
Department of Informatics

Technische Universität München

Master's Thesis in Informatics

Possibilities and Limitations of the

Structured Transposition of

Normative Texts in Functions on

Typed Data Structures

Dominik Oppmann

Department of Informatics

Technische Universität München

Master's Thesis in Informatics

Möglichkeiten und Grenzen der

systematischen Übersetzung juristischer

Texte in Funktionen über typisierten

Datenstrukturen

Possibilities and Limitations of the

Structured Transposition of Normative

Texts in Functions on Typed Data

Structures

Author: Dominik Oppmann

Supervisor: Prof. Dr. rer.nat. Florian Matthes

Advisor: Bernhard Waltl, M.Sc., M.A.

Submission Date: 15.10.2016

I con�rm that this master's thesis is my own work and I have documented all

sources and material used.

Munich, 15.10.2016

Dominik Oppmann

5

Zusammenfassung

Normative Bestimmungen, beschrieben durch Gesetze, Dekrete und Urteile,

sind hauptsächlich in textueller Form dargestellt. Diese Darstellungsart hat

den Nachteil, dass sie eine einfache Verständlichkeit misst und dass viele un-

klare Informationen enthalten sind, die zuerst interpretiert werden müssen.

Der Prozess der Normeninterpretation ist allerdings sehr komplex auf Grund

des hohen Zeit- und Arbeitsumfangs und dem Mangel an unterstützenden

Software-Tools. Deswegen trägt diese Masterarbeit zur Formalisierung für

Modelle basierend auf Rechtstexten durch die Verwendung eines geeigneten

Tools bei.

Das Hauptziel dieser Arbeit ist die Erstellung eines graphischen Modelledi-

tors, mit dem Rechtsexperten die Entscheidungsstrukturen in Rechtstexten

formalisieren und somit die Semantiken in einem graphischen Modell festhalten

können. Der beabsichtigte Formalisierungsprozess sieht vor, dass Nutzer ver-

schiedene Dokumente zu einem Modell-Workspace hinzufügen und aus diesen

ein �semantisches Modell� entwickeln. Dieses Modell besteht aus Typen mit At-

tributen und Beziehungen zwischen diesen Typen. Alle Modellelemente können

zu den importierten Texten verlinkt werden, um ihren Ursprung zu rechtfer-

tigen. Die eigentlichen Entscheidungsstrukturen sind in den Attributen mod-

elliert, die neben primitiven Datentypen auch ausführbare Ausdrücke (MxL)

beinhalten können.

Der zweite Teil der Arbeit besteht aus der Entwicklung einer Evaluierung-

sumgebung für semantische Modelle, um diese mit Daten zu befüllen und die

ausführbaren Ausdrücke zur Laufzeit auf diesen Daten auswerten zu können.

Deswegen wird SocioCortex als Inferenzmaschine eingesetzt. Diese Evaluierung-

sumgebung ermöglicht auch unerfahrenen Nutzern, die nicht im Detail mit den

Entscheidungsstrukturen gewisser Normen vertraut sind, diese zur Simulation

von (hypothetischen) Fällen zu nutzen.

I

Abstract

Normative regulations, described in laws, decrees and judgments, are mainly

represented in textual form. But this representation lacks of an easy com-

prehensibility and it also contains a lot of vague information that must be

interpreted �rst. The whole task of norm interpretation is very complex, due

to its time and labor intensity and the lack of proper tool support. Therefore,

this master's thesis contributes to formalization for models based on legal texts

by the usage of proper tool support.

The main goal in this work is the creation of a graphical model editor, which

helps legal experts formalizing the decision-making structures in normative

texts and represent the semantics of a text in a visual model. In the intended

formalization process, the user can use several legal documents as base for

creating a �semantic model� consisting of types with attributes and relations

between each other. All model elements can be linked to the source text to

justify their origin. The decisions are modeled in the attributes which can hold

next to primitive data types also executable expressions (MxL).

The second part of this thesis consists of the creation of an environment to

populate these semantic models with concrete data instances and evaluating

the MxL expressions at runtime. Therefore, SocioCortex is used as a reasoning

engine. The bene�t of the evaluation environment is to enable the simulation

for (hypothetical) cases even by unexperienced user that do not understand

the intended semantics of normative texts in detail.

II

Contents

List of Figures VII

List of Tables IX

Listings XI

1 Introduction 1

1.1 Motivation . 1

1.2 A brief history of AI and law . 3

1.3 Objectives . 4

1.4 Structure . 5

2 Related work 7

2.1 Formalization . 7

2.1.1 Bene�ts of formalization 7

2.1.2 Requirements to formal models 8

2.2 Models for knowledge representation in the domain of law . . . 11

2.2.1 Rule-based approach . 11

2.2.2 Case-based approach . 12

2.2.3 Logic-based approach . 13

2.2.3.1 Deontic logics 13

2.2.3.2 Non-monotonic logics 15

2.2.3.3 Description logics 15

2.2.4 Ontologies . 17

2.3 Legal expert systems . 19

2.3.1 De�nition . 19

2.3.2 Architecture . 19

2.3.3 Examples of legal expert systems 20

2.3.3.1 Oracle Policy Automation 21

2.3.3.2 knowledgeTools 22

2.3.3.3 HYPO . 23

III

Contents

3 Analysis & concepts 27

3.1 Description of the involved systems 27

3.1.1 Lexia . 27

3.1.2 SocioCortex . 29

3.2 The model based expression language MxL 30

3.3 Modeling approach for Lexia . 32

3.3.1 Work�ow of model building 33

3.3.2 Work�ow of model evaluation 34

3.3.3 Meta model of semantic models 37

3.4 Case studies . 37

3.4.1 Child bene�t from EStG 38

3.4.1.1 Relevant norms 38

3.4.1.2 Decision-making structures as activity diagrams 40

3.4.1.3 Semantic model 43

3.4.1.4 Mathematical de�nition 43

3.4.2 Reporting obligation from BDSG 46

3.4.2.1 Relevant norms 46

3.4.2.2 Decision-making structures as activity diagrams 47

3.4.2.3 Semantic model 50

3.4.2.4 Mathematical de�nition 51

3.5 Stakeholders . 53

3.6 Requirement analysis . 54

3.6.1 Requirements for modeling environment 55

3.6.2 Requirements for evaluation environment 58

3.6.3 Summary . 61

4 Implementation 63

4.1 Target system . 63

4.1.1 Architecture . 63

4.1.2 Mapping between semantic model elements and Socio-

Cortex entities . 64

4.2 Implemented components . 66

4.2.1 Back end . 66

4.2.1.1 Enhancement of data model 66

4.2.1.2 Format of semantic model 67

4.2.1.3 Model synchronization between Lexia and So-

cioCortex . 74

IV

Contents

4.2.1.4 Enhancement of REST service 77

4.2.1.5 Model-based REST client for communication

with SocioCortex 80

4.2.2 Front end . 81

4.2.2.1 Angular.js service as wrapper for JointJs 81

4.2.2.2 Controllers and views 82

4.2.2.3 Directives . 90

4.2.2.4 Other components 91

5 Evaluation 93

5.1 Research questions . 93

5.2 Evaluation of the case studies 95

5.2.1 Child bene�t . 96

5.2.2 Reporting obligation . 98

5.3 Limitations . 100

6 Summary, outlook and conclusion 103

6.1 Summary . 103

6.2 Outlook . 104

6.2.1 Improvements for modeling environment in Lexia 104

6.2.2 Latest trends in decision modeling 105

6.3 Conclusion . 107

Bibliography 109

V

List of Figures

2.1 The mapping between Knowledge Base Item and Source Item

suggested by Bench-Capon et al. 9

2.2 Comparison of traditional programs and knowledge-based systems 20

2.3 The rules in natural language in Microsoft Word 22

2.4 knowledgeTools case management component 24

3.1 Architecture of Lexia . 28

3.2 Data model of Lexia . 29

3.3 Meta model of SocioCortex . 30

3.4 Data model for MxL expression in Listing 3.1 32

3.5 Work�ow of the generation of semantic models 35

3.6 Work�ow of the evaluation of semantic models 36

3.7 Meta model of the semantic model 38

3.8 Activity diagram for Anspruchsprüfung EStG �62 41

3.9 Activity diagram for Kindprüfung EStG �63 41

3.10 Activity diagram for Kindprüfung EStG �32 42

3.11 Target model for child bene�t claim 43

3.12 Activity diagram for Meldep�icht BDSG �4 48

3.13 Activity diagram for Vorabkontrolle BDSG �4 49

3.14 Target model for reporting obligation 51

3.15 Use case diagram depicting di�erent stakeholders 54

3.16 Example of a syntax tree . 60

3.17 Example of an object diagram with corresponding data model . 61

4.1 Target architecture of Lexia . 64

4.2 Tree hierarchy of semantic model elements and SocioCortex en-

tities . 65

4.3 Classes implementing IModelElement interface 76

4.4 Class hierarchy of visitor implementation 78

4.5 New components of the front end application 81

VII

List of Figures

4.6 Screenshot of modeling environment with a highlighted text ref-

erence of a type . 84

4.7 Screenshot of the de�nition of a type 85

4.8 Screenshot of the de�nition of an attribute 86

4.9 Screenshot of the de�nition of a relation 87

4.10 Screenshot of the model evaluation environment with a selected

type and populated data . 88

4.11 Example of an syntax tree for a MxL expression 89

5.1 Semantic model of child bene�t 96

5.2 MxL expression for child bene�t calculation 96

5.3 Semantic model for reporting obligation 98

5.4 MxL expression of reporting obligation regarding purpose 98

5.5 MxL expression of reporting obligation with data privacy o�cer 99

6.1 Example of a Decision Requirements Diagram 106

6.2 Example of a Decision Table . 107

VIII

List of Tables

2.1 Jural relations by Hohfeld . 14

3.1 Summary of all requirements . 62

4.1 Mapping between semantic model elements and SocioCortex en-

tities . 65

4.2 REST routes for model environment in Lexia 79

IX

Listings

2.1 First paragraph of the BNA in natural language 11

2.2 First paragraph of the BNA in Horn clause form 12

2.3 Example of RDF in XML syntax 18

2.4 Example of RDF in Turtle syntax 18

2.5 Example of a rules for Oracle Policy Automation 22

3.1 Example of an MxL query . 32

3.2 Excerpt from �63 from the EStG 39

3.3 Excerpt from �32 from the EStG 39

3.4 Excerpt from �62 from the EStG 40

3.5 Excerpt from �66 from the EStG 40

3.6 Excerpt from �4d from the BDSG 46

4.1 Excerpt of the Model entity . 67

4.2 Root level of serialized graph as JSON object 69

4.3 Link object for a type . 70

4.4 Attribute object for a type . 71

4.5 Instance object for a type . 73

4.6 Excerpt from class JointJsGraph 75

4.7 Excerpt from class Cell . 75

4.8 Interface for JointJsGraphVisitors 76

4.9 IModelElement interface implemented by all model elements . . 76

4.10 Usage of the builder design pattern for the REST client 80

4.11 Usage of the link directive . 90

4.12 Usage of the mxl-analyzer directive 90

4.13 Usage of the object-diagram directive 91

5.1 MxL expressions for type Steuerzahler 97

5.2 MxL expressions for type Kind 97

5.3 MxL expressions for type Verarbeitende Stelle 99

XI

1 Introduction

1.1 Motivation

In civil law countries such as Germany, the most important legal sources are

laws, which are produced by the parliamentary system. Additional sources

such as government decrees, ministerial decrees and court decisions must be

considered for legislation as well, which is the base of all public services pro-

vided for citizens or businesses. Therefore, understanding the intended se-

mantics of this legislation is a crucial task. It is also the �rst step towards a

transposition into a more formal speci�cation. In a next step, these speci�ca-

tions can be implemented in a computer executable way allowing an automatic

processing.

In the past, main attention was paid on this second step, namely the automatic

execution of law. However, the previously mentioned upstream transposition

process from rules described in natural language into a computer executable

formal model was neglected. Up until now, the translation process is mainly

driven by legal experts, such as lawyers or legal data scientists, during an

interpretation task. This task puts focus on understanding how a norm should

be applied [11], [38]. Interpretation is the preliminary stage for subsumption

which checks whether facts of a case are applicable for some given norms [22,

p. 83�].

Moreover, the interpretation process of norms is a very complex task due

to several reasons. At �rst, this process is very data intensive. It can be

the case that norms regarding the same circumstances are distributed over

several acts. Brattinga et al. [11] identi�ed this phenomena for the past Dutch

environmental law, which was spread across 26 di�erent acts. Van Engers et al.

[38] refer to this as �scoping issue�, not knowing where to start analyzing the

law and where to stop. A second issue is that the law contains a huge amount

1

1 Introduction

of implicit and vague information that must also be clari�ed and made explicit

�rst [37].

These two problems are attributable to the main representation form of legal

norms, which is unstructured text. Since text provides an �excellent job in

creating legal security, along with all the legal authorities� [11] this represen-

tation form will still be relevant in the future. Hence, concepts were developed

during the last 25 years around these textual representations to support the

comprehensibility of its semantics. As an example annotations [20] must be

stated, which were originally used to enrich cases with meta data. Its purpose

is to provide cover terms for legal concepts which should homogenize di�er-

ent linguistic patterns expressing semantically the same. Moreover, a concept

called isomorphism has proved to be bene�cial. It refers to a linkage between

a formal model of some legal semantics and their textual origins [9].

Based up on di�erent formalization methods of normative texts, a broad variety

of legal expert systems were developed during the last two centuries. These

systems should advise legal experts during their daily work and help at di�erent

levels. Typical tasks of such systems are decision support, training, intelligent

databases for searching and text analysis systems [23, p. 10 �.]. Especially the

latter ones gain popularity through recent arti�cial intelligence and machine

learning techniques.

The chair of Software Engineering for Business Information Systems at the

TU München has been developing Lexia, which is a legal data science environ-

ment and analysis platform. One of its main features is the analysis of legal

texts regarding linguistic patterns with the goal to identify legal concepts in

a huge text corpus. This task is achieved through the usage of natural lan-

guage processing technologies. Currently, this platform lacks of an component

that supports legal experts during interpretation of legal norms and enforcing

the creation of a formal model as resulting artifact on base of the previously

identi�ed legal concepts. These formal models should be executable such that

unexperienced and untrained users can use them for the evaluation of cases.

This thesis describes the creation of such a component including a previous

literature research which helped revealing requirements for this component.

After the implementation, an evaluation has been realized to verify whether

certain legal semantics can be implemented with this component in a formal

model. Furthermore, the intended solution separates the task of interpretation

2

1 Introduction

and subsumption, that was previously done only by a single person, to foster

the reuse of these formal models.

1.2 A brief history of AI and law

The usage of techniques of arti�cial intelligence in the domain of law is quite

a new discipline. First researches were done in the 80s of the last century. A

real community around this topic has begun to grow with the International

Conference on AI and Law (ICAIL) in 1987. Ever since, the conference takes

place on a biennially base presenting the latest achievements on this �eld of

research [10, p. 2f].

One important milestone of AI in law was presented even in the early days

of the ICAIL conference. In 1987 Hafner [10, p. 6�] showed the limitations

of normal string search in legal texts and presented �concept indexation and

concept search� as a possible solution. In normal boolean string search, ex-

pert knowledge is required in order to identify relevant search terms and their

combinations. With the usage of annotations, relevant text passages could

be indexed by cover terms. These terms are �semantically meaningful gener-

alizations� that eliminate homogeneous text passages expressing semantically

the same circumstances. Searching for these annotations would lead to better

results with respect to accuracy rate and number of search terms used. Doc-

uments must not only be annotated, but also a mapping between annotations

and relevant legal concepts must be de�ned [10, p. 7]. Hafner used annotations

for cases represented in textual form. Since then it is widely used for instance

in case-based reasoning systems as part of the information retrieval process

[6]. Still today annotations play a major role in some legal expert systems.

Annotating the legal documents manually is a time- and labor-intensive task.

Since the beginning of AI and Law, attention has been paid on information

retrieval (IR), which is the search for words, sentences and larger phrases in a

huge amount of datasets. First attempts were made in the 1980s, which were

mainly rule-based. Key challenges at that time were not only technical issues

such as the user interface, coverage of the text corpora and response time, but

also - from a legal point of view - the usage of many di�erent phrases express-

ing the same idea. The latter problem with the synonyms and polysemes has

3

1 Introduction

been addressed with di�erent kinds of thesauruses, e.g. a � norm based the-

saurus�. The idea behind this was a uni�ed and normalized presentation of the

document structure [10, p. 10-11]. Later the idea got extended and instead

of a thesaurus, lexicons were used which contain �legal concepts, cited cases,

cited statutes, proper names and facts�. Even advanced information retrieval,

neural networks and machine-learning tools could not create a su�ciently uni-

�ed formal representation automatically from legal texts [10, p. 60-61], which

makes it still a manual, complex and time-consuming task.

However, a formalized representation of legal documents is a prerequisite in

order to build legal expert systems with automatic reasoning. During the last

decades, many legal expert system approaches have been introduced. As ex-

amples HYPO (Rissland and Ashley, 1987), CABARET (Rissland and Skalak,

1989) and CATO (Aleven, 1997) are to be named. Since the late 1980s, the

case-based reasoning systems were one of the main research subjects of arti�-

cial intelligence and law. Another subject, which has been in focus of research

since the 1990s, are rule-based approaches for reasoning. Main contributors

are Gordon (1995), Prakken and Sartor (1996) and Hage (1997) [10, p. 32�].

Other approaches, for instance neural networks, have led to partly satisfying

results. Section 2.3 gives an introduction on legal expert systems and also

contains a short overview of selected legal expert systems.

The introduction should give insights into the developments of AI and law

during the last 25 years. The achievements made in the early years, such as

information retrieval techniques and annotations, are still relevant and in use

today. Lexia (3.1.1) has such features implemented to analyze texts regarding

their semantic and linguistic structure and mark them with annotations. An

alternative representation of the semantics in legal texts, represented in a for-

mal model, still cannot be done automatically and consequently it remains a

manual task. Hence, this thesis addresses this issue and describes how Lexia

is enhanced to support legal experts with the creation of formal models.

1.3 Objectives

The objective of this master's thesis is the development of a prototypical mod-

eling environment, which enables di�erent users to create and also to evaluate

4

1 Introduction

formal models out of normative texts. This modeling environment is imple-

mented in Lexia, a legal data science environment developed at the chair �Soft-

ware Engineering for Business Information Systems� of the TU München. In

two case studies, which exemplary have di�erent legal concepts and decision-

making structures, the modeling environment is evaluated.

The following six research questions have been derived and will be answered

concretely and in detail in Section 5.1:

1. What are the possibilities of formalizing semantics of normative texts?

2. Which components are required to enhance Lexia for ful�lling the task

of model formalization and evaluation?

3. How could an approach look like to link elements of a formal model with

its textual representations?

4. How would a concrete formalization of two selected case studies (child

bene�t of EStG and reporting obligation of BDSG) in the newly imple-

mented modeling environment of Lexia look like?

5. What would be a suitable meta model for the representation of formalized

semantics in SocioCortex?

6. What are the bene�ts of separating the task of creating a formal model

and applying it?

1.4 Structure

In Chapter 1, a short motivation and a brief history of the recent work in

the �eld of AI and law is given, as well as the objectives and the structure of

this thesis are introduced. The next chapter (2) deals with related work and

should make the reader familiar with previous approaches of formal models, as

well as legal expert systems. Chapter 3 proposes the modeling approach and

presents some details of the involved systems. Furthermore, the case studies

and the requirement analysis are described, as well as the stakeholders. In the

implementation section (4), the implemented solution is shown in detail and

the changes made in the front end as well as in the back end are described.

Subsequently in an evaluation (5), the research questions de�ned at the be-

ginning are answered and the implemented models of the two case studies are

5

1 Introduction

elucidated. The thesis concludes with a short summary and an overview of

recent trends in decision modeling (6).

6

2 Related work

The related work chapter of this master's thesis elaborates the bene�ts and

requirements of formal models (see Section 2.1), knowledge representations

in the domain of law (see Section 2.2) and legal expert systems (see Section

2.3).

