentidis, Bougiatiotis, Krithara, & Paliouras, 2020), and MedNLI (Romanov & Shivade, 2018).
Reasons for this choice will be given in chapter 3.

For the HoC (Hallmarks of Cancer) task, "ten characteristics (i.e., hallmarks) of normal cells
required for malignant growth have been proposed that provide an organizing principle to
simplify the diversity of the biological processes leading to cancer" (Baker, Silins, Guo, et al.,
2015). The HoC dataset contains cancer-related PubMed abstracts annotated according to
the evidence they provide for such cancer hallmarks and requires models to solve the corre-
sponding multi-label classification task. Examples of hallmarks are "Sustaining proliferative
signaling (PS)", "Evading growth suppressors (GS)", or "Resisting cell death (CD)".

The two question-answering datasets, PubMedQA and BioASQ7b, require models to
answer research questions extracted from PubMedQA abstracts and handcrafted by medical
professionals, respectively. The answer choices in the case of PubMedQA are "yes", "no",
or "maybe", where the source abstracts are given as context. An example question from
the dataset is, "Do preoperative statins reduce atrial fibrillation after coronary artery bypass
grafting?" (Jin, Dhingra, Liu, et al., 2019). BioASQ7b is a binary classification task with

3https://paperswithcode.com/sota/question-answering-on-pubmedqa
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questions created and curated by medical experts and answer choices "yes" and "no". A
question example is "Is Baloxavir effective for influenza?" with an example context being
"Baloxavir marboxil [...] is an oral cap-dependent endonuclease inhibitor that has been
developed by Roche and Shionogi [...]".

Finally, MedNLI is an expert annotated dataset for Natural Language Inference (NLI) in
the clinical domain. Romanov and Shivade (2018) explain NLI as "the task of determining
whether a given hypothesis can be inferred from a given premise". For example, given the
premise "She was not able to speak, but appeared to comprehend well" and hypothesis
"Patient had aphasia" (a language disorder caused by damage in a specific area of the brain),
the model has to decide between an "entailment", "contradiction", or "neutral" predicted label
(here: entailment).

Table 2.1 shows the current SOTA for the four chosen tasks.

Task/SOTA Score Model
HoC 87.3 (MicroF1) NCI_BERT (Peng, Yan, & Lu, 2019)
PubMedQA 81.8 (Acc) Med-PaLM 2 (Singhal, Tu, Gottweis, et al., 2023)
BioASQ7b 94.8 (Acc) BioLinkBERT-large (Yasunaga, Leskovec, & Liang, 2022)
MedNLI 86.6 (Acc) SciFive (Phan, Anibal, Tran, et al., 2021)

Table 2.1.: SOTA for select tasks from the BLURB benchmark according to the best of our knowl-
edge and PapersWithCode (https://paperswithcode.com/) leaderboards. The metrics are
indicated with the scores and correspond to the metrics used in BLURB

2.2. Knowledge Enhanced Language Models

The original motivation for developing KELMs was to introduce structured knowledge to
the unstructured nature of LMs to increase knowledge awareness and reduce hallucinations
(Wei, Wang, Zhang, et al., 2021). With the steady progress of LLMs over the last years, there
arose a multitude of KELM approaches and models that could leverage the expert knowledge
in knowledge graphs (KGs). The following will explain the concept of KGs, and existing
literature on KELMs will be presented.

2.2.1. Knowledge Graphs

KGs have seen a rising prominence in NLP research over the past decade (Schneider, Schopf,
Vladika, et al., 2022) and are an essential element of most approaches to KELMs. Hogan,
Blomqvist, Cochez, et al. (2020) define a KG as "a graph of data intended to accumulate and
convey knowledge of the real world, whose nodes represent entities of interest and whose
edges represent relations between these entities". Ji, Pan, Cambria, et al. (2020) published a
comprehensive survey on KGs and, following existing literature, defined the concept of a KG
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as "G = {E ,R,F}, where E ,R and F are sets of entities, relations and facts, respectively. A
fact is denoted as a triple (h, r, t) ∈ F ". In our methodology, we follow the documentation
of Irmer, Bobach, and Böhme (2019) for practical reasons related to our methodologies and
denote these triples as (s, r, o), where s is a subject, r is a relation, and o is an object. Both s
and o are entities that come from an entity set E, while relations come from a relation set R.
Depending on the source and purpose of a KG, entities, and relations can take on various
shapes. For example, a relation can take the shape of a single word like "inhibits", a short
phrase like "relates to ", or a compound term including, for example, chemical or medical
categories such as "[protein] relates to [disease]" or "[substance] induces [physiology]". A
textual connection is vital because it serves as a link between the graph structure and natural
language, simplifying the integration of information from KGs into language models and the
associated learning processes. Examples of popular KGs that are important for this work are
UMLS (Bodenreider, 2004), DBpedia (Auer, Bizer, Kobilarov, et al., 2007a), and ConceptNet
(Speer, Chin, & Havasi, 2017). They will be discussed in the later chapters of this thesis.

2.2.2. Approaches to Knowledge Enhancement

At the time of writing, there are several studies that try to give an overview of KELMs and
classify different approaches. Colon-Hernandez, Havasi, Alonso, et al. (2021) "examine a
variety of approaches to integrate structured knowledge into current language models and
determine challenges, and possible opportunities to leverage both structured and unstructured
information sources". They review existing literature in three categories: Input-centered
strategies (1) center around altering either the structure of the input or the selected data,
which is fed into the base LLMs. Architecture-focused approaches (2), on the other hand,
"[involve] either adding additional layers that integrate knowledge in some way with the
contextual representations or modifying existing layers to manipulate things such as attention
mechanisms. [...] These approaches utilize adapter-like mechanisms to be able to inject
information into the models" (Colon-Hernandez, Havasi, Alonso, et al., 2021).

For both (1) and (2), there are various ways to incorporate information from a KG G into
the LLM Θ0: A prevalent method involves creating a dataset by transforming the facts F
into a set of words or sentence-like structure. Then ΦG can be learned through classical
MLM as training objective LG . Accordingly to Meng, Liu, Clark, et al. (2021), implementing
ΦG through entity prediction is widely popular, with other methods including relation
classification (R. Wang, Tang, Duan, et al., 2020), entity linking (Peters, Neumann, Logan,
et al., 2019), and next sentence prediction (Goodwin & Demner-Fushman, 2020).

Finally, output-focused approaches (3) work by changing either the output structure or
the losses used in the base transformer model. However, here, the authors mention only
the methodology of SemBERT (Zhang, Wu, Hai, et al., 2019) to fall under this category.
SemBERT enhances the output of a BERT model with entity embeddings. In their survey,
Colon-Hernandez, Havasi, Alonso, et al. (2021) also mention hybrid frameworks that utilize
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a mixture of the three categories. One of their main conclusions is that there are "still
opportunities at exploiting adapter-based injections" (situated in the architecture-focused
category), which further increased our interest in following an adapter-based approach.

Figure 2.1.: An example of (a) knowledge enhancement in a classical "fine-tuning" approach and (b)
adapter-based knowledge enhancement as applied by R. Wang, Tang, Duan, et al. (2020).
Image from R. Wang, Tang, Duan, et al. (2020)

The second study by Wei, Wang, Zhang, et al. (2021) was published just a few months after
the survey by Colon-Hernandez, Havasi, Alonso, et al. (2021). They review a large number
of studies on KELMs and classify them using three taxonomies: (1) knowledge sources, (2)
knowledge granularity, and (3) application areas. Within (1), they explored the integration of
knowledge from knowledge sources such as linguistic knowledge, encyclopedia knowledge,
and commonsense and domain-specific knowledge. They introduce representative methods
for every source and discuss the corresponding knowledge the methods exploit. The second
taxonomy (2) acknowledges the common approach to using KGs as a source of knowledge.
In their study, Wei, Wang, Zhang, et al. (2021) group models by the granularity of knowledge
they incorporate from the KGs. Levels of granularity are text-based knowledge, entity
knowledge, relation triples, and KG sub-graphs. Notably, one of the significant works of
literature by Meng, Liu, Clark, et al. (2021) that we used in our work draws on the utilization
of graph partitioning and KG sub-graphs. In chapter 3, we explain the methods in detail.
Lastly, with the third taxonomy (3), the authors discuss in detail how knowledge enhancement
can improve natural language generation and understanding. They also review popular
benchmarks that can be used for task performance evaluation of KELMs (Wei, Wang, Zhang,
et al., 2021).

These two field studies by Colon-Hernandez, Havasi, Alonso, et al. (2021) and Wei, Wang,
Zhang, et al. (2021) on the variations and classification of KELM approaches were our starting

9



2. Background and Related Work

point for the discussion of KELMs and initially proved to be very valuable. However, although
they address some adapter-based studies like K-Adapter (R. Wang, Tang, Duan, et al., 2020),
they did not mention most other adapter-based KELMs, and notably none from the biomedical
domain. For some of the missing papers, like (Q. Lu, Dou, & Nguyen, 2021), this is likely
due to an overlap of writing and publishing. Nevertheless, this lack of coverage led to our
decision to conduct a systematic literature search on the topic as part of this thesis.

A third study on KELMs by Yang, Chen, Li, et al. (2023) was published while the writing of
this thesis was already well underway. For completeness, we will still briefly give an overview
here: The survey categorizes existing literature by "knowledge type" and by the point of time
where the injection takes place: before, during, or after training, roughly translating to the
input, architecture, and output focused approach categories form Colon-Hernandez, Havasi,
Alonso, et al. (2021). Utilizing adapters can, therefore, be considered a "during training"
injection. The paper strongly focuses on the advancement of LLMs of the size of the GPT
series and can be viewed as the most contemporary survey. However, although they mention
three works that use adapters for knowledge enhancement, Yang, Chen, Li, et al. (2023) still
do not provide a comprehensive study of adapter-based approaches.

2.3. Adapters

In the following, an overview of adapters for LLMs and their individual functionalities and
applications will be given. This section is meant to establish a conceptual understanding of
adapter-based approaches to KELMs.

2.3.1. Overview

Adapters (Bapna & Firat, 2019; Houlsby, Giurgiu, Jastrzebski, et al., 2019; Pfeiffer, Kamath,
Rücklé, et al., 2020) are a simple yet effective approach to mitigate issues that arise when
training parameter-heavy transformer-based LLMs for downstream tasks. Broadly speaking,
adapters are small bottleneck feed-forward layers inserted within each layer of a LLM. The
small amount of additional parameters allows for the injection of new data or knowledge
without having to fine-tune the whole model. This feat is usually accomplished by freezing
the layers of the base model with its millions or billions of parameters while only updating
the adapter weights (e.g., through entity prediction). Due to the lightweight nature of
adapters, this approach allows for short training times with relatively low computing resource
requirements. This way, adapters can be used for quick and cheap downstream-task fine-
tuning in a traditional language modeling sense or enhancement of knowledge by injecting
domain knowledge.

Because it is possible to train adapters individually, they can be used for multi-task training
by specializing one adapter for each task or multi-domain knowledge injection by specializing
adapters (individually or in sets) to different domains. Leveraging adapters in LLMs also
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has positive "side effects": Adapters can avoid catastrophic forgetting by introducing new
task-specific parameters (Houlsby, Giurgiu, Jastrzebski, et al., 2019; Pfeiffer, Kamath, Rücklé,
et al., 2020) and, in transfer learning, adapters have even been shown to improved stability
and adversarial robustness for various downstream tasks (Han, Pang, & Wu, 2021).

The specifics of how and where adapters are added to a LLM depend on the adapter type.
In the following, the most common adapter types will be described.

2.3.2. Adapter Types

Houlsby Adapter The Houlsby Adapter (Houlsby, Giurgiu, Jastrzebski, et al., 2019) was
the first adapter to be used for transfer learning in NLP. The idea was based on adapter
modules initially introduced by Rebuffi, Bilen, and Vedaldi (2017) in the computer vision
domain. The two main principles stayed the same: Adapters require a relatively small number
of parameters when compared to the base model and a near-identity initialization. These
principles "ensure that the total model size grows relatively slowly when more [transfer] tasks
are added. A near-identity initialization is required for stable training of the adapted model"
(Houlsby, Giurgiu, Jastrzebski, et al., 2019). The optimal architecture of the Houlsby Adapter
was determined by meticulous experimenting and tuning; the result can be seen in figure
2.2. In a classical transformer structure (Vaswani, Shazeer, Parmar, et al., 2017), they add the
adapter module once after the multi-headed attention and once after the two feed-forward
layers. The modules project the d-dimensional layer features of the base model into a smaller
dimension, m, then apply a non-linearity (like ReLU) and project back to d dimensions. The
configuration also hosts a skip-connection, and the output of each sub-layer is forwarded to a
layer normalization (Ba, Kiros, & Hinton, 2016). Including biases, 2md + d + m parameters
are added per layer, accounting to only 0.5 to 8 percent of the parameters of the original BERT
model used by the authors when setting m << d (Houlsby, Giurgiu, Jastrzebski, et al., 2019).

