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Abstract

Single Page Applications are often communicating with backend servers to transfer
data. To make backend services accessible for the client, the backend provides those
via RESTful APIs. A lot of research and code generation tools focus on the server
side of such RESTful APIs. Whereas, this thesis deals with the client-side, meaning
the consumption of RESTful APIs. Consuming APIs leads to complexity in the client
when the data comes from several different APIs. This is a common case when apply-
ing the microservice architectural style or when the client accesses several third party
APIs (e.g. GitHub, JIRA, Facebook, Google API etc.).
This work presents an approach to shift away the responsibility of the API consump-
tion from the client by introducing a web service which handles the communication
with the APIs as well as the data transformations. After analysing the state-of-the-art,
a model-driven approach is being proposed for the generation of such a web service.
Firstly, a model will be introduced describing the consumption of RESTful services.
Secondly, a tool will be described to semi-automatically generate such a web service
based on model-transformations. Subsequent to the presentation of the implementa-
tion, the approach will be evaluated by developing a sample application with the help
of the tool. The outcomes of this thesis are a reference architecture, a meta-model de-
scribing RESTful service consumption, and a code generation tool. The conducted re-
search leads to the conclusion that consuming several RESTful API leads to complexity
in the client and that this consumption can be modelled. Furthermore, evaluating the
approach implies that this complexity can be reduced with the presented approach.
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1 Introduction

If you’re afraid to change
something it is clearly poorly
designed.

Martin Fowler

Contents
1.1 Motivation and Problem Description . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Motivation and Problem Description

Nowadays web sites are powerful applications where several computer systems com-
municate with each other on the internet. In single page applications this commu-
nication often is not just the traditional three-trier connection between the frontend, a
backend and a server as it used to be. It is more and more common that the appli-
cation frontend communicates with several different servers. Especially with current
software hypes and trends such as microservices or serverless architectures, clients ac-
cess multiple RESTful APIs. In a serverless architecture, for example, clients connect
to third party applications which provide ready-to-use functionality. Those can be
services supplying cloud database access, authentication or simply data [1]. However,
also the rising popularity of microservices changed the traditional client-server com-
munication. In a microservice architecture web clients have to handle communication
with 20 or 30 RESTful services. Particularly, when an API was designed by a third
party it is very likely that the data coming from that API does not entirely fit the client
needs. Consequently, the data has to be transformed on the client side. This data
transformation process leads to a heavy client, especially when scaling up the number
of APIs to consume. The client then compromises its agility and changeability.
Model-driven approaches support the management of complexity by enhancing the
level of abstraction [2]. Also in the field of REST, modelling techniques are used to
enhance manageability of APIs and facilitate their development (e.g. [3–5]). In MDSD
the development process is driven by formal models which will then be automatically
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1 Introduction

transformed to code. Thus, the developer can focus on the model construction and
does not get carried away with the technical details. Several of the approaches which
are modelling RESTful services concentrate on the server-side and automate the de-
velopment of the APIs.
This work, however, focuses on the client-side by trying to reduce complexity in the
client when requesting data from different RESTful services. The aim is to model
RESTful API consumption and being able to automate the implementation of this con-
sumption.
The idea is to shift away the responsibility of API consumption from the client and
to establish a web service in between the client and the RESTful services which deals
with the transformation process. The client then just has to communicate with one
API, namely the introduced service. This service provides the data exactly as needed
by the client so that no further transformation is necessary and the developer obtains
a lightweight client.
The present thesis follows a model-driven approach to automate the implementation
of the consumption of RESTful services. Therefore, a model will be introduced which
describes the required artefacts to consume RESTful services in single page applica-
tions. Subsequently, a transformation process will be presented where an application
developer has to specify the transformation rules. The result of this process is a gen-
erated service that handles the RESTful service consumption for the client. This helps
the developer to focus on what data is needed and where to get it from instead of
getting distracted by implementation details. It shifts the service design process to the
client, instead of the data owner.
To approach the problem of complex clients whilst consuming multiple RESTful APIs
the following contributions will be made:

• Provision of an architectural approach to deal with data that comes from several
different RESTful APIs. This allows service composition to retrieve the data as
needed. (section 3.3)

• Establishment of a model that describes the client-side consumption of RESTful
services. (section 3.4)

• Presentation of a platform which allows constructing such a model and trans-
forms it to code, implementing a web service that can be used to fulfil the sug-
gested architecture. (section 3.5)

1.2 Research Questions

The overall idea is to provide a model-driven approach for RESTful service consump-
tion. The context of this idea is the consumption of multiple APIs in single page

2



1.3 Research Methodology

applications. On this basis the following research questions were defined to guide the
research.

RQ1 What is the state-of-the-art in model-based RESTful API integration?

RQ2 How does a model-based approach for RESTful API integration in single page
applications look like?

RQ3 What are the benefits and limitations of a model-driven approach for RESTful
API integration?

Research question one targets the literature research, question two the design of an
approach and question three the evaluation of the approach.

1.3 Research Methodology

The research methodology that was followed while working on this thesis is the design
science approach described by Hevner et al. [6]. Figure 1.1 visualises the different
elements of the research methodology. Hevner et al. describe design science as three
areas. Firstly, the environment representing the application domain and where the
initiation of the problem definition comes from. Secondly, the knowledge base that
influences and supports the research with methods, theories, model etc. of previous
research. Thirdly, the design science research itself which consists of building artefacts
and evaluating those. Furthermore, Hevner et al. explain that the three areas influence
each other by three different cycles: the relevance-, the rigor- and the design cycle.
Those three cycles will be described in the following by mapping them to the research
of this thesis.

Relevance Cycle As stated by Hevner [7], design science research starts with"... identi-
fying and representing opportunities and problems in an actual application environ-
ment.". The relevance cycle puts the research in the context of the application
domain but also provides the criteria for evaluating the designed approach. The
application domain in this thesis is web development with the focus on the con-
sumption of RESTful APIs in single page applications. The problem that is being
addressed in this environment is the complexity that the clients lead to when
scaling up the number of APIs to consume. Therefore, the need is to reduce this
complexity and make the consumption of multiple APIs manageable.

Rigor Cycle The rigor cycle contains the scientific part of the process. It connects the
actual research with the knowledge base. The knowledge base contains meth-
ods, theories, models etc. from previous research projects. With the help of the
rigor cycle the artefact development is being supported by the knowledge base

3
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ence researchers in the various engineering fields, architecture, the arts, and
other design-oriented communities.

Juhani Iivari’s essay (Iivari 2007) is an important and insightful contribu-
tion to a clearer understanding of the key properties of the design science
research paradigm—ontology, epistemology, methods, and ethics. I find
myself in basic agreement with the twelve theses that summarize the author’s
analysis of IS as a design science. In this commentary I relate several of the
essay’s theses to the existence of three design science research cycles. The
goal is to enhance our understanding of what it means to do high quality
design science research in IS.