2.1 Formalization

This section describes at �rst the bene�ts of using a model compared to the

traditional text form (see Section 2.1.1). Then requirements for such formal

models are collected through literature research (see Section 2.1.2), based on

former formalization approaches.

2.1.1 Bene�ts of formalization

At the beginning (see Section 1.1) it was mentioned that the main represen-

tation of legal norms are in unstructured, textual form. This form has several

drawbacks, such as lacking of easy comprehensibility, because of the quite

unusual used phrased and linguistic patterns. Moreover, the huge amount of

implicit information contained in such documents contributes to the poor com-

prehensibility. Therefore, laymen are not able to fully capture the semantics

of complex legal decision-making structures. As a proposed solution, building

a model as alternative representation that makes some abstraction could solve

these issues.

In general, a model is an image of reality, which is limited only to several

aspects. This limitation of selected properties of a system is crucial [34, p.

78f], [17]. The intended solution in this thesis is a semantic model, limited

to the representation of legal entities with attributes and their relationship

in between (see Section 3.3). This kind of model only highlights the static

7

2 Related work

aspects. Moreover, it can be extended by a rule based expression language

that also captures dynamic aspects and makes the model executable.

With the help of models the comprehensibility is improved, because it resolves

previously mentioned issues about the representation in textual form. More-

over, vague or implicit assumptions must be made explicit �rst in order to use

them in such a model. The task of model creation is typically ful�lled by legal

experts, that have a deep understanding of the domain. As described in the

section about the history of AI and law (see Section 1.2), the generation of

such models can even with the latest tools not be done fully automatically.

Once a semantic model has been created, even unexperienced users can work

with it by applying facts to these models and simulate potential outcomes.

This is exactly the task of subsumption in jurisprudence. A proper formal

model is therefore the foundation of legal reasoning, which is usually the task

of legal expert systems (see Section 2.3). With an explicit formal model, the

reuse of such semantic models is also promoted.

In summary, the bene�ts of a formal model compared to the unstructured

text is a better comprehensibility as well as the ability to execute the de�ned

semantics in such models. Once a formal model was created, it can be reused

for simulating di�erent cases.

2.1.2 Requirements to formal models

At the beginning of the formalization approaches in the 1980s, di�erent con-

siderations were undertaken, which led to several important aspects that are

still applicable today.

[10, p. 8] argue that a model should be usable for di�erent stakeholders,

who have various requirements for the model. For example, clerks who want

to apply the law do not have the same requirements as solicitors who advise

how the law is to be applied. However, creating di�erent representations of the

same model (or using the same legal text as base) could lead to redundancy and

inconsistency. The authors instead suggest building a logical and executable

formalized model, which can be used as foundation for further enhancements.

Multi-user-models have also been considered by van Engers' latest research

8

2 Related work

[37]. He mentions that a formalized model must � [...] [represent] norms in

ways, that enable multiple task contexts and multiple agents perspectives�.

Bench-Capon et al. [10] also propose the idea that there must be a link be-

tween the entities in the model and the original legal text in order to provide

transparency. Their later research lead them to de�ne the term isomorphism

as a �well de�ned correspondence of the knowledge base to the source texts�,

addressing the concerns about comprehensibility, maintainability and valida-

tion [9]. They suggest that ideally there must be a one-to-one relation between

items from the knowledge base and source items. Due to practical reasons, this

condition does not hold and must be relaxed such that one source item relates

to several knowledge base items (see Figure 2.1). The cardinality of the in-

verse relation between knowledge base item and source item must be limited

to one.

Figure 2.1: The mapping between Knowledge Base Item and Source Item sug-
gested by Bench-Capon et al.

Source ItemKnowledge Base Item 1..n 1

Source: Own illustration, based on description in [9]

Another argument of the necessity of such a linkage is provided by van Engers

et al. [15] which refers to the example of Web- and IT-Services, provided by

authorities. They point out that nearly every service, provided by public ad-

ministration and other governmental institutions, are primarily based on laws

or other regulations. In order to handle these public services e�ectively, they

are implemented and deployed as IT-Services. However, in most cases the con-

nection between IT-Service and legal source is not clear which is problematic

in terms of maintenance and system complexity. Brattinga et al. [11] specify

this connection even further. They argue that the link must be a two-way-link,

because for reasons of justi�cation and validation. The task of formalization is

typically done by knowledge analysts and knowledge engineers. In enterprise

settings, this is handled in a collaborative process with groups of analysts or

engineers with normal professional skills. However, the actual validation of

the formal model is on the other hand done by legal and policy experts. In

9

2 Related work

order to validate the completeness and soundness of these models, a transpar-

ent translation process must be provided as well as a link between model and

source [37].

Early formalization approaches were mainly driven by legal experts as primary

source of knowledge. As described in [36], for the formalization of the British

Nationality Act from 1986 (see Section 2.2.1), an expert was the main source

of legal knowledge. During the years this paradigm has changed and now ex-

perts are only used as controllers and interpreters of the models for knowledge

representation [36], [37]. Nowadays the aim is to use a systematic transposi-

tion process, which uses computational linguistics approaches to �rstly identify

relevant patterns in the text and secondly transpose these text fragments in

model elements. At the time writing this thesis, this process must still be done

manually, because of the lack of proper tool support [34, p. 94].

A further challenge, that must be addressed while formalizing legal texts, is

the problem of scoping. Laws contain implicit and explicit references to other

paragraphs within the legal document as well as to other documents, forming

a network of relationships. However, these relationships only depend on the

current context of the case and are not applicable for all cases. These circum-

stances make it hard for an analyst to de�ne where to start investigating and

when to stop looking for additional sources [38].

Besides that, the comprehensibility of the resulting model is an important

aspect. If a model is not comprehensible for legal experts and other adminis-

trative workers, for example if it is expressed very formal in rational algebra,

it is not usable in practice [37].

Summarizing all previous requirements for formal models results in the need

of a link between the source text and the formal model for traceability and

validation reasons. Ideally the formal model is understandable by normal users

and exists in any kind of executable form. Furthermore, di�erent perspectives

for di�erent stakeholders are needed. The process of creation and re�nement

of such models must be designed in a collaborative way and must address the

issue of scoping. The main stakeholders creating and maintaining these models

will be legal experts, because of a lack of tool support for automatic knowledge

retrieval.

10

2 Related work

2.2 Models for knowledge representation in the

domain of law

The previous Section 2.1.1 gives an introduction regarding formal models and

why it is bene�cial to use such models. This section is exemplary showing

di�erent approaches of representing knowledge in the legal domain. The rule-

based approach (see Section 2.2.1), the case-based approach (see Section 2.2.2),

the logic-based approach (see Section 2.2.3) and ontologies (see Section 2.2.4)

are elucidated. Knowledge representation is tightly connected with legal expert

systems that are using a formalized representation for legal reasoning (see

Section 2.3).

2.2.1 Rule-based approach

One of the �rst approaches of representing knowledge of a legal document was

in sets of rules. This form of representation simpli�es legal reasoning in rule-

based legal expert systems (for an example see Section 2.3.3.1) and is based

on the assumption that law can be formalized with so called production rules

[34, p. 85].

In the following, the example by Sergot [36] is used, who formalized the British

Nationality Act in Horn clauses. That was a necessary prerequisite for the later

implementation in logic based programming languages such as Prolog. Horn

clauses are logical sentences, which consist of disjunctions with at most one

positive literal. This form allows to rewrite the sentence as a implication with

a conjunction of positive literals as premise and a single positive literal as

conclusion [33, p. 256f].

The Listing 2.1 shows the �rst paragraph of the British Nationality Act from

1981 in natural language:

Listing 2.1: First paragraph of the BNA in natural language

A person born in the United Kingdom after com-

mencement shall be a British citizen if at the time

of birth his father or mother is

(a) a British citizen; or

(b) settled in the United Kingdom.

11

2 Related work

In comparison to this, Listing 2.2 shows a formalized version in Horn clauses

which can be directly converted to Prolog source code.

Listing 2.2: First paragraph of the BNA in Horn clause form

x is a British citizen

if x was born in the U.K.

and x was born on date y

and y is after or on commencement

and z is a parent of x

and z is a British citizen on date y

Of course this formalization approach is done on a very low abstraction level

(directly in executable code). Other approaches on a much higher abstraction

level are also possible. Section 2.3.3.1 describes the Oracle Policy Automation,

which is a system that enables the modeling and deployment of business rules.

The approach introduced in this thesis is also based on rules (see Section 3.3)

on a higher level of abstraction.

An advantage of this approach is that one would have an executable represen-

tation of the semantics very quickly with no intermediate formalization steps.

In comparison with the requirements from Section 2.1.2, this model does not

provide any transparency on how it was generated. Furthermore, only skilled

experts, which can read source code, can use these kinds of models for ap-

plication and validation purpose. A further drawback is the lack of linking

between legal text and source code which a�ects the maintainability. If the

legal text is changed, these changes cannot be tracked to the relevant parts of

the source code easily or even automatically. Changes in legal texts must be

cumbersomely implemented in code again. This process is very cost-intensive

as well as error-prone.

Scharf [34, p. 87] observes that law has a hierarchical structure and is mainly

composed of legal de�nitions which are hard to represent with rules. Rules are

not adequate as single form of modeling, but are useful for representing parts

of the knowledge.

2.2.2 Case-based approach

This section about case-based approaches is only sketched brie�y due to rea-

sons of completeness, but has limited relevance for the further work.

12

2 Related work

The case-based approach is based on the assumption that the total amount

of legal knowledge is only collected in cases. This stands in contrast to the

rule based approach in which it is assumed that law can be expressed in rules.

Therefore, the case-based approach is only valid in the anglo-american common

law system [34, p. 87f].

The second assumption is that cases could be judged by comparing them to

similar cases, because it is likely that similar cases will have a similar outcome

[34, p. 88f], [27, p. 39]. Hence, the cases must be prepared in such a way that

comparison between them is easily achievable. This can be ful�lled through

the previously mentioned concept of annotations (see Section 1.2).

The representation of the knowledge encoded in cases and the processing of it

depends highly on the legal expert system which works with this knowledge.

Therefore, a general representation does not exist and cannot be given. In the

section about legal expert systems a closer look is given to HYPO, developed

by Rissland et al. [32]. It is also elucidated how the case knowledge base is

organized for that system (see Section 2.3.3.3).

2.2.3 Logic-based approach

The following section gives an summary over di�erent types of logic-based

knowledge representation approaches, such as deontic logics (2.2.3.1), non-

monotonic logics (2.2.3.2) and description logics (2.2.3.3).

2.2.3.1 Deontic logics

Deontic logics refers to deontic terms such as obligation and permission. Scharf

[34] notes that deontic logic is used for formalization of law, because the law

itself uses the deontic terms. Furthermore, it is used to represent the di�erences

of what should have been and what actually has been [34, p. 90].

One early approach of using deontic logics for formalizing the law was used by

Hohfeld [21] in 1919. His work was not actually a formalization, but Hohfeld

led a solid foundation for further usage. Hohfeld introduced jural relations,

13

2 Related work

which always appear as pairs. Table 2.1 shows these jural relations, e.g. right

is a jural opposite of duty.1

Table 2.1: Jural relations by Hohfeld

Jural opposites

right (claim) privilege (liberty) power immunity

duty no-right liability disability

Source: [21, p. 30]

There have been several approaches for a more precise formalization based on

Hohfelds work. One of the latest contributions were done by van Engers et

al. [15] and Brattinga et al. [11]. They used the original Hohfeld model, but

extended it with temporal aspects and also with the ability to create new legal

relations.

Van Engers et al. categorize the jural relations in two categories: Category A,

which enables to create or destroy jural relations, including themself (POWER-

LIABILITY and the opposite DISABILITY-IMMUNITY) and category B,

which are used for describing pre- and postconditions for category A rela-

tions (CLAIMRIGHT-DUTY and the opposite NORIGHT-LIBERTY). For

instance, the NORIGHT-LIBERTY pair expresses that somebody (Person A)

has a liberty on subject matter M and a second Person (Person B) has no right

to interfere the liberty of Person A [37].

As concrete example, van Engers et al. use regulations from the Dutch Im-

migration and Naturalization Service (IND) [37], in which a foreign student

applies for permanent residence in the Netherlands:

�The foreign student that wants to study in the Netherlands, comes

to the IND for legal residence. Article 8, Aliens Act declares that

having a residence permit gives the alien the LIBERTY to have

legal residence, which leaves the other, passive party in the jural

relation based on this article with a NO RIGHT.�

�Our Minister is not mentioned in article 8, but there is an explicit

reference to article 14, which gives Our Minister the POWER to

1Hohfeld also de�ned jural correlatives, but these are not used in this context and therefore
not explained.

14

2 Related work

grant, to reject, or disregard the application for a residence permit.

The alien is the explicit actor holding a LIBERTY in article 8, and

the implicit patient holding a LIABILTY in article 14.�

The quoted case above shows how the pattern of identifying these jural rela-

tions is applied to a case. These jural relations can then be transformed into

a formal model using speci�c relational algebra (e.g. van Engers et al. use a

speci�c application of CogNIAM [38]).

2.2.3.2 Non-monotonic logics

Non-monotonic logics are used to build rules with exception. In comparison

to monotonic logic, a conclusion which was drawn once by a set of premises

can never be invalidated. Adding new facts to the set of premises does not

change a conclusion. However, non-monotonic logic follows more the common

sense logic: Conclusions are drawn based on assumptions of the world, which

we expect to be normal. This behavior is best if dealing with incomplete

information. It can happen that an assumption, which previously was expected

to be normal, is wrong because of new information. In this case, the drawn

conclusion must be adjustable [39].

This is the way non-monotonic logics behave, namely a conclusion can be made

invalid through the addition of new premises. Non-monotonic logics describe

the normal or default case, but also allow for exceptions in some special cases.

This property of non-monotonic logics can be used to model the fact that law

is build on rules that can also contain exceptions [34, p. 92].

2.2.3.3 Description logics

�Description logics (DLs) [...] are a family of knowledge representation lan-

guages that can be used to represent the knowledge of an application domain

in a structured and formally well-understood way.� [7]. With DL, important

notions of a domain can be depicted by descriptions, which are expressions

consisting of atomic concepts (unary predicates) and atomic roles (binary pred-

icates). In addition to that, description logics can express formal, logic-based

semantics which was not possible with their predecessors, such as semantic

networks. Furthermore, they are a decidable subset of �rst-order logics.

15

2 Related work

DL supports a terminological (TBox) and assertional (ABox) formalism which

together form the total knowledge base of a domain. Terminological axioms are

used to express the domain knowledge and their relationships, whereas asser-

tional axioms contain concrete instances of the domain [34, p. 91]. Equation

2.1 shows the de�nition of a Tbox expression (�only humans can have human

children�) and equation 2.2 depicts an example of an assertional formalism

(�Mary is one of Bobs children�)2.

∃hasChild.Human v Human (2.1)

hasChild(BOB,MARY) (2.2)

According to Baader, Horrocks and Sattler [7], description logics are the perfect

candidates for ontology languages, because they have well-de�ned semantics

and can also be used for reasoning. The explanation of ontologies is continued

in Section 2.2.4

Logics provide a strict formalism to express the semantics of normative reg-

ulations. Di�erent types of logic try to purge drawbacks of other types, e.g.

the non-monotonic logics enable reverting a drawn conclusion, if new premises

are added to the sets of facts and the deontic logics allow the modeling of

obligations and permissions. Description logics provide a decidable subset of

�rst-order logic and is widely used for ontologies.

The problem with logic-based approaches in general is their decidability. It

does not make sense to use any kind of higher-order logic, which is not decidable

and consequently an inference machine cannot deduce conclusions. Hence, the

usage of logics is a trade-o� between complexity and expressiveness [29, p.

280f].

Another drawback in logics is the lack of expressing arithmetical operations. In

several norms, such as the in Section 3.4.1 presented Einkommenssteuergesetz,

basic arithmetic operations have to be performed in order to calculate the

child bene�t. Baader and Sattler identi�ed these problems in [8] for DLs and

also introduced an extension to add the basic aggregation functions min, max,

2These examples are taken from [7] and are slightly modi�ed.

16

2 Related work

count and sum. However, these basic functions do not provide the full variety

like a formalization in a programming language would.

2.2.4 Ontologies

The term ontology has its origin from philosophy, but was later de�ned by

Gruber [19] as �an explicit speci�cation of a conceptualization�, meaning that

�a conceptualization is an abstract, simpli�ed view of the world that we wish

to represent for some purpose.�

An ontology, used in terms of knowledge representation in arti�cial intelli-

gence, uses a reusable vocabulary to express phenomena of the real world in

a computer understandable way. Furthermore, ontologies extend taxonomies,

in which concepts are depicted as classes that can be enriched with attributes,

axioms, restrictions and relations to other classes [34, p. 109].

In order to express ontologies, di�erent ontology languages were developed.

In the following, the Web Ontology Language 2 (OWL2) is exemplarily used.

For representing the actual ontology, OWL 2 uses RDF (Resource Descrip-

tion Framework), consisting of triplets of subject, predicate and object, for

knowledge representation. With RDF, it is possible to create a knowledge

representation for arbitrary domains [34, p. 105f]. RDF documents can also

be expressed in di�erent syntaxes, for instance XML or Turtle. However, the

XML syntax is the standard one, which must be supported by all OWL2 tools

[3], [5], [4].

The two Listings 2.3 and 2.4 show the di�erent syntaxes, where the �rst one is

in XML and the latter one in Turtle. These examples are taken from [5] and

[4].

17

2 Related work

Listing 2.3: Example of RDF in XML syntax

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:ex="http://example.org/stu�/1.0/">

<rdf:Description rdf:about="http://www.w3.org/TR/rdf−syntax−grammar"
dc:title ="RDF/XML Syntax Speci�cation (Revised)">

<ex:editor>

<rdf:Description ex:fullName="Dave Beckett">

<ex:homePage rdf:resource="http://purl.org/net/dajobe/" />

</rdf:Description>

</ex:editor>

</rdf:Description>

</rdf:RDF>

Listing 2.4: Example of RDF in Turtle syntax

@pre�x rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .

@pre�x dc: <http://purl.org/dc/elements/1.1/> .

@pre�x ex: <http://example.org/stu�/1.0/> .

<http://www.w3.org/TR/rdf−syntax−grammar>
dc:title "RDF/XML Syntax Speci�cation (Revised)" ;

ex:editor [

ex:fullname "Dave Beckett";

ex:homePage <http://purl.org/net/dajobe/>

] .

Apart from the syntax, OWL2 uses logics to describe complex information

which is used by inference machines for reasoning. OWL2 supports the in Sec-

tion 2.2.3 explained description logics. Regarding their versatility, ontologies

have also been used in the legal domain. Several approaches have been under-

taken so far to formalize knowledge of the legal domain with ontologies [29],

[34]. Ontologies using description logics su�er from the same drawbacks as

description logics, namely the poor expressiveness of arithmetic operations.

18

2 Related work

2.3 Legal expert systems

This section should give a short introduction what (legal) expert systems are

and what they consist of. Then, exemplary legal expert systems are described

such as the Oracle Policy Automation (2.3.3.1), knowledgeTools (2.3.3.2) and

HYPO (2.3.3.3).

2.3.1 De�nition

The de�nition of an expert system is not very precise and uni�ed. One de�-

nition describes it as a computer program, which solves problems, that are at

least so hard that normally human expert knowledge is required. For prob-

lem solving, knowledge and inference techniques are used [23, p. 6]. Puppe

enhanced this de�nition by adding the constraint that these systems can only

operate in a very limited range [28, p. 2]. In order to build an expert system,

knowledge must be previously formalized and represented in the system (see

Section 2.1 and 2.2).

Therefore, legal expert systems are expert systems that are used in the legal

domain and also represent knowledge and inference rules of this domain.

2.3.2 Architecture

A main aspect of the architecture of expert systems is the separation of knowl-

edge and problem solving strategies [28, p. 2]. Figure 2.2 shows the distinction

between classical programs and knowledge-based systems. In traditional pro-

grams, the algorithms are �xed and cannot be changed at runtime, whereas in

knowledge-based systems the problem solving strategies are dynamic and can

be extended with the knowledge acquisition facility.

A classical expert system consists of the following components [23], [28]:

Knowledge Base contains the knowledge of the system. This knowledge can

be separated into facts, rules and meta-rules describing the usage of rules.