Bapna and Firat Adapter In contrast to Houlsby, Giurgiu, Jastrzebski, et al. (2019), Bapna
and Firat (2019) only introduce one adapter module in each transformer layer: They keep
the adapters after the multi-headed attention (so-called "top" adapters) while dropping
the adapters after the feed-forward layers (so-called "bottom" adapters) of the transformer
(refer to figure 2.2 for better understanding of the component positions). Moreover, while
(Houlsby, Giurgiu, Jastrzebski, et al., 2019) re-train layer normalization parameters for every
domain, they "simplify this formulation by leaving the parameters frozen, and introducing
new layer normalization parameters for every task, essentially mimicking the structure of the
transformer feed-forward layer" (Bapna & Firat, 2019).

Pfeiffer Adapter and AdapterFusion The approaches of Bapna and Firat (2019) and Houlsby,
Giurgiu, Jastrzebski, et al. (2019) did not allow for information sharing between tasks. Pfeiffer,
Kamath, Rücklé, et al. (2020) introduce Adapter Fusion, a two-stage algorithm that addresses
the sharing of information encapsulated in adapters that were trained on different tasks. In
the first stage, they train the adapters in either single-task or multi-task setup for a total of N
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Figure 2.2.: Location of the adapter module in a transformer layer (left) and architecture of the Houlsby
Adapter (right). All green layers are trained on the fine-tuning data, including the adapter
itself, the layer normalization parameters, and the final classification layer, which is not
shown in the figure. Image with permission from Houlsby, Giurgiu, Jastrzebski, et al.
(2019)

tasks similar to the Houlsby Adapter, but only keeping the top adapters, similar to the Bapna
and Firat Adapter. As a second step, they combine the set of N adapters with AdapterFusion:
They fix the parameters Θ and all adapters Φ, and finally introduce parameters Ψ that learn
to combine the N task adapters for the given target task (Pfeiffer, Kamath, Rücklé, et al.,
2020):

Ψm ← argmin
Ψ

Lm (Dm; Θ, Φ1, . . . , ΦN , Ψ)

Here, Ψm are the learned AdapterFusion parameters for task m. In the process, "the
training dataset of m is used twice: once for training the adapters Φm and again for training
Fusion parameters Ψm, which learn to compose the information stored in the N task adapters"
(Pfeiffer, Kamath, Rücklé, et al., 2020). With their approach of separating knowledge extraction
and knowledge composition, they further improve the ability of adapters to avoid catastrophic
forgetting and interference between tasks and training instabilities.
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K-Adapter R. Wang, Tang, Duan, et al. (2020) follow a substantially different approach
where the adapters work as "outside plug-ins". In their work, an adapter model consists of K
adapter layers (hence the name) that contain N transformer layers as well as two projection
layers. Similar to the approaches above, a skip connection is added, but it is applied across
the two projection layers here. The adapter layers are plugged in among varying transformer
layers of the pre-trained model. The authors explain that they "concatenate the output hidden
feature of the transformer layer in the pre-trained model and the output feature of the former
adapter layer, as the input feature of the current adapter layer. For each knowledge-specific
adapter, we concatenate the last hidden features of the pre-trained model and adapter as the
final output feature of this adapter model" (R. Wang, Tang, Duan, et al., 2020). K-Adapter is
also the first work where factual knowledge injection is explicitly mentioned as an application,
apart from the typical parameter-efficient fine-tuning on downstream tasks.

There exist adapter architectures that are different from the four adapter types mentioned
here (like the "Parallel Adapter" (J. He, Zhou, Ma, et al., 2021) or the adapter architecture by
Stickland and Murray (2019)). However, as the upcoming comprehensive literature survey
will show, these architectures are either unique to specific papers or have not found broader
applications in the field of KELMs. Either way, these approaches are out of the scope of this
thesis and will not be discussed here.
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This chapter details the methodology we employed for the systematic literature review, the
model experiments, and the research survey. There will be one section dedicated to each of
these three thesis components. The methodology is designed to answer the three research
questions described in the introduction. The results will be presented in chapter 4.

3.1. Systematic Literature Review

To begin with, we will describe the search strategy of the systematic literature review on
adapter-based approaches to KELMs. We largely followed the procedure of Kitchenham,
Pearl Brereton, Budgen, et al. (2009) for systematic literature reviews in software engineering.
First, the inclusion and exclusion criteria will be stated. Then, the methodology of the data
collection and the subsequent data analysis will be explained.

3.1.1. Inclusion and exclusion criteria

The search strategy for the systematic literature review of this thesis included literature that
fulfilled the following inclusion criteria:

• Peer-reviewed articles from the ACM1, ACL2, and IEEE Xplore3

• Articles which fulfilled the search string ("adapter" OR "adapter-based") AND ("language
model" OR "nlp" OR "natural language processing") AND ("injection" OR "knowledge")

• Articles published after February 2, 2019 (publication of the Houlsby Adapter, the first
LLM adapter)

• Articles which address the topic of adapter-based knowledge-enhanced language models

We also included some articles not found on the mentioned databases if they fulfilled the
remaining criteria and were significantly relevant to our work.

Articles on the following topics were excluded:

• Articles published before February 2, 2019

1https://dl.acm.org/
2https://aclanthology.org/
3https://ieeexplore.ieee.org/Xplore/home.jsp
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• Duplicate versions of the same article (when multiple versions of an article were found
in different journals, only the most recent version was included)

• Articles where Adapters were used for NLP, but for use-cases other than knowledge-
enhancement (such as few-shot learning or model debiasing)

• Articles written in a language other than English

3.1.2. Data collection

The data extracted from each included document were:

• Source (journal or publication platform)

• Full reference

• Main topic area

• Facts of interest such as adapter architecture, domain, and downstream tasks within the
papers

• A short summary of the study, including the main research questions and the answers

3.1.3. Data analysis

The collected data was tabulated to show:

• Source and publication dates of the studies

• Adapter architectures used in the papers

• Distribution of papers across domains (highlighting the biomedical domain)

• Distribution of papers across downstream tasks

• Results on biomedical NLP benchmarks (if relevant)

In chapter 4, the analysis results are interpreted and presented together with interesting
and valuable qualitative findings from the papers.

3.2. Model Experiments

In this section, we describe our approach to leveraging data from OntoChem’s SciWalker
platform together with adapters to improve existing approaches to biomedical KELMs. In
order to find the best settings for the experiments, information from the literature review
on adapter-based methods to KELMs was required. Therefore, the experiment setting was
largely designed after the initial results of the literature survey were present (especially the
results addressing the biomedical domain).
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The first step to determine the best setting for our experiments was to recreate the most
promising works on adapter-based biomedical KELMs that we found during the literature
survey and run some initial experiments. We did so for KEBLM ("Knowledge-Enhanced
Biomedical Language Models" (Lai, Zhai, & Ji, 2023)) and MoP ("Mixture of Partitions"
(Meng, Liu, Clark, et al., 2021)) since they openly shared their code and brought forth very
recent and successful frameworks. Unfortunately, we could not recreate all of the results of
KEBLM because we did not have access to enough computing power. The MoP framework,
on the other hand, proved to be more accessible and low-resource friendly while enabling
the training of models with almost equivalent performance (depending on the task). For this
reason, we decided that the experiment setting in this thesis should be based on the MoP
framework, an overview of which is given in figure 3.1. However, we altered the data source
and processing and changed the used models and the training approach to a certain extent.
More details on this will follow in the upcoming sections. Please refer to the results of the
systematic literature survey in section 4.1 for more information on the MoP and KEBLM
framework.

Figure 3.1.: Overview of the MoP processing pipeline from graph partitioning to the mixture of
adapters. Image with permission from Meng, Liu, Clark, et al. (2021).

3.2.1. Data Pre-processing

For the model experiments, we have to process two separate data sources: the data from
OntoChem that we use for the knowledge enhancement and the fine-tuning data from the
BLURB benchmark tasks. The following describes the necessary pre-processing steps for the
two data sources.

OntoChem Data

To begin with, we had to tackle the challenge of processing the biomedical data triplets
provided by our industry partner, OntoChem. This thesis’s data is publicly available on
the SciWalker platform hosted by OntoChem. More precisely, the data is made available
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through the "FactFinder" functionality of SciWalker4, where data triplets can be downloaded
based on custom settings. Figure 3.2 illustrates how the FactFinder can be used to find
entity-relation-entity triplets.

OntoChem extracted all of the data that we use from MedLine5, a bibliographic database
from the US National Library of Medicine’s (NLM), as described by Irmer, Bobach, and
Böhme (2019). MedLine contains more than 30 million references to journal articles focusing
on chemistry and bio-medicine. Further information on OntoChem’s extraction process and
original data sources can be found in Appendix A. Thanks to the collaboration between
OntoChem and sebis, we were given access to a single file containing the, at the time,
newest extraction of triplets available to OntoChem. This significantly sped up the data
collection process since we did not have to download sets of data triplets individually from
the FactFinder.

Triplet Structure In figure 3.2, examples of data triplets can be seen. A triplet consists of
3 parts: An entity subject, an entity object, and the relation between them. The relations
provided by OntoChem are unique to the type of entities that the relation connects, so there
can be several types of "induces" relations. For example, there is one possible relation for
a "substance" as a subject and a "disease" as an object ([substance] induces [disease]), and
another one for a "physiology" as a subject and a "disease" as an object ([physiology] induces
[disease]). In contrast to other works, like MoP or KEBLM, we decided to leverage this
entity-type information for our knowledge injections. Following Meng, Liu, Clark, et al.
(2021), we determined the 20 most frequent relations in the data. However, we did so twice:
Once with the relations including the entity types and once with the "fused" relations where
no difference is made between entity types. We named the two approaches "Onto20Rel"
for the fused version and "OntoType20Rel" for the version including the entity types. As a
consequence of the more fine-grained representation of the relations by the OntoType20Rel
approach, it contains a smaller number of total triplets, which can be seen in table 3.1. The
total number of unique entities in the Onto20Rel and OntoType20Rel set is 159,833.

Sub-graph Construction Finally, we needed to construct knowledge sub-graphs via graph
partitioning to effectively handle the computational complexity associated with massive
biomedical KGs. The partitioning strategy had to solve the NP-complete "balanced graph
partition" problem at scale in order to "(1) maximize the number of resulting knowledge
triples to retain as much factual knowledge as possible [and] (2) balance nodes over partitions
to reduce the overall parameters across different entity prediction heads" (Meng, Liu, Clark,
et al., 2021). We follow the suggestion of MoP to use the METIS algorithm (Auer, Bizer,
Kobilarov, et al., 2007b) for the partitioning process since it can solve the balanced graph
partitioning efficiently even for KGs of the size of OntoChem.

4https://sciwalker.com/analytics/factfinder
5https://www.nlm.nih.gov/medline/index.html
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Figure 3.2.: Screenshot of the FactFinder functionality on the SciWalker platform. Here, the entity
"aspirin" and the relation "induces" are preset. The results list triplets with the preferred
name for aspirin (Acetylsalicyclic acid). All of the data can be accessed for further
processing through the "Export" button.