Figure 1 borrows the IS research framework found in (Hevner et al. 2004)
and overlays a focus on three inherent research cycles. The Relevance Cycle
bridges the contextual environment of the research project with the design sci-
ence activities. The Rigor Cycle connects the design science activities with the
knowledge base of scientific foundations, experience, and expertise that
informs the research project. The central Design Cycle iterates between the
core activities of building and evaluating the design artifacts and processes of
the research. I posit that these three cycles must be present and clearly identifi-
able in a design science research project. The following sections briefly
expand on the definitions and meanings of each cycle.

2 The Relevance Cycle

Design science research is motivated by the desire to improve the environment
by the introduction of new and innovative artifacts and the processes for build-

Figure 1. Design Science Research Cycles

Knowledge Base Design Science Research

Build Design 
Artifacts & 
Processes 

Evaluate 

Design 
Cycle

Application Domain  
• People 
• Organizational 
Systems 
• Technical 
 Systems 
 
 
• Problems  
& Opportunities 

Relevance Cycle 
• Requirements 

• Field Testing 

 Rigor Cycle 
• Grounding 
• Additions to KB 

Foundations 

• Scientific Theories 
& Methods 

• Experience  
& Expertise 

• Meta-Artifacts 
(Design Products & 
Design Processes) 

  Environment
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Figure 1.1: Overview of the design science approach [7]

and shows where further research is necessary to broaden the knowledge base.
In this work, the knowledge base contains the field of model-driven software de-
velopment which supports building a solution. Furthermore, it contains related
works of modelling RESTful APIs. After the problem was defined at the begin-
ning of the research, the next step was to find out what other people already did
in this field. How did other model RESTful APIS? What elements are needed to
consume such APIs? Finding out about the state-of-the-art in this research field,
forms a valuable basis for building the artefact.

Design Cycle The design cycle is the heart of a design science research project [7]. It
consists of iterations between building an artefact, evaluating it, then refining
the artefact with the feedback and so on. The developed artefact proposes a
solution to the defined problem which is evaluated by getting input from the
environment (application domain). In the case of this thesis the design cycle
process was as follows: Firstly, a reference architecture was established as well
as a meta-model describing RESTful API consumption. On this basis a model-
driven approach was designed. After getting feedback from a research assistant,
the model-driven approach was refined and implemented as a web application.
To evaluate the developed tool, it was used to create an example application
(presented in the evaluation chapter). The idea for the application came from a
second research assistant, who was targeting this problem at that moment. This
gave input for refining the tool and implementing a second example application
with the help of the tool.
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1.4 Thesis Outline

The present thesis is divided into analysis, design, implementation and evaluation.
Chapter two contains important concepts and technologies upon which this work
builds. Firstly, the service oriented architecture will be described and the term ser-
vice will be defined. Following this, REST and ROA will be introduced as well as the
consumption of RESTful APIs. The subsequent section deals with the development
and description of RESTful APIs. Finally, the chapter analyses single page applica-
tions and describes to what problem the usage of such may lead.
Chapter three covers the design of a solution to the previously described problem.
Therefore, methodologies and technologies supporting this solution will be presented.
Subsequently, an approach will be presented that aims at the reduction of complexity
when consuming multiple RESTful APIs. This approach is described by introducing a
reference architecture, a meta-model and a code generation process.
The fourth chapter illustrates the realisation of the approach from the previous chapter.
It presents the implementation of the code generation tool as well as the generated
server. For both software projects the architecture and the dynamic behaviour will be
outlined.
Chapter five evaluates the approach by describing two example applications that have
been developed with the support of the code generation tool. Furthermore, a compar-
ison between utilising the presented approach and using a conventional framework is
made. Subsequently, the evaluation will be analysed by stating the benefits and limi-
tations on the tool.
The final chapter six concludes this thesis and provides an overview of future work
that might be useful to enhance the presented approach.
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This chapter describes technologies and principles upon which the problem as well
as the presented approach builds. These topics form the knowledge base and lead
to the problem targeted by this thesis. The chapter starts with an introduction to the
service oriented architecture and its definition of a service. Secondly, REST and its ar-
chitectural approach ROA will be presented which follow a different concept to SOA.
It will be discussed how RESTful services can be consumed nowadays. Furthermore,
technologies supporting the development of RESTful APIs will be presented. Sub-
sequently, single page applications will be described as well as problems coming up
when utilising those as a client.

2.1 Service Oriented Architecture

The Service Oriented Architecture (SOA) is an approach to structure an IT system into
services. Christudas, Barai and Caselli [8] describe the service-oriented approach as
"identifying the business functions that your applications are made of". This statement re-
veals that the architecture focuses on the business layer. In SOA, components of the
software relate to business functions. A business automation logic is separated into
smaller units of logic: the services [9]. Thus, a business process can be divided into
several steps which then run separately as services in the architecture. They are de-
composed but not isolated since they still interact with each other. What characterises
those services?

2.1.1 Services

In SOA, services are units of logic which exist autonomously but still relate and com-
municate with each other [9]. While the size of a service can vary, they follow certain
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principles. According to Erl [9] those principles of service-orientation are: loose coup-
ling, service contract, autonomy, abstraction, reusability, compostability, statelessness,
and discoverability. It is possible to implement services in any language and they also
can be web services, however, not necessarily need to be. All services put together
form the architecture and they relate to each other because of their communication. In
order to enable this interaction between service, they have a service description so that
other services are aware of them [9]. In a SOA composed of several services it is also a
challenge to manage all these services and handle their communication. For example,
the Enterprise Service Bus (ESB) was introduced to address this challenge.

2.1.2 The Enterprise Service Bus

The ESB acts as the backbone of the application and allows integration and man-
agement of services in an application. It combines messaging, web services, data
transformations and routings to manage interaction of several applications [10]. The
services are decoupled from each other and connected through the ESB. It allows
connectivity in an application because it enables communication between services by
being attached to the ESB. Hence, they do not need to find and connect to every single
service themselves. Furthermore, the ESB facilitates combining applications with dif-
ferent technologies. For example, it allows integrating JavaEE applications with the
Java EE Connector Architecture (JCA), web services by supporting the protocol SOAP
or also .NET applications. Figure 2.1 visualises an example architecture using an ESB
and shows how it integrates a variety of technologically different services.

Enterprise Service Bus

JavaEE
Application

Packaged
Application

.NET
Application

Web Service Web Service

Figure 2.1: Example of an ESB integrating technologically different services (based on [10])
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To sum up, in a SOA with several different services, the communication can be man-
aged by the ESB which connects all services with each other and controls the informa-
tion exchange. It provides routing to the different services as well as data transforma-
tions.