19

2 Related work

Figure 2.2: Comparison of traditional programs and knowledge-based systems

Expert SystemsTradit ional Programs

Problem Solving Strategies

Knowledge

Data

Algorithms

Data

Source: Own illustration, based on [28, p. 2]

Inference Engine uses the expert knowledge in the knowledge base to solve

problems.

Explanation Component helps to visualize and to justify the procedure of

how the expert system gained new knowledge. This can either be used for

experts to evaluate the knowledge base system as well as for an unexperienced

user to get an explanation for a solution.

Knowledge Acquisition Component enables the domain experts to enter

knowledge into the knowledge base of a system and also to modify it later.

Dialog Component is used to process the user input and respond with out-

puts for the user.

2.3.3 Examples of legal expert systems

During the last 25 years, several legal expert systems were developed that

support legal experts during several tasks. In this section, three di�erent sys-

tems are exemplarily elucidated. At �rst, Oracle Policy Automation (Section

2.3.3.1) and knowledgeTools (Section 2.3.3.2) as representative of rule- and

logic-based legal expert systems. Techniques implemented in these systems

20

2 Related work

were partly adopted for the approach presented in this thesis (Section 3.3). At

the end, a very in�uential and most cited legal expert system HYPO is shown

that is a representative of a case-based reasoning system (Section 2.3.3.3).

2.3.3.1 Oracle Policy Automation

The Oracle Policy Automation (OPA) documentation [2] claims the design

purpose of the system as to �[...] deliver consistent and auditable advice across

channels and business processes by capturing rules in natural language Mi-

crosoft Word and Excel documents and building interactive customer service

experiences called interviews around those rules.�

OPA is a software suite consisting of several components such as a desktop

modeling tool for policy experts, a management console for the deployment of

policies as well as a web-based form (called interview) to advice customer for

desktop and mobile clients.

Figure 2.3 shows an example of rules in natural language that are written

with Microsoft Word. These rules can then compiled with the Rule Assistant

provided by OPA and used for example as eligibility checks or for calculations.

Rules have to be composed in an if-then-manner starting with the conclusion

�rst and followed by the conditions.

The policy modeling tool expects that the opposite conclusion can be inferred

if the conditions are not satis�ed. Besides boolean rules (boolean attribute

is inferred from conditions), also assignment rules (a value is assigned to an

attribute) and table rules (attribute value is inferred from multiple rules de-

pending on the situation) are supported. The rules can contain the boolean

operators and and or, as well as grouping operators such as both, all, either

and any. An example for the usage of grouping operators is shown in Listing

2.5.3 Also the standard logical operators and numerical functions can be used

for rule modeling.

3This example is taken from the Oracle Policy Automation documentation: http:
//documentation.custhelp.com/euf/assets/devdocs/august2016/
PolicyAutomation/en/Default.htm#Guides/Policy_Modeling_User_
Guide/Rule_writing/Logical_connectors_in_rules.htm

21

http://documentation.custhelp.com/euf/assets/devdocs/august2016/PolicyAutomation/en/Default.htm#Guides/Policy_Modeling_User_Guide/Rule_writing/Logical_connectors_in_rules.htm
http://documentation.custhelp.com/euf/assets/devdocs/august2016/PolicyAutomation/en/Default.htm#Guides/Policy_Modeling_User_Guide/Rule_writing/Logical_connectors_in_rules.htm
http://documentation.custhelp.com/euf/assets/devdocs/august2016/PolicyAutomation/en/Default.htm#Guides/Policy_Modeling_User_Guide/Rule_writing/Logical_connectors_in_rules.htm
http://documentation.custhelp.com/euf/assets/devdocs/august2016/PolicyAutomation/en/Default.htm#Guides/Policy_Modeling_User_Guide/Rule_writing/Logical_connectors_in_rules.htm

2 Related work

Listing 2.5: Example of a rules for Oracle Policy Automation

the claimant is eligible for a pension if

the claimant is poor or

all

the claimant is sick and

the claimant has been sick for more than 6 months and

the claimant does not have another form of income

or

the claimant has been entitled to a pension previously

Figure 2.3: The rules in natural language in Microsoft Word

Source: Policy Modeling User Guide4

The Oracle Policy Automation provides a system for unexperienced business

users to model semantics described in natural language and enable interactive

reasoning through a web interface.

2.3.3.2 knowledgeTools

knowledgeTools is a software suite from knowledgeTools International GmbH,

which consists of several modules. Especially the case management module is

4http://documentation.custhelp.com/euf/assets/devdocs/august2016/
PolicyAutomation/en/Content/Guides/Policy_Modeling_User_Guide/
Getting_started/What_is_Oracle_Policy_Modeling.htm

22

http://documentation.custhelp.com/euf/assets/devdocs/august2016/PolicyAutomation/en/Content/Guides/Policy_Modeling_User_Guide/Getting_started/What_is_Oracle_Policy_Modeling.htm
http://documentation.custhelp.com/euf/assets/devdocs/august2016/PolicyAutomation/en/Content/Guides/Policy_Modeling_User_Guide/Getting_started/What_is_Oracle_Policy_Modeling.htm
http://documentation.custhelp.com/euf/assets/devdocs/august2016/PolicyAutomation/en/Content/Guides/Policy_Modeling_User_Guide/Getting_started/What_is_Oracle_Policy_Modeling.htm

2 Related work

interesting for decision modeling, because it is a database oriented system al-

lowing the visualization of complex legal decision-making structures. A similar

approach is also the objective of this thesis.

Figure 2.4 shows a screenshot from the screencast provided on the knowl-

edgeTools website [1]. Breidenbach describes in [12] the structure and the

functionality of this system: The knowledge is organized in a knowledge tree

(dt. Wissensbaum) that consists of several individual nodes. The nodes fol-

low a hierarchical composition principle, starting with the actual question at

the most left side of the tree and connected by decision nodes that are either

atomic nodes or contain further sub nodes.

The relations between the individual nodes are either logical AND, OR, or

XOR (exclusive or). Nodes can be evaluated to true (highlighted with green

at the left side of a decision node) or false (highlighted with red). After the

decisions have been made, the knowledge tree propagates these information to

nodes on higher levels to perform a backtracking up until the root node which

contains the question.

Each node can be linked with several documents that are displayed on the

right side of the screen (see Figure 2.4). These documents are indexed in a full

text search engine. Besides the documents, text fragments can be assigned to

each node allowing to automatically generate a claim document regarding the

modeled case and the evaluated decisions. Through a message board system

custom comments can be drafted and assigned to each node.

In [35], a typical use case is presented from the domain of social law which is

supported by the knowledgeTools system. It allows a lawyer to check together

with his client whether a received decree from an authority is valid. The lawyer

has a model of the case in the system and asks the client several facts about

the circumstances. Next, these facts are entered into the system and a con-

tradicting conclusion is drawn. knowledgeTools has automatically generated a

claim document for this client which only must be customized slightly.

2.3.3.3 HYPO

HYPO is a case-based (see Section 2.2.2) reasoning system that is used in

the domain of trade law. It operates on a set of given facts to perform a

legal analysis and �nally presents the conclusion in form of argument outlines

23

2 Related work

Figure 2.4: knowledgeTools case management component

Source: knowledgeTools screencast[1]

with references to previous cases. It does not actually �decide� cases, rather

than provides arguments on behalf of the involved parties. Field of usage for

example is the assistance of attorneys [32], [27, p. 39].

HYPOs knowledge base is separated into two repositories, the Case Knowledge

Base (CKB) and the library of dimensions. The CKB stores all cases, regard-

less of whether they are real or hypothetical, organized as hierarchical frames

whose slots are relevant features of the cases (such as the plainti� or defen-

dant).5 The library of dimensions provides several features for classi�cation of

cases [32].

If all current facts (or the current fact situation cfs) have been entered into

HYPO, it starts with its legal analysis process and generates a case-analysis-

record, which identi�es the dimensions that apply for the entered case and

which are almost applied. This combined list is then called D-List. Next, on

base of the in the previous step generated D-List, the user is prompted to input

5The terms frames and slots refer to a knowledge representation framework, introduced by
Minsky [25]. Frames are �[...] data-structure[s] for representing a stereotyped situation
[...]�. Minsky uses the example of going to a child's birthday party as an instance of a
frame. With a frame, several information can be attached to it. Frames also have slots,
which can be interpreted as attributes and �[...] must be �lled by speci�c instances or
data�. Frames are organized in frame-systems that consists of several frames organized
in a hierarchical way.

24

2 Related work

additional information, which HYPO uses for example for legal reasoning.

With the case-analysis report and the additional information, HYPO generates

a claim-lattice, which as root node displays the D-List and the current facts.

The child nodes are other cases from HYPOs knowledge base, whose D-Lists

are subsets of the current fact situation. With these techniques, most-on-point

cases can be identi�ed, as well as least-on-point cases. With the claim-lattice

and the most-on-point cases for the plainti� and defendant side, cases are

selected on which to rely or to distinguish for an argument. The claim-lattice

is also used in HYPO for the generation of hypothetical cases for the case

knowledge base. In a last step, the constructed argument skeleton is expanded

to provide justi�cation and explanation.

25

3 Analysis & concepts

This chapter explains at �rst two systems involved in this thesis, in order to

understand the general modeling concept which relies on these systems (see

Section 3.1). Before the actual modeling approach is introduced in Section 3.3,

the model based expression language MxL is presented (see Section 3.2). Fur-

thermore, two case studies, the child bene�t from the Einkommenssteuergesetz

as well as the reporting obligation from the Bundesdatenschutzgesetz are in-

troduced in Section 3.4, before the actual stakeholders (see Section 3.5) and

the requirements of this stakeholders (see Section 3.6) are addressed.

3.1 Description of the involved systems

3.1.1 Lexia

Lexia6 is a web based �data science environment for semantic analysis of Ger-

man legal texts� [41] with the goal to analyze legal texts from di�erent sources

regarding their linguistic structure. It has been developed at the chair of

�Software Engineering for Business Information Systems� (sebis) at the TU

München and is a research approach of tailoring generic Natural Language

Processing (NLP) components to the domain of legal data science. This tai-

loring process is necessary in order to achieve �highest accuracy in terms of

prediction and recall� [41].

The development of Lexia was inspired by the latest developments in computer

science (especially in the �eld of arti�cial intelligence) and should support

handling of legal tasks, which are in general very data-, time-, and knowledge

intensive [41].

6Further information for Lexia respectively for the Lexalyze Interdisciplinary Re-
search Program can be found at https://wwwmatthes.in.tum.de/pages/
12bpn04x6h3x8/Lexalyze-Interdisciplinary-Research-Program

27

https://wwwmatthes.in.tum.de/pages/12bpn04x6h3x8/Lexalyze-Interdisciplinary-Research-Program
https://wwwmatthes.in.tum.de/pages/12bpn04x6h3x8/Lexalyze-Interdisciplinary-Research-Program

3 Analysis & concepts

The architecture is based on the Apache UIMA (Unstructured Information

Management Architecture) reference architecture, developed by IBM and also

used in IBM Watson. With the rule language Apache RUTA (Rule-based Text

Annotation), patterns can be expressed in an easily maintainable and reusable

way. The architecture of Lexia is depicted in Figure 3.1. It consists of several

components such as the importer or exporter for importing legal documents

with di�erent �le formats (e.g. PDF, Word �le) or exporting data dumps

of semantic entities over a REST API. The text analysis engine, following a

pipes-and-�lter-architecture, provides state of the art methods (e.g. Splitter,

Segmenter, Tokenizer, Tagger, Ruta) for analyzing the structure of the text.

As storage and search engine, the schemaless ElasticSearch is used [41].

Figure 3.1: Architecture of Lexia

Processing
Pipeline

Pattern
Definitions

Exporter

Search
Engine

Database

POSTagger

Complex Pattern
Recognizer

Lemmatizer NERecognizer

Tokenizer

User Interface

Exploration

Data and Text Mining Engine

Navigation

Importer

Data Store

Dictionaries

Data Access Layer

Visualization

Information Extraction Component

Source: [41]

The special data model, tailored to the structure of legal documents (see Figure

3.2), makes it easy for extension. The abstract base class of all document

types is LegalDocument, from which all specializations are inherited. Each

LegalDocument has associated Metadata that contains additional information.

In order to represent the nested structure of legal documents, a composite

pattern was chosen for the LegalDocumentContent. The actual textual content

is then stored in Sections which can be enriched with Annotations.

28

3 Analysis & concepts

Figure 3.2: Data model of Lexia

Annotation

Contract

Metadata

SectionContainer

«abstract»
LegalDocumentContent

Section

Judgment

Law

«abstract»
LegalDocument

1 *

1
1

c o n t a i n s
*

1

1

*

Source: [41]

3.1.2 SocioCortex

SocioCortex (formerly known as Tricia) is a hybrid wiki system that is also

developed by the sebis chair. The hybrid wiki concept was �rst introduced

by Matthes et al. in [24] with the goal to create a lightweight and structured

data management system on top of an unstructured wiki system. With this

approach it should be avoided that users have to learn a new and complex

semantic language for structuring wiki pages. This hybrid wiki is designed to

either create the data model �rst (top down) or to import data �rst (bottom

up) and then guide the users towards a consistent and formally de�ned data

model through the addition of constraints.

This approach was evaluated in several projects [31] and an adaption has been

made which led to the following meta model shown in Figure 3.3.

The root node is a Workspace that can contain several Entities. These En-

tities are loosely coupled with a corresponding EntityType by its type name

(the attribute type of Entity conforms to EntityType.name). An Entity is used

to represent an instance of a given EntityType. It can have many Attributes

of a given AttributeDe�nition. They are also loosely coupled by the Attribut-

eDe�nition name, such as Entity and EntityType. Each Attribute can have

di�erent AttributeValues that are of a speci�c value type (e.g. NumberValue,

TextValue). AttributeDe�nitions have a multiplicity which can either be any

number, at least one, exactly one or maximal one.

29

3 Analysis & concepts

Figure 3.3: Meta model of SocioCortex

«enumeration»
Multiplicity

Any number
At least one
Exactly one
Maximal one

...ContraintNumberConstraint...ValueNumberValue

TypeConstraintAttributeValue

AttributeDefinitionAttribute

EntityTypeEntity

Workspace

Attribute.name
conforms

AttriubteDefinition.name
* 0..1

Entity.type
conforms

EntityType.name
* 0..1

1

*

1

*

1

*

1

*

1

*

1

*

Source: Own illustration, based on [31]

SocioCortex is also equipped with a powerful REST API7 which is heavily used

in this thesis (see Section 4.2.1.5). With this REST API all elements of the

meta model can be created, queried, modi�ed and deleted. JSON (JavaScript

Object Notation) is used as data exchange format.

3.2 The model based expression language MxL

MxL, themodel based expression language respectively its predecessor Txl (Tri-

cia Expression Language) was introduced by Monahov et al. in [26]. It is a

domain speci�c language for the de�nition and computation of key perfor-

mance indicators (KPI) in the domain of Enterprise Architecture Management

(EAM). Its reference implementation was realized in the EAM tool Tricia (now

SocioCortex, see Section 3.1.2) which follows a model based wiki approach

7Documentation is available at http://www.sociocortex.com/documentation/

30

http://www.sociocortex.com/documentation/

3 Analysis & concepts

named hybrid wiki. To TxL's core features count queries on the EA model,

including aggregation of data as well as arithmetical and logical operations.

TxL is a functional language which supports object orientation and it has a

dynamic type system with re�ection. Dynamic binding of functions at run-

time promotes their reusability. The language can operate with simple data

types like Object, String, Number, Boolean and Date, as well as constructor

data types like Sequence, Map, Function and Entity. As arithmetic opera-

tors, addition, subtraction, multiplication, division, integer division and mod-

ulo are implemented. For boolean comparisons, isNull, equals, greaterThan

and lessThanOrEqualsTo are present as well as the three basic logical opera-

tors and, or, not.

To achieve projection and selection functionalities, TxL supports since the

beginning di�erent query (e.g select, where, groupBy) and aggregation (eg.

count, sum, min, max) operators. These operators are inspired by Microsoft's

standard query operators 8 9.

A major update of TxL and a simultaneously renaming to MxL was done by

Reschenhofer [30]. In his master's thesis, he identi�ed the shortcomings of the

�rst prototypical implementation of TxL. The missing compile-time analysis

of TxL expressions was a major drawback. If the underlying EA model had

been changed and types had been removed or altered, it would have made

the expressions invalid, resulting in a runtime exception. Moreover, the tight

coupling between TxL and Tricia turned out to be a drawback, because this

domain speci�c language (DSL) had the capability to be used also in other

tools than Tricia.

Reschenhofer addressed these above mentioned issues and also introduced new

data types (Page, Document, Principal, Person and Group), changed arith-

metic, logical and comparison operators from functions to symbolic terms (e.g.

from 1.0.add(2.0) to 1.0 + 2.0) and also made minor syntactical modi�ca-

tions (e.g. for conditionals). Furthermore, he added also the concept of derived

attributes. This attribute types for Tricia are not persisted, but instead com-

puted at runtime. All of these changes result in version 2.0 of MxL.

8see https://msdn.microsoft.com/en-us/library/bb394939.aspx
9The complete list of supported query and aggregation operators is shown in Table II and
III in [26]

31

https://msdn.microsoft.com/en-us/library/bb394939.aspx

3 Analysis & concepts

Listing 3.1 shows an MxL 2.0 expression that queries all departments which

contain at least on employee with an salary greater than 20. The corresponding

data model is shown in Figure 3.4.

Listing 3.1: Example of an MxL query

find(Department)

.where(d => d.get Employee whereis Location

.any(e => e.Salary > 20))

Figure 3.4: Data model for MxL expression in Listing 3.1

Project

Name: String
Employee Costs: Number

Employee

Name: String
Salary: Number
Hours: Number
Costs: Number

Department

Name: String Member
1..*Location

1

Source: Own illustration, based on MxL tutorial10

3.3 Modeling approach for Lexia

This thesis uses the previously introduced hybrid wiki SocioCortex (see Section

3.1.2) and the expression language MxL (see Section 3.2) for a formalization

approach. Formal models (see Section 2.2), in the following referred to se-

mantic models, are expressed as sets of typed data structures with relations

between each other. Further re�nement can be achieved with attributes for

these data structures that can hold either primitive data values (such as String

or Number) or custom MxL expressions (to which is now referred as derived

attributes). These derived attributes are then evaluated once a formal model

has been created in SocioCortex and populated with data. In Section 3.3.3,

the meta model for the semantic model is depicted, describing the individ-

ual entities. The whole formalization approach can be seen as a rule-based

approach which is in�uenced by ontologies in terms of knowledge representa-

tion (see Section 2.2.1 for rule-based knowledge representation and 2.2.4 for

ontologies).

10see http://www.sociocortex.com/tutorial/2015/12/01/mxl05/

32

http://www.sociocortex.com/tutorial/2015/12/01/mxl05/

3 Analysis & concepts

For a convenient creation of these semantic models, a visual model editor is

provided in Lexia. This editor enables the generation of a visual representation

for a semantic model which increases the comprehensibility. Therefore, a main

contribution of this master's thesis is the implementation of such a model

editor. Visual support is not only provided during the creation of semantic

models, but also for the evaluation as well. More concretely this means during

the process of entering data and evaluating the derived attributes. Section

3.3.1 and 3.3.2 show the work�ow of how models are created and persisted in

SocioCortex, as well as how these models are instantiated with concrete data

instances.

A separation of these work�ows was intended in order to provide two di�erent

user interfaces for the two main stakeholders. The stakeholders are closer

analyzed in Section 3.5. As mentioned at the beginning, it is tried to separate

the interpretation process of legal norms from their subsumption (see Section

1.1).

SocioCortex together with MxL were chosen in this formalization approach,

because SocioCortex is a representative of a system with a dynamic meta model

(see Section 3.1.2). The meta model can be tailored speci�cally matching the

needs to represent the semantic model. Hence a mapping must be created

which maps elements of the semantic model with entities in SocioCortex. This

mapping is presented in Section 4.1.2.

Furthermore, SocioCortex has been developed by a research group at the same

chair where this master's thesis is set up. In case of any issues the developers

are physical available and can provide support.