The resulting sub-graphs are transformed into training data, which is split into three
separate files:

• Entity2Id: Maps all unique entities to their corresponding IDs

• Relation2Id: Maps the twenty most frequent relations to their corresponding IDs

• Train2Id: The main training file, where the data triplets are saved with their entity and
relation IDs

BLURB Data

In chapter 2, we described four of the BLURB benchmark downstream tasks with example
data, namely HoC (Baker, Silins, Guo, et al., 2015), PubMedQA (Jin, Dhingra, Liu, et al., 2019),
BioASQ7b (Nentidis, Bougiatiotis, Krithara, & Paliouras, 2020), and MedNLI (Romanov &
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Onto20Rel #Triplets OntoType20Rel #Triplets
relates to 708,076 [protein] relates to [disease] 295,841
induces 502,512 [substance] induces [physiology] 282,721
modulates 326,534 [food] contains [compound] 269,211
treats 225,279 [substance] treats [disease] 247,348
inhibits 219,720 [biomarker] of [disease] 205,604
is analyzed by 195,291 [substance] is analyzed by

[method]
130,275

produces 173,979 [plant] produces [compound] 102,270
increases activity of 148,673 [protein] induces [physiology] 85,411
contains 133,241 [compound] increases activity of

[protein]
85,196

increases 110,803 [compound] decreases activity of
[protein]

72,311

detects 93,373 [substance] inhibits [physiology] 68,728
decreases activity of 85,425 [protein] is a [biomarker] 65,558
prevents 82,574 [anatomy] produces [protein] 64,206
increases expression of 80,771 [substance] prevents [disease] 60,260
expresses 62,142 [protein] induces [disease] 59,577
attenuates 54,865 [substance] modulates [protein] 54,533
decreases expression of 51,152 [protein] is analyzed by

[method]
54,250

binds to 49,206 [method] treats [disease] 35,768
is a 47,435 [method] detects [physiology] 33,504
affects expression of 37,399 [protein] modulates [physiol-

ogy]
24,332

Total 3,388,450 2,296,904

Table 3.1.: Comparison of triplet numbers for the twenty most frequent relations for the Onto20Rel set
and the OntoType20Rel set

Shivade, 2018). Computing resource limitations restrict us from incorporating additional tasks:
fine-tuning all of our model and KG combinations on the complete BLURB benchmark was not
feasible. We chose the four tasks named above for their popularity and best comparability with
existing research (they had a significant overlap with the tasks explored by PubMedBERT,
LinkBERT, MoP, KEBLM, and DAKI). Moreover, while we can not cover the full BLURB
benchmark, the chosen task spectrum still gives a diverse representation of biomedical NLP.

We access the openly available datasets from the website of the BLURB benchmark 6. The
data requires minimal pre-processing and can be loaded with the Hugging Face transformers
and datasets library (Wolf, Debut, Sanh, et al., 2020). Depending on the downstream task,

6https://microsoft.github.io/BLURB/
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the data is encoded in JSON or TSV format, and we processed it directly with standard data
loaders.

3.2.2. Model Training

The most important (and time-consuming) phase of the model experiments is the model
training. In our approach, the training is divided into two parts: The adapter knowledge
injection and the full model fine-tuning. In the following, we first describe the training
environment and then the two training phases.

Training Environment

To facilitate our experiments, we established a training environment on Google Colab7.
Google Colab offers cost-effective access to GPUs like T4s and V100s, which are essential for
training LLMs. Moreover, Google Colab’s integration with Jupyter Notebooks makes it easy
to streamline deep learning experiments and code documentation. As our base models, we
chose the base versions of PubMedBERT (Gu, Tinn, Cheng, et al., 2020) and BioLinkBERT
(Yasunaga, Leskovec, & Liang, 2022), which we already described in the literature overview
in chapter 2. We made this choice because of the high performance of these models when
factoring in their relatively small amounts of parameters and because of their popularity in
the BioNLP domain. In our experiments, we loaded all base models from Hugging Face
(Wolf, Debut, Sanh, et al., 2020) and chose PyTorch (Paszke, Gross, Massa, et al., 2019) as our
deep learning framework.

Knowledge Injection

The knowledge injection is the most crucial aspect of our methodology. It is what transforms
our vanilla LLMs into KELMs. After partitioning the knowledge graph into subgraphs, we
leverage the adapterhub library (Pfeiffer, Rücklé, Poth, et al., 2020) to infuse Pfeiffer adapters
(Pfeiffer, Kamath, Rücklé, et al., 2020) with knowledge from each of the 20 sub-graphs. The
used training objective is entity prediction, where entities in KG triplets are masked and then
predicted by the LLMs (see KELM section in chapter 2). As already discussed in chapter
2, this approach is flexible and efficient, as it doesn’t necessitate fine-tuning the parameters
of the underlying LLMs and can have additional benefits like mitigating the catastrophic
forgetting issue.

Fine Tuning

Task-specific fine-tuning is carried out for the four chosen BLURB benchmark downstream
tasks. We aligned our hyperparameters with the settings of Meng, Liu, Clark, et al. (2021)
and Gu, Tinn, Cheng, et al. (2020): We employ Adam [30] alongside the typical slanted
triangular learning rate schedule, with a warm-up for the initial 10 percent of steps and a

7https://colab.research.google.com/
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cool-down for the subsequent 90 percent, and set the dropout probability at 0.1. Furthermore,
we followed Meng, Liu, Clark, et al. (2021) and Pfeiffer, Kamath, Rücklé, et al. (2020) by
introducing mixture layers and AdapterFusion to route valuable knowledge from the adapters
to downstream tasks automatically. Given the random initialization of the task-specific model
and dropout, outcomes can fluctuate based on different random seeds, particularly for the
small PubMedQA and BioASQ7b datasets. For a more accurate representation, we follow Gu,
Tinn, Cheng, et al. (2020) and Meng, Liu, Clark, et al. (2021) and present average results from
ten iterations for BioASQ7b and PubMedQA, five iterations HoC, and three for MedNLI.

In an ideal scenario, each model on each dataset should undergo distinct hyperparameter
adjustments. However, considering the extensive computational load to evaluate every
possible combination and the necessity to average over varied runs, this was not feasible with
our limited computing resources. Notably, Meng, Liu, Clark, et al. (2021) "observe that the
development performance is not very sensitive to hyperparameter selection, as long as they
are in a ballpark range". Therefore, we only slightly adjusted the learning rate and batch
size to support our limited computing resources while maintaining as much performance as
possible (using the development set). All specific values will be provided in Appendix A for
reproducibility.

3.2.3. Model Evaluation

In evaluating our models, we adhere to best practices established in the BLURB benchmark.
For the HoC task, we utilize the micro F1 metric, while for all other tasks, accuracy serves as
the primary evaluation metric. To contribute to the existing body of knowledge, we compare
our findings with several key works, including MoP (Meng, Liu, Clark, et al., 2021), KEBLM
(Lai, Zhai, & Ji, 2023), DAKI (Q. Lu, Dou, & Nguyen, 2021), PubMedBERT (Gu, Tinn, Cheng,
et al., 2020), and BioLinkBERT (Yasunaga, Leskovec, & Liang, 2022). This comparative analysis
provides insights into what kinds of advancements adapters-based KELMs can bring to the
field compared to each other and the baseline models. For our best models, we also use
qualitative probing to gain further insights into the inner workings of our methods. To do so,
we directly compare select predictions on the test set between enhanced models and their
base-version.

3.3. Research Survey

Finally, this section will describe the methodology used for the third part of this work: The
research survey addressed to medical professionals. Scheetz, Rothschild, McGuinness, et al.
(2021) find that "few studies have examined clinician perceptions of new AI technologies
on healthcare provision and the clinical workforce". Medical professionals have hands-on
experience with the challenges and requirements of medical practice. Their insights are
invaluable in understanding where the application of NLP could be most beneficial and
where it might face challenges. By knowing what medical professionals prioritize or are
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concerned about, developers and researchers can tailor biomedical NLP solutions to better fit
the actual needs of the medical community. They can also highlight potential pitfalls or risks
associated with integrating NLP into medical practice, ensuring that developers are aware
of and can mitigate these risks. Last but not least, acceptance by the end-users is vital for
any technology, especially in the critical field of medicine. Understanding and addressing
their concerns can lead to faster and broader adoption of NLP solutions (Scheetz, Rothschild,
McGuinness, et al., 2021).

3.3.1. Survey design

While AI and NLP experts understand the technology, medical professionals understand
patient care. This survey was designed to bridge the gap between these two, fostering a
comprehensive understanding that benefits both sides. We primarily based our study on
a survey of clinicians on the use of artificial intelligence in ophthalmology, dermatology,
radiology, and radiation oncology at the University of Melbourne (Scheetz, Rothschild,
McGuinness, et al., 2021). We did so in the hopes of making our findings in the field of
biomedical NLP directly comparable to their findings in the area of general biomedical AI
(with a focus on computer vision). The survey consisted of 20 short questions and was
designed to take approximately 10 minutes to complete. A brief introduction was provided
within the survey for medical professionals unfamiliar with LLMs and their applications in
the (bio)medical field. The survey was hosted on Google Forms8.

Given that medical professionals are notoriously stressed and short on time, we already
expected a low return rate before the start of the survey. Therefore, in contrast to Scheetz,
Rothschild, McGuinness, et al. (2021), who had better connections to the medical domain and
more resources, we opened the study to medical professionals of all disciplines and medical
students. We did so, hoping to reach a sufficiently high participant count and diversity that
allows for meaningful insights. Participants from the related AI study were all members
of Australian and New Zealand Royal Colleges. In our survey, we contacted participants
primarily by reaching out directly to universities, hospitals, and medical centers in Munich
and the surrounding countryside, as well as personal contacts of the authors and advisor
Juraj Vladika (including some international contacts from related research). For questions
about the area of expertise and participants’ experiences, students were asked to refer to their
desired (future) area of expertise and focus of study.

Participants were prompted to give online electronic informed consent before survey
commencement. The survey questions, data, and the document containing the introduction
to biomedical NLP, which was included in the survey, are provided under Appendix C.

8https://www.google.com/forms/about/
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3.3.2. Data analysis methods

We conducted a complete-case analysis where incomplete surveys were excluded from the
process. The data was analyzed and plotted using the Python matplotlib (J. D. Hunter, 2007)
and pandas (pandas development team, 2020) libraries. While Scheetz, Rothschild, McGuin-
ness, et al. (2021) compared findings between their three target groups (ophthalmologists,
radiologists, radiation oncologists, and dermatologists), we differentiated whether a partici-
pant was already working or studying medicine. While we would have liked to additionally
compare the results alongside the profession, location of practice, and years of experience,
the limited number of participants would have restricted the quality of insights gained from
this analysis. We compared our findings to the results of Scheetz, Rothschild, McGuinness,
et al. (2021). The data supporting the findings of this survey is given in Appendix C.

3.3.3. Preliminary status of the survey

In spite of our larger target group, reaching medical professionals proved to be tremendously
difficult. The main hurdles were the very stressful schedules of doctors and nurses and their
subsequent reluctance to make time for an unpaid survey, and the bureaucracy and general
difficulty connected with reaching medical professionals at a large scale. The formal process
to conduct the survey at the TUM "Klinikum rechts der Isar" (MRI) is still ongoing at the time
of writing. Therefore, we have decided to give the survey in this thesis a preliminary status
in preparation for the survey at the MRI. We will use the results to gather initial insights and
experience. The survey will then be expanded to the MRI at sebis when the formal process is
completed and the survey is approved by the Ethical Committee of the university hospital.
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Our methodology to answer the three research questions of this thesis was described in
chapter 3. This chapter will present the results. Due to their importance for this chapter, we
repeat the RQs here once more:

RQ1 What adapter-based approaches to knowledge-enhancement exist, and how do they
compare to each other?

RQ2 Can we improve existing approaches with new methods and data from a private
ontology?

RQ3 Is the research on biomedical KELMs relevant to medical professionals, and what
factors hinder or support the deployment of the technology in practice?

The results of the literature review will answer RQ 1. The literature review and model
experiments will be used to answer RQ 2. Finally, RQ 3 will be answered by the survey
targeted to medical students and professionals.

4.1. Literature Review

This section will present the results of the systematic literature review on adapter-based
knowledge-enhancement . The results will be interpreted in the context of the experimental
setting and RQ 1 of the thesis.

4.1.1. Overview

Figure 4.1 shows the source distribution for all included papers. Fifty-nine papers were found
by applying the search string as a command on the ACL, ACM, and IEEE search engines. Due
to their importance for the thesis, we included three additional papers from other sources.
These papers were found through online search and paper references during the general
research process. In summary, after the abstract screening, 25 articles met all inclusion criteria
(and no exclusion criteria). After the full paper screening, 22 papers remained to form the
final paper pool of the survey. While 22 total included papers seems like a small absolute
number, it is necessary to consider the small niche and harsh inclusion criteria for the survey.
Also, adapters are a very recent invention in the scope of NLP research, and all papers were
published in 2020 at the latest.
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Figure 4.1.: Visualization of the literature sources and the selection process

Table 4.1 gives an overview of all papers included in the survey. The columns depict the
following information: paper: The authors of the paper, together with the publication date;
adapter type: The type or method of the adapter used were found in different journals,
only the most recent version was included); scope: Domain scope that indicates whether the
approach is open or closed domain; coverage: Domain coverage that indicates whether a
closed domain approach is specific to a single domain or multiple domains; biomed: Indicates
whether the paper explicitly addresses the biomedical field; task: Lists abbreviations for the
downstream tasks covered within the paper; nickname: A nickname or shorthand reference
for the paper or model framework (if given by the authors).