2.2 Representational State Transfer

On the internet web clients (e.g. browsers) communicate with servers to load web
sites. One way of achieving this information exchange is provided by Representational
State Transfer (REST). REST was introduced by Fielding in his dissertation and allows
communication between web services with the Hypertext Transfer Protocol (HTTP).
Application Programming Interfaces (APIs) are created which define with the help of
HTTP request methods if data is being read, written, deleted or modified (GET, POST,
DELETE, PUT).
As Richardson and Ruby state in their book [12] REST is more of a set of design criteria
than an architecture. That is where the Resource Oriented Architecture (ROA) comes
into play as a concrete RESTful architecture.

2.2.1 Resource Oriented Architecture

The ROA follows a different approach than the previously described SOA, however,
the two are not incompatible. The idea of ROA is that an application is divided into
different resources to represent data. The ROA consists of four concepts and four
properties which support applying REST to web services.

Concepts

The main concept of ROA are resources. It is important that those have meaning-
ful names. Furthermore, ROA defines how the resources should be represented and
linked together.

Resource The name already reveals that resources are a basic concept of ROA. But
what is a resource? Richardson and Ruby [12] define it as "anything that’s im-
portant enough to be referenced as a thing itself", meaning it can be a document, a
picture or a row in a database. Something that needs to be represented in the
web application.

Resource Names Each resource is identified by a unique name to make it reachable.
This is being achieved by a Uniform Resource Identifier (URI). Such a URI should
be well structured and use meaningful names to be comprehensible. The general
syntax components of a URI can be seen in Listing 2.1. The scheme and path
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components are required though the path can be empty [13]. The path identifies
the resource for the specific authority.

Listing 2.1: Components of a URI [13]

1 {scheme}://{authority}/{path}?{query}#{fragment}

Representing Resources Computers see the resources just as a series of bytes in order
to send them. This is the representation of the resource namely the meta data
that represents the resource. Or as Richardson and Ruby [12] specify it: "... a
representation is just some data about the current state of a resource.".

Linking Resources Together Luckily, one can just navigate through the web without
having to remember all the URIs of the resources one wants to see. This is
achieved by links between the resources. One resource links to one or more other
resources and so on. Google is a good example of linking to other resources.
It can be utilised as a starting point to reach the desired destination without
knowing the specific URI. Most RESTful services are hypermedia, meaning they
not only contain data but link to other resources [12].

Properties

ROA distinguishes itself through four properties: Addressability, statelessness, con-
nectedness, and a uniform interface.

Addressability Each resource is addressable through the URI and all the interesting
data of the webpage is represented as a resource so that all necessary data can
be addressed.

Statelessness Statelessness denotes that it does not matter when and how the data
will be addressed, it will result as the same. No matter if the user navigated
through the web application, clicked on the back button or accessed it through
the URI directly.

Connectedness The fact that the resources are linked together as explained above.

A Uniform Interface In a uniform interface the HTTP methods (GET, PUT, DELETE,
POST) have to be used the exact same way. For example, overloaded POSTs
can be problematic since one single HTTP method is being used to serve mul-
tiple non-HTTP methods [12]. In such a case the HTTP POST method is being
used for some unknown purpose. According to Richardson and Ruby interfaces
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stop being uniform when the method information cannot be found in the HTTP
method.

This thesis focuses on APIs which are truly RESTful and are conform with the concepts
and properties of ROA. This fact is important when it comes to modelling RESTful API
requests since standardisation is inevitable for a generic model. As Renzel, Schlebusch
and Klamma [14] show in their work, a lot of web services which are considered to
be RESTful are not truly RESTful. Hence, each time RESTful APIs are mentioned in
this thesis, truly RESTful APIs obeying the concepts and properties of ROA are being
implied.

2.2.2 HTTP Requests

REST API calls are conducted as HTTP requests. Since consuming RESTful APIs with
HTTP requests play a main role in this thesis the main elements of those requests will
be presented shortly.

HTTP Methods

Each HTTP request has a method which specifies the operation the sender of the
requests wants to be carried out. The GET method is the mechanism for data retrieval
[15]. POST creates a new data object and stores it in the database. The PUT method
updates data in a database and the DELETE method is being used when it is intended
to remove data. There are also other methods such as HEAD, TRACE, OPTIONS,
CONNECT but the aforementioned ones are mainly used.

URL

The URL specifies the address of the resource which is targeted by the request. It does
not only contain the host and the path but also may contain URI parameters which
enable passing along values such as an id [16]. Another possibility to pass parameters
along is to specify query parameters. Those can be used to filter results and should just
be used if their content is not secret.

Header

The request header also allows sending parameters along with the request to provide
more information. There are several predefined fields which can be used, for example,
to provide more information about the context, suggest preferred data formats for the
response, sent cookies (Cookie field) along or to authorise (Authorization field) [15].
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Body

The message body is used to carry the payload of that request [16]. It is used when
more data than just a parameter value needs to be passed along with the request. This
is mainly the case when a data object needs to be updated or created (e.g. POST or
PUT request).

Response

The HTTP response contains a status code to inform if the request was successful [15].
It also contains a header and a body to pass parameters along. The body contains
the data that was requested by the client and the header is in place to pass along
parameters not directly related to the data such as cookies or warnings.

2.2.3 Consuming RESTful Services

Web services provide backend functionality to a client. This functionality mostly im-
plements data handling, either persisting data in a database or transferring data from
the database. The server provides these service via RESTful APIs which can be con-
sumed by the client using HTTP requests.
In the following, two different approaches of developing web applications will be out-
lined. Furthermore, it will be explained which one of the two is being supported with
the tool developed in the scope of this thesis.

Approach 1 - build your own backend

The architecture of the first approach of developing a web application is show in Fig-
ure 2.2. Mainly two computers communicate with each other: a client which provides
the user interface, and a web server which carries out computations and sends results
to the client [17]. Furthermore, the server is connected to a database to persist and
read data. Such an approach is referred to as three-trier computing and a common use
case in large-scale systems [17].

12



2.2 Representational State Transfer

Client Server Database

provide 
RESTful API

require 
RESTful API

Figure 2.2: Traditional architecture of a web application (related to [1])

The development team is mostly divided into frontend and backend developers. The
backend, possibly a Java EE server, is connected to a database (for example, a relational
SQL database). It contains most of the functionality and provides data exchange for
the web site. In order to make functionality and data from the database accessible
for the client, it provides a RESTful API. If the client requests data via this API the
backend sends queries to the database to retrieve it. When data needs to be written,
the backend creates objects and persists those in the tables of the database.
The frontend mainly consists of templates indicating what the view looks like. When
data needs to be displayed in the view the client sends HTTP request to the RESTful
API of the backend to receive the required data. Since the purpose of the backend, in
such a software project, is to serve the frontend with data transfer and functionality,
the API of the backend will be designed as needed in the frontend. In such a case
the frontend most likely does not need to conduct lots of data transformation on the
response data.