3.3.1 Work�ow of model building

Figure 3.5 describes a typical work�ow of how a legal data scientist would

create a semantic model.

The user opens Lexia and creates a new semantic model, which is initially

empty and immediately saved in Lexia. After that, he opens the newly cre-

ated semantic model and adds documents to it, which are relevant for modeling

a certain aspect described in these documents. Next, based on the documents,

the user starts to add new types, links them with textual sources and also

33

3 Analysis & concepts

re�nes those types with attributes and relations. After the modeling is �n-

ished, the complete visual representation of this model is saved in Lexia and

informations are extracted from these visual model: All types, attributes and

relations are extracted and created in SocioCortex, too. Therefore, a mapping

schema must exist between semantic model elements and SocioCortex entities

(see Section 4.1.2). A �rst version of the created semantic model is now done

and can either be re�ned by adding or removing new types, attributes and re-

lations or it can be evaluated. The work�ow of evaluating a model is described

in the next section (see Section 3.3.2).

3.3.2 Work�ow of model evaluation

After a model has been created, it can be populated with data and also be

evaluated. Figure 3.6 shows the process of evaluating a model.

At �rst, a user opens a previously created model in the evaluation view. At that

time, the semantic model along with the newly calculated derived attributes

are fetched from SocioCortex. If the user has not entered data before, the

model is empty and otherwise the derived attribute values from SocioCortex

are inserted in the visual model. The whole model is returned subsequently

to the user and rendered on his screen. The user has now the possibility to

modify data in a form or to enter new data instances. After saving the changed

or newly created instances, the data is �rst extracted from the visual model

and then saved in SocioCortex. Furthermore, a recalculation of the derived

attributes is triggered and returned to Lexia, which enriches the visual model

with the newly evaluated values. After that, the complete visual model is

returned and displayed in the user's browser again.

34

3 Analysis & concepts

Figure 3.5: Work�ow of the generation of semantic models

Generation of Models

 Create empty semantic model

save empty
semantic
model return

 open semantic model and add
documents

update
documents
for semantic
model return

add types,
attributes
and relations
to semantic
model

 save

save
semantic
model

extract
information

 save semantic model

 return

 return

Legal Data Scientist

Lexia SocioCortex

Source: Own illustration

35

3 Analysis & concepts

Figure 3.6: Work�ow of the evaluation of semantic models

Evaluation of Models

open semantic model

 load semantic model

calculate
derived
attributesreturn semantic model

enrich
visual
model
with
derived
attribute
valuesreturn

enter data
to
semantic
model

 save

extract
data
instances

 save data instances

calculate
derived
attributes return derived attributes

enrich
visual
model
with
derived
attribute
values return

User

Lexia SocioCortex

Source: Own illustration

36

3 Analysis & concepts

3.3.3 Meta model of semantic models

Figure 3.7 shows the meta model for the semantic model. In contrast to the

presented formalism of Bench-Capon in Section 2.1.2 and visualized in Figure

2.1, the association between a source item and a model element11 is a many-

to-many relationship, allowing a model element to be linked with more than

one source item. The weakening of this constraint were undertaken, because in

practice more than one source is needed to explain a legal construct. Despite

our civil law system in which jurisdiction is based on laws, in practice preceding

cases and other literature such as table of fees are also relevant. With the loosed

condition, multiple text sources can be linked to a model element.

A model element can be either a type, a relation or an attribute. A relation

can only be established between two di�erent types and a type can have more

than one relation. Between two types only one relation can be established.

Furthermore, a type can have attributes and each attribute belongs only to

one type. An attribute cannot exist on its own.

3.4 Case studies

In a case study two di�erent laws are investigated regarding their possibilities

to model their semantics (partly) with the approach introduced in this thesis.

The child bene�t calculation described in Einkommensteuergesetz (EStG) and

the reporting obligation to the data privacy authority (Datenschutzaufsichts-

behörde) described in Bundesdatenschutzgesetz (BDSG) were chosen. These

two norms have been selected, because it is supposed that the semantics of the

norms can be modeled and the dynamic aspects be described with MxL (see

Section 3.2).

In Section 5.2 the results of the formalization of these two case studies are

demonstrated.

11In the terminology of Bench-Capon a model element correlates to a Knowledge Base Item.

37

3 Analysis & concepts

Figure 3.7: Meta model of the semantic model

Link between
model element and
text (source item)

Source item

AttributeRelationType

Model element0..n0..n

2 0..n

1 0..n

Source: Own illustration

3.4.1 Child bene�t from EStG

The claim of child bene�t is composed in four di�erent sections of the Einkom-

menssteuergesetz (EStG) [14]: First in the claim check (� 62), then in the legal

de�nition of children (� 63 and �32) and lastly in the amount of child bene�t

(� 66).

The child bene�t act in the EStG puts focus on arithmetical operations that

can hardly be modeled with purely logic-based approaches. The corresponding

Section 5.2.1 shows the result of this formalization.

3.4.1.1 Relevant norms

The Listings 3.2, 3.3, 3.4 and 3.5 show the di�erent excerpts from the law.

For reasons of simplicity, the law excerpts are not described in detail, but

an alternative representation in form of activity diagrams is shown. These

diagrams are the precursor for the resulting semantic model with all attributes

and constraints. Since the law is composed in German, the activity diagrams

as well as the semantic model are also in German.

38

3 Analysis & concepts

Listing 3.2: Excerpt from �63 from the EStG

(1) Als Kinder werden berücksichtigt

1. Kinder im Sinne des §32 Absatz 1,

2. vom Berechtigten in seinen Haushalt aufgenommene Kinder

seines Ehegatten,

3. vom Berechtigten in seinen Haushalt aufgenommene Enkel.

[...]

Listing 3.3: Excerpt from �32 from the EStG

(1) Kinder sind

1. im ersten Grad mit dem Steuerpflichtigen verwandte Kinder,

2. Pflegekinder [...]

(2) [...]

(3) Ein Kind [...] [dass] das 18. Lebensjahr noch nicht vollendet

hat [...].

(4) Ein Kind, das das 18. Lebensjahr vollendet hat, wird

berücksichtigt, wenn es

1. noch nicht das 21. Lebensjahr vollendet hat, nicht in einem

Beschäftigungsverhältnis steht und [...] als Arbeitsuchender

gemeldet ist oder

2. noch nicht das 25. Lebensjahr vollendet hat und

a) für einen Beruf ausgebildet wird oder

b) sich in einer Übergangszeit von höchstens vier Monaten

befindet, die zwischen zwei Ausbildungsabschnitten [...]

liegt, oder

c) eine Berufsausbildung mangels Ausbildungsplatzes nicht

beginnen oder fortsetzen kann oder

d) ein freiwilliges soziales Jahr oder ein freiwilliges

ökologisches Jahr [...] leistet oder

3. wegen körperlicher, geistiger oder seelischer Behinderung

außerstande ist, sich selbst zu unterhalten [...]

[...]

39

3 Analysis & concepts

Listing 3.4: Excerpt from �62 from the EStG

(1) Für Kinder im Sinne des §63 hat Anspruch auf Kindergeld nach

diesem Gesetz, wer

1. im Inland einen Wohnsitz oder seinen gewöhnlichen Aufenthalt

hat oder

2. ohne Wohnsitz oder gewöhnlichen Aufenthalt im Inland

a) nach §1 Absatz 2 unbeschränkt einkommensteuerpflichtig ist

oder

b) nach §1 Absatz 3 als unbeschränkt einkommensteuerpflichtig

behandelt wird.

[...]

Listing 3.5: Excerpt from �66 from the EStG

(1) Das Kindergeld beträgt monatlich für erste und zweite Kinder

jeweils 190 Euro, für dritte Kinder 196 Euro und für das

vierte und jedes weitere Kind jeweils 221 Euro.

(2) [...]

3.4.1.2 Decision-making structures as activity diagrams

Figures 3.9 and 3.10 show the check, if a child is one in terms of the law and

a taxpayer is able to receive child bene�t for it. In Figure 3.8 it is checked,

whether a taxpayer has a claim in general. The actual calculation of the

amount of child bene�t is not modeled as activity diagram, but can easily be

obtained by the textual description in Listing 3.5.

40

3 Analysis & concepts

Figure 3.8: Activity diagram for Anspruchsprüfung EStG �62

§62 (1.2)Anspruch

Anspruchsberechtigte
§62

[sonst][Wohnsitz Inland]

Source: Own illustration, based on the speci�c law EStG �62

Figure 3.9: Activity diagram for Kindprüfung EStG �63

Kindprüfung
§32

Kind

§63
Kindprüfung

[sonst]

[Enkel][Kinder
des

Ehegatten]

Source: Own illustration, based on the speci�c law EStG �63

41

3 Analysis & concepts

Figure 3.10: Activity diagram for Kindprüfung EStG �32

Beschäftiungs-
verhältnis

Alter

Beschäftiungs-
verhältnis

KindKindKindKind

Kind

KindKind

Kindprüfung
§32

[in FSJ, FSÖ, ...]
[kein Aus-
 bildungsplatz]

[in Übergangs-
 zeit]

[in Berufs-
 ausbildung]

[nicht in
 Beschäftigungsver-
 hältnis]

[Behinderung vor 25][< 21 u. < 25][> 18 u. < 21][< 18]

[Pflegekind][1. Grad
verwandt]

Source: Own illustration, based on the speci�c law EStG �32

42

3 Analysis & concepts

3.4.1.3 Semantic model

Figure 3.11 shows the semantic model, which should be the result of the for-

malization process. This model shows the structure of the norm as well as

the relationships between the entities. Furthermore, the attributes and their

data types are displayed. The attributes marked with # are derived attributes

(de�ned as MxL expressions).

The types Steuerzahler (taxpayer), Kind (child), Wohnort (residence) and

Beschäftigungsverhältnis (employment status) have been identi�ed. The model

is from the taxpayer's point of view. The taxpayer can have an association

to one or more children with each of them having an individual employment

status. Furthermore, the taxpayer has a reference to a residence where he or

she lives.

Figure 3.11: Target model for child bene�t claim

Beschäftigungsverhältnis

-name: String
-inBeschäftigungsverhältnis: Boolean
-istArbeitssuchend: Boolean
-inBerufsausbildung: Boolean
-inÜbergangszeit: Boolean
-kannAusbildungNichtFortsetzen: Boolean
-inFSJ: Boolean

Wohnort

-name: String
-wohnsitztImInland: Boolean

Kind

-name: String
-geburtsDatum: Date
-kindDesEheGatten: Boolean
-enkelKind: Boolean
-ersterGradVerwandt: Boolean
-pflegeKind: Boolean
-istBehindert: Boolean

alter: Integer
§32(4.1): Boolean
§32(4.2): Boolean
kind§32: Boolean
istBerechtigtesKind: Boolean
betragFürKind: Number

Steuerzahler

-name: String

istBerechtigt: Boolean
summeKindergeld: Number

besitzt ein

1

1

wohnt in

1

1

beansprucht Kindergeld für
1 1..n

Source: Own illustration

3.4.1.4 Mathematical de�nition

This section describes the rules and conditions that must be translated for the

target model in MxL expressions.

43

3 Analysis & concepts

Type de�nitions

s ∈ Steuerzahler (3.1)

kj ∈ Kind, j ∈ N (3.2)

w ∈ Wohnort (3.3)

b ∈ Beschäftigungsverhältnis (3.4)

Relations

beanspruchtKindergeld ⊆ Steuerzahler ×Kind :

(s, kj) ∈ beanspruchtKindergeld

=⇒ kj ist das j. Kind von Steuerzahler s

(3.5)

wohntIn ⊆ Steuerzahler ×Wohnort :

(s, w) ∈ wohntIn =⇒ Steuerzahler s wohnt in Ort w
(3.6)

besitztEin ⊆ Kind×Beschäftigungsverhältnis :

(kj, b) ∈ besitztEin =⇒ Kind kj besitzt das Beschäftigungsverhältnis b

(3.7)

Rules

kj.alter := bNOW − kj.geburtsDatumc (3.8)

kj.istBerechtigtesKind := (kj.kindDesEheGatten

∨ kj.enkelKind ∨ kj.ersterGradV erwandt

∨ kj.pflegeKind) ∧ kj.kind§32

(3.9)

44

3 Analysis & concepts

kj.kind§32 := kj.§32(4.1) ∨ kj.§32(4.2) ∨ kj.istBehindert ∨ kj.alter < 18

(3.10)

kj.§32(4.1) := kj.alter > 18 ∧ kj.alter < 21∧

¬b.inBeschäftigungsverhältnis ∧ ¬b.istArbeitssuchend
(3.11)

kj.§32(4.2) := kj.alter > 18 ∧ kj.alter < 25

∧ (b.inBerufsausbildung ∨ b.inÜbergangszeit

∨ b.kannAusbildungNichtFortsetzen ∨ b.inFSJ)

(3.12)

Ks := {kj ∈ Kind|(s, kj) ∈ beanspruchtKindergeld

∧ kj.istBerechtigtesKind} für s ∈ Steuerzahler
(3.13)

s.istBerechtigt := w.wohnsitzImInland für (s, w) ∈ wohntIn,

s ∈ Steuerzahler, w ∈ Wohnort
(3.14)

s.summeKindergeld :=


∑

kj∈Ks kj.betragF ürKind falls s.istBerechtigt

0 falls ¬s.istBerechtigt

(3.15)

kj.betragF ürKind :=


190 falls j = 1 oder j = 2

196 falls j = 3 oder j = 4

221 falls j > 4

(3.16)

45

3 Analysis & concepts

3.4.2 Reporting obligation from BDSG

The second case study is the reporting obligation according to �4 of the Bun-

desdatenschutzgesetz (BDSG). This act controls whether the processing of

personal data must be reported to authorities or not [13]. Besides the textual

representation, the activity diagrams in Figure 3.12 and Figure 3.13 depict

the necessary actions and decisions. This regulation was chosen, because it

exemplary contains a lot of logic-based decisions which must be evaluated cor-

rectly.

3.4.2.1 Relevant norms

The main norm for the regulation is the �4 in the BDSG, which is presented

in Listing 3.6.

Listing 3.6: Excerpt from �4d from the BDSG

(1) Verfahren automatisierter Verarbeitungen sind vor [...] zu

melden.

(2) Die Meldepflicht entfällt, wenn die verantwortliche Stelle

einen Beauftragten für den Datenschutz bestellt hat.

(3) Die Meldepflicht entfällt ferner, wenn die verantwortliche

Stelle personenbezogene Daten für eigene Zwecke erhebt,

verarbeitet oder nutzt, hierbei in der Regel höchstens neun

Personen ständig mit der Erhebung, Verarbeitung oder Nutzung

personenbezogener Daten beschäftigt und entweder eine

Einwilligung des Betroffenen vorliegt oder die Erhebung,[...]

erforderlich ist.

(4) Die Absätze 2 und 3 gelten nicht, wenn es sich um

automatisierte Verarbeitungen handelt, in denen geschäftsmäßig

personenbezogene Daten von der jeweiligen Stelle

1. zum Zweck der Übermittlung,

2. zum Zweck der anonymisierten Übermittlung oder

3. für Zwecke der Markt- oder Meinungsforschung gespeichert

werden.

(5) Soweit automatisierte Verarbeitungen besondere Risiken [...]

aufweisen, unterliegen sie der Prüfung vor Beginn der

Verarbeitung (Vorabkontrolle). Eine Vorabkontrolle ist

insbesondere durchzuführen, wenn

1. besondere Arten personenbezogener Daten (§ 3 Abs. 9)

verarbeitet werden oder

46

3 Analysis & concepts

2. die Verarbeitung personenbezogener Daten dazu bestimmt ist,

die Persönlichkeit des Betroffenen zu bewerten [...],

es sei denn, dass eine gesetzliche Verpflichtung oder eine

Einwilligung des Betroffenen vorliegt oder die Erhebung

[...] erforderlich ist.

(6) Zuständig für die Vorabkontrolle ist der Beauftragte für den

Datenschutz. Dieser nimmt die Vorabkontrolle nach Empfang der

Übersicht nach §4g Abs. 2 Satz 1 vor. Er hat sich in

Zweifelsfällen an die Aufsichtsbehörde [...] zu wenden.

3.4.2.2 Decision-making structures as activity diagrams

Figure 3.12 shows the activity diagram whether the processing of data must

be reported or not (Meldep�icht). The green boxes indicate that there is

no reporting obligation, whereas the red boxes point out that a reporting

must be done. The yellow box depicts that there is an reporting obligation,

but only until a privacy o�cer has been installed. The regulation about the

Vorabkontrolle (prior checking) is shown in Figure 3.13.

47

3 Analysis & concepts

Figure 3.12: Activity diagram for Meldep�icht BDSG �4

Meldepflichtkeine
Meldepflicht

Verarbeitung
erforderlich

keine
Meldepflicht

Einwilligung
des Betroffenen

Meldepflicht, bis zur
verpflichteten Bestellung

eines DSB, dann keine MP

Anzahl der
vearb. Personen

keine
Meldepflicht

MeldepflichtMeldepflichtDSB bestellt Meldepflicht

Zweckkeine
Meldepflicht

Art der DV

[nein][ja]

[liegt nicht vor] [liegt vor]

 [<10][>10]

[nein][ja]

[Markt- oder Meinungsforschung]

[anonyme
Übermittlung][Übermittlung]

[eigener Zweck]

[automatisiert][sonstige]

Source: Own illustration

48

3 Analysis & concepts

Figure 3.13: Activity diagram for Vorabkontrolle BDSG �4

keine
Vorabkontrolle

Automatisierte
DV

keine
VorabkontrolleVorabkontrolle

VorabkontrolleBewertung
d. Betroffenen

Verarbeitung
besonderer

Daten

keine
Vorabkontrolle

keine
Vorabkontrolle

Verarbeitung
erforderlich

Einwilligung
d. Betroffenen

keine
Vorabkontrolle

Gesetzliche
Verpflichtung

[nein][ja]

[nein][ja]

[ja][nein]

[nein][ja]

[ja][nein]

[nein][ja]

Source: Own illustration

49

3 Analysis & concepts

3.4.2.3 Semantic model

Figure 3.14 shows the semantic model for the reporting obligation from the

processing authority's point of view. The types in this model are Betro�ener

(a�ected party), Zweck (purpose), Vearbeitende Stelle (processing authority)

and Datenschutzbeauftrager (privacy o�cer).

The a�ected party transmits its data to an authority which then processes

this data. One authority can receive data from multiple parties. For reasons

of simplicity it is assumed that the authority processes all of the data only for

one purpose (the purpose is the same for each a�ected party). Furthermore,

the authority can have at most one privacy o�cer.

For this semantic model the formalization was done in a slightly di�erent way

as for the child bene�t in Section 3.4.1. Whereas for the �rst one mainly basic

logical equations along with arithmetical expressions for direct usage in the

semantic model were de�ned, this time the rules are composed as implications.

These implications should de�ne the conditions, which must be met, such

that a reporting obligation results. Hence, for this model only the semantic

meaningful derived attributes are de�ned without any interim results. These

implications must later then be transformed into a set of logical expressions,

that are reasonable by MxL and SocioCortex.