4.1.2. Data Analysis

Next, we will take a closer look at the paper-specific data collected from the survey. This sec-
tion starts with a quantitative analysis showcasing and interpreting quantitative distributions.
Afterward, we report significant qualitative insights from the papers.

Quantitative Analysis

Year-wise Distribution To begin with, we assess how many papers were published each
year to get a sense of the trend and growth in the area (4.2).

There has been a noticeable increase in publications on adapter-based approaches to
knowledge-enhanced language models in recent years, especially from 2022 onward. This
trend suggests growing interest and research activity in the domain.

25



4. Results

paper adapter type scope coverage biomed task nickname
Zou et al. (2022) K-Adapter open / no RC K-MBAN
Moon et al. (2021) Houlsby open / no MT /
Yu et al. (2023) Unique open / no SL CSBERT
Quian et al. (2022) Unique open / no SR /
Li et al. (2023) Houlsby closed multi no SF /
Li et al. (2023) Unique open / no SC CKGA
Nguyen et al.(2023) Pfeiffer open / no SA /
Lai et al. (2023) Pfeiffer closed single yes QA, NLI, EL KEBLM
Guo et al. (2022) Unique open / no NER /
Chronopoulou et al.
(2023)

Bapna and Firat closed both no LM Adapter-Soup

Wold et al. (2022) Houlsby open / no LAMA /
Chronopoulou et al.
(2022)

Unique closed multi no LM /

Hung et al. (2022) Pfeiffer closed multi no TOD DS-TOD
Emelin et al. (2022) Houlsby closed multi no TOD /
Xu et al. (2022) Bapna and Firat open / no KGD KnowBERT
Kær et al. (2021) Pfeiffer closed multi yes NER, STC mDAPT
Lu et al. (2021) K-Adapter closed single yes NLI DAKI
Majewska et al.
(2021)

Pfeiffer open / no EE /

Lauscher et al. (2020) Houlsby open / no GLUE /
Meng et al. (2021) Pfeiffer closed single yes BLURB MoP
Wang et al. (2020) K-Adapter open / no RCL, ET, QA K-Adapter
Xie et al. (2022) Pfeiffer closed single yes ES KeBioSum

Table 4.1.: Overview of the results for the literature survey, including all papers and their references.
The task acronyms are explained in the glossary at the end of the thesis. The dotted lines
separate the database sources: First come the IEEE papers, then ACM, ACL, and finally,
the papers from other sources.

Figure 4.2.: Year-wise distribution of publications

Adapter Type Distribution Next, we evaluate the popularity and variety of adapter types
used across the papers (4.3).
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Figure 4.3.: Distribution of adapter types being used in the articles

The “Pfeiffer” adapter type stands out as the most common, which suggests that the
architecture is the most popular methodology in the field. This popularity is likely not
only an achievement of the performance of the adapter but also of the well-established
adapter-hub platform, which, although offering other options, uses adapters with the Pfeiffer
configuration by default. This finding showcases a need and trend to build custom adapters
well-suited to individual tasks. In the upcoming years, we will likely see many novel adapter
architectures. The “K-Adapter” and “Bapna and Firat” adapters are the least frequently
mentioned architectures, suggesting that these approaches are less well-established. Overall,
a variety of adapter types are present, indicating a diverse range of methodologies being
explored.

Domain Analysis Third, we analyze the distribution of papers across the domain scope and
coverage to understand domain-specific preferences in the literature.

The first plot in figure 4.4 shows that the open-domain scope is the most popular, with a
significant number of papers exploring adapter-based approaches within the open domain.
The popularity likely is caused by the interest in creating LLMs with a common-sense
understanding or “world knowledge”. Researchers see this understanding or knowledge as
the next step towards general artificial intelligence (Davis, 2021; Marcus, 2019).

As illustrated by the second plot in figure 4.4, the single- and multi-domain approaches are
split almost evenly within the closed-domain papers. There is most likely no further insight
in this distribution.

Finally, the third plot addresses the coverage of the biomedical domain. In absolute
numbers, only five papers focus on the biomedical domain, but relative to other parts, the
biomedical field is by far the most prominent of all domain-specific approaches. However,
the survey is biased toward the biomedical domain: We included two papers from sources
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Figure 4.4.: Distribution of domain scope, coverage, and the biomedical domain

other than the three main platforms after we found them while researching biomedical NLP
specifically. Nevertheless, with three articles dedicated to the biomedical domain without
bias, it still is the most frequent domain. The popularity likely comes down to (bio)medicine
historically being one of the most active research domains on its own (Cimini, Gabrielli, &
Labini, 2014).

Task Distribution A highly diverse range of tasks is being explored throughout the papers,
which signifies the versatility and potential of adapter-based approaches across different
natural language processing tasks. However, combined with the limited number of papers in
the survey, the approach-versatility prevents further meaningful quantitative analysis. Still,
tasks such as Reading Comprehension (RC), Named Entity Recognition (NER), and Question
Answering (QA) appear to be popular areas of focus in the literature. Figure 4.5 provides a
word cloud of all keywords in the downstream tasks as a visualization, showing that there is
also a focus on tasks with a dialogue or sentiment component.

In summary, we report the following quantitative findings:

• Adapter-based KELMs are a new development in NLP, but there has been fast-growing
interest in adapter-based approaches in recent years.

• Various adapter methodologies are being explored, with some well-established ones
and many novel approaches.

• Research predominantly focuses on open-domain tasks. For closed-domain approaches,
the biomedical domain is the most popular.
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Figure 4.5.: Wordcloud of keywords in the task distribution

• A large diversity of downstream tasks is being addressed in the literature.

Qualitative Analysis

This section of the analysis highlights recurring themes and individual insights from the
papers. Fully summarizing all articles was outside the scope of this survey. However, the
qualitative insights still provide an overview of the specific areas of focus and technical details
discussed in the papers. We address both open and closed-domain papers in this section
but focus on the biomedical domain separately in the next section. This particular emphasis
follows the theme of this thesis and is especially important for understanding the following
experimental part of this work (section 4.2).

General Knowledge The quantitative analysis showed that open-domain approaches are
more popular than their close-domain counterparts. Subsequently, there is also a large
variety in the used frameworks, knowledge sources, and overall goals of the papers. Two
commonly used KGs for general knowledge are ConceptNet (Speer, Chin, & Havasi, 2017)
and DBpedia (Auer, Bizer, Kobilarov, et al., 2007a), which we already explored in chapter
4.1. Two example works that use these KGs are Wold (2022) and the CKGA ("knowledge
graph-based adapter") by G. Lu, Yu, Yan, and Xue (2023). Wold (2022) train adapter modules
on sub-graphs of ConceptNet to inject factual knowledge into LLMs. They evaluate their
framework on the Concept-Net Split of the LAMA Probe (Petroni, Rocktäschel, Lewis, et al.,
2019) and see increasing performance while only adding 2.1% of additional parameters to
the original models. Wold (2022) also mention the biomedical domain explicitly as a possible
domain-specific application of their work, but they stick to the open domain and do not
evaluate their approach on any biomedical benchmarks.

CKGA (G. Lu, Yu, Yan, & Xue, 2023), on the other hand, tackle aspect-level sentiment
classification by leveraging knowledge from DBpedia. They "link aspects to [DBpedia] end
extract an aspect-related sub-graph. Then, a pre-trained language model and the knowledge
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graph embedding are utilized to encode the common-sense knowledge of entities based on
which the corresponding knowledge is extracted with a graph convolutional networks [sic]"
(G. Lu, Yu, Yan, & Xue, 2023).

Linguistic Knowledge Instead of only including factual knowledge, some works addition-
ally inject linguistic knowledge into adapters (Majewska, Vulić, Glavaš, et al., 2021; R. Wang,
Tang, Duan, et al., 2020; Yu & Yang, 2023; Zou, Zhang, Song, et al., 2022). While LLMs already
encode a range of syntactic and semantic properties of language, Majewska, Vulić, Glavaš,
et al. (2021) explain that they "are still prone to fall back on superficial cues and simple
heuristics to solve downstream tasks, rather than leverage deeper linguistic information".
Their paper explores and uses the interplay between verb meaning and argument structure.
They use the gained knowledge to enhance LLMs with Pfeiffer Adapters to improve English
event extraction and machine translation in other languages. Another example is the work of
Zou, Zhang, Song, et al. (2022) on machine reading comprehension (MRC). They proposed
the K-MBAN model to integrate external knowledge, both linguistic and factual, into LLMs
through K-Adapters.

Domain-specific Knowledge (nonbiomedical) Chronopoulou, Peters, and Dodge (2022)
propose a parameter-efficient approach to domain-adaptation using adapters. They "represent
domains as a hierarchical tree structure where each node in the tree is associated with a set
of adapter weights". Their work focused on specializing adapters in website domains like
booking.com and yelp.com. In another instance, Chronopoulou, Peters, Fraser, and Dodge
(2023) propose "AdapterSoup". In this framework, they also use adapters for domain-specific
tasks but use "an approach that performs weight-space averaging of adapters trained on
different domains". AdapterSoup can be helpful in a variety of domain-specific approaches in
low-resource settings, especially when only a small amount of data on a specific subdomain
is obtainable and closely related adapters are available instead.

Other Insights R. He, Liu, Ye, et al. (2021) criticize that "existing work only focuses on
the parameter-efficient aspect of adapter-based tuning while lacking further investigation
on its effectiveness". They address this issue with their work and "show that adapter-based
tuning better mitigates forgetting issues than fine-tuning since it yields representations with
less deviation from those generated by the initial [pre-trained language model]" (R. He,
Liu, Ye, et al., 2021). They found that adapter-based approaches outperform fine-tuning in
low-resource and cross-lingual settings and are "more robust to overfitting and less sensitive
to changes in learning rates" (R. He, Liu, Ye, et al., 2021).

Biomedical Adapter-based Works

We have already seen that the biomedical domain is the most prevalent among the closed-
domain approaches to adapter-based KELMs. We have found the works of DAKI (Q. Lu,
Dou, & Nguyen, 2021), MoP (Meng, Liu, Clark, et al., 2021), KeBioSum (Xie, Bishop, Tiwari,
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& Ananiadou, 2022), and KEBLM (Lai, Zhai, & Ji, 2023), to be the most impactful. We will
discuss them individually (by order of publication) in this section. We report the benchmark
results of all four papers and compare them to our final results (where they overlap) in table
4.2 in section 4.2. For completeness, we refer to Kær Jørgensen, Hartmann, Dai, and Elliott
(2021) for information on the m-DAPT framework, which addresses multi-lingual domain
adaptation for biomedical LLMs

DAKI According to the results of our literature survey, DAKI ("Diverse Adapters for
Knowledge Integration") was the first work to use adapters specifically for knowledge
enhancement in the biomedical domain. Q. Lu, Dou, and Nguyen (2021) leverage data from
the UMLS meta-thesaurus (Bodenreider, 2004) and UMLS Semantic Network groups concepts,
but also from Wikipedia articles for diseases as proposed by Y. He, Zhu, Zhang, et al. (2020).
Their architecture consists of three main components: the base LLM, the knowledge-specific
adapters, and an adapter integration module. Following the K-Adapter architecture (R.
Wang, Tang, Duan, et al., 2020), their integration module "aims to adaptively integrate the
knowledge adapters by assigning them different importance weights, as opposed to the simple
concatenation of the outputs of adapters" (Q. Lu, Dou, & Nguyen, 2021). They evaluate their
final model’s performance over three biomedical NLP tasks (QA, NLI, NER). Specifically,
MEDIQA-2019 TRECQA-2017 MEDNLI BC5CDR NCBI. The main observations from the
evaluation are that DAKI can improve the performance of BERT, RoBERTa, and ALBERT, as
reflected in DAKI-BERT, DAKI-RoBERTa, and DAKI-ALBERT (Q. Lu, Dou, & Nguyen, 2021).

