

Analysis of Business Applications Integrating Distributed Ledger Technologies

Christian Ziegler, 08.02.2021, MT Final Presentation.

Chair of Software Engineering for Business Information Systems (sebis) Faculty of Informatics Technische Universität München wwwmatthes.in.tum.de

ТЛП

Motivation

- Evolution of DLT
- Academic Publications

Research Approach

- Overview
- Research Questions

Results

- Feature Catalog
 - Functional Features
 - Non-Functional Features
- Statistical Evaluation of the Use-Cases
 - Feature Usage
 - Platform Distribution
- Evaluation of the Reasonableness of DLT Implementations
- Future Work and Conclusion

Motivation – Evolution of DLT

ТΠ

"Transfer money without a third party" "Execute code on a global virtual machine"

Hyperledger

"Build your own private blockchain for your enterprise system with all its benefits (and downsides...)"

7187 Cryptocurrencies are active today [1]

More than 2 million Smart Contracts deployed on Ethereum in November 2020 [2] Hyperledger collaborates with more than 250 companies [3]

[2] https://explore.duneanalytics.com/embed/guery/329/visualization/515?api key=RgqCse8wDeW3MZKeZFOab2Ju8QA5Q8ltnr1cbLgk

^[1] https://coinmarketcap.com/all/views/all/

^[3] https://www.hyperledger.org/

Motivation – Academic Publications

Motivation – Evolution of DLT

ТШ

Motivation

- Evolution of DLT
- Academic Publications

Research Approach

- Overview
- Research Questions

Results

- Feature Catalog
 - Functional Features
 - Non-Functional Features
- Statistical Evaluation of the Use-Cases
 - Feature Usage
 - Platform Distribution
- Evaluation of the Reasonableness of DLT Implementations
- Future Work and Conclusion

Research Approach – Overview

08022021 Ziegler Master Thesis Final Presentation

Outline

Motivation

- Evolution of DLT
- Academic Publications

Research Approach

- Overview
- Research Questions

Results

- Feature Catalog
 - Functional Features
 - Non-Functional Features
- Statistical Evaluation of the Use-Cases
 - Feature Usage
 - Platform Distribution
- Evaluation of the Reasonableness of DLT Implementations
- Future Work and Conclusion

RQ1: What are common features that Distributed Ledger Technology applications share?

RQ2: How can these features be categorized and formalized?

RQ1 + RQ2: Selected Functional Features in their Categories

RQ1 + RQ2: Non-functional Features

πп

Which problems are the projects that are currently in development solving?

Cross-Organisational Data Storage to enable Use-Cases like Product and Supply Chain Tracing

- BMW Part Chain is about traceability in the whole supply chain of BMW
- IBO Recording Quality-Documentation and making it available

Proof-Of-Origin, Ownership or Authenticity of Assets

- CodeNotary Create Trust in Digital Objects
- Lakoma Proof of sustainable production across company borders
- FfE Blockchain-based proof of origin for electricity in a high resolution
- Bernstein Secure the Ownership of Intellectual Property

Payment Processing

- Cash on Ledger Orchestration of payments using Blockchain-Technology
- Chaincentive Incentives for the positive change in behavior

What are re-occurring questions in the architecture of enterprise DLT applications?

- permissioned or permissionless platform
- specific platform of the category permissioned, permissionless, or the decision to create an own platform
- frameworks and design patterns within the platform of choice

RQ4: How can a feature summary be verified?

Features of the Catalog used by the projects

08022021 Ziegler Master Thesis Final Presentation

Results – Statistical Evaluation of the Use-Cases

Platform Distribution

RQ5: What are characteristics for proper DLT applications?

Why is DLT needed for solving the specific issues?

- Elimination of third parties for profit
- The Blockchain is uncensorable
- Sharing data and their business benefits across company borders
- Many actors with different needs on a single platform can securely interact with each other
- Privacy of the data and transparency of the correctness
- Pseudo-anonymity and digital identities
- Tamper-proof and immutable data storage

Could DLT Projects also be realized without DLT and still solve the same issues?

- Only the use-case of CashOnLedger could be solved without DLT
- All others require DLT because of Immutability, Trust-Issues etc.

Would it be possible that projects are easier to implement and execute without DLT?

- No project is easier to implement without DLT in our Use-Case Study
- DLT is used to solve problems more effectively

Results – Future Work and Conclusion

Future Work

- Expand the existing feature summary to a pattern catalog
- Find forces, known uses and consequences for each feature to transform it into a pattern
- Create a diagram where each pattern can be positioned to enable a clustering of the pattern
- Create a radar chart for each pattern to describe its position in the DLT spectrum
- Create a evaluation sheet or similar to evaluate DLT use-cases for their justifiability

Conclusion

- It is possible to partition DLT by *features* instead of *permissioned* and *permissionless*
- A lot more use-case studies have to be conducted in order to create a complete pattern catalog
- Non-functional features are driven by forces and can not just be iteratively improved
- The feature catalog is a first step in partitioning the DLT space
- This work could have been improved by conducting a lot more case studies

TLM sebis

B.Sc. Christian Ziegler christian.ziegler@tum.de

Technische Universität München Faculty of Informatics Chair of Software Engineering for Business Information Systems

Boltzmannstraße 3 85748 Garching bei München

Tel +49.89.289. 17132 Fax +49.89.289.17136

matthes@in.tum.de wwwmatthes.in.tum.de