50

3 Analysis & concepts

Figure 3.14: Target model for reporting obligation

Betroffener

- name: String
- sindPersonenBezogeneDaten: Boolean
- einwilligungVorhanden: Boolean

Datenschutzbeauftragter

- name: String
- wurdeBestellt: Boolean

Vearbeitende Stellen

- name: String
- anzahlPersonen: Number
- vorabkontrolle: Boolean
- automatischeDV: Boolean
- sonstigeDV: Boolean
- vearbeitungErforderlich§28: Boolean
- gesetzlicheVerpflichtung: Boolean

sonstigeDV: Boolean
meldepflicht: Boolean
vorabkontrolle: Boolean

Zweck

- name: String
- eigeneZwecke: Boolean
- übermittlung: Boolean
- anonymeÜbermittlung: Boolean
- marktforschung: Boolean

vearbeitet Daten für Zweck

1

1

gibt Daten an

1..n

1

setzt ein
1 0..1

Source: Own illustration

3.4.2.4 Mathematical de�nition

Type de�nitions

b ∈ Betroffener (3.17)

v ∈ V erarbeitendeStelle (3.18)

d ∈ Datenschutzbeauftragter (3.19)

z ∈ Zweck (3.20)

Relations

gibtDatenAn ⊆ Betroffener × V erarbeitendeStelle :

(b, v) ∈ gibtDatenAn =⇒ b gibt Daten an Stelle v
(3.21)

51

3 Analysis & concepts

setztEin ⊆ V erarbeitendeStelle×Datenschutzbeauftragter :

(v, d) ∈ setztEin =⇒ v setzt Datenschutzbeauftragten d ein
(3.22)

verarbeitet ⊆ V erarbeitendeStelle× Zweck : (v, z) ∈ verarbeitet

=⇒ V erarbeitende Stelle v verarbeitet Daten für Zweck z
(3.23)

Rules

v.sonstigeDV =⇒ ¬v.meldepflicht (3.24)

v.automatischeDV ∧

(z.übermittlung ∨ z.anonymeÜbermittlung ∨ z.marktforschung)

=⇒ v.meldepflicht

(3.25)

v.automatischeDV ∧ z.eigenerZweck ∧ d.wurdeBestellt

=⇒ ¬v.meldepflicht
(3.26)

v.automatischeDV ∧ z.eigenerZweck∧

¬d.wurdeBestellt ∧ v.anzahlPersonen >= 10

=⇒ v.meldepflicht ∧ d.mussBestelltWerden

(3.27)

v.automatischeDV ∧ z.eigenerZweck∧

¬d.wurdeBestellt ∧ v.anzahlPersonen < 10∧

b.einwilligungV orhanden =⇒ ¬v.meldepflicht

(3.28)

52

3 Analysis & concepts

v.automatischeDV ∧ z.eigenerZweck∧

¬d.wurdeBestellt ∧ v.anzahlPersonen < 10∧

v.vearbeitungErforderling =⇒ ¬v.meldepflicht

(3.29)

v.automatischeDV ∧ b.besondereArtPersonenbezogenerDaten∧

¬v.gesetzlicheV erpflichtung ∧ ¬v.vearbeitungErforderlich∧

¬b.einwilligungV orhanden =⇒ v.vorabkontrolle

(3.30)

v.automatischeDV ∧ b.bewertungDesBetroffenen∧

¬v.gesetzlicheV erpflichtung ∧ ¬v.vearbeitungErforderlich∧

¬b.einwilligungV orhanden =⇒ v.vorabkontrolle

(3.31)

3.5 Stakeholders

This section gives a short introduction about the di�erent stakeholders using

the modeling system in order to help the reader to understand the concerns of

them which are addressed in the requirements analysis (see Section 3.6).

Legal data scientists are users who are responsible for creating and main-

taining semantic models. They have a broad knowledge about legal issues and

concepts and can formalize their knowledge into semantic models. Their knowl-

edge has been gained through several years of law studies and later through

jobs as lawyers and attorneys. Reading, understanding and applying the se-

mantics from normative texts is their daily work. They expect a collaborative

tool that supports them during the modeling process.

Users in general do not have the broad knowledge of legal data scientists. In

many cases they had an advanced training in law and they are also familiar

with basic legal issues. Users are not interested in the legal concepts described

in normative texts, but rather in a fast and reliable application of these. A

53

3 Analysis & concepts

legal reasoning tool with easy usability as well as an explanation component

for decisions are their main expectations.

The concerns of these two di�erent user groups are also roughly sketched in

the use case diagram in Figure 3.15. The following Section 3.6 speci�es the

requirements for the modeling system in detail.

Figure 3.15: Use case diagram depicting di�erent stakeholders

Enter data

Evaluate modelsRefine models

Lexia Modeling System

Create models

Users
Legal data scientists

«include»

Source: Own illustration

3.6 Requirement analysis

The following requirements were collected during an oral talk [40] with Bern-

hardWaltl, advisor of this master's thesis, and Corinna Coupette, Research As-

sociate at the Max Planck Institute for Tax Law and Public Finance. Further-

more, the literature research in Section 2.1.2 had resulted in several thoughts

which were considered in the requirements analysis.

The requirements analysis is separated in two parts: One consists of require-

ments to the modeling environment for creating and maintaining semantic

models (see Section 3.6.1) and the other part of requirements concerning the

evaluation of these models (see Section 3.6.2). At the end, a summary table

lists the requirements in a tabular form (see Section 3.6.3). The requirements

for the modeling environment are pre�xed with MV-FR, followed by an in-

creasing number. The same applies for the requirements of the evaluation

environment, but EV-FR is used as pre�x.

54

3 Analysis & concepts

As a general constraint, the modeling and evaluation environment must be

integrated in Lexia (see Section 3.1.1) which means they should reuse the

given components of Lexia (when necessary) and also comply with the current

design and layout principles.

3.6.1 Requirements for modeling environment

The following section describes the functional requirements for the modeling

environment which is used for creating and maintaining semantic models.

MV-FR 1: Create semantic model management view This management

view must operate as entry point of the modeling system. In this view, it

must be possible to create semantic models as well as to delete no longer

required semantic models. Access to the actual modeling and the evaluation

environment must be provided, too.

MV-FR 2: Create view for model workbench The model workbench pro-

vides all necessary actions to create a semantic model (see Section 3.3.3). It

is the main view, from which a model creator has access to all necessary func-

tions. All following requirements are synthesizing on this view.

MV-FR 3: Support addition and removal of documents In the model

workbench, di�erent documents must be addable as well as removable. These

documents serve as origin for semantic model elements and they are also needed

for providing a linkage between model elements and text.

MV-FR 4: Model workbench must include text view as well as the

semantic model During the modeling process the creator must have access

to the source text and to the actual semantic model. Ideally there should be

no switch of the view between accessing the text and the model. It is favored

to use a split screen layout which shows the text and the semantic model

simultaneously.

55

3 Analysis & concepts

MV-FR 5: Graphical model editor must support pan and zoom For a

convenient modeling process, the drawing area for the semantic model must

support pan and zoom. This should promote the user even to create very large

semantic models, which are beyond the borders of the drawing area.

MV-FR 6: Provide uni�ed shapes for semantic model elements The

shapes of the model elements (types) must always look the same in order to

achieve a uni�ed look and feel across di�erent semantic models. This should

help untrained users to orient themselves even if they are working with unfa-

miliar semantic models.

MV-FR 7: A semantic model can have any number of types A semantic

model can have any number of di�erent type elements. Each type must have

an unique name. A semantic model without any types is also valid and can be

saved. Ideally a warning message appears before saving, if the model has no

types. Previously created types can also be deleted.

MV-FR 8: Types can be linked with imported source text in a many-

to-many relationship Any type of a semantic model can be linked with

multiple sources from the text, if the source text has been added to the model

(see requirement MV-FR 3). As described in Section 2.1.2, this concept is

necessary due to reasons of validation and traceability. Previously created

links between model elements and text must also be revocable.

MV-FR 9: Link must either refer to whole document, to a section of

a document or to an annotation Each link between model element and

text must either refer to a complete document, to a section within a document

(e.g. in case of a law a link to an article) or to a custom annotation. The

annotations must be created previously.

MV-FR 10: User must be able to highlight text linked with model ele-

ments The user must have the possibility to expose the link of an existing

model element. The text, which is linked with the model element, must then

56

3 Analysis & concepts

be highlighted in the document. This should help to create the same compre-

hension of the legal concepts for multiple users working on the same semantic

model.

MV-FR 11: A type can have any number of attributes A type can

have any number of attributes, including zero attributes. Each attribute is

de�ned by a type-wide unique name and a valid data type. Valid data types

are String, Boolean, Date, Number, Longtext and MxL-Expression. In case

of a MxL-Expression, a code editor must be displayed, which must support

syntax highlighting of these expressions. For the latter feature, the SocioCortex

research group provides a component on their GitHub account which should

be used12. Each attribute can have any number of links to the text, such as

described for types in MV-FR 8. The constraints for the link target depicted

in MV-FR 9 apply for attributes, too. Attributes can also be deleted.

MV-FR 12: Exactly two di�erent types can be in relation with each

other Two model types can be in a bidirectional relation with each other.

Each relation must have a source type and a target type and it is also de�ned

by a semantic model-wide unique name. Source and target types must have

a valid cardinality. Valid cardinalities are any, at least one, at most one and

exactly one. Relations can also be linked to the text. For this linkage, the

requirements inMV-FR 8 andMV-FR 9 apply. A relation can also be revoked,

if it is not needed anymore.

MV-FR 13: Summary view for quick outline It should be possible to gain

a quick outline over all de�ned attributes and relations of type, including their

linked textual sources. Therefore, a summary view must exist which shows all

the necessary information to the user.

MV-FR 14: Semantic model must be savable in Lexia and SocioCortex

It must be possible to save the semantic model at any time. The saving must

persist the model in Lexia as well as in SocioCortex. While saving, the user

12This component is called mxl-angular (see https://github.com/sebischair/
mxl-angular).

57

https://github.com/sebischair/mxl-angular
https://github.com/sebischair/mxl-angular

3 Analysis & concepts

interface should be blocked. After saving is done, the user should be provided

with a status noti�cation.

MV-FR 15: Position of types must be changeable The position of types

in a semantic model is not �xed. It must be possible to rearrange the model

and therefore the position of individual types. This setting should be persisted

during saving.

3.6.2 Requirements for evaluation environment

This section depicts the functional requirements for the model evaluation com-

ponent. This component is used to enter data for a previously created semantic

model and perform simple legal reasoning.

EV-FR 1: Three column layout showing semantic model, form and

linked text The evaluation view must be structured in a three column layout.

The �rst most left column displays the semantic model, the middle one a

form to enter data and the right one contains references to the linked text.

The model should be non interactive, meaning that it is �xed and cannot be

altered. The types in the model element can be selected which results in a

visual highlighting of them.

EV-FR 2: Form must be rendered based on type selection in semantic

model The form for entering the input data must be rendered based on the

current selection of the type element (see requirement EV-FR 1). For each

attribute (except for attributes of data type MxL-Expression) of a type, a

individual input �eld must appear, labeled with the name of the attribute.

Restricting the form just on one speci�c type helps the user to keep focus on

current scope and avoid confusion by large input forms. An icon at the type in

the semantic model should indicate, if a user has entered data for this type.

EV-FR 3: Provide mechanism for entering multiple data sets for a type

For entering multiple instances of a type (e.g. for the calculation of child

bene�t if one has more than one child), the form should provide a mechanism

for that behavior. Individual data sets must be removable and previous entered

58

3 Analysis & concepts

data should also be editable afterwards. A switching mechanism between the

single instances must be provided, too.

EV-FR 4: The form input �elds must have an input restriction re-

garding on attribute's data type As described in MV-FR 11 of the model

environment (previous requirements section), di�erent attribute data types are

supported. These data types should also be re�ected at the input forms. For

example, if the user has de�ned an boolean attribute the input form should

only allow to enter truth values or the input �eld for a number attribute should

only allow numerical inputs.

EV-FR 5: Allow references between instances of di�erent types A se-

mantic model can have relations between di�erent types. This must also be

re�ected on instance level. It must be possible to create links between di�erent

instances, but only if their corresponding types have this relation, too. The

previously de�ned cardinality has to be satis�ed as well. References must also

be editable and revocable.

EV-FR 6: MxL expressions must be evaluated after each action on the

instance data The main feature of the evaluation component is legal rea-

soning. The rules for inference are the MxL expressions, which are de�ned

in attributes. For each attribute with the data type MxL expression, a dis-

abled input �eld is rendered which shows the result of an evaluated expression.

The evaluation should occur immediately, if changes regarding type instances

(create, update, delete) are performed.

EV-FR 7: Linked text for types must be visible After the selection of a

type, the linked text sections must be shown in the right column of the three

column view. These text sections should have a hyperlink set to the containing

documents.

EV-FR 8: Linked text for attributes must be visible Even for attributes it

must be possible to see the corresponding text section, linked with one speci�c

attribute. The text sections should only be shown, if the user requests this

explicitly.

59

3 Analysis & concepts

EV-FR 9: Semantic model view must support pan and zoom As de-

scribed for the modeling environment, the semantic model view in the eval-

uation environment should support pan and zoom to handle large semantic

models, too.

EV-FR 10: Semantic model instances must be savable The data entered

in the forms must be saved in SocioCortex, because of the reasoning feature of

MxL expressions. Previously entered data must be alterable and deletable.

EV-FR 11: All instance data must be wiped from a semantic model on

request It should be possible to clear all model data at once, if a new case

should be evaluated and all the old data sets need to be removed.

EV-FR 12: Provide syntax tree for MxL expression In order to under-

stand how a speci�c decision was made, a syntax tree should visualize the

evaluation order of a MxL expression. The analysis of MxL expressions is a

built-in feature of SocioCortex and the result of it must only be visualized. An

example of such an syntax tree is shown in Figure 3.16.

Figure 3.16: Example of a syntax tree

Source: Own illustration

60

3 Analysis & concepts

EV-FR 13: Create object diagram view for showing relations between

instances An object diagram should help to visualize the relations between

di�erent instances. An example of an object diagram with its corresponding

data model is shown in Figure 3.17.

Figure 3.17: Example of an object diagram with corresponding data model

Child

-name: String
-geburtsDatum: Date

Taxpayer

-name: String has
1 0..n

(a) An arbitrary data model

Simon: Child

name: String="Simon"
geburtsDatum: Date="04.08.1997"

Sarah: Child

name: String="Sarah"
geburtsDatum: Date="19.03.1995"

Hans: Taxpayer

name: String="Hans"

(b) Object diagram for data model in (a)

Source: Own illustration

3.6.3 Summary

Table 3.1 summarizes all functional requirements for the modeling view as well

as for the evaluation view.

61

3 Analysis & concepts

Table 3.1: Summary of all requirements

Number Requirement

MV-FR 1 Create semantic model management view

MV-FR 2 Create view for model workbench

MV-FR 3 Support addition and removal of documents

MV-FR 4 Model workbench must include text view as well as the seman-
tic model

MV-FR 5 Graphical model editor must support pan and zoom

MV-FR 6 Provide uni�ed shapes for semantic model elements

MV-FR 7 A semantic model can have any number of types

MV-FR 8 Types can be linked with imported source text in a many-to-
many relationship

MV-FR 9 Link must either refer to whole document, to a section of a
document or to an annotation

MV-FR 10 User must be able to highlight text linked with model elements

MV-FR 11 A type can have any number of attributes

MV-FR 12 Exactly two di�erent types can be in relation with each other

MV-FR 13 Summary view for quick outline

MV-FR 14 Semantic model must be savable in Lexia and SocioCortex

MV-FR 15 Position of types must be changeable

EV-FR 1 Three column layout showing semantic model, form and linked
text

EV-FR 2 Form must be rendered based on type selection in semantic
model

EV-FR 3 Provide mechanism for entering multiple data sets for a type

EV-FR 4 The form input �elds must have an input restriction regarding
on attribute's data type

EV-FR 5 Allow references between instances of di�erent types

EV-FR 6 MxL expressions must be evaluated after each action on the
instance data

EV-FR 7 Linked text for types must be visible

EV-FR 8 Linked text for attributes must be visible

EV-FR 9 Semantic Model View must support pan and zoom

EV-FR 10 Semantic model instances must be savable

EV-FR 11 All instance data must be wiped from a semantic model on
request

EV-FR 12 Provide syntax tree for MxL expression

EV-FR 13 Create object diagram view for showing relations between in-
stances

62

4 Implementation

This section puts focus on the actual implementation that has been made for

the modeling and the evaluation environment. At �rst, the target system (4.1)

is described, followed by an elucidation of the implemented components (4.2),

separated in back end (4.2.1) and front end (4.2.2).

4.1 Target system

4.1.1 Architecture

Figure 4.1 depicts the target architecture of the system. The new components,

which were implemented, are highlighted in grey (cf. with Figure 3.1 in Section

3.1.1). The additional layer SocioCortex, which provides theModel Storage and

the MxL reasoning engine, was connected to Lexia.

The main contribution to Lexia is the Modeling Component, which consists

of two other sub components, namely the SocioCortex REST Client and the

Semantic Model Data Extraction component. In addition to that, the user

interface was adjusted, too (Modeling User Interface).

The Semantic Model Data Extraction component is responsible for the ex-

traction of information from the visual representation of a semantic model

for further data processing. Its functionality is described in detail in Section

4.2.1.3.

In order to access SocioCortex for persisting the semantic information of the

models, a new SocioCortex REST Client (see Section 4.2.1.4) was created.

This new client simpli�es the handling, compared to the existing one in Lexia,

since the new REST-client operates with Java entity classes that are serialized

to JSON. Before that the JSON objects had to be built manually.

63

4 Implementation

The Modeling User Interface is purely implemented in HTML, CSS and Java-

Script with Angular.js, a framework for creating dynamic single-page appli-

cations. JointJS 13, a diagramming library, is used as toolkit for drawing the

visual representation of the semantic models. Furthermore, vis.js14, a library

for generating dynamic browser based visualizations, renders the object dia-

gram and the syntax tree for MxL expressions.

Figure 4.1: Target architecture of Lexia

Socio Cortex

Modeling

Processing
Pipeline

Modeling Component

Pattern
Definitions

Exporter

Search
Engine

Database

POSTagger

Complex Pattern
Recognizer

Lemmatizer NERecognizer

Tokenizer

User Interface

Exploration

Data and Text Mining Engine

Navigation

Importer

Data Store

Dictionaries

Data Access Layer

Visualization

Information Extraction Component

Model-based expression
language (MxL) reasoning engine

Model Storage

SocioCortex
REST Client

Semantic Model
Data Extraction

Source: Own illustration

4.1.2 Mapping between semantic model elements and

SocioCortex entities

One important aspect of the overall work was the transposition of the seman-

tic model from Lexia to SocioCortex, which is the system that evaluates MxL

expressions. Hence, a mapping must be created which maps the components

of the graphical model representation (types, attributes, relations) to entities

of SocioCortex. Table 4.1 shows an approach of how this mapping was imple-

mented.
13http://www.jointjs.com/
14http://visjs.org/

64

http://www.jointjs.com/
http://visjs.org/

4 Implementation

Table 4.1: Mapping between semantic model elements and SocioCortex entities

Semantic model element SocioCortex entity

Model Workspace

Type EntityType

Attribute (static) 15 AttributeDe�nition

Attribute (dynamic)16 DerivedAttributeDe�nition

Relation AttributeDe�nition

This kind of mapping was chosen, because it naturally mirrors the tree struc-

ture of the semantic model onto the tree structure of SocioCortex entities.

Figure 4.2 compares the hierarchy of the semantic model elements (without

relations) in Lexia with their mapped entities from SocioCortex. Depending

on their data type (see Table 4.1), Attributes are either mapped to Attribut-

eDe�nitions or to DerivedAttributeDe�nitions. Relations are interpreted as

Attributes and also mapped to AttributeDe�nitions in SocioCortex.

Figure 4.2: Tree hierarchy of semantic model elements and SocioCortex entities

SocioCortexLexia

AttributeDefinition /
DerivedAttributeDefinition

EntityType

Workspace

Attribute
(Relation)

Model

Type

has

0..n

1

has

0..n

1

mapped to

mapped to

mapped to

has

0..n

1

has

0..n

1

Source: Own illustration

16Static attributes are all attributes with the data type String, Number, Date or Longtext
according to requirements in Section 3.6.1.

16Dynamic attributes are attributes with data type MxL according to requirements in Sec-
tion 3.6.1.

65

4 Implementation

4.2 Implemented components

The following section describes the changes that were implemented in the

practical part of this master's thesis. It is separated in a back end section (see

Section 4.2.1) and a front end section (see Section 4.2.2).

4.2.1 Back end

4.2.1.1 Enhancement of data model

The extension of the data model in Lexia for storing the semantic model was

easily achievable. Due to the well structured architecture of Lexia extending

the base entity class Entity, implementing serializer and deserializer for storing

the attributes of the class in a map and invoking a save function in the super

class was su�cient. Listing 4.1 shows the extension of the Entity class by

Model. Concerning the key-value store of the ElasticSearch database, collection

attributes (like List orMap) were limited to a minimum. Otherwise all foreign-

key-constrains between the Model entity and its collection attributes have to

be created and maintained manually. This decision was made after an earlier

attempt to normalize the data model and representing types, attributes and

relations as own entities turned out to be too complex.