KeBioSum Xie, Bishop, Tiwari, and Ananiadou (2022) state that their work is "the first study
exploring the inclusion of fine-grained biomedical knowledge with PLMs for biomedical
extractive summarization". They are also the first to use adapters in this context. In particular,
their KeBioSum framework first identifies medical knowledge in documents through PICO
("Population, Intervention, Comparison, and Outcome"), a structural medical knowledge
representation method often used for creating literature search queries (Huang, Lin, &
Demner-Fushman, 2006). The gained information is then injected into the LLMs Pfeiffer
Adapters utilizing the adapter-hub plattform (Pfeiffer, Rücklé, Poth, et al., 2020). Similar
to DAKI, the primary knowledge source stated by the authors is UMLS. Their proposed
KeBioSum framework efficiently improves extractive summarization in the biomedical domain,
providing further proof that pre-trained LLMs can be enhanced through knowledge injection
with adapters. However, given that our own work does not include experiments on text
summarization, we can not compare our results to the experimental results of KeBioSum.

MoP Next, we have the work of Meng, Liu, Clark, et al. (2021), which is essential for the
experimental section of our thesis. They propose to use a "Mixture of Partitions" (MoP)
enabled by AdapterFusion (Pfeiffer, Kamath, Rücklé, et al., 2020). They recognize that KGs
like UMLS, which can be several gigabytes large (Bodenreider, 2004), are very expensive to
train on in their entirety. This is especially true for language modeling objectives like entity
prediction that require calculating a softmax over all entities (Meng, Liu, Clark, et al., 2021).
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MoP tackles this problem through graph partitioning. In particular, they use the Auer, Bizer,
Kobilarov, et al. (2007b) algorithm, which we have already mentioned in our methodology in
chapter 3, to partition the graph into smaller, more manageable sub-graphs. A set of adapters
(MoP uses Pfeiffer Adapters) can then be trained on these sub-graphs individually using the
entity prediction objective. MoP then utilizes AdapterFusion to amalgamate the knowledge
encapsulated in the adapters.

With their experiments, Meng, Liu, Clark, et al. (2021) show that using only a subset of
triplets limited to the 20 most frequent relations from the KG works best for most downstream
tasks on the BLURB benchmark. They reported significant performance gains in their final
results and published their code on GitHub.

KEBLM KEBLM ("Knowledge-Enhanced Biomedical Language Models") was published
during the work on this thesis. They were the first to acknowledge the heavy reliance of
related work on the UMLS ontology. Subsequently, their framework’s trademark is that it
allows for the inclusion of a variety of knowledge types from multiple sources into biomedical
LLMs. While they still use UMLS as a source, they also draw data from PubChem (Kim,
Chen, Cheng, et al., 2020) and the MSI KG (Ruiz, Zitnik, & Leskovec, 2021). In contrast to
DAKI, which also utilizes more than one source, KEBLM includes a knowledge consolidation
phase after the knowledge injection, where they "teach the fusion layers to effectively combine
knowledge from both the original PLM and newly acquired external knowledge by using a
large collection of unannotated texts" (Lai, Zhai, & Ji, 2023). Like MoP, they use AdapterFusion
and Pfeiffer Adapters and evaluate their framework on a selection of downstream tasks,
including MedNLI and PubMedQA.

Notably, all existing approaches use the UMLS ontology as one of their primary knowl-
edge sources. While KEBLM and DAKI try to diversify their data sources to some extent,
this circumstance, nevertheless, justifies our approach to leverage data from OntoChem to
contribute to the diversification of knowledge sources in the field.

4.1.3. Review Summary

In summary, the systematic literature review portrayed what adapter-based approaches to
knowledge-enhancement exist and how they compare to each other. The findings underscore
the nascent yet fast-growing interest in this domain. The diversity of adapter types, with
the "Pfeiffer" adapter type being predominant, allows for various approaches to the overall
model architectures. From a task perspective, the range of NLP tasks covered in the literature
signifies the adaptability and potential of adapter-based approaches. Moreover, both the open-
domain and closed-domain scope have garnered significant attention, reflecting the broader
ambition of developing language models with generalized as well as specialized knowledge
and understanding. Notably, the biomedical domain stands out as the most explored closed-
domain area, underscoring the significance of accurate knowledge representation in this
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intricate area.

In conclusion, adapter-based knowledge-enhancement represents a unique and flexible
way to integrate vast, diverse knowledge into LLMs without expensive fine-tuning. With
the in-depth analysis given in this chapter, we discovered what adapter-based approaches to
knowledge-enhancement exist in the literature and how they compare to each other. Therefore,
we have successfully answered RQ1 of this thesis and provided a novel and extensive resource
for other researchers in the field.

4.2. Model Experiments

All model experiments were carried out according to our proposed methodology in chapter
3. In the following, we will report the benchmark results, qualitative probing, and give
further information on the course of the experiments and an interpretation of the results.
Unfortunately, not all data triplets provided to us by OntoChem were fully usable due
to missing ID mappings. Several projects running at OntoChem in parallel slowed the
communication on this issue, and only about two-thirds of the provided triplets could be
used for the experimental part of this thesis.

Shortcomings of BioLinkBERT During our initial experiments with BioLinkBERT, our
attempts at reproducing the original results of Yasunaga, Leskovec, and Liang (2022) could
not live up to the strong performance reported by the authors. After a thorough investigation
of the code and documentation provided by the authors, we realized that they seemingly
employed a different evaluation process compared to the standard (Gu, Tinn, Cheng, et al.,
2020) methodology: Instead of averaging over a set of runs for datasets, they only reported
the results of a single run. Only for the one seed that was given in their documentation did
their model reach the performance reported in their publication. For example: Yasunaga,
Leskovec, and Liang (2022) reported an accuracy of 70.20 on PubMedQA, but when averaged
over 10 runs (best practice), the performance drops to 56.76± 3.00. We attempted to contact
the authors multiple times (via mail and LinkedIn) to discuss this issue, but we did not get a
response to this day. We, therefore, had to assume that their reported results were possibly
lucky runs. To account for this, we rerun their experiments with best-practice run-averaging
for HoC, PubMedQA, BioASQ7b, and MEDNLI. For our evaluation and model comparison,
we used these new results instead (see Table 4.2).

4.2.1. Experiment Results

We present our experiment results in direct comparison with the results of the public releases
of SciBERT, BioBERT, PubMedBERT, BioLinkBERT (reproduced), MoP, and KEBLM. The
results allow for a quantitative and qualitative assessment of our experiment methodologies
in the competitive and active field of adapter-based KELMs. For reproducibility, all run seeds
and the specific hyperparameters are listed in Appendix A.
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Benchmark Results

↓ model|dataset→ HoC PubMedQA BioASQ7b MedNLI
SciBERT-base 80.52±0.60 57.38±4.22 75.93±4.20 81.19±0.54

+ MoP 81.79†
±0.66 ↑ 54.66±3.10 78.50†

±4.06 ↑ 81.20±0.37

+ KEBLM / 59.0 / 82.14
BioBERT-base 81.41±0.59 60.24±2.32 77.50±2.92 82.42±0.59

+ MoP 82.53†
±1.08 ↑ 61.04±4.81 ↑ 80.79†

±4.40 ↑ 82.93±0.55 ↑
+ KEBLM / 68.00 / 84.24
+ DAKI / / / 83.41

PubMedBERT-base 82.25±0.46 55.84±1.78 87.71±4.25 84.18±0.19

+ MoP 83.26†
±0.32 ↑ 62.84†

±2.71 ↑ 90.64†
±2.43 ↑ 84.70±0.19 ↑

+ OntoType20Rel (ours) 82.17±0.62 55.40±5.57 86.36±3.07 83.94±0.63

+ Onto20Rel (ours) 82.39±0.65 ↑ 56.12±2.91 ↑ 84.36±4.73 83.97±0.59

BioLinkBERT-base (ours) 82.21±0.87 56.76±3.00 91.29±3.18 84.1±0.03

+MoP (ours) 82.36±0.57 ↑ 63.62†
±5.31 ↑ 91.50±2.25 ↑ 83.78±0.09

+OntoType20Rel (ours) 82.37±0.42 ↑ 60.46±5.81 ↑ 92.14±2.30 ↑ 82.84±0.34

+Onto20Rel (ours) 82.24±1.25 ↑ 63.28†
±4.46 ↑ 90.57±3.14 83.69±0.55

Table 4.2.: Final results for the model experiments: The best results for every task are in bold. "↑"
denotes that improvements are observed when compared to the base model. “†" denotes
a statistically significant better result over the base model (T-test, p < 0.05). For all MoP
metrics, we took the S20Rel metric for better comparability. Because of their unclarified
status, we excluded all original BioLinkBERT results in favor of our reproduced results.
DAKI and KEBLM did not evaluate on all of our used benchmarks and did not provide
standard deviation or p-tests, but we still included their results for completeness.

Table 4.2 shows the results of our model evaluation on the four chosen tasks of the BLURB
benchmark. In eight instances, we were able to improve the BioLinkBERT-base model, either
with the pure MoP approach or our own approach with the OntoType20Rel KG. However,
not all results led to a successful T-test. Moreover, in all instances apart from the BioASQ7b
benchmark, KEBLM, and the original MoP approach stayed at the top of the leaderboard
utilizing PubMedBERT and BioBERT.

An interesting result that we have to investigate further is the relatively worse performance
of our approach on PubMedBERT compared to BioLinkBERT, even when factoring in the
stronger base performance of BioLinkBERT. When the base models don’t match, it is hard to
distinguish whether performance gains or losses come from the difference in base models
or the difference in the adapter-based approaches. Here, the base models of BioLinkBERT
generally perform better than those of PubMedBERT or SciBERT over a variety of tasks.
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Therefore, whenever we use BioLinkBERT, we cannot say how much of the performance gains
come from the superiority of our approach versus the superiority of the base model.

Unfortunately, due to an oversight in logging, not all precision and recall values have been
saved for the final runs. While the evaluation metrics required for the BLURB tasks in table
4.2 were most important, we would have liked to dive deeper into the run details. However,
all run configurations and seeds were saved, enabling us to repeat the runs in the future
when we have again access to the necessary computing power.

4.2.2. Qualitative Probing

We probed our best model, BioLinkBERT-base+OntoType20Rel, for qualitative insights on
model prediction and compared it with the base version of the model, BioLinkBERT-base
(both models fine-tuned on BioASQ7b). In the following, we give some excerpts from the two
models’ predictions on the test set and interpret them, in the hopes of gaining some insights
on the inner workings of our method:

Figure 4.6.: Illustration of successful relation search for "diazepam" and "brain injury"

Example 1

Question: Can Diazepam be beneficial in the treatment of traumatic brain injury?

Context: The present experiment examined the effects of diazepam, a positive modulator
at the GABA(A) receptor, on survival and cognitive performance in traumatically brain-injured
animals.

Predictions: BioLinkBERT+OntoType20Rel: yes BioLinkBERT: no True Label: yes
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Results: While BioLinkBERT-base without knowledge-enhancement answered the ques-
tion incorrectly, our BioLinkBERT-base+OntoType20Rel model gave the correct answer. Di-
azepam (first marketed as Valium) is listed as an entity in the OntoChem KG (see Figure 4.6
where it has a direct relation to brain injuries ("diazepam [substance] treats [disease] brain
injury"). It is likely that, thanks to the injection of this knowledge, the enhanced model was
able to deduce the answer to the question, while the base model was not.

Figure 4.7.: Illustration of failed relation search for "axitinib" and "pancreatic cancer"

Example 2

Question: Does axitinib prolong the survival of pancreatic cancer patients?

Context: Axitinib/gemcitabine, while tolerated, did not provide survival benefit over
gemcitabine alone in patients with advanced pancreatic cancer from Japan or other regions
[...].

Predictions: BioLinkBERT+OntoType20Rel: no BioLinkBERT: yes True Label: no

Results: Here, the base version of BioLinkBERT incorrectly predicted that axitinib does
prolong the survival of pancreatic cancer patients, while our BioLinkBERT-base+OntoType20Rel
model gave the correct negative answer. This time, there is no relation between axitinib and
any form of cancer listed in the OntoChem KG (see Figure 4.7. Therefore, our enhanced
model might have been able to rely on its injected knowledge and deduce that there are no
such connections between the entities in the question.

4.2.3. Limitations and possible deficiencies

MoP (Lai, Zhai, & Ji, 2023; Q. Lu, Dou, & Nguyen, 2021; Meng, Liu, Clark, et al., 2021)
reported that the performance gains were due to the models learning factual knowledge
and gaining knowledge awareness. However, the currently best overall performing models,
like BioGPT, do not employ specific knowledge enhancement technology. Assuming that
structured knowledge is necessary to solve BLURB tasks, and larger models did not explicitly
learn from KGs in a structured way, this could mean that either the assumption is false
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or massive models like BioGPT can learn factual knowledge awareness through training
on unstructured text. This would mean that KELMs are not providing something entirely
different for LM training and might only perform better thanks to the additional parameters
and training data.