Approach 2 - consume third party services

The second approach of developing web applications is influenced by cloud comput-
ing and the fact that more and more software companies publish APIs1. Clients are
more capable nowadays, leading to the trend of pushing more functionality out to
them [17]. In this second approach not everything is being developed from scratch.
Third party services are being consumed to retrieve a more meaningful dataset or to
profit from functionality already implemented by others. However, these third party
APIs have to be consumed as defined by the developers and most likely need to be
transformed to fit the needs of the client. The client, possibly a Single Page Application
(SPA), contains more functionality to manage all API requests. Current trends in web
development such as microservices and serverless architecture influence the architec-
ture of such an application. Before presenting an example of such a web application
the important terms are shortly explained.

1The ProgrammableWeb.com lists over 18,340 APIs (status as of September 2017)
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Single Page Applications A SPA is an application running on the client side which
contains just one HTML document. Therefore, the application just has to be
loaded once from the server and does not need to be fully refreshed during in-
teraction [18]. The advantage is that navigating between different views of the
application works much faster. Those SPA usually also contain a lot more func-
tionality which makes them more powerful and implies that not all functionality
is being provided on the server side. (SPAs are explained in more depth in
section 2.4)

Microservices The architectural style microservices was first mentioned by [19]. In
such an architecture functionality is divided into small web services that run sep-
arately from each other. This has the advantage that they can be independently
developed and deployed. The client communicates with each microservice sep-
arately via a RESTful API. Microservices can be easily added and removed from
an software architecture which supports the extensibility of an application.

Serverless Architecture In a serverless architecture clients connect to third party ap-
plications which provide ready-to-use functionality (e.g. Backend as a Service
(BaaS) or Platform as a Service (PaaS)). For example, those can be services sup-
plying cloud database access (e.g. Firebase2) or security and authentication (e.g.
Auht03) [1]. Basically, this trend results from cloud computing where servers
are not hosted by the web application developers anymore, but outsourced to
third parties providing server capabilities (the cloud). Hence, serverless does not
exclude servers completely but it implies servers are being managed by third
parties and provided as a service.

API Composition API composition is when several services are combined together
in one interface. For example, when data represented in a user interface (UI)
comes from different APIs. When the UI does not make the API calls directly
but has services provide parts of the UI directly and uses these as fragments in
the interface, it is called UI fragment composition [20]. Web sites that combine
separate data sources and API into one applications are called mashups [21].

These trends lead to SPAs containing a lot more functionality and backend services
are not implemented from scratch for each application. For example, microservices
that are needed more often (such as login) can be reused across different applications.
Additionally, it is quite common nowadays for third party applications, to publish
RESTful APIs which allow access to their data and services (e.g. Google, Facebook,
JIRA etc.).
An example of an application consuming such APIs is a web application that analyses

2https://firebase.google.com
3https://auth0.com
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the workload of completed software projects. This example will be used across this
thesis and explained in more depth in the evaluation. An organisation wants to have
an application that makes predictions on the workload of new software projects based
on the data of previous ones. Figure 2.3 shows how an architecture of such an applica-
tion could look like. Data from each project can be retrieved from the JIRA4 API since
this tool is being used for the project management. The code related to the projects is
being stored on GitHub5, hence, information about the commits and number of lines
of code can be extracted from there. These APIs provide lots of different information
and not all of it is of interest. Additionally, statistics about the projects have to be
calculated based on the project. The data coming from the APIs needs to be combined
in one data model. For example, the Issue entity in the client holds the description of
the issue (JIRA) as well as information about the commit related to this issue (GitHub).
Accordingly, several data transformations need to be conducted in the client. To pre-
dict workload of future project from the statistics data an estimation service needs to
be developed. In order to authenticate the user a cloud based authentication service
is being used. The client is a single page application that communicates with all ser-
vices via RESTful APIs and presents the data in a UI. Hence, the client is much more
powerful as it needs to handle all the API consumption and data transformations.

Single Page 
Application

Estimation 
Service Database

provide 
RESTful API

require 
RESTful API

GitHub JIRAAuthentication Service

3rd party 
component

own
component

cloud
service

Figure 2.3: Architecture of a web application using modern approaches

4http://atlassian.com/software/jira
5https://github.com
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2.3 Developing RESTful APIs

The fact that it is common nowadays to access third party APIs made it necessary to
document the RESTful APIs. If an API is publicly available for every developer it is
extremely important that the developers understand the design of the API. Especially
in those cases it is required to stick to the concepts and properties of ROA mentioned
before. However, it is not enough to just stick to these principles. Developers need
to know what resources are available and how to access them. Therefore, most API
designers also publish API specifications to explain in depth how to utilise the API.
Another way of guaranteeing standardisation and therefore usability for RESTful APIs
are API design guidelines. Big software companies publish design guides describing
how REST APIs should be designed, also to understand how they implement their
software. Furthermore, API management tools facilitate developing and maintaining
APIs by supporting each step of the lifecycle.
There is not the standard for describing RESTful APIs, however, there are some tools
which are widely used. Swagger6 and RAML7 are two very popular frameworks to
describe RESTful APIs [22]. In the following these two specifications will be presented
and compared to make clear what the key concepts of RESTful APIs are.

2.3.1 Describing APIs with Swagger

Swagger is a web development framework to describe, document and test RESTful
APIs. The core of Swagger is the OpenAPI specification8 (aka Swagger Specification)
which allows describing APIs [23]. As a language either JSON or YAML can be used.
This section outlines how to describe APIs in Swagger. Please note that the specific-
ation will not be described in detail but the main objects of the Specification will be
presented. For further details refer to the Swagger specification [23]. All information
presented here comes from this specification.
Listing 2.2 shows an example of an API description with Swagger in the YAML format.
The OpenAPI object is the root of the specification and contains all other objects. In
the following it will be described how to specify the general information, the actual
resources that are accessible and components describing elements in the specification.

General Information

Firstly, general information about the server and its APIs has to be defined. The
openapi field is required and specifies the version number of the API specification.
Furthermore, an info object and a server object can be defined.

6https://swagger.io
7https://raml.org
8https://www.openapis.org
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Info Object The info object (cf. line 2-5) holds metadata about the API. It requires an
application title and a version. Furthermore, it can contain a description

about the API as well as license and contact information.

Server Object A server object needs to define a url which links to the host. It may
contain a description of the server and variables.

Paths Object

In this object the actual endpoints of the API are being defined. A paths object (cf.
line 12) contains several path items and a path is representing the relative path to a
resource. If a developer wants to access a resource he/she would just take this relative
path and attach it to the url of the server object to target the resource.

Path Item Object A path item object (cf. 13) defines the different elements that are
important to conduct a HTTP request as explained in subsection 2.2.2. It contains
one or multiple operations objects (cf. line 14) defining what HTTP methods are
allowed to access this resource. Therefore, operation objects can be of different
types: get, put, post, delete etc. A path item object may also contain a para-
meter object to define parameters (e.g. header or query) that are relevant for all
different operations.