The only collection data type that was used is relevantDocumentIds, a list of

references to documents, which have been added to a semantic model. This

list is converted during serialization into a string, separating the individual

IDs with a semicolon.

Another attribute, which has to be saved, is the ID of the corresponding Socio-

Cortex workspace (scWorkspaceId). This reference is needed for loading the

workspace from SocioCortex inclusive all containing sub entities and retrieving

the result of evaluated MxL expressions. The title attribute represents the title

of a model. With two di�erent timestamps (createdAt and updatedAt) creation

and modi�cation time of a model is monitored. At last, the complete serialized

semantic model in JSON format is stored in the database. As described earlier,

normalizing the data model was too much of an e�ort and would not lead to

any bene�ts. Moreover, the ElasticSearch database is especially designed for

66

4 Implementation

large unstructured data such as the serialized graph structure in JSON and

would therefore not su�er from any performance issues.

Listing 4.1: Excerpt of the Model entity

1 public class Model extends Entity {

2 private String scWorkspaceId;

3 private String id ;

4 private String title ;

5 private Date createdAt;

6 private Date updatedAt;

7 private List<String> relevantDocumentIds;

8 private String jsonModelDe�nition;

9

10 @Override

11 protected boolean saveEntityElasticsearch() {

12 Map<String, Object> attributes = new HashMap<>();

13

14 if (scWorkspaceId != null && !scWorkspaceId.isEmpty()) {

15 attributes .put("scWorkspaceId", scWorkspaceId);

16 }

17

18 if (! relevantDocumentIds.isEmpty()) {

19 attributes .put("relevantDocumentIds", String.join(";",

relevantDocumentIds));

20 }

21

22 ElasticsearchServer . insert (this .SC_TYPE(), attributes);

23 }

24 }

4.2.1.2 Format of semantic model

Listing 4.2 shows an overview of the serialized semantic model structure in

JSON. This serialization is the result of a built-in function in JointJS17. The

output is an object with a list of cells of di�erent types. A cell can either be

of type devs.Model, which is in the terminology of the semantic model a type,

or it can be a link, which again refers to a relation.

The most important attribute of cells of type devs.Model is payload, as it con-

tains all user de�ned attributes. In the payload object, there are not only the

17http://www.jointjs.com/api#joint.dia.Graph:toJSON

67

http://www.jointjs.com/api#joint.dia.Graph:toJSON

4 Implementation

title of a type and the corresponding identi�er of the SocioCortex EntityType

(scId), but also nested objects for links, attributes and instances.

Besides cells of type devs.Model (Line 3-13 and Line 14-24), objects of type link

(Line 25-42) have a di�erent structure. They contain references to the source

and the target element of its relation as well as attributes for the relation such

as multiplicity of source/target and a name for the relation itself.

68

4 Implementation

Listing 4.2: Root level of serialized graph as JSON object

1 {

2 " cells ": [

3 {

4 "type": "devs.Model",

5 "id": "0c28959a−b1�−4499−b465−84284743eea2",
6 "payload": {

7 "links": [] ,

8 "attributes": [] ,

9 " title ": "Betro�ener",

10 "instances": {},

11 "scId": "4pnr9jfxdw2j"

12 },

13 },

14 {

15 "type": "devs.Model",

16 "id": "cf7d1788−47b5−4059−bae4−fe4808f92883",
17 "payload": {

18 "links": [] ,

19 "attributes": [] ,

20 " title ": "Verarbeitende Stelle",

21 "instances": {},

22 "scId": "138ugwvz74kcp"

23 },

24 },

25 {

26 "type": "link",

27 "source": {

28 "id": "0c28959a−b1�−4499−b465−84284743eea2"
29 },

30 "target": {

31 "id": "cf7d1788−47b5−4059−bae4−fe4808f92883",
32 },

33 "id": "4e8d39cc−e9a8−41b0−a486−e3e4eaabbeda",
34 "payload": {

35 "links": [] ,

36 "multiplicitySource": "*",

37 "multiplicityTarget": "1",

38 "name": "gibt Daten an",

39 "sourceName": "Betro�ener",

40 "targetName": "Verarbeitende Stelle"

41 },

42 }

43]

44 }

69

4 Implementation

An example of a links object is shown in Listing 4.3. A link entry consists of a

linkType (section, annotation or document), a document object (selectedDocu-

ment) which is referred by the link and depended of the linkType's value either

an selectedArticle or selectedAnnotation object. These two objects also contain

a text preview of the linked section respectively the linked annotation.

Listing 4.3: Link object for a type

1 "payload": {

2 "links": [

3 {

4 "linkType": "section",

5 "selectedDocument": {

6 "id": "AVbG4L5Thn8z5wU99xrc",

7 " title ": "Bundesdatenschutzgesetz",

8 " titleShort ": "Bundesdatenschutzgesetz",

9 "documentTypeLowerCase": "law"

10 },

11 "documentType": "law",

12 " selectedArticle ": {

13 "id": "AVbG4MCjhn8z5wU99xrr",

14 "header": "Rechte des Betro�enen",

15 "content": "Die Rechte des Betro�enen auf Auskunft [...]"

16 }

17 },

18 {/* next link structure */}

19] ,

20 "attributes": [] ,

21 " title ": "Betro�ener",

22 "instances": {},

23 "scId": "4pnr9jfxdw2j"

24 },

The de�nition of attributes for types is shown in Listing 4.4. An attribute

is de�ned by its name and its datatype. In case of an MxL attribute, an

additional property (value) is used for the actual MxL expression. An attribute

can also be linked to text. Therefore, it embeds a link object (it has the same

structure as described for Listing 4.3). The collapsed attribute is only for

indicating, whether the attributes link view (see Section 4.2.2.2) is expanded

or collapsed.

70

4 Implementation

Listing 4.4: Attribute object for a type

1 "payload": {

2 "links": [] ,

3 "attributes": [

4 {

5 "name": "personenbezogeneDaten",

6 "datatype": "BOOLEAN",

7 "collapsed": true,

8 "links": []

9 },

10 {

11 "name": "keinePersonenbezogenenDaten",

12 "datatype": "MXL",

13 "value": "not this .personenbezogeneDaten",

14 "collapsed": true,

15 "links": []

16 }

17] ,

18 " title ": "Betro�ener",

19 "instances": {},

20 "scId": "4pnr9jfxdw2j"

21 },

Lastly, the instances, more precisely the actual data instances which were en-

tered by the user, are stored in the graph as well. The bene�t of this solution

is the negligible e�ort of joining the instance data with their attribute de�ni-

tions. Storing the information at one place makes it easier to hold the semantic

model and its instantiated data consistent. Furthermore, with the proposed

approach of the visitor pattern for information extraction (see Section 4.2.1.3),

a consistent pattern is used for extracting the semantic model description as

well as the populated data from the graph.

The instances object shown in Listing 4.5 has a data array that has an entry for

each individual data set. The actual attribute values for an instance are stored

in a �at hierarchy. This �at data structure was used, because of the automatic

transformation of JSON to Java classes in the back end. The ObjectMapper 18

from jackson-databind19 tries to map all JSON keys to corresponding attributes

18https://fasterxml.github.io/jackson-databind/javadoc/2.3.0/com/
fasterxml/jackson/databind/ObjectMapper.html

19jackson-databind is a library for Java, used for databinding between JSON and Java ob-
jects and vice versa. See https://github.com/FasterXML/jackson-databind

71

https://fasterxml.github.io/jackson-databind/javadoc/2.3.0/com/fasterxml/jackson/databind/ObjectMapper.html
https://fasterxml.github.io/jackson-databind/javadoc/2.3.0/com/fasterxml/jackson/databind/ObjectMapper.html
https://github.com/FasterXML/jackson-databind

4 Implementation

of a Java class. This works very well in case of the JSON keys are static,

e.g. the title attribute is always mapped to the title (of data type String)

in the Java class. However, the names of attributes in the semantic model

are dynamic and not �xed. In one case, a user might create an attribute

Herstellungsdatum and in another case the attribute AnzahlAngestellte which

has besides di�erent names also di�erent data types. For the transformation

of JSON to Java objects the mapper is con�gured in such a way that unknown

attributes, which are not available in the Java class, are automatically added

to a map (of data type <String, Object>). After this map has been created,

one could use an iterator to iterate over it and extract the attribute names

and values. Therefore, the names of the attributes are encoded in the JSON

keys. The pre�x SC_ID_ is indicating that the corresponding value is the

identi�er of an AttributeValue in SocioCortex. SC_NAME and SC_ID are

the names and the identi�ers of the Entity in SocioCortex. The REF_ pre�x

indicates the value of a relation which contains the identi�er and the name of

the corresponding counterpart of the relation.

72

4 Implementation

Listing 4.5: Instance object for a type

1 "payload": {

2 "links": [] ,

3 "attributes": [] ,

4 " title ": "Betro�ener",

5 "instances": {

6 "total": 1,

7 "current": 1,

8 "data": [

9 {

10 "SC_ID": "l89vvkfu2z9l",

11 "SC_NAME": "Dominik",

12 "SC_ID_personenbezogeneDaten": "jhdfn5au90cx",

13 "personenbezogeneDaten": "true",

14 "SC_ID_einwilligungVorhanden": "ptnzjuwywsuh",

15 "einwilligungVorhanden": "true",

16 "SC_ID_gibt Daten an": "vdepcba9obkq",

17 "REF_gibt Daten an": [

18 {

19 "id": "gog5pz8dzbh4",

20 "name": "TUM"

21 }

22]

23 }

24]

25 },

26 "scId": "4pnr9jfxdw2j"

27 },

Drawback of the overall solution is a poor scalability. Storing the instance data

in the semantic model makes it impossible for other users concurrently editing

and evaluating this model. If a user changes the structure of a semantic model

whilst another user is inserting data, it would not work without any kind of

locking mechanism. The implementation should be seen as proof of concept,

which can later be enhanced to achieve real concurrent manipulation in a

productive environment.

Due to the issue regarding the adaption of the semantic model whilst it contains

old instance data (from previous evaluations), the data is completely wiped

every time the semantic model is adjusted. This ensures that there are not any

remnants of previous evaluations which can con�ict with the changed structure

73

4 Implementation

and helps to keep model and instance data consistent. Obviously, the wiping

is also performed for the semantic model representation in SocioCortex.

4.2.1.3 Model synchronization between Lexia and SocioCortex

The synchronization between Lexia and SocioCortex is done in a one-way man-

ner, where Lexia is the master system replicating the changes to SocioCortex.

For this operation, the visitor design pattern is used. Gamma et al. classify

the visitor pattern as behavioral pattern and de�ne it as follows: �Represent

an operation to be performed on the elements of an object structure. Visitor

lets you de�ne a new operation without changing the classes of the elements

on which it operates� [16].

The visual representation of the semantic model is converted from JSON to a

Java object in the back end. The structure of this JSON is explained in Section

4.2.1.2. The Java class JointJsGraph is the root node containing several other

attributes (which are neglected here for the sake of simplicity) including cells.

A cell has all technical attributes for displaying the visual element on the

screen (position, size and other attributes) as well as semantic meaningful

information (name of element, list of attributes, etc.).

Listing 4.6 shows a shortened version of the container class JointJsGraph that

can have a list of cells. The cell class is shown in Listing 4.7. The structure of

this class matches exactly the structure of the JSON document shown in Listing

4.2. Both classes also have an accept function that is related to the visitor

pattern and a result of the implementation of the IModelElement interface.

74

4 Implementation

Listing 4.6: Excerpt from class JointJsGraph

1 public class JointJSGraph implements IModelElement {

2 @JsonProperty("cells")

3 private List<Cell> cells = new ArrayList<Cell>();

4

5 @Override

6 public void accept(IJointJSGraphVisitor visitor) {

7 visitor . visit (this) ;

8 for(IModelElement elem : cells) {

9 elem.accept(visitor) ;

10 }

11 }

12 }

Listing 4.7: Excerpt from class Cell

1 public class Cell implements IModelElement {

2

3 @JsonProperty("type")

4 private String type;

5 @JsonProperty("size")

6 private Size size ;

7 @JsonProperty("position")

8 private Position position ;

9 @JsonProperty("payload")

10 private Payload payload;

11

12 @Override

13 public void accept(IJointJSGraphVisitor visitor) {

14 visitor . visit (this) ;

15 for(IModelElement elem : payload.getAttributes()) {

16 elem.accept(visitor) ;

17 }

18 }

19 }

With a visitor, related operations can be condensed in a class which is then

passed to the object structure. When the object structure is traversed and

an object has accepted the visitor, then the visit method is called passing the

calling object as an argument. The visitor will then execute the operation

speci�ed for this class onto the passed object.

75

4 Implementation

The IJointJSGraphVisitor interface, shown in Listing 4.8, has de�ned three

visit methods which expect either the complete graph (JointJSGraph), a Cell

or an Attribute. The corresponding interface IModelElement exports an accept

function which is implemented in all the above mentioned classes. Figure 4.3

depicts which classes implement the IModelElement interface.

Figure 4.3: Classes implementing IModelElement interface

Attr ibuteCellJointJSGraph

«Interface»
IModelElement

Source: Own illustration

Listing 4.8: Interface for JointJsGraphVisitors

1 public interface IJointJSGraphVisitor {

2 void visit (JointJSGraph graph);

3 void visit (Cell cell) ;

4 void visit (Attribute attribute) ;

5 }

Listing 4.9: IModelElement interface implemented by all model elements

1 public interface IModelElement {

2 void accept (IJointJSGraphVisitor visitor) ;

3 }

Figure 4.4 shows the concrete classes that are implementing the IJointJS-

GraphVisitor interface. The tasks, which each visitor performs, are elucidated

in the following enumeration:

SocioCortexMetaModelVisitor is responsible for creating meta model ele-

ments such as types, attributes and relations in SocioCortex. Therefore, the

semantic model object structure is parsed and for each occurrence of a JointJs-

Graph object, a new workspace is created. A JointJsGraph only occurs once,

76

4 Implementation

because it is the root node. The same mechanism is used for creating En-

tityTypes and AttributeDe�nitions in SocioCortex. Relations between model

elements, which are transposed into AttributeDe�nitions, are also created with

this visitor.

SocioCortexDerivedAttributesVisitor is used for creatingDerivedAttributes

in SocioCortex. This visitor is invoked after the SocioCortexMetaModelVisitor,

because the other AttributeDe�nitions to which is referred to in a DerivedAt-

tribute must exist beforehand.

SocioCortexPartialUpdateVisitor extracts instance data from the graph

and creates for each instance a corresponding entity in SocioCortex. It is

also able to update existing entities by its SocioCortex identi�er.

SocioCortexEntityDetailVisitor is used to query information about a workspace

from SocioCortex including the evaluated DerivedAttributes and merges these

information with the semantic model. This merging is done, since the complete

instance data is also stored in the graph. In contrast to all other implemented

visitors, this one works the other way around, meaning it reads information

from SocioCortex and stores them in the graph structure.

SocioCortexDeleteInstancesVisitor deletes all instances from SocioCortex

as well as from the graph. This is used for a complete wipe of all data. For

deleting only single data instances, a speci�c REST route was created (see

Section 4.2.1.4).

4.2.1.4 Enhancement of REST service

In order to enable the communication between the front end and the back end

logic of Lexia, the REST service used for that had to be enhanced. Table 4.2

shows an overview of all routes that were added. In general, there are routes

for creating, updating and deleting a semantic model as well as adding and

removing data from it. Furthermore, a route for retrieving an evaluated version

of a semantic model, in which all derived attributes have been evaluated, was

77

4 Implementation

Figure 4.4: Class hierarchy of visitor implementation

SocioCortex
PartialUpdateVisitor

SocioCortex
MetaModelVisitor

SocioCortex
EntityDetailVisitor

SocioCortex
DeleteInstancesVisitor

SocioCortex
DerivedAttributesVisitor

IJointJSGraphVisitor

Source: Own illustration

implemented as well. For the syntax tree of MxL expressions a separate route

is used which expects as parameter an MxL expression in its HTTP body.

78

4
Im

plem
entation

Table 4.2: REST routes for model environment in Lexia

Method Route Comment

GET /api/model return all models

GET /api/model/:id return a model by model id

POST /api/model create new model

DELETE /api/model/:id delete model by model id

PUT /api/model/:id update model by model id

PUT /api/model/:id/instance update model instance by model id

POST /api/model/:id/relevantDocuments add a document to model by model id

DELETE /api/model/:id/relevantDocuments/:docId delete a document with docid from model by model id

DELETE /api/model/:id/data delete all populated data from model by model id

GET /api/model/:id/evaluated fetch the model with evaluated data by model id

POST /api/model/validateMXL validate an MxL expression

DELETE /api/model/instance/:instanceId delete an instance by SocioCortex' entity id

79

4 Implementation

4.2.1.5 Model-based REST client for communication with SocioCortex

As proposed in Section 3.3, the actual data is not only stored in Lexia, but also

in SocioCortex. Therefore, the REST client in Lexia, communicating with So-

cioCortex, had to be adjusted. There was already an existing implementation

of such a REST client, but all methods for it expected JSONObjects, JSONN-

odes and JSONArrays as input parameters. This design decision implies that

the methods, which are invoking the SocioCortex REST client, must know

how the data exchange format must look like. In order to achieve a higher ab-

straction and a lower coupling, the REST client was changed from this imple-

mentation towards a model-based approach. This means that the REST client

methods accept Java objects as parameters and the actual knowledge about

the transformation from this objects to JSON is encapsulated in the REST

client (respectively the model classes are constructed in such a way that the

serialized JSON corresponds to the same structure SocioCortex expects).

Listing 4.10 shows exemplarily the usage of the SocioCortex REST client in

Lexia. For an even more convenient usage, builders were created that construct

the Java objects needed as parameters for the REST client.

Listing 4.10: Usage of the builder design pattern for the REST client

1 // Builder for EntityTypes

2 EntityType entityType = new EntityTypeBuilder()

3 .setName(title)

4 .forWorkspaceWithId(currentWorkspace.getId())

5 .toEntityType();

6

7 SocioCortexControllerV2.createEntityTypeForWorkspace(entityType);

8

9 // Builder for AttributeDe�ntitions

10 AttributeDe�nition attributeDe�nition = new AttributeDe�nitionBuilder()

11 .setName(name)

12 . setEntity(currentEntityType)

13 .setAttributeType(datatype)

14 . toAttributeDe�nition() ;

15

16 SocioCortexControllerV2.createAttributeDe�nitionForEntityType(attributeDe�nition);

80

4 Implementation

4.2.2 Front end

Figure 4.5 shows the components of the front end application that were cre-

ated. They are separated in the four di�erent categories: Controllers (and

corresponding views), services, directives and other components, which are not

depending on Angular.js. In the following sections, the individual components

are explained.

Figure 4.5: New components of the front end application

Model Mgmt

MxLValidationCtrl ObjectDiagramDirective

LinkDirective

AddAttributeCtrlAddModelCtrl

ModelEditorCtrl

ModelEvaluationCtrl MxLAnalyzerDirective

SummaryCtrl

TinyMCEPlugin

SemanticModelService

DocumentMgmtCtrl

ModelOverviewCtrl

AddRelationCtrl

AddTypeCtrl

Model Creation Environment

Model Evaluation Environment

Angular Modeling Components

Source: Own illustration

4.2.2.1 Angular.js service as wrapper for JointJs

For the usage of the JointJs JavaScript library within an Angular.js applica-

tion, a custom Angular.js service (SemanticModelService) was created. This

service encapsulates the necessary JointJs functionality and exposes only a

well-de�ned interface. The SemanticModelService provides a createModel func-

tion that accepts as �rst parameter the id string of a DOM element, on which

the model drawing area will be attached to. The second parameter is an object

providing callback function handles that are invoked by several events (eg. on-

BlankClicked, onElementClicked, elementMoved, etc.). With this mechansim,

81

4 Implementation

changes in the graph can be propagated to the corresponding controller that

uses the SemanticModelService. The last parameter is indicating, whether the

model is interactive. In the ModelEditorCtrl, this parameter is set to true, so

that the user can manipulate semantic models, whereas in the ModelEvalua-

tionCtrl it is set to false.