To investigate the influence and relevance of each component of an adapter-based approach,
the authors of DAKI (Q. Lu, Dou, & Nguyen, 2021) performed an ablation study where they
successively removed the adapter components from their work while keeping their knowledge
controller. Essentially, "the results of the ablated versions demonstrate varying degrees of
performance drop, indicating the necessity of each component" (Q. Lu, Dou, & Nguyen,
2021). Lai, Zhai, and Ji (2023) also provide an ablation study coming to similar results. While
this removes some doubts, further investigations regarding the added parameter count are
necessary. We will leave this to future research.

4.2.4. Discussion

Finally, we can answer research question 2: Can we improve existing approaches with new
methods and data from a private ontology? The systematic literature review has shown
strong results from various approaches to adapter-based knowledge enhancement in the
biomedical domain across existing literature. While the SOTA on tasks where very large
language models, like BioGPT, compete, was out of reach for low-resource settings like
ours, our approach utilizing data from OntoChem was able to stand its own against other
adapter-based parameter efficient works like MoP, KEBLM or DAKI.

In summary, we can answer the research question with a cautious yes: In the case of
BioAQS7b, we were able to improve existing approaches with data from OntoChem as
a private Ontology. In several other instances, our method approximately matched the
performance of others. This finding diversifies the pool of viable sources for KGs for future
research. It makes researchers less reliant on UMLS (Bodenreider, 2004), especially while the
SciWalker platform and its FactFinder tool remain free of charge. We also solidify adapter-
based knowledge enhancement as a viable and performant tool for NLP with our experiments
in question answering (PubMedQA, BioASQ7b), semantic classification (HoC) and, NLI
(MedNLI) in closed domain settings.

However, some questions remain open: Why did our approach not work as well for
PubMedBERT? How would the results look with the full KG from OntoChem that might be
better connected? A possible explanation to explore for the first question could be that the
injected knowledge from OntoChem resonates better with the information encapsulated in the
linked pre-training data from BioLinkBERT than with the unlinked data used by PubMedQA.
To answer the second question, we plan on running new experiments in the future with the
full KGs from OntoChem.
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4.3. Survey of Medical Professionals and Students

In the following, we will present the results of the research survey. We follow Scheetz,
Rothschild, McGuinness, et al. (2021) in presentation style and compare our findings to theirs
where possible and appropriate. We will discuss the survey questions within their respective
thematic groups. If there are no significant insights to be gained from a question, we will skip
it to keep the results concise with a high informative value. However, all survey results are
included in Appendix C. The survey is meant as a preliminary study and will be expanded
on in future research at the TUM "Klinikum rechts der Isar" (MRI).

4.3.1. Participant Background

The survey achieved a total of 34 participants over two months, 33 of whom submitted
usable questionnaires. Almost all clinicians were reached through personal contact within
Munich and the surrounding countryside. Visiting medical centers and reaching out to other
researchers in the biomedical domain proved less fruitful, although exact numbers can’t be
determined due to the anonymous nature of the survey.

As already mentioned in chapter 3, we decided to open the survey to medical students and
medical professionals in a larger sense. The occupation distribution looks as follows:

• "Ongoing studies in the field of (bio)medicine": 25 participants

• "Working as a doctor, (bio)medical specialist, teaching or research staff": 5 participants

• "Ongoing training in (bio)medicine" (including residency): 2 participants

• "Working as a pharmacist": 1 participant

Therefore, we have a total count of 25 students and eight medical professionals. Figure 4.8
shows the (desired) location of practice of all participants. Similar to the study by Scheetz,
Rothschild, McGuinness, et al. (2021), the metropolitan area was predominant.

4.3.2. Current Knowledge and Use of NLP

Exactly a third of the participants (n=11; 33.3%) considered their knowledge of LLMs to be
average compared to their colleagues. Overall, only a small number believed they had an
excellent (n=5, 15.2%) or very poor (n=4; 12.1%) understanding (See figure 4.9). Interestingly,
almost 30% (n=10) reported that they feel they have a worse understanding of the technology
than their colleagues, suggesting that many participants could feel left behind with the rapid
developments around them. Responses were similar across students and professionals.
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Figure 4.8.: "What is your location of practice?"

Figure 4.9.: "Relative to your colleagues, how would you rate your knowledge of language models
and their application in your field of expertise?"

While almost half of the participants (n=16; 48.5%) mentioned they hadn’t utilized LLM
tools in their work or for their studies, over a third (n=12; 36.4%) reported a weekly or daily
use (see Figure 4.10. Here, we see a significant shift from the 80.9% of participants reporting
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Figure 4.10.: "How often do you use software based on language models for your work/research?"

"Never" in the study by Scheetz, Rothschild, McGuinness, et al. (2021). Even though their
study only dates back about two years, this could indicate that today, the medical community
is already much more familiar with AI technology. Another interpretation could be that
LLMs and NLP have a broader field of applications in the medical field compared to other
AI technologies. The following personal use cases of LLMs were given by the participants
(exemplary excerpts):

• Anamnesis, transcriptions

• Documentation courses of disease

• E-Mail drafting

• Explanation of intuition of different topics, summarization

• Quick question answering

• Help with coding and translations

4.3.3. Perceived Influence

Figure 4.11 shows that a relative majority of participants anticipated that the integration of
LLMs would improve their (preferred) professional domain (n=14, 42.04% agreed or strongly
agreed). This number is much smaller than the 71% of respondents in the study by Scheetz,
Rothschild, McGuinness, et al., indicating more significant concerns regarding NLP than
regarding other AI technologies (or increased general concerns over the past 2.5 years).
Notably, students in our survey tend to only "Agree" with the statement significantly more
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Figure 4.11.: "To what extent do you agree with the following statement: ’the field of [insert specialty]
will improve with the introduction of NLP’?"

often than medical professionals, who tend to "Strongly Agree". This might be due to a more
confident, experience-based stance of professionals.

Figure 4.12.: "How long do you think it will be before language models have a noticeable impact on
your field expertise? "
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Close to half (n=16; 48.5%) estimated that within a span of 5 years or less, LLMs would
make a discernible difference in their field (refer to 4.12). Only one person believed that
the technology would perpetually remain without significant influence on their (future)
profession (similar to the AI survey). Interestingly, several participants who already utilized
LLMs (monthly, weekly, or daily) reported that there already is a noticeable impact today
(n=5 versus n=0 for participants who have never used LLMs).

Figure 4.13.: "To what extent will language models have an impact on workforce needs in your area of
expertise [within/beyond] the next decade?"

Figure 4.13 focuses on the participant’s perception regarding changes in workforce needs.
Here, we report strictly different results from the work of Scheetz, Rothschild, McGuinness,
et al. (2021), who saw a majority of clinicians (71.1%) expecting a strong impact on workforce
needs in the upcoming decade. In contrast, we saw students and professionals (n=15; 48.5%)
disagreeing or strongly disagreeing with this statement when considering the impact of LLMs.
However, the numbers shift when looking beyond the next decade (only n=9 or 33% still
disagree or strongly disagree). Overall, students expect the workforce needs to change to a
more considerable extent than professionals. Since the respondents anticipate a decrease in
workforce needs (n=16; 48.5%) much more strongly than an increase (n=5; 15%), we have
an additional indication that students, in particular, might be slightly concerned about their
future job security.
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Figure 4.14.: "To what extent will language models have an impact on workforce needs in your area of
expertise [within/beyond] the next decade?"

A notable fact is that participants who have already used LLMs themselves more often
expect an increase in workforce needs (see Figure 4.14). This finding agrees with the results of
Scheetz, Rothschild, McGuinness, et al. and, therefore, seems independent of the underlying
AI technology.

4.3.4. Practical Implications

When asked about the necessary performance levels of LLMs when used by unskilled
workers for disease detection and medical advice, a surprisingly large amount of participants
(n=17; 42.4%; Figure 4.15) deemed an average specialist’s performance (or even worse) as
enough. On the other hand, two-thirds of survey participants (n=22; 66.7%; Figure 4.16)
believed that LLM systems used by skilled medical specialists for diagnostic decision-support
should outperform the average specialist. We expected the results to be the other way around
since unskilled workers might be unable to detect mistakes made by bad LLMs. However, the
participants could have thought that in areas without access to good health care, any advice
would be better than none (a precarious stance). However, medical professionals held LLMs
to higher standards compared to students, expecting a much higher performance.

Approvement of Example Workflow The following workflow procedure was suggested:
"During a pandemic, a specialist responds to patient questions online. To save time, they
generate responses with a language model and then only review them before sending". A
relative majority of the participants (n=14; 42.4%) were open to adopting this method, with
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Figure 4.15.: "Language models could be used in the future to detect diseases and give medical advice.
If such a language model were to be used by unskilled health workers in your field of
expertise, what level of error in the language model’s estimates do you think would be
acceptable?"

students being almost double as likely to be in favor compared to professionals. We tailored
this question specifically to our own model experiments, where we have a focus on models
that perform question answering (PubMedQA, BioASQ7b). Therefore, these results validate
the relevance of our approach and choice of tasks.

4.3.5. Chances and Risks

Questions 16 and 17 asked the participants to rank potential advantages and concerns of using
LLMs in their field. Figures 4.17 and 4.18) show radar plots (following Scheetz, Rothschild,
McGuinness, et al. (2021) that visualize the responses. Due to the complexity of the results,
we will examine the results in several steps.

Greatest Perceived Advantages and Concerns Students and professionals agree that the
most recognized advantage of language model systems in the medical field is the potential
to "Reduce time spent by specialists on monotonous tasks" (n=16 "top 1" responses). This
implies that medical professionals are eager to streamline repetitive tasks and recognize the
potential of language models in assisting with or automating such tasks. There is also strong
agreement on the predominant concern, which is data security and privacy (n=18, with n=12
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Figure 4.16.: "What level of error would be acceptable for language models that are used by specialists
for diagnostic decision-support in your field?"

reporting the issue as their major concern). This highlights the sensibility of data in the
medical field, where harsh regulations apply, and the privacy of patients is at stake.

Other Notable Advantages and Concerns "Improved patient access to disease screening"
was recognized as a major advantage (n=15 total responses), suggesting the potential role
of language models in enhancing healthcare access and screening mechanisms. "More cost-
effective health care" was also seen as an important advantage, indicating the perceived
financial benefits of integrating language models in healthcare. The trust-based relationship
between doctors and patients stands out as an additional significant concern, reflecting
the medical community’s irreplaceability of such relationships by machines. A notable
difference between students and professionals is that the latter see more potential in improving
diagnostic confidence with LLMs. On the other hand, students have more concerns about
being benchmarked against machines, likely indicating a slight concern for a future secure
and stable profession due to higher expectations and possible displacement.

Least Emphasized Advantages and Concerns The relatively lower emphasis on "Improved
prediction of disease outcomes" might indicate some skepticism or uncertainty about the
predictive capabilities of language models in intricate medical scenarios. Concerns about the
"impact on workforce needs" were hardly present, especially for professionals, suggesting
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Figure 4.17.: "Which of the following do you perceive as the greatest potential advantage of the use of
language model systems in your field?" Participants indicated their top three preferences
from a list of set choices. Plot axes represent the average rank for students (blue) and
medical professionals (salmon). Higher scores indicate a higher ranking.

confidence in their irreplaceable role as human professionals in the medical domain and
perhaps a belief that technology would supplement, rather than replace, human expertise.

Comparison with AI Survey Overall, we see a lot of parallels between our findings and
those of Scheetz, Rothschild, McGuinness, et al. (2021). For both NLP and AI in general,
the medical community seems to agree that reducing the time spent on monotonous tasks
(especially emphasized by radiologists in the related study) and improving patient access to
disease screening (especially endorsed by ophthalmologists and dermatologists) are significant
advantages that the technologies could bring to the medical domain. An interesting finding
is that in the AI survey, medical professionals are much more concerned over the divestment
of health care to large technology and data companies. Scheetz, Rothschild, McGuinness,
et al. (2021) refer to a general mistrust in big tech companies and an increase in the trading of
health data (P. Hunter, 2016). One could speculate that there is more trust in the German law
system to prevent such things from happening in healthcare in Germany.
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Figure 4.18.: "Which of the following do you perceive as concerns to the utilization of language models
in your field?" Participants indicated their top three concerns from a list of set choices.
Again, plot axes represent the average rank for students (blue) and medical professionals
(salmon). Higher scores indicate a higher ranking.