Operation Object An operation defines how to access a resource with a specific HTTP
method. It can also contain parameter objects but if they are listed in the oper-
ations object they are just relevant for that specific method (cf. line 19). When
describing a POST or PUT request, a request body should be defined. Therefore
the request body object specifies how the data for the request body should look
like (in the content field) and if it is required. Defining a responses object (cf.
line 26) specifies how the response of this request looks like to inform developers
what the different response codes mean.

Parameter Object As already mentioned a parameter object can be defined in the
path item object for all operations or in the operations object for a specific one.
This object contains the name (cf. line 20) and location ( in, cf. line 21) of the
parameter. A parameter can be located in the path, header, query or cookie of
the HTTP request.

Components Object

The components object defines objects that can be referenced across the specification
(cf. line 35-48). In this way, responses, parameters, request bodies, header, etc. can be
defined in more detail.
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Schema Object Schema objects can define entities related to the data model of this
backend. They can be used as return types (cf. line 34) for requests or as in-
put. A schema object is identified by its name (cf. line 36) and contains several
properties (cf. line 38-44) that defines the fields of an entity.

Response Object The response object describes the response of a request to help a
developer understand what returning data to expect from an API request. The
data content can be defined as well as headers sent along. It is required to
specify a description of the response.

Security Scheme Object The operations from the different path can also provide se-
cure requests by utilising a security scheme which is being defined by this ob-
ject. As a security scheme either HTTP authentication, API key or OAuth2 can
be used.

Also several other objects such as parameter, header or example objects can be pre-
defined in the components object and reused in the specification.

Listing 2.2: Example of a Swagger REST API description

1 swagger: ’2.0’
2 info:
3 title: Person API
4 description: Simple person API example
5 version: 1.0.0
6 host: api.person.com
7 schemes:
8 - https
9 basePath: /api

10 produces:
11 - application/json
12 paths:
13 /people:
14 get:
15 summary: List all people
16 operationId: listPeople
17 tags:
18 - people
19 parameters:
20 - name: limit
21 in: query
22 description: How many items to return at one time (max 100)
23 required: false
24 type: integer
25 format: int32
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26 responses:
27 "200":
28 description: An paged array of people
29 headers:
30 x-next:
31 type: string
32 description: A link to the next page of responses
33 schema:
34 $ref: ’#/definitions/People’
35 definitions:
36 Person:
37 type: object
38 properties:
39 first_name:
40 type: string
41 description: The name of the user.
42 age:
43 type: integer
44 description: The age of the user.
45 People:
46 type: array
47 items:
48 $ref: ’#/definitions/Person’

Of course the here presented fields and objects are not all values that can be defined
in the Swagger API description. However, they help understanding what is being
described and how to extract relevant information as a developer from such specific-
ations. If a developer wants to access the API, the URL has to be combined with the
path. Additionally, it needs to be checked if any header or query parameters have
to be passed along and if authentication is required. In order to understand what re-
sponse to expect the developer can take a look at the responses field with the different
response codes.

2.3.2 Describing APIs with RAML

RAML stands for RESTful API Modeling Language and allows as the name reveals
the specification of RESTful APIs. Similar to Swagger it can also be used to design,
build and test APIs. The language to model REST APIs with RAML is YAML. How to
describe APIs is defined in the RAML specification [24]. Listing 2.3 shows an example
of an API specification using RAML. In the following the main elements of describing
RESTful APIs with RAML will be presented. However, not all nodes that can be used
for the description will be discussed, for further details refer to the specification [24].
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General Information

To define general information about the API, elements such as title and version

need to be defined. Furthermore, the baseUri element (cf. Listing 2.3 line 1) can
be specified to describe the URL of the API. If parameters appear in the baseUri

(indicated with {}), then those have to be defined in the baseUriParameters element.
In order to access resources via an HTTP request, the paths defined later in the YAML
document need to be added to that base path to option the URL to the endpoint.
Moreover, the general documentation of the API can be linked in the RAML file with
the document element. It also can be specified what different media types exist and
what the default type for response and request bodies is (e.g. XML or JSON).

Resources and Methods

In RAML the endpoints of the API are to defined as a resources property with its
allowed methods as child nodes.

Resource Property Resource properties are indicated by starting with a backslash (cf.
line 2), followed by the name of the resource. URI parameters can be specified
afterwards with the name of the parameter surrounded by braces (cf. line 3).

Methods For each resource the HTTP method needs to be specified to make clear
which operations are allowed. For example the code in Listing 2.3 defines in line
4 that a user can be accessed with a GET method. Subsequently other values for a
API request can be defined such as a description, queryParameters, headers,
or a body. For example, line 5 to 8 in Listing 2.3 define four queryParameters
which reveal that users can be filtered by name, sex and date of birth. A method
node can also contain responses.

Responses The responses node describes the different responses to expect when ac-
cessing this resource with the specified method. A response node starts with the
response code that indicates if a request was successful or not (1xx Informational,
2xx Successful, 3xx Redirection, 4xx Client Error, 5xx Sever Error [15]). Further-
more, a response can contain headers that are sent along with the response and
a body containing response data.

Listing 2.3: RAML REST API specification of a user resource

1 baseUri: http://api.test.com/
2 /user
3 /{username}:
4 get:
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5 queryParameter:
6 name:
7 sex:
8 dateofbirth:

Defining Types

In RAML types can either be defined as JSON or as RAML type. Defining a RAML
type has the same syntax as the rest of the RAML and also consists of several elements.
It is useful to define types when the aim is to utilise them across the RAML document.
They can be used to define the structure of a URI parameter, query parameter, header,
or request/response body. Such a definition starts with the types node. The next
node then specifies the types name, followed by a type and a schema. It can consist of
several properties which basically define the different fields of a data entity. Those
different properties are a combination of the property name and type. A property is
required by default but if it is not required it can be stated by required:false or by
a question mark after the name (e.g. email?: String).

When describing a RESTful API with RAML there are also several other properties
that can be defined. For example, the authentication and security aspect of an API
can be specified in the securitySchemes node. Different security types such as basic
authentication to pass along a request or OAuth can be defined here.

2.3.3 Key Concepts of API Description - Swagger vs. RAML

The previous explanation revealed specifying RESTful APIs with either Swagger or
RAML is quite similar. The differences are mainly naming conventions and slightly
different structure in the documents. The key concepts are describing general infor-
mation about the API, describing the endpoints by listing the different paths (how to
access resources and what operations to conduct) and defining types that can be used
across the document. These concepts also influenced the process of designing the
model for RESTful API consumption which will be described later in this thesis. Even
if the model specifies the consumption and not the actual REST API, it makes sense to
specify it in a similar manner since the developers are looking at these specifications
to find out how to access an API.