Another important method is the addElement method that creates a new el-

ement with a given title and a custom payload. Furthermore, an onChange

callback and the position where it should initially appear on the drawing area

must be provided. Lastly, methods for exporting and importing the JSON

structure, needed for serialization and deserialization of the graph, are also

provided.

4.2.2.2 Controllers and views

The modeling component provides several Angular.js controllers and views, as

well as modal dialogs. In this section, the di�erent views and their functionality

are elucidated brie�y. Furthermore, screenshots are shown for selected views.

Each input �eld of a form has been equipped with a client-side input validation,

so that erroneous inputs are exposed immediately to the user.

ModelOverviewCtrl: The ModelOverviewCtrl provides a tabular overview

over all semantic models stored in Lexia. This view serves as entry point,

from which the user can either navigate to the model editor or to the model

evaluation view. Models which are not used anymore can also be deleted.

AddModelCtrl: This view and its associated controller is a modal dialog

which is used to create new semantic models. It only shows a text box in which

the user must enter the name of the model.

ModelEditorCtrl: The ModelEditorCtrl is one of the main components

of the system. It enables the creation and re�nement of semantic models.

Therefore, it has a dependency to the SemanticModelService and registers

callback functions for di�erent events. The ModelEditorCtrl controller can

load and save semantic models to the server. The addition or deletion of

relevant laws to a semantic model is implemented in this controller as well.

82

4 Implementation

AddTypeCtrl: The AddTypeCtrl view is a modal dialog which enables the

user to add new types for a given semantic model. Figure 4.7 shows a screen-

shot of this dialog. It embeds the Link directive, which is used to create links

between text and semantic model elements (see Section 4.2.2.3).

AddAttributeCtrl: This is also a modal view that opens a dialog in which

the user can create and modify attributes for a type. Figure 4.8 shows a screen-

shot of this view. It uses the CodeMirror 20 code editor for syntax highlighting

of MxL expressions. Furthermore, the Link directive is used in this view for

linking attributes to text. Due to reasons of clarity, the Link directive as well

as the MxL code editor can be collapsed or expanded.

AddRelationCtrl: Modal dialog for creating relations, assigning a name and

specifying cardinality of these. Figure 4.9 shows a screenshot of this dialog.

The AddRelation view also implements the Link directive.

SummaryCtrl: After double clicking on a type, the SummaryCtrl view is

opened and shows a summary of all attributes, relations and links of this

type.

DocumentMgmtCtrl: A dialog that enables the addition or deletion of

laws for a semantic model. Only the documents that have not been imported

yet are shown in this tabular view.

ModelEvaluationCtrl: It is the main view for inserting and deleting data

for the semantic model. This view has a dependency to the SemanticModelSer-

vice for rendering the semantic model in a non interactive way. The object

diagram for created instances is shown in this view (see Figure 4.10).

MxLValidationCtrl: This popup dialog shows the syntax tree of a given

MxL expression. The MxLValidationCtrl controller uses the MxLAnalyzer di-

rective (see Section 4.2.2.3) to perform its task. A screenshot of the dialog

showing the syntax tree is depicted in Figure 4.11.

20https://codemirror.net/

83

https://codemirror.net/

4
Im

plem
entation

Figure 4.6: Screenshot of modeling environment with a highlighted text reference of a type

84

4
Im

plem
entation

Figure 4.7: Screenshot of the de�nition of a type

85

4
Im

plem
entation

Figure 4.8: Screenshot of the de�nition of an attribute

86

4
Im

plem
entation

Figure 4.9: Screenshot of the de�nition of a relation

87

4
Im

plem
entation

Figure 4.10: Screenshot of the model evaluation environment with a selected type and populated data

88

4
Im

plem
entation

Figure 4.11: Example of an syntax tree for a MxL expression

89

4 Implementation

4.2.2.3 Directives

Link: In order to create a link between semantic model elements and text,

a separate directive was created. This directive can be reused in every view

where the link feature must be implemented (e.g. creation of types, attributes,

relations). Listing 4.11 shows the usage of this directive. The documents at-

tribute refers to a list of documents that are JSON objects representing Legal-

Documents (see Section 3.1.1). The list of documents is used for extracting

all sections and annotations out of it. The attribute links is the exported link

object which contains the selected document, section or annotation which is

the target of the link. The structure of this JSON object is shown in Listing

4.3.

Listing 4.11: Usage of the link directive

1 <link−to−document documents="documents"
links="element.links"></link−to−document>

The lower section of Figure 4.7 (the box with the title �Link with text�) shows

the rendered directive. It provides a drop down list for all imported documents

as well as selection for the link target (whole document, document section or

annotation). For a document section or an annotation a preview is given. With

the button on the bottom right of the box (�Add new link�), multiple links can

be created for an element. The blue vertical tab bar on the left indicates the

number of links and also provides the possibility to switch between and delete

them.

MxLAnalyzer: TheMxLAnalyzer is an Angular.js directive which generates

a syntax tree out of a MxL validation result. This result can be obtained by

requesting the proper REST resource from SocioCortex with a given MxL

expression. This directive has a dependency to vis.js21, which is a browser

based visualization library for rendering the syntax tree. Listing 4.12 shows

the usage of this directive.

Listing 4.12: Usage of the mxl-analyzer directive

1 <mxl−analyzer mxl−validation="mxlValidationExpression"></mxl−analyzer>

21http://visjs.org/

90

http://visjs.org/

4 Implementation

ObjectDiagram: The ObjectDiagram directive renders an object diagram

for an instantiated semantic model. The Listing 4.13 shows the usage of the

directive. It expects two parameters: A semantic model de�nition in JSON

and a function handle which will be invoked after an element of the object

diagram has been selected. This is used for synchronization between object

diagram and form in order to switch to the selected instance.

Listing 4.13: Usage of the object-diagram directive

1 <object−diagram model="currentModel.jsonModelDe�nition"

2 element−selected="onObjectDiagramInstanceClicked">
3 </object−diagram>

4.2.2.4 Other components

TinyMCEPlugin: At the time of writing this thesis another student has

been working on a contract drafting environment for Lexia. This implementa-

tion uses the TinyMCE rich text editor 22 for providing enhanced input �elds

to the user. For this editor a plugin was created that allows linking a semantic

model to a contract. It has the purpose of referring to executable semantics

described in the contract and also formalized as semantic model. The reader

of this contract can directly use the linked semantic model.

22https://www.tinymce.com/

91

https://www.tinymce.com/

5 Evaluation

In this evaluation chapter the research questions, proposed at the beginning

of this thesis, are answered (see Section 5.1). Afterwards the focus is set on

an evaluation of the case studies (see Section 5.2) which were introduced in

Section 3.4. With these case studies it should be proven that the implemented

modeling system of Lexia is able to formalize the semantics de�ned for these

two examples. Finally, the limitations of the modeling system are shown which

were revealed during the implementation phase and the usage of the system

(see Section 5.3).

5.1 Research questions

What are the possibilities of formalizing semantics of normative texts?

At the beginning of Section 2.2, di�erent models for knowledge representation

were introduced. Popular approaches are for example formalizations based

on rules with di�erent abstraction levels and di�erent expressiveness, logic-

based approaches and ontologies in combination with description logics. As

argued in Section 3.3, in this thesis a semantic model is used that shows

entities with attributes and their relationship to each other. This approach is

in�uenced by ontologies, which also represent the knowledge as concept terms

with relations and attributes, but instead of description logics a rule-based

expression language is used. This expression language supports arithmetical

operations which are hardly expressible with description logics.

Which components are required to enhance Lexia for ful�lling the task

of model formalization and evaluation?

At the previous status quo, Lexia needed enhancement in the back end as well

as in the front end for ful�lling the task of creating and evaluating semantic

93

5 Evaluation

models. Section 4.2 describes the development of these components in detail.

In summary, a graphical model editor is needed which allows the creation of

semantic models in a uni�ed way. For storing these visual representations

of the semantic models, the REST routes of the Lexia back end had to be

adjusted. Hence, saving, updating, deleting as well as requesting evaluated

models from the back end are possible.

The main e�ort had to be spent at the information extraction component for

the graphical model. Thus, the information about types, attributes and rela-

tions could be used for further processing such as the creation of corresponding

SocioCortex entities. Regarding the communication with SocioCortex, an im-

proved REST client was created that uses Java entity classes as templates for

JSON serialization.

How could an approach look like to link elements of a formal model

with its textual representations?

This thesis uses a pragmatic approach to link elements of a formal model with

text. Due to the hierarchical structure of legal documents and the consistent

storage with the same structure in Lexia, every textual unit has its own Java

entity. Section 3.1.1 describes this hierarchical document storage with Legal-

Document, Section and Annotation as the smallest textual unit that can be

arbitrarily created.

A semantic model element can be linked to any number of previously created

textual units using the (database) ID as foreign key. The integrity of these

foreign-key-relationships has to be maintained manually, since the database

system of Lexia (ElasticSearch) is a key-value-store and does not support

foreign-key-relations.

With this approach it is possible to link an element to any number of arbitrary

textual sources. Drawbacks are the missing foreign key constraints between

the model entities and the textual units.

How would a concrete formalization of two selected case studies (child

bene�t of EStG and reporting obligation of BDSG) in the newly imple-

mented modeling environment of Lexia look like?

This question is answered in detail in Section 5.2 where the results of the

individual case studies are presented.

94

5 Evaluation

What would be a suitable meta model for the representation of formal-

ized semantics in SocioCortex?

SocioCortex is a hybrid wiki with a dynamic meta model. To represent the

semantic model described in this thesis, its meta model had to be mapped to

SocioCortex entities. This mapping is described in detail in Section 4.1.2 and

shortly summarized in the following paragraph.

The meta model of the semantic model contains the elements type, attribute

and relation. As a container embedding these elements, model is used. The

mapping enforces a transposition of this model container to a Workspace in

SocioCortex. Types are mapped to EntityTypes and relations to AttributeDef-

initions. A di�erentiation is made for attributes : Static attributes with data

type String, Boolean, Number, Date or Longtext are also transposed to Attribut-

eDe�nition, whereas dynamic attributes of data type MxL are transposed to

DerivedAttributeDe�ntions.

What are the bene�ts of separating the task of creating a formal model

and applying it?

Through the separation of the task of model creation and model evaluation,

di�erent stakeholders are able to work with the system. On the one hand

there are the legal data scientists with their broad knowledge who can work in

a collaborative way and create semantic models from normative texts. On the

other hand these models with their uni�ed appearance and support for legal

reasoning can be used by unexperienced users, whose main focus is applying

the law. An administration secretary in a civil service for instance can pro-

cess applications based on several norms and perform legal reasoning with a

semantic model previously created by legal experts.

5.2 Evaluation of the case studies

The following section presents an evaluation in which the previously introduced

case studies in Section 3.4 are implemented as semantic models in Lexia.

95

5 Evaluation

5.2.1 Child bene�t

For the evaluation of child bene�t regulations, the same semantic model as

proposed in Section 3.4.1.3 was created with the graphical model editor. Fig-

ure 5.1 shows the resulting semantic model. The arithmetical and logical

expressions had been transformed into valid MxL expressions. An example of

an advanced expression, that had been used for the child bene�t calculation,

is shown in Figure 5.2. The �rst condition checks whether the child bene�t

claimer is not eligible for receiving it and the second part performs the actual

calculation. Therefore, a function betrag expects a sequence of Kind objects

and depending on the quantity the amount of child bene�t is returned.

Figure 5.1: Semantic model of child bene�t

Source: Own illustration

Figure 5.2: MxL expression for child bene�t calculation

Source: Own illustration

Listing 5.1 shows the MxL expressions for Steuerzahler, Listing 5.2 the expres-

sions for Kind. The set Ks (see Section 3.4.1.4) of all children of a taxpayer,

96

5 Evaluation

who are eligible for child bene�t, are expressed with the query in Line 11 (List-

ing 5.1). The attribute #betragFürKind was abandoned in favor of a direct

calculation in the #summeKindergeld attribute.

Listing 5.1: MxL expressions for type Steuerzahler

1 /* #istBerechtigt */

2 this . 'wohnt in'.istImInland

3

4 /* #summeKindergeld */

5 if not this . '#istBerechtigt' then 0

6 else

7 let betrag = (kinder: Sequence) =>

8 if kinder.count(true) <=2 then kinder.count(true) * 190

9 else if kinder.count(true) = 3 then 2 * 190 + 1 * 196

10 else 2 * 190 + 1 * 196 + (kinder.count(true) − 3) * 221

11 in betrag(�nd(Kind).where(k => k.'#istBerechtigtesKind'))

Listing 5.2: MxL expressions for type Kind

1 /* #alter */

2 (Today − this.geburtsDatum) / 365

3

4 /* #�32(4.1) */

5 this . '#alter' > 18and this . '#alter' < 21and not

this . ' besitzt ' .inBeschäftigungsverhältnis and not this . ' besitzt ' .istArbeitssuchend

6

7 /* #�32(4.2) */

8 this . '#alter' > 18and this . '#alter' < 25and (this . ' besitzt ' .inBerufsausbildung or

this . ' besitzt ' . inÜbergangszeit or this . ' besitzt ' .kannAusbildungNichtFortsetzen or

this.'besitzt ' .inFSJ)

9

10 /* #kind�32 */

11 this . '#�32(4.1)' or this . '#�32(4.2)' or this . istBehindert or this . '#alter' < 18

12

13 /* istBerechtigtesKind*/

14 (this .kindDesEheGatten or this.enkelKind or this.ersterGradVerwandt or

this.p�egeKind) and this.'#kind�32'

97

5 Evaluation

5.2.2 Reporting obligation

For the reporting obligation, controlled by the Bundesdatenschutzgesetz, the

same procedure as for the child bene�t transposition was applied. The resulting

semantic model is depicted in Figure 5.3.

Figure 5.3: Semantic model for reporting obligation

Source: Own illustration

The two Figures 5.4 and 5.5 show two examples of the rules in Section 3.4.2.4

converted into MxL expressions. Each rule was transposed into a custom MxL

expression and an additional disjunction checks whether one of this single rules

is true (shown in Line 20 of Listing 5.3). The same approach was used for the

prior checking (vorabkontrolle). Listing 5.3 shows all MxL expressions for the

type Verarbeitende Stelle.

Figure 5.4: MxL expression of reporting obligation regarding purpose

Source: Own illustration

98

5 Evaluation

Figure 5.5: MxL expression of reporting obligation with data privacy o�cer

Source: Own illustration

Listing 5.3: MxL expressions for type Verarbeitende Stelle

1 /* #sonstigeDV */

2 not this .automatischeDV

3

4 /* #meldep�ichtAusZweck */

5 this .automatischeDV and (this.'verarbeitet Daten für Zweck'.übermittlung or

this.' verarbeitet Daten für Zweck'.anonymeÜbermittlung or this.'verarbeitet Daten

für Zweck'.marktforschung)

6

7 /* #meldeP�ichtEigenerZweckMitDSB */

8 not (this .automatischeDV and this.'verarbeitet Daten für Zweck'.eigenerZweck and

�nd(Datenschutzbeauftragter).any(d => d.wurdeBestellt))

9

10 /* meldeP�ichtEigenerZweckKeinDSBgr10Personen */

11 this .automatischeDV and this.'verarbeitet Daten für Zweck'.eigenerZweck and

�nd(Datenschutzbeauftragter).any(d => not d.wurdeBestellt) and

this.anzahlPersonen >= 10

12

13 /* #meldeP�ichtEigenerZweckKeinDSBkl10PersonenEinwilligung */

14 not (this .automatischeDV and this.'verarbeitet Daten für Zweck'.eigenerZweck and

�nd(Datenschutzbeauftragter).any(d => not d.wurdeBestellt) and

this.anzahlPersonen < 10and this.'gibt Daten an'.einwilligungVorhanden)

15

16 /* #meldeP�ichtEigenerZweckKeinDSBkl10PersonenVearbeitungErforderlich */

17 not (this .automatischeDV and this.'verarbeitet Daten für Zweck'.eigenerZweck and

�nd(Datenschutzbeauftragter).any(d => not d.wurdeBestellt) and

this.anzahlPersonen < 10and this.'verarbeitungErforderlich')

18

19 /* #meldep�icht */

99

5 Evaluation

20 this . '#meldep�ichtAusZweck' or this.'#meldeP�ichtEigenerZweckMitDSB' or

this.'#meldeP�ichtEigenerZweckKeinDSBgr10Personen' or

this.'#meldeP�ichtEigenerZweckKeinDSBkl10PersonenEinwilligung' or

this.'#meldeP�ichtEigenerZweckKeinDSBkl10PersonenVearbeitungErforderlich'

21

22 /* #vorabkontrolleWegenBesondererDaten */

23 this .automatischeDV and this.'gibt Daten an'.besondereArtPersonenbezogenerDaten and

not this.verarbeitungErforderlich and not this.gesetzlicheVerp�ichtung and not

this.'gibt Daten an'.einwilligungVorhanden

24

25 /* #vorabkontrolleWegenBewertungDerPerson */

26 this .automatischeDV and this.'gibt Daten an'.bewertungDesBetro�enen and not

this.verarbeitungErforderlich and not this.gesetzlicheVerp�ichtung and not

this . ' gibt Daten an'.einwilligungVorhanden

27

28 /* #vorabkontrolle*/

29 this . '#vorabkontrolleWegenBesondererDaten' or

this.'#vorabkontrolleWegenBewertungBetro�ener'

5.3 Limitations

The following limitations have been identi�ed during the implementation and

usage of the modeling system.

Independence of attributes: Right now, all attributes are considered to be

independent from each other. The model of the BDSG for reporting obligation

can be used as an example: The entity Zweck has several boolean attributes,

e.g. eigenerZweck, übermittlung, anonymeÜbermittlung and marktforschung.

These attributes indicate the actual purpose for data processing and only one

of them can be set to true. As a result the other attributes must be evaluated

as false. The equations 5.1 to 5.4 show the constraints that must be ful�lled.

However, in the current implementation an attribute can either be modeled to

be set manually or to be evaluated automatically (as MxL expression).

eigenerZweck =⇒

¬übermittlung ∧ ¬anonymeÜbermittlung ∧ ¬marktforschung
(5.1)

100

5 Evaluation

übermittlung =⇒

¬eigenerZweck ∧ ¬anonymeÜbermittlung ∧ ¬marktforschung
(5.2)

anonymeÜbermittlung =⇒

¬übermittlung ∧ ¬eigenerZweck ∧ ¬marktforschung
(5.3)

marktforschung =⇒

¬übermittlung ∧ ¬anonymeÜbermittlung ∧ ¬eigenerZweck
(5.4)

A solution could be the usage of a enumeration which is a supported data type

by SocioCortex as well. However, this feature is currently not implemented

in the modeling environment of Lexia. Instead of several �purpose attributes�,

only one attribute (zweck) could be created. This attribute has the data type

enumeration and can only be set to one of the following values:

� EIGENER_ZWECK

� ÜBERMITTLUNG

� ANONYME_ÜBERMITTLUNG

� MARTKFORSCHUNG

Expressiveness of MxL: To this day, the expressiveness of the MxL lan-

guage is still unknown. Therefore, it is possible that legal constructs exist

which cannot be expressed in MxL. Examples could be semantics with non-

monotonic logics or temporal logics.

Scalability of semantic model: In the current implementation, all data

instances are directly stored in the semantic model. This has the advantage

of neglecting the e�ort of joining data instances to the corresponding type

structure. Since only data of one case at a time can be assigned to a semantic

model, simultaneous evaluations of models cannot be executed. Afterwards,

101

5 Evaluation

all data must be wiped to enter new case data. Moreover, this approach lacks

a persistent storage for previous cases.

A possible solution is the separation of instance data and type structure. In

separate databases, the instance data can be stored along with a reference to a

semantic model and its version. The versioning feature must be implemented

in order to keep old case data valid, if a semantic model is changed and types

are added or removed.

Work�ow optimizations: The user interface of the modeling and the eval-

uation environment has some minor usability issues regarding the layout. For

example as seen in Figure 5.1, the label of the type (Beschäftigungsverhältnis)

is hardly readable, as there exists no over�ow for long names in the type shapes.

Moreover, the position of some buttons (�Add attribute� button in attribute

modal dialog) can be improved.