4.3.6. Preparedness of Medical Centres and Universities

A relative majority of participants (n=15; 45.5% believe that their university/clinic/medical
center is not adequately equipped to deal with the introduction of LLMs (versus n=10;
30.3% who believe they are adequately equipped). However, these results are much more
positive than that of the AI survey, where only 13.8% felt like their institution was prepared.
The results are quite similar amongst both students and professionals (see Figure 4.19. We
asked the participants to make suggestions on what has to change for better preparedness
and received a large amount of (sometimes very detailed) responses. We factor this as an
indication that the topic is important to the participants and they would like to be involved
in the process. We report reoccurring themes here:

• Addressing the general lack of digitalization in Germany

• Give university courses and seminars for students and training for professionals to
increase technology awareness and proficiency

• Employ NLP experts and more IT personnel at institutions

• Support and encourage technology openness
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Figure 4.19.: "Do you think that your university/clinic/medical centre is adequately equipped to deal
with the introduction of language models in your area of expertise?"

Some answers were particularly elaborate. We will share them in the following (with some
edits for readability; originals can be found in Appendix C):

It would help if part of our didactic training covered new technology, such as
language models, and how they can be beneficial in practice. This could be through
any form of education that can be regularly updated and revised to match the
pace of quickly updating language models. (psychiatrist in training/residency)

For me (a biomedical engineer), training needs to be more rigorous so that those
using the technology can detect potential issues. I do think that a free chatbot
replacing a $400 doctor’s visit to tell you that you need bed rest and plenty of
water is viable, but I think that it will take a decade to become mainstream.
(student, specializing in brain-computer interfaces)

More information about possible use cases should be provided. Also, experts
should be hired who, in collaboration with doctors, can devise customized strate-
gies or concepts tailored to individual needs." (pathologist, 10-20 years of experi-
ence, translated from German)

4.3.7. Discussion

Our survey on the use of LLMs in biomedicine revealed several key insights and now allows
us to give a preliminary answer to RQ 3, "Is the research on biomedical KELMs relevant to
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medical professionals, and what factors hinder or support the deployment of the technology
in practice?":

The results show that the medical community is gaining familiarity with NLP and LLMs,
with many already incorporating the technology into their weekly or daily tasks, such as
documentation, transcribing, and information gathering. This growing adoption signals
openness to the potential of LLMs to streamline monotonous tasks and enhance patient
access to healthcare. However, alongside this positivity, there are prevalent concerns. Data
security and the impact on the doctor-patient trust relationship stand out as significant
apprehensions. This dual perspective underscores the cautious optimism of the medical
community towards the evolving role of language models in healthcare. While students and
professionals both see the benefits of LLMs, they differ in their expectations; professionals
anticipate higher performance standards, while students express concerns about future job
security and being benchmarked against machines. Regarding institutional preparedness
for LLM integration, many feel their institutions lag behind. Suggestions to bridge this gap
include higher investments in digitalization, offering specialized training, and fostering a
culture of technological openness.

In essence, the results of the survey show that the research on biomedical LLMs matters
and is indeed relevant. The medical community recognizes the potential advantages of LLMs,
ranging from improving efficiency to better patient care. However, addressing concerns about
data security, trust, and institutional readiness will be essential for their broader acceptance
and successful integration. We are confident that the results of this survey, together with the
results of the upcoming survey at MRI, can guide where future research funding and efforts
should be directed to ensure that biomedical NLP evolves in a manner most beneficial to the
healthcare system.
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It has been a challenging endeavor to understand the nuances of adapter-based knowledge-
enhancement in BioNLP and extract the numerous insights from the literature, model ex-
periments, and research survey. Nevertheless, we addressed these challenges thoroughly
and in-depth in our work and succeeded in answering the three RQs. This chapter first
summarizes our results while highlighting our contributions to the field and then proceeds to
address shortcomings and possible future research opportunities.

5.1. Thesis summary

Systematic Literature Review Delving into the systematic literature review, it became clear
that adapter-based knowledge-enhancement is an emerging and fast-growing domain with
its flexibility and potential recognized across various domains and tasks. The majority of
the 12 unique open-domain approaches represented the interest in creating LLMs with a
common-sense understanding or "world knowledge". At the same time, the distinction of
the biomedical domain as the most frequently explored closed-domain area signified the
paramount importance of precise knowledge representation in this intricate field.

In essence, we found that adapter-based knowledge-enhancement represents a unique
and flexible way to integrate vast, diverse knowledge into LLMs without expensive fine-
tuning. This fact was backed up by the qualitative analysis of the examined papers, where we
discovered ingenious and unique solutions for the integration of linguistic as well as factual
knowledge sources. With our review, we contribute a novel and extensive resource for other
researchers to refer to in the future.

Model Experiments From our extensive model experiments, it became evident that our
methods can compete with and even improve similar approaches in the field. With an
accuracy of 92.14, the BioLinkBERT-base model injected with the OntoType20Rel KG was
able to slightly outperform all other related works on the BioASQ7b task (an increase of
0.7). On other tasks, our best models stayed in the middle field but often came in second
and bested the base models. While we found that the SOTA of models like BioGPT cannot
be reached with BERT-based models anymore, the true value of our adapter-based method
lies in its resource efficiency. Our models offer a valid opportunity to research groups and
institutions that are constrained by limited computing resources. Adapter-based KELMs such
as ours enable them to leverage advanced LLMs without the burden of exceedingly expensive
training.
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This fact is particularly important for medical professionals who may not have the means
to customize expensive LLMs to cater to their individual needs swiftly. Another important
finding to the medical domain stems from our qualitative probing, where we witnessed by
what means the injection of knowledge (in our case, from OntoChem’s KGs) can improve
factual accuracy. Moreover, we believe that our findings and those of related works can still
have value for the current SOTA of BioNLP. New approaches that work for smaller LLMs
could also work for larger ones. Therefore, we encourage research teams with more resources
to incorporate adapters where they find it applicable.

Research Survey Our survey targeting medical professionals and students shed light on
the community’s perception of LLMs and BioNLP. The survey showed a growing adoption
of NLP technology for various tasks, from documentation and anamnesis to information
sourcing and translations. This finding paints a picture of a community that is receptive to
change. The most anticipated and recognized advantage of LLMs in the medical field was the
potential to reduce the time clinicians have to spend on monotonous tasks. However, this
enthusiasm is tinged with concerns, primarily surrounding data security and the sanctity
of the fiduciary doctor-patient relationship. These sentiments underscore the balance that
needs to be struck between innovation and trust as we venture further into the realm of
BioNLP in healthcare. Overall, the survey gives a promising outlook for the future since most
participants anticipate that integrating LLMs will improve their professional domain.

5.2. Shortcomings

Unfortunately, our research did not come without certain challenges and limitations. In the
following, we list the shortcomings of our work:

Incomplete KGs A portion of the data provided to us by OntoChem was not usable due
to incomplete ID mappings. As a result, only a fraction of the available knowledge was
integrated into the experimental segment of this thesis, which has likely led to less thoroughly
connected KGs. Moreover, the experiment results lack an investigation into the changes in
recall and precision that come with the injection of knowledge. While it would be hard to
compare such insights to other works since these metrics are rarely reported, these results
would still give a more thorough and accurate report of our experiments.

Ethical Concerns Medical students and professionals indicated many concerns regarding
ethical questions and the development and use of LLMs in biomedicine. While our methodol-
ogy and models will likely not be used in practice without further research and improvements,
we did not specifically address the medical community’s concerns in our work. There are
no guarantees that our methods and models might be reproduced and used without our
knowledge, which might lead to unsafe medical advice, misinformation, or data security and
privacy breaches. We tried to improve the overall model performance and factual accuracy to
reduce hallucinations, but there is no way to entirely eliminate the risk of wrong predictions
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and other critical issues. Therefore, if readers should consider using our models not just for
further research but in practice, we urge them to refrain from doing so.

Survey Response Rates Lastly, the low response rate from medical professionals for our
survey did constrain the richness and reliability of our findings in the third part of the thesis:
We mainly reached medical students and could not gain more insights from experienced
professionals. The main hurdles were the stressful schedules of doctors and nurses and
the general difficulty connected with reaching medical professionals on a larger scale. An
additional significant shortcoming in this regard was that we could not conduct the survey at
the TUM MRI before the end of this thesis, which could have increased our responses from
medical professionals tenfold or more.

5.3. Further Research

During our work on this thesis, we have encountered multiple possible avenues of future
research that we did not have time to explore ourselves. These opportunities are given in the
following for others to explore.

OntoChem Potential The data provided by OntoChem included much more than entities
and relations and would allow for additional experiments. For instance, every data triplet
comes with the source sentence from which it was extracted. Drawing inspiration from works
like K-Adapter (R. Wang, Tang, Duan, et al., 2020) and other papers discussed in the literature
survey, linguistic knowledge could be extracted from these sentences (e.g., by dependency
parsing). This linguistic knowledge could then be used in additional adapters to enhance our
models further.

KG Merging Moreover, the idea of merging OntoChem Data with sub-graphs from MSI
(Ruiz, Zitnik, & Leskovec, 2021), UMLS (Bodenreider, 2004), or PubChem(Kim, Chen, Cheng,
et al., 2020) presents a promising direction. Similarly, a potential game-changer could be
the training of medical professionals to curate the KGs and sub-graphs with OntoChems
FactFinder and MoP’s graph partitioning (Meng, Liu, Clark, et al., 2021). This way, the
resulting KELMs would be tailored directly by those who use them.

Approach Variation An additional future research direction is exploring and incorporating
methodologies of some of the other adapter-based works we discussed in the systematic
literature review. It would, for example, be possible to examine the strategy of AdapterSoup
(Chronopoulou, Peters, Fraser, & Dodge, 2023) and combine it with our methods. Moreover,
the intriguing prospect of allowing adapters to pool their knowledge with hypernetworks,
as suggested by Karimi Mahabadi, Ruder, Dehghani, and Henderson (2021), is worthy
of exploration. Additionally, further investigations into possible improvements in model
explainability through adapters would be interesting, for example, by routing and tracing
what knowledge in which adapter is most active for specific tasks.
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A.1. Appendix A: OntoChem Knowledge Extraction Process

For data source transparency, we will give an overview of OntoChems knowledge extraction
process and the ideas behind it in this section of the appendix. All information stems directly
from Irmer, Bobach, and Böhme (2019) and personal discussions with the authors Dr. Claudia
Bobach, Dr. Matthias Irmer, and Dr. Felix Berthelmann, COO of OntoChem.

Figure A.1.: UIMA processing pipeline

OntoChem employs frame-based methods to extract knowledge from text documents
effectively. A frame is a data structure encapsulating information about a specific object or
concept. It is constructed through slots, which describe particular attributes of the frame.
These slots can store attribute values or pointers to other frames. The utility of frames
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extends beyond the representation of named entities: They provide a structured way to
depict categories and individual objects using recursive attribute-value structures and act as
a bridge between the textual entities and the complex facts they signify, facilitating efficient
knowledge extraction. They can represent intricate details in the chemical realm, such as
relations between chemical compounds and diseases or specific compound properties.

Regarding OntoChems extraction process, figure A.1 gives an excellent overview of the
different stages and components. According to Dr. Claudia Bobach and Dr. Matthias Irmer,
their pattern-based method leads to a very high precision compared to pure deep learning
approaches.