2.3.4 API Design Guidelines

As already mentioned before API design guidelines are another way of enhancing
standardisation for RESTful APIs. A lot of software companies provide design
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guidelines which have to be followed by their developers. Some companies also pub-
lish their API guidelines so that everyone can access them (e.g. Atlassian [25], Google
[26], Microsoft [27]...). These guidelines lack a scientific basis but help software com-
panies and developers to agree on API usability factors [28]. Firstly, the idea to en-
hance usability for the developers working with those APIs. Secondly, API guidelines
should provide a high standardisation for software related to this company. This
should make it easier to collaborate between developers which is important when tak-
ing into consideration that it is more common nowadays for web applications to access
third party code.

Designing Resources

Taking a look at different guidelines reveals that they mainly focus on concepts of
REST and resource oriented design. Google [26], for example, explains that the key
idea is to represent the data model with the resources and not functionalities. How-
ever, each resource has methods attached to it. Furthermore, they state that design-
ing resource should follow a certain process. Firstly, determining what resources to
provide and how they relate to each other. Based on this decide how to name the re-
sources. Subsequently, decide on the schema for the resources and use the minimum
set of methods for each resource.
Resources can be a single resource or a collection of resources. For example, an event
resource can consist of several participants (a list of user resource).

Naming Conventions

API design guidelines also provide rules on how to name resources. Microsoft [27] for
example states in their guideline that the resources names should be easy to read and
understand in the URL. In the guideline of Google [26] it says: "resources are named
entities, and resource names are their identifiers". Hence, the resource names have to be
unique.
However those guidelines do not only focus on the names for the resources but nam-
ing in general (also for packages, services, methods etc.). Google [26] specifies that
naming should be simple, intuitive and consistent. They provide rules such as using
American English, utilising common forms of abbreviations, trying not to use words
which might conflict with keywords of programming languages etc.

Further Guidelines

Further instructions that are contained in API guidelines are specifications on how to
use methods in REST. Which mainly explains when to use what HTTP method.
Additionally, they also provide a guide on versioning of the APIs. It is being explained
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how version numbers work. For example, Google [26] wants their developers to use
semantic versioning differentiating between major, minor, and patch version number.
Atlassian [25] advises to use the version number of the API in the Uniform Resource
Locator (URL). Moreover, they want APIs to support the word /latest/ in the path,
which can be used instead of a version number and specifies the usage of the latest
API version.
Furthermore errors are being addressed in API guidelines. Stating how to use error
codes, what should be contained in the error messages, as well as how to handle
errors.

2.3.5 API Management

API management also aims at supporting the development of APIs. It provides spe-
cification languages such as Swagger but goes further and supports each step of an
API lifecycle. API management describes the entire process of creating, publishing
and maintaining APIs. Tools such as apigee9 or WSO210 provide several functional-
ities that support API management. Their goal is to facilitate the implementation of
APIs while supporting the documentation process and providing analytics. As de-
scribed by Weir [29] in his book on Oracle’s API management solution, there are four
fields of API management.

Community Management Community management is an important field for the col-
laboration between developers. The community of an API consists of internal
developers who implemented the API as well as external developers consuming
the API. Therefore, it is very useful to describe the API, for example, by using
specification languages such as Swagger or RAML. Also other forms of docu-
mentation such as providing tutorials explaining how to use the API belong to
community management.

API Lifecycle Management The lifecycle management of an API supports it in all
phases. Those phases of the API are typically: designing, implementing, pub-
lishing, deprecating and retiring. This API lifecycle management is especially
important when the APIs are being published, hence can be used by third party
developers.

API Operations The third field of API management supports the evolution of APIs
through versioning. Furthermore, it includes the presentation of statistics and
analytics of the API runtime such as the performance or error rate.

9https://apigee.com/api-management/
10http://wso2.com
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API Gateway Finally, API management also provides API gateways to allow access
to multiple services. Such a gateway can also support the security aspect of the
APIs by providing security protocols (e.g. TLS, OAuth).

API gateways provide an interesting architecture which is very helpful when using a
lot of different services. Accordingly, they play a relevant role in this thesis and are
worth a more detailed description.

API Gateway

A gateway is an architectural pattern that can be seen as a very simple wrapper [30].
API gateways became more used with rising popularity of microservices. They can
handle communication with all the microservices for a client or provide various con-
tent for different types of interfaces [20]. Figure 2.4 shows an example of an architec-
ture using an API Gateway. The gateway is a layer on top of the server side managing
multiple backend calls. It can also vary the content or API calls for different types
of frontends. This pattern is for example useful for API compositions to keep API
communication in one place and extract it from the client. It is also possible to real-
ise this patter such that each frontend has its own gateways (also called backends for
frontedends (BFFs)). This is beneficial if the content for the different interfaces varies
a lot and they need to access different services.

Mobile App

Web App

API 
Gateway

Customer 
Service

Recommendation 
Service

Catalog

Figure 2.4: Example of an architecture using an API gateway (based on [20])

2.4 Single Page Applications

Single Page Applications are an approach to develop clients in a web application. SPAs
rely less on the server and implement lots of functionalities already in the client using
JavaScript, HTML, and CSS to realise end-use interaction [18]. Mikowski and Powell

24



2.4 Single Page Applications

[31] describe them as a fat client that is loaded from the server. The browser loads
the SPA once from the server and does not load pages anew for each navigation step.
Accordingly, it loads a single page where each view is a sub component and therefore
does not need to be request each time form the server. After loading the SPA, the
client still communicates with a server to load data which is being displayed in the
view, however, it does not load entire pages. Before SPAs were used the client just con-
tained HTML templates and JavaScript for styling. With SPAs the client contains also
business logic and HTML rendering. Business and presentation logic is implemented
in JavaScript and executed asynchronously in the browser [31].

2.4.1 Building Blocks of Single Page Applications

There are several concepts and technologies that a developer comes across when im-
plementing SPAs. According to Fink and Flatow [18] SPAs have six main building
blocks. Those will be presented in the following.

JavaScript Libraries and Frameworks When developing such frontends, several tools
and frameworks can be used to support implementing SPAs. Predefined lib-
raries provide templating our routing but also help releasing MV* architectural
patterns. For example, the Model View Control (MVC) pattern is such a pattern.
The model contains the data, the view represented by HTML templates display-
ing the model in a UI, the control is the JavaScript code passing the model to
the view and handling user interaction. Frameworks such as Angular, React,
Vue.js, Knockout.js etc. support pattern such as MVC or MVVM by structuring
the application in those different elements. Those frameworks act as the main
foundation for SPA and facilitate frontend development [18].

Routing As mentioned before SPAs just contain one page. Hence, such an application
cannot just link to different pages to allow navigating through the web page.
Therefore, routing is an important feature in SPAs to provide navigation to dif-
ferent views. While staying on the same page routing takes care of things such
as navigation history, aligning back button or keeping navigation state available
[18].