Performance issues with large legal texts: If the user of the modeling en-

vironment has imported very large legal texts (such as the Bürgerliches Gesetz-

buch BGB), the performance of the front end application drops signi�cantly.

It is assumed that the performance drops are the result of the Angular.js digest

cycle, performing a �dirty checking� on scope properties. Since the legal text

consists of an array of paragraphs which are rendered by the ngRepeat direc-

tive, a watcher is created for each entry of this array. If a legal text consists of

several hundreds or even thousands of paragraphs, the same amount of two-

way-data-binded scope properties are created that must be �dirty checked� in

every digest cycle. This is of course costly in terms of time and is absolutely

not necessary, since the legal text is static and not intended to be altered.

102

6 Summary, outlook and conclusion

6.1 Summary

In the framework of this master's thesis, a prototypical modeling environment

was implemented in Lexia, the data science environment for analyzing legal

texts from the chair of Software Engineering for Business Information Sys-

tems of the TU München. This modeling environment allows users to create

semantic models from legal texts which capture formally the de�ned seman-

tics in these texts. Furthermore, the semantic model provides support for basic

legal reasoning and can be used for the evaluation of (hypothetical) cases.

At �rst, a brief introduction was given concluding recent evolutions in the

domain of arti�cial intelligence and law. Next, the research questions for this

thesis were proposed. Afterwards, a chapter summarizing the related work was

introduced. In this chapter, the bene�ts of formalizing semantics de�ned in

laws were highlighted as well as previous approaches of knowledge representa-

tions were introduced. It concludes with a short overview of the functionality

of legal expert systems including some examples of such systems.

In the context of the analysis chapter, the involved systems were introduced,

namely Lexia and SocioCortex. Lexia is a legal data analysis platform that

can be used for the exploration of legal documents as well as for the identi-

�cation of linguistic patterns. SocioCortex is a hybrid wiki with support for

a powerful expression language. In the implementation phase of this thesis,

Lexia was extended by a modeling environment which allows the creation of

semantic models including static and dynamic attributes and relations between

the modeled entities. These models are then transposed into SocioCortex that

stores these models as well as performs reasoning through the evaluation of

the de�ned MxL expressions.

For a later evaluation, two case studies were presented. The child bene�t from

the Einkommenssteuergesetz and the reporting obligation of the Bundesdaten-

103

6 Summary, outlook and conclusion

schutzgesetz are two concrete examples of normative regulations that were later

formalized in Lexia. Both case studies were analyzed regarding their decision

structure resulting in a formal de�nition of the semantics. Target models,

which are used as blueprint for the actual semantic models, were created as

well. The analysis section also emphasizes the di�erent stakeholders of the

system as well as a requirements analysis.

The next section puts focus on the actual implementation in Lexia. It describes

the adjustments in the data model and in the REST client, used for commu-

nication between Lexia and SocioCortex. The creation of the complete user

interface with Angular.js is elucidated as well. This section also presents the

structure of semantic models, serialized in JSON, which is the data exchange

format between front end and back end. Furthermore, another important part

were the explanations about the information extraction process from the visual

model.

In the framework of the evaluation, the research questions of this master thesis

are answered and the results of the cases studies are presented. The evaluation

re�ects the work of this master thesis and shows the identi�ed limitations of

the modeling system.

The very last chapter of this thesis deals with a summary, a short outlook of

improvements for the modeling environment as well as new trends in decision

modeling.

6.2 Outlook

This section provides an outlook of how the development of the modeling sys-

tem in Lexia can be continued as well as recent trends in decision modeling.

6.2.1 Improvements for modeling environment in Lexia

A �rst improvement for the modeling environment could be the usage of com-

ments. It would be helpful to assign comments to di�erent semantic model

elements, in order to help achieving the same level of comprehensibility be-

tween the di�erent legal data scientists working on a model. Moreover, users

applying the semantic models would bene�t from comments, if they provide

104

6 Summary, outlook and conclusion

additional information for instance how norms should be applied. The in Sec-

tion 2.3.3.2 introduced knowledgeTools system already includes such a message

board, allowing to draft comments for nodes of the knowledge tree.

A next improvement could be the highlighting of all annotations in the text

during the modeling phase. Right now, the annotations can only be used

through a drop down box in views using the link directive (see Section 4.2.2.3),

which lacks of an enhanced overview. The distribution of annotations in the

text and the di�erent types of annotations can be supportive for the formal-

ization process.

In the evaluation view, the linked text for types and attributes can be exposed,

but this feature is still missing for relations. Therefore, the user interface

must be enhanced so that the linked text for relations can also be shown on

request.

The last improvement would provide the major bene�t increment for the mod-

eling system. If a proper semantic model has been created and also the links

between model elements and text have been established, a new component

could analyze the impact of importing a new document version. This compo-

nent must expose which sections of a document have been changed compared

to its previous version. If changes are made at textual units, that are linked

with semantic model elements, a message should appear and request checking

the validity of the modeled semantics for this element.

6.2.2 Latest trends in decision modeling

The Decision Model Notation (DMN) is a fairly new standard23 for model-

ing decisions, published by the Object Modeling Group. Scope of DMG is to

model decisions by business analysts that are performed in day-to-day busi-

ness processes. This speci�cation [18] is used to �model human-decision mak-

ing�, for �modeling requirements for automated decision-making� and also for

�implementing automated decision making�. Therefore, it is also suitable for

modeling and executing legal decisions.

Currently, decision models can be described by the following two standards:

Business Process Models (BPMN), that de�ne tasks and activities that are

23The version 1.1 was released in June 2016.

105

6 Summary, outlook and conclusion

Figure 6.1: Example of a Decision Requirements Diagram

Source: [18, p. 21]

used for decision making, and Decision Logics which are used for describing

individual decisions by business rules or decision tables. The new proposed

DMN works as a link between BPMN and Decision logic in order to connect

these standards. DMN speci�es three di�erent concepts which contain several

artifacts:

Decision requirements level: On the requirements level it is necessary

for business analysts to identify business decisions, their relationship to each

other, the data necessary for making decisions and also the sources of business

knowledge. An artifact of the DMN speci�cation on this level is a Decision Re-

quirements Graph (DRG) which consists of one or many Decision Requirements

Diagrams (DRD). A DRD depicts how the di�erent requirements depend on

each other, on input data and on business knowledge models. The business

knowledge models encapsulate business know-how in form of analytic models

or business rules. Figure 6.1 shows an example of a simple Decision Require-

ments Graph containing two decisions. In this depicted situation, Decision 1

requires the output of Decision 2 [18, p. 20�].

Decision logic level: At this level, the components de�ned at the Decision

requirements level are speci�ed even further to capture the total set of business

rules and calculations which can then be used for automated decision-making.

A representation of these logics is for example the Decision Table. This table

encodes a mapping of a set of inputs to a set of outputs expressed in rules.

106

6 Summary, outlook and conclusion

Figure 6.2 shows an example of such a table. Alternatively, DMN speci�es

an expression language which is called Friendly Enough Expression Language

(FEEL). At this point it is not further investigated how this language would

compete with the MxL [18, p. 22�] .

Figure 6.2: Example of a Decision Table

Source: [18, p. 24]

Decision service: In order to provide automated decision-making, the

decision-making logic must be organized in Decision services. Such a service

includes one or more decisions from a decision model and exposes a service

interface that can be consumed by a task in a BPMN model. For invoking

a service, mandatory input data must be provided and a decision result is

returned. The services are stateless and do not have any side e�ects. An

implementation of such a service could be realized as a web-service. DMN

does not specify the actual implementation method, but only the functionality

against a decision model [18, p. 25].

6.3 Conclusion

This master's thesis contributes to the formalization of semantics de�ned in

legal texts with the help of a newly created modeling component in Lexia. As

claimed at the beginning, to the �rst step of transposing norms in unstructured

text to a formal model were paid less attention than to the second step of

automating the law.

107

6 Summary, outlook and conclusion

The solution created in this work provides the necessary tool support to ful�ll

this task in a convenient way, allowing multiple legal experts to share their

knowledge and create a well-de�ned model in a collaborative way. The ref-

erence to the text, which is the base for semantic models, is always present.

With a strict adherence of the isomorphism concept, every model element is

linked with at least one reference in the source text. This feature is not only

helpful for the users itself, but also for an impact analysis of changing norms

on semantic models.

The semantic model has similarities to ontologies, but instead of any kind of

logics used for inference, this approach uses a rule-based expression language.

These rules cannot only express boolean or logical terms, but also arithmetical

functions. It is considered that this approach is more expressive than descrip-

tion logics.

The tool implementation presented in this thesis stands in competition with

other research approaches and commercial products. Moreover, a new stan-

dard in decision modeling arises which will be implemented in several tools

sooner or later. Right now, there exists no user feedback for the modeling

environment implemented in this thesis. Since it ful�lls all necessary require-

ments for creating a formal and visual representation of normative texts, the

modeling component provides a valuable contribution to Lexia.

108

Bibliography

[1] Knowledge Tool Case Management Screencaset. https://www.

knowledgetools.de/fallmanagement_video.html. Accessed:

2016-09-21.

[2] Oracle Policy Automation. http://documentation.custhelp.

com/euf/assets/devdocs/august2016/PolicyAutomation/

en/Default.htm. Accessed: 2016-09-10.

[3] OWL 2 Web Ontology Language Document Overview (Second Edition).

https://www.w3.org/TR/owl2-overview/. Accessed: 2016-09-

05.

[4] RDF 1.1 Turtle. https://www.w3.org/TR/turtle/. Accessed:

2016-09-05.

[5] RDF 1.1 XML Syntax. https://www.w3.org/TR/

rdf-syntax-grammar/. Accessed: 2016-09-05.

[6] Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational

issues, methodological variations, and system approaches. AI Commun.,

7(1):39�59, March 1994.

[7] F. Baader, I. Horrocks, and U. Sattler. Description logics. In S. Staab

and R. Studer, editors, Handbook on Ontologies, International Handbooks

in Information Systems, pages 3�28. Springer�Verlag, Berlin, Germany,

2004.

[8] F. Baader and U. Sattler. Description logics with concrete domains and

aggregation. In H. Prade, editor, Proceedings of the 13th European Con-

ference on Arti�cial Intelligence (ECAI-98), pages 336�340. John Wiley

& Sons Ltd, 1998.

[9] T. J. M. Bench-Capon and F. P. Coenen. Isomorphism and legal knowl-

edge based systems. Arti�cial Intelligence and Law, 1(1):65�86, 1992.

109

https://www.knowledgetools.de/fallmanagement_video.html
https://www.knowledgetools.de/fallmanagement_video.html
http://documentation.custhelp.com/euf/assets/devdocs/august2016/PolicyAutomation/en/Default.htm
http://documentation.custhelp.com/euf/assets/devdocs/august2016/PolicyAutomation/en/Default.htm
http://documentation.custhelp.com/euf/assets/devdocs/august2016/PolicyAutomation/en/Default.htm
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/rdf-syntax-grammar/

Bibliography

[10] Trevor Bench-Capon, Michaª Araszkiewicz, Kevin Ashley, Katie Atkin-

son, Floris Bex, Filipe Borges, Daniele Bourcier, Paul Bourgine, Jack G.

Conrad, Enrico Francesconi, Thomas F. Gordon, Guido Governatori,

Jochen L. Leidner, David D. Lewis, Ronald P. Loui, L. Thorne McCarty,

Henry Prakken, Frank Schilder, Erich Schweighofer, Paul Thompson, Alex

Tyrrell, Bart Verheij, Douglas N. Walton, and Adam Z. Wyner. A history

of ai and law in 50 papers: 25 years of the international conference on ai

and law. Arti�cial Intelligence and Law, 20(3):215�319, 2012.

[11] Marco Brattinga and Sjir Nijssen. On the Move to Meaningful Internet

Systems: OTM 2015 Workshops: Confederated International Workshops:

OTM Academy, OTM Industry Case Studies Program, EI2N, FBM, IN-

BAST, ISDE, META4eS, and MSC 2015, Rhodes, Greece, October 26-30,

2015. Proceedings, chapter A Sustainable Architecture for Durable Mod-

eling of Laws and Regulations and Main Concepts of the Durable Model,

pages 254�265. Springer International Publishing, Cham, 2015.

[12] Stephan Breidenbach. Landkarten des Rechts - von den Chancen in-

dustrieller Rechtsdienstleistungen. https://knowledgetools.de/

download/Umbr1_Breidenbach.pdf, 2009. Accessed: 2016-09-22.

[13] Bundesrepublik Deutschland. Bundesdatenschutzgesetz (bdsg), 2016. Ac-

cessed on 2016-07-04.

[14] Bundesrepublik Deutschland. Einkommenssteuergesetz (estg), 2016. Ac-

cessed on 2016-07-04.

[15] Tom Engers and Sjir Nijssen. Electronic Government: 13th IFIP WG

8.5 International Conference, EGOV 2014, Dublin, Ireland, September

1-3, 2014. Proceedings, chapter Connecting People: Semantic-Conceptual

Modeling for Laws and Regulations, pages 133�146. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2014.

[16] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[17] Thomas F. Gordon. From jhering to alexy � using arti�cial intelligence

models in jurisprudence, 1994.

110

https://knowledgetools.de/download/Umbr1_Breidenbach.pdf
https://knowledgetools.de/download/Umbr1_Breidenbach.pdf

Bibliography

[18] Object Management Group. Decision Model and Notation. http://

www.omg.org/spec/DMN/1.1/PDF, 2016. Accessed: 2016-09-20.

[19] Thomas R. Gruber. A translation approach to portable ontology speci�-

cations. Knowl. Acquis., 5(2):199�220, June 1993.

[20] C. D. Hafner. Conceptual organization of case law knowledge bases. In

Proceedings of the 1st International Conference on Arti�cial Intelligence

and Law, ICAIL '87, pages 35�42, New York, NY, USA, 1987. ACM.

[21] Wesley Newcomb Hohfeld. Some fundamental legal conceptions as applied

in judicial reasoning. The Yale Law Journal, 23(1):16�59, 1913.

[22] H. Honsell and T. Mayer-Maly. Rechtswissenschaft: Eine Einführung in

das Recht und seine Grundlagen. Springer-Lehrbuch. Springer Berlin Hei-

delberg, 2015.

[23] Thomas Jandach. Juristische Expertensysteme. Springer Berlin Heidel-

berg, 1993.

[24] Florian Matthes, Christian Neubert, and Alexander Steinho�. Hybrid

wikis: Empowering users to collaboratively structure information. In IC-

SOFT 2011 - Proceedings of the 6th International Conference on Software

and Data Technologies, Volume 1, Seville, Spain, 18-21 July, 2011, pages

250�259, 2011.

[25] Marvin Minsky. A framework for representing knowledge. Technical re-

port, Cambridge, MA, USA, 1974.

[26] I. Monahov, T. Reschenhofer, and F. Matthes. Design and prototypical

implementation of a language empowering business users to de�ne key

performance indicators for enterprise architecture management. In 2013

17th IEEE International Enterprise Distributed Object Computing Con-

ference Workshops, pages 337�346, Sept 2013.

[27] James Popple. A pragmatic legal expert system. APPLIED LEGAL

PHILOSOPHY SERIES, Dartmouth (Ashgate), Aldershot, 1996.

[28] F. Puppe. Einführung in Expertensysteme. Studienreihe Informatik.

Springer Berlin Heidelberg, 2013.

111

http://www.omg.org/spec/DMN/1.1/PDF
http://www.omg.org/spec/DMN/1.1/PDF

Bibliography

[29] Oliver Raabe, Christian Baumann, Christian Funk, Daniel Oberle, and

Richard Wacker. Recht ex machina : Formalisierung des Rechts im In-

ternet der Dienste. Imprint: Springer, Berlin, Heidelberg ;s.l, 2012.

[30] Thomas Reschenhofer. Design and prototypical implementation of a

model-based structure for the de�nition and calculation of Enterprise Ar-

chitecture Key Performance Indicators. Master's thesis, Technische Uni-

versität München, Germany, 2013.

[31] Thomas Reschenhofer, Manoj Bhat, Adrian Hernandez-Mendez, and Flo-

rian Matthes. Lessons learned in aligning data and model evolution in

collaborative information systems. In Proceedings of the 38th Interna-

tional Conference on Software Engineering Companion, ICSE '16, pages

132�141, New York, NY, USA, 2016. ACM.

[32] E. L. Rissland and K. D. Ashley. A case-based system for trade secrets

law. In Proceedings of the 1st International Conference on Arti�cial In-

telligence and Law, ICAIL '87, pages 60�66, New York, NY, USA, 1987.

ACM.

[33] Stuart Russell and Peter Norvig. Arti�cial Intelligence: A Modern Ap-

proach. Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd edition,

2009.

[34] Johannes Scharf. Künstliche Intelligenz und Recht: Von der Wis-

senrepräsentation zur automatisierten Entscheidungs�ndung. Österre-

ichische Computer Gesellschaft, 2015.

[35] Matthias Schmid. Einblick in die moderne werkstatt der gesetzgebung.

In K.M. Eichho�-Cyrus and G. Antos, editors, Verständlichkeit als Bürg-

errecht?: Die Rechts- und Verwaltungssprache in der ö�entlichen Diskus-

sion, Duden - Thema Deutsch, pages 244�254. Bibliographisches Institut,

2014.

[36] M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek, P. Hammond, and

H. T. Cory. The british nationality act as a logic program. Commun.

ACM, 29(5):370�386, May 1986.

[37] Tom M. van Engers and Robert van Doesburg. At your service, on the

de�nition of services from sources of law. In Proceedings of the 15th Inter-

112

Bibliography

national Conference on Arti�cial Intelligence and Law, ICAIL '15, pages

221�225, New York, NY, USA, 2015. ACM.

[38] Tom Maarten van Engers and Robert van Doesburg, editors. First steps

towards a formal analysis of law, eKNOW 2015. IARIA XPS Press, 2015.

[39] Frank van Harmelen, Frank van Harmelen, Vladimir Lifschitz, and Bruce

Porter. Handbook of Knowledge Representation. Elsevier Science, San

Diego, USA, 2007.

[40] Bernhard Waltl and Corinna Coupette. Oral talk about requirements on

june, 29th. 2016, June 2016.

[41] Bernhard Waltl, Florian Matthes, Tobias Waltl, and Thomas Grass. Lexia

- a data science environment for semantic analysis of german legal texts.

In 19. Internationales Rechtsinformatik Symposium, Salzburg, Austria,

2016.

113

	Abstract
	Inhaltsverzeichnis
	List of Figures
	List of Tables
	Listings
	Introduction
	Motivation
	A brief history of AI and law
	Objectives
	Structure

	Related work
	Formalization
	Benefits of formalization
	Requirements to formal models

	Models for knowledge representation in the domain of law
	Rule-based approach
	Case-based approach
	Logic-based approach
	Deontic logics
	Non-monotonic logics
	Description logics

	Ontologies

	Legal expert systems
	Definition
	Architecture
	Examples of legal expert systems
	Oracle Policy Automation
	knowledgeTools
	HYPO

	Analysis & concepts
	Description of the involved systems
	Lexia
	SocioCortex

	The model based expression language MxL
	Modeling approach for Lexia
	Workflow of model building
	Workflow of model evaluation
	Meta model of semantic models

	Case studies
	Child benefit from EStG
	Relevant norms
	Decision-making structures as activity diagrams
	Semantic model
	Mathematical definition

	Reporting obligation from BDSG
	Relevant norms
	Decision-making structures as activity diagrams
	Semantic model
	Mathematical definition

	Stakeholders
	Requirement analysis
	Requirements for modeling environment
	Requirements for evaluation environment
	Summary

	Implementation
	Target system
	Architecture
	Mapping between semantic model elements and SocioCortex entities

	Implemented components
	Back end
	Enhancement of data model
	Format of semantic model
	Model synchronization between Lexia and SocioCortex
	Enhancement of REST service
	Model-based REST client for communication with SocioCortex

	Front end
	Angular.js service as wrapper for JointJs
	Controllers and views
	Directives
	Other components

	Evaluation
	Research questions
	Evaluation of the case studies
	Child benefit
	Reporting obligation

	Limitations

	Summary, outlook and conclusion
	Summary
	Outlook
	Improvements for modeling environment in Lexia
	Latest trends in decision modeling

	Conclusion

	Bibliography