A.2. Appendix B: Model Experiment Details

The run specifics that varied from experiment to experiment can be found in Tables A.1 and
A.2. For all other parameters, we followed Meng, Liu, Clark, et al. (2021). Training times
varied depending on the task (from approximately 3 hours for BioASQ7b to up to 20 hours
for MedNLI). We used the following library versions and hardware:

• python_version: 3.8.18

• framework: huggingface, version: 1.1.1

• gpu: 1 Tesla V100-SXM2-16GB, 17179869184 memory

• os: "Linux-5.15.109+-x86_64-with-glibc2.35"

settings v task > HoC PubMedQA BioASQ7b MedNLI
repeat_runs 5 10 10 3
epochs 20 30 25 20
patience 3 4 5 3
batch_size 16 4 4 8
learning_rate 1e-5 0.5e-5 0.5e-5 0.5e-5
max_seq_len 128 512 512 256

Table A.1.: Changing hyperparameters of experiment runs
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model v task > HoC PubMedQA BioASQ7b MedNLI
PubMedBERT-
base +Onto20Rel

1695545510,
1695551194,
1695631414,
1695635952,
1695545284

1695302987,
1695303496,
1695305525,
1693487106,
1693486969,
1693486875,
1693486786,
1693486671,
1693486519,
1693486438

1695294922,
1695296457,
1695297480,
1695298979,
1695300121,
1695294957,
1695296728,
1695298346,
1695299850,
1695301350

1693438247,
1693348293,
1693158923

PubMedBERT-
base+OntoType20Rel

1696003589,
1696010016,
1695978691,
1695983965,
1696003582

1695301624,
1695302090,
1695303096,
1695302987,
1695303496,
1695305525,
1695305786,
1695306529,
1695306846,
1695307756

1696281308,
1696282974,
1696284209,
1696285747,
1696287304,
1696288728,
1696290290,
1696292218,
1696293848,
1696295337

1696268190,
1696276332,
1696288411

BioLinkBERT-
base +Onto20Rel

1695323423.
1695389154,
1695395947,
1695309647,
1695315963

1693512957,
1693514490,
1693516826,
1693518324,
1693519586,
1693501875,
1693503037,
1693504978,
1693506333,
1693507926

1695208870,
1695210546,
1695212437,
1695213810,
1695215559,
1695208205,
1695209378,
1695210768,
1695212272,
1695214143

1692534250,
1692534254,
1692534298

BioLinkBERT-
base+OntoType20Rel

1695720138,
1695724845,
1695646163,
1695652457,
1692547237

1695068916,
1695070871,
1692544809,
1692545800,
1692546444,
1692546956,
1692547340,
1693609462,
1693649763,
1693655551

1694284328,
1694285491,
1694286633,
1694288370,
1694289991,
1694346616,
1694347940,
1694348954,
1694350207,
1694351700

1692535324,
1692535524,
1692535833

Table A.2.: Seeds of the runs used in the experiment section
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A.3. Appendix C: Research Survey Documentation

In the following pages, the questionnaire and introductory document are provided. We
make all responses to the survey available under https://github.com/alexander-fichtl/thesis_
survey_results.
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Survey on the Use of Language Models in 

Medicine and  Biomedical Research 

In recent years, there has been significant progress in the development of large language models 

(LLMs). In addition to well-known LLMs such as ChatGPT, there also exists an increasing number of 

specialized language models for use and research in medicine and biomedicine. Our research at the 

Technical University of Munich deals with the applications and relevance of these specialized models. 

Your insights help us assess the impact and importance of ongoing research.  

This survey consists of 20 short questions and takes a maximum of 10 minutes to complete. 

If you are unfamiliar with LLMs and their applications in the (bio)medical field, please read the brief 

introduction provided for you and then return to the survey. 

If you have any questions or comments regarding the survey, please email us at: 

alexander.fichtl@tum.de   

We appreciate your help and thank you for your time! 

 

*Indicates required question 

Informed Consent 

All information given on this survey will be completely anonymous. All data is used exclusively for 

research purposes at the Technical University of Munich. If you wish to have your data deleted after 

you have already submitted the survey, please contact: alexander. chtl@tum.de. 

1. Do you wish to participate? * 

Mark only one oval. 

Yes Skip to question 2 

No Skip to section 2 (Declined Participation) 

Declined Participation 

You have declined to participate in this survey or do not meet the requirements for participation. 

Thank you for your time. You may close the browser or click submit below. 

Occupation 

2. What is your current occupational status? * 

Mark only one oval. 
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Working as a doctor, (bio)medical specialist, teaching or research staff 

Skip to question 3 

Ongoing studies in the eld of (bio)medicine 

Skip to section 4 (Information for students and trainees) 

Ongoing training in (bio)medicine 

Skip to section 4 (Information for students and trainees) 

None of the options apply Skip to section 2 (Declined Participation) 

Information for students and trainees 

You indicated that you are still studying or in training. In this survey, you will be asked questions 

about your area of  expertise and your experiences there. When answering these questions, 

please simply refer to your desired area of expertise. Answer all other questions, if appropriate, 

based on your experiences and assessments of your studies or your training. 

Questions 1-5 

1. What is your (aspired) specialty? * 

2. Years of practice in your field of expertise? * 

Mark only one oval. 

Currently in training/Student 

<5 years 

5-10 years 

10-20 years 

20-30 years 

>30 years 

3. How often do you use software based on language models for your work/research?  

Mark only one oval. 

Never 

Monthly 

Weekly 

Daily 

Unsure 
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4. What applications do you use language models for? 

5. What is your location of practice? * 

Mark only one oval. 

Rural 

Metropolitan 

Both 

Questions 6- 10 

6. Relative to your colleagues, how would you rate your knowledge of language 

models and its application in your field of expertise? * 

Mark only one oval. 

1 2 3 4 5 

  Excellent  Very poor 

  

7. How long do you think it will be before language models have a noticeable impact 

on your field expertise?  

Mark only one oval. 

There already is a noticeable impact 

within 1-5 years  

within 5-10 years 

>10 years 

They will never have a noticeable impact 

8. To what extent will language models have an impact on workforce needs in your 

area of expertise within the next decade? * 

Mark only one oval. 

1 2 3 4 5 

  To a great extent  Not at all 
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9. To what extent will language models have an impact on workforce needs in your 

field of expertise beyond the next decade? * 

Mark only one oval. 

1 2 3 4 5 

  To a great extent  Not at all 

10. In what direction will the workforce needs change due to language models? * 

Mark only one oval. 

Increase 

Decrease 

No change 

Questions 11-15 

11. Do you think that your university/clinic/medical centre is adequately equipped to 

deal with the introduction of language models in your area of expertise? * 

Mark only one oval. 

Yes 

No 

Unsure 

12. What do you think that your university/clinic/medical centre should do in 

preparation for the deployment of language models in your area of expertise? 

13. Language models could be used in the future to detect diseases and give medical 

advice. If such a language model were to be used by unskilled health workers in your 

field of expertise, what level of error in the language model's estimates do you think 

would be acceptable? * 

Mark only one oval. 
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Equivalent to the worst performing [insert clinician] 

Equivalent to the average performing [insert clinician] 

Superior to the average performing [insert clinician] 

Equivalent to the best performing [insert clinician] 

Superior to the best performing [insert clinician] 

14. What level of error would be acceptable for language models that are used 

by specialists for diagnostic decision-support in your field? * 

Mark only one oval. 

Equivalent to the worst performing [insert clinician] 

Equivalent to the average performing [insert clinician] 

Superior to the average performing [insert clinician] 

Equivalent to the best performing [insert clinician] 

Superior to the best performing [insert clinician] 

15. Would you consider using the following clinical workflow? During a 

pandemic, a specialist responds to patient questions online. To save time, they 

generate responses with a language model and then only review them before 

sending. * 

Mark only one oval. 

Yes 

No 

Unsure 

Questions 16-20 

16. Which of the following do you perceive as the greatest potential advantage of the 

use of language models systems in your field? (only rank your top 3 preferences 

where 1=greatest advantage) 

 

 Answer options:  

• Improved patient access to disease screening  

• More targeted referrals to specialist medical care  

• More cost-effective health care  

• Improved diagnostic confidence  

• Reduced time spent by specialists on monotonous tasks  
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• Greater uniformity in diagnosis and management decisions  

• More personalised and evidence-based disease management  

• Improved prediction of disease outcomes  

• Other  

 

17. Which of the following do you perceive as concerns to the utilisation of language 

models in your field? (only rank your top 3 preferences where 1=greatest 

drawback) 

 

Answer options: 

• Data security & privacy concerns  

• Concerns over "selling out" health care to large technology and data companies  

• Concerns over medical liability due to machine error  

• Lack of confidence or trust in 'black-box' diagnosis  

• Decreasing reliance on medical specialists for diagnosis and treatment advice  

• Challenge to the fiduciary (trust-based) relationship between patient and doctor  

• Concerns over benchmarking clinicians against machines  

• Impact on workforce needs  

• Other 

 

18. Which professional group do you think will be most impacted by the introduction of 

NLP in your field of expertise? (e.g. nurses, doctors, other) 

19. To what extent do you agree with the following statement: "the field of  [insert 

specialty] will improve with the introduction of NLP"?* 

Mark only one oval. 

  

1 2 3 4 5 

  Strongly agree  Strongly disagree 

 

20. How do you think the majority of professionals in your field of expertise would 

answer the previous question compared to yourself? * 

Mark only one oval. 

They would agree more strongly on average 

They would disagree more strongly on average 

They would give a similar response on average 
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Comments and Interview Participation 

Would you be willing to take part in an interview on the subject of the survey? If yes, 

please provide your preferred contact details below. If you have any other 

thoughts, ideas or concerns you would like to share with us but do not wish to 

participate in an interview, you can also do so in the box below. 

Survey Submission 

Thank you for participating in this survey. Please click the submit button below to complete the 

survey. 
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Technical University of Munich (TUM)
School of Computation, Information and Technology (CIT)
Chair of Software Engineering for Business
Information Systems (sebis)
Website: www.matthes.in.tum.de
Contact: alexander.fichtl@tum.de

Biomedical Large Language Models

What are Language Models?

Language models are, in essence, word prediction models. They are trained on large amounts of

unstructured text, usually from online sources, to solve specific tasks by statistically predicting the

words in the solutions. These tasks can range from extracting desired information from a list of

documents (“Information Extraction”) to answering questions as a chatbot. Recently, these models

have grown ever larger and cost more and more resources to train, hence the name “Large

Language Models” (LLMs).

LLMs that are trained on biomedical texts, usually research papers and patient data, can be used

to solve tasks in the biomedical domain. Research on these biomedical LLMs has increased over

the last couple of years, and they are being used by more and more clinicians and researchers in

practice.

What biomedical LLMs can do already

● Decipher and explain medical jargon in documents [Go22]

● Extract, structure, and learn from various sources, including clinical information from

health records

● Answer publicly posed patient questions, even with more empathy and quality than

physicians (under certain circumstances) [Ay23]

● Pass benchmarks like professional medical board exams1

● Be a reference and support tool for medical professionals

What biomedical LLMs cannot do

● Replace clinicians or medical professionals in general

● Give medical advice that does not have to be counter-checked

● Take responsibility

1 Examples from the “MedQA” [Ji20] and “MedNLI” [Ro18] dataset are provided in the Appendix
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Both lists given here list are, of course, not exhaustive. The fast progress in the field of Natural

Language Processing will likely enable biomedical LLMs to solve new and more difficult tasks in

the future. At the same time, new regulations, like the AI Act in the European Union, will limit the

research on and applications of LLMs for safety and privacy protection.

Main takeaways

Language models are word prediction models that usually learn from collections of text

documents. Some of them are specifically trained in closed domains, like the biomedical domain.

Our research focuses on such biomedical language models. These models can assist medical

professionals in their everyday tasks but are not intended to replace professionals.

If you want to learn more about our work, you can find our research questions here. We will also

share our findings under the same link when our research is completed.

You can now return to the survey if you still have it open. Otherwise, you can click here to restart

it.

APPENDIX

MedQA [Ji20] example task:

Question given to the Language model:

An ECG is most likely to show which of the following findings in this patient?

Context (patient information) given to the language model:

● Age: 64 years

● Gender: F, self-identified

● Ethnicity: unspecified

● Site of Care: emergency department History

● Reason for Visit/Chief Concern: “My chest hurts, especially when I take a deep

breath.”

● History of Present Illness: 2-hour history of chest pain pain described as “sharp”

pain rated 6/10 at rest and 10/10 when taking a deep breath

● Past Medical History: rheumatoid arthritis major depressive disorder

● Medications: methotrexate, folic acid, fluoxetine

● Ect.

Options given to the Language Model:

● 'A': 'S waves in lead I, Q waves in lead III, and inverted T waves in lead III'
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● 'B': 'Diffuse, concave ST-segment elevations'

● 'C': 'Sawtooth-appearance of P waves'

● 'D': 'Peaked T waves and ST-segment elevations in leads V1-V6'

State-of-the-art accuracy on MedQA and similar questions: 85.4%

___________________________________________________________________________

MedNLI [Ro18] example task: Predict whether two sentences (a premise and a hypothesis) entail

or contradict each other or if they are of neutral status:

Examples from MedNLI development dataset:

1. Premise: ALT , AST , and lactate were elevated as noted above

Hypothesis: patient has abnormal lfts

Correct Label: entailment

2. Premise: Chest x-ray showed mild congestive heart failure

Hypothesis: The patient complains of cough

Correct label: neutral

3. Premise: During hospitalization, patient became progressively more dyspnic requiring

BiPAP and then a NRB

Hypothesis: The patient is on room air

Correct label: contradiction

State-of-the-art accuracy on MedNLI and similar questions: 86.6%
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