Template Engines In SPAs templates need to be rendered when a user navigates
through the UI. The reason is that when a new section of the page is being loaded
not the entire template is requested from the server but just the data. Therefore,
the HTML template of the application need to be rendered anew, so that the data
can be displayed in the view. Accordingly, templating engines (e.g. Handlebars
or Mustache) are being used by those applications. They render context (data)
into HTML templates.
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HTML5 With the release of HTML5 several APIs supporting the development of SPAs
were provided. For example, the history API keeps track of the navigation of the
user. Another useful area of HTML5 APIs is offline storage. Some APIs provide,
for example, caching or web storage through a dictionary with key-value pairs
[18].

Backend API and REST With clients using SPAs also the role of servers changed.
They do not provide the entire functionality of the application since a lot of
processes can also be handled in the client. However, servers often provide data
by being connected to a database. SPA can access this data or persist data by
connecting to the APIs of the server. The previously explained RESTful APIs
are often used in such an architecture. They enable communication between the
client and the server through HTTP.

Ajax Ajax is an important technology for SPAs. It is a combination of JavaScript and
XML and uses the XMLHttpRequest object to conduct HTTP requests. Ajax
allows code to run asynchronously which is an important feature for frontends.
This enables the client to send requests to a server while still staying responsive
for the user and handling interaction. Furthermore, it allows rendering of only
one section of the UI. The asynchronicity provided by Ajax made applications
quicker and therefore it became convenient to put more functionality on the
client-side. [18]

2.4.2 Architecture

The general structure of a SPA can be seen in Figure 2.5. The client consists of an
application core which contains the different frameworks and libraries which are used
by the client. The architecture is structured into different components. The view
represents the user interface and specifies what the user can see and how it is struc-
tured. It consists of HTML code and uses CSS for styling. The view communicates
with controllers (also called view-models depending on if MVC or MVVM pattern is
being used). Those controllers are implemented in JavaScript and handle the events
triggered by the user interaction. Furthermore, they provide data to the view or pass
along data entered by the user. The data is for example stored in a JSON object which
represents the model. Data services persist or retrieve those models. To do so they
communicate with RESTful APIs of a server or with client-side storage.
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Client

Views
(HTML/CSS)

ViewModel/Controllers
(JavaScript)

Models
(JavaScript/JSON)

Client-Side Storage
(Web Storage)

Data Service
(JavaScript)

Communication

Widgets

JavaScript Libraries

MV* Frameworks

Client-Side 
Application Core

Server

Figure 2.5: Frontend architecture of a single page application (based on [18])

2.4.3 The Problem of a Heavy Client

As previously mentioned, web applications utilising SPAs tend to push more func-
tionality to the client. Obviously, more functionality also implies more complexity on
the client side since it contains more code. Another cause for a growth of complexity
in the client are data transformations that are related to API consumptions.
It is quite common for clients utilising third party data to transform this data. The
reason is that RESTful APIs need to be accessed exactly in the same way as they were
designed. This does not mean that the API was designed poorly, it can even happen
when strictly following API design guidelines. Data transformations need to be con-
ducted as soon as the data model from the service differs from the desired data model
in the frontend. This can happen easily when consuming third party APIs.
An application frontend needs to implement each API request (in the data service)
and perform data transformations (e.g. in the controllers) when the API sends the
response. In an application which consumes two APIs this is not that much code.
However, when scaling up the number of APIs to consume, as it is often the case with
microservices, the application will result in having a lot of code in the data services
and controllers due to the API requests and subsequent data transformations. This
leads to a heavy and complex client which is not very agile or changeable anymore.
When a RESTful service is now being changed by its provider, the whole client needs
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to be adapted, too. In a monolithic frontend this is not a trivial task. Even though,
microservice were used to avoid a monolithic backend it can result in a monolithic
frontend and will prevent the flexibility to scale across teams as promised by mi-
croservices [32].
Even if the idea is to counteract this monolithic frontend by having multiple clients
(e.g. a mobile application and web application) this service consumption and data
transformation need to be implemented in all clients.

Approaches Addressing the Problem

The challenge of managing multiple web services consumed by one application is not
new and has already been addressed by several other approaches. For example, the
ESB which was presented at the beginning of this chapter tries to counteract the prob-
lem. It orchestrates several services in a SOA and handles their communication with
each other. Furthermore, the previously explained API management tools are also ap-
proaching the problem of handling several different APIs. For example, they provide
monitoring tools to keep track of all APIs as well as gateways to handle the API con-
sumption.
API management tools do manage complexity but focus a lot more on the actual
management of own APIs. This thesis, however, targets reducing complexity when
consuming third party APIs. Managing (and evaluating) own APIs requires a power-
ful tool with several functionalities but in the use cases considered in this work such
functionality can unnecessarily enhance complexity. This thesis does not intend to
present a better approach than API management tools. The aim is to reduce com-
plexity of the client whilst consuming several different APIs whereas the previously
mentioned approaches focused on several other issues. The next chapter presents a
further approach to handle client-side RESTful API consumption.

28



3 Design

Contents
3.1 Model-Driven Software Development . . . . . . . . . . . . . . . . . . . . 29
3.2 Web Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Shifting the Responsibility Outside of the Client . . . . . . . . . . . . . . 39
3.4 Modelling RESTful Service Consumption . . . . . . . . . . . . . . . . . . 42
3.5 Code Generation Process . . . . . . . . . . . . . . . . . . . . . . . . . . 44

The previous chapter illustrated that the problem of handling and consuming multiple
different services is not new. It has already been addressed by architectural patterns
such as the SOA or API gateways. This section also presents an approach to handle
RESTful service consumption by focussing on the reduction of complexity in the client.
Firstly, the research field of Model-Driven Software Development will be introduced
as well as approaches and technologies that influence the design of the solution. Sub-
sequently, a reference architecture will be proposed which targets the reduction of
complexity on the client-side. Furthermore, a model-driven approach is being presen-
ted to facilitate the adoption of the suggested architecture. Therefore, a model is being
introduced describing client-side service consumption, followed by a code generation
process driven by this model.

3.1 Model-Driven Software Development

MDSD is a discipline where the development process is driven by formal models
which will then be automatically transformed to code. Thus, the developer can fo-
cus on specifying the instance of a model instead of getting carried away with the
technical details of the implementation. This term plays an important role in this
thesis since the approach presented is model-driven. Völter et al. [2] introduce the
concepts of MDSD in their same-titled book. They state that MDSD is the same as
Model-Driven Development (MDD) and Model-Driven Architecture (MDA) fostered
by the Object Management Group (OMG) provides the basic terminology for MDSD.
Brambilla, Cabot and Wimmer [33] give a good overview of the different fields of
modelling by visualising the different subsets of Model-Driven Engineering (MDE) as
in Figure 3.1. As explained before, MDD relates to using models to transform them
(semi-)automatically to code. The model plays a key role in this process. Völter et
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al. [2] describe model-driven as a development process where models represent each
step: "... models are no longer only documentation, but parts of the software, ...". MDA is
a specific version of MDD and provides a standardised modelling language specified
by the OMG. MDE is a practice that does not only provide automatisation of imple-
mentations but also models other aspects of software engineering (e.g. model-based
evolution of the system) [33]. Furthermore, an approach can be considered as model-
based when it is concentrated on a model, however the development process is not
driven by them. Hence, in Model-Based Engineering (MBE) code is not necessarily
being generated from the models.

MBE

MDD

MDA

MDE

Figure 3.1: Overview of MD acronyms (based on [33])

In this thesis the focus is on MDSD. In section 3.5 a MDSD approach will be presented
by implementing a tool which (semi-)automatically generates a server.

3.1.1 Main Concepts of MDSD

A model-driven process starts with constructing a Platform-Independent Model (PIM)
which mostly gets transformed to a Platform-Specific Model (PSM), to allow sub-
sequently the generation of actual code. In order to understand the process outline in
section 3.5 and why to divide it into these steps, it is important to be familiar with the
key concepts of MDSD.

Platform-Independent Model A PIM as described by Lano [34] models the system in
terms of domain concepts and constructs independently from an implementa-
tion. PIMs pursue the idea: Concepts are more stable than technologies, and formal
models are potentially useful for automated transformation [2]. Hence, they repres-
ent the highest level of abstraction in MDSD and are reusable across different
platforms.
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Platform-Specific Model PSMs are usually automatically created from PIMs and con-
tain specific concepts of the target platform [2]. They act as an interim step for
the code generation to model the implementation of a concrete platform. Such
a platform could be a JavaEE server, a NodeJS server, an AngularJS frontend or
any other framework.

Model transformation In order to retrieve a PSM the PIM has to be transformed. This
process is called a model-to-model transformation. It could also be a transfor-
mation from a PIM to a PIM. In the case of actual code being generated from a
PIM this process is called model-to-code generation. However, in both cases an
artefact is being created from a model and therefore can generally be related to
as model transformation.

Figure 3.2 shows the usual process of a model-driven software tool. A PIM is trans-
formed to a PSM which is subsequently transformed to code. However, there can be
more than just one PIM as an interim step between the PSM and the code.

PIM PSM Code

Model-to-model 
transformation

Model-to-code 
transformation

Figure 3.2: Common process in MDSD

The PIM is being modelled with a Domain Specific Language (DSL) and in order to
describe how a PIM should look like it can be modelled by a meta-model. The two
concepts, DSL and meta-modelling, will be outlined in the following.

Domain Specific Language

A domain describes the field which is being modelled. This can, for example, be a
professional domain or a technical field [2]. In the case of this thesis the domain is
RESTful APIs and their consumption. A domain specific language allows describing
elements of a domain. It specifies the building blocks for modelling by defining the
aspects of the models. The developer needs to know and understand the DSL to be
able to construct the model correctly. A well known example of a DSL is the Unified
Modeling Language (UML) but can also be a newly defined language (however MDA
is focussed on modelling with UML-based languages) [2]. In this work models will
be described based on UML standards, however for constructing the PIM a web form
will be used and not UML.
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Meta-Modelling

meta-modelling is being used to describe how a model looks like. This is the basis
for presenting a MDSD approach because it allows describing how a PIM has to look
like. Völter et al. [2] state that "...it defines the conctructs of a modeling language and
their relationships, as well as constraints and modeling rule,...". Furthermore, he outlines
that meta-modelling is dealing with several challenges. However, the important two
aspects in this work are the following ones. Firstly, a meta-model can be used to
describe a DSL to define the abstract syntax this DSL. This aspect will be utilised
in section 3.4 when describing the model. Secondly, meta-modelling can be used
to describe model transformations to define the transformation rules between two
models [2].

Goals of MDSD

The idea of MDSD is to manage complexity by enhancing the level of abstraction. Völ-
ter et al. present several other advantages of MDSD. The usage of formal models which
are automatically being transformed to code MDSD increases development speed, en-
hances software quality and allows higher level of reusability. The concept of PIMs
ensures a better portability due to platform independence. Additionally, MDSD sup-
ports a better maintainability of systems due to redundancy avoidance and provides
manageability of technological changes in one place. However, for every concept there
are also downsides which are not explicitly being listed here. To compensate for this,
section 5.5 focuses on the limitations of MDSD by evaluating the development process
of an example web application with the help of MDSD.

3.1.2 Modelling RESTful APIs

After previously explaining the basic concepts of MDSD, this subsection presents the
modelling domain of RESTful APIs. Therefore, the field will be outlined by describing
different approaches for model RESTful APIs.

API Description Languages

The two API specifications Swagger and RAML that were presented before can be con-
sidered as REST API models since they describe RESTful APIs. Similar tools are API
Blueprints1 and Hydra [35] which are also a description language for web APIs. Fur-
thermore, the Wep Application Description Language (WADL) is a language specific-
ally used for the syntactic description of RESTful services which are machine readable
[36]. It uses the XML syntax to describe REST principles.

1https://apiblueprint.org
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Those API description languages are also used by model-driven approaches to model
APIs. For example Rossi [37] presents a process which starts with constructing a
model with UML and transforming it to a RAML description.

The Eclipse Modeling Framework

Furthermore, there are approaches in the field of MDSD which not only model REST-
ful APIs but also present model-driven approaches to generate RESTful services. A
framework which supports the modelling process is the Eclipse Modeling Framework
(EMF). For example, Haupt et al. [4] present a meta-model describing REST applica-
tions which is being used to automatically generate REST compliant services. They
use EMF to model RESTful services.
EMF is an Eclipse2 framework which supports generating code from models. Mod-
els can be constructed with EMF using the UML notation. This UML model can be
automatically transformed to XML or to Java code but also from either of those to
UML. As stated by [38]: "Regardless of which one is used to define it, an EMF model is the
common high-level representation that ’glues’ them all together.". The model which holds
this high-level presentation and therefore unifies the three technologies, is called an
Ecore model. The Ecore objects represent a model in memory and is stored in the XMI
format [38]. This allows transforming it to either XML, Java or UML.
Such a modelling framework facilitates developing a model-driven approach which is
why it is for example used by Ed-Douibi et al. [3]. In their paper they also make use
of EMF models and generate them to RESTful APIs. Their process is called EMF-REST
and provides ready-to-run web APIs out of data models which are constructed as
Ecore models. For this purpose they map EMF to the REST principles so that RESTful
APIs can be generated. Figure 3.3 shows an example model of an Ecore model visu-
alised in UML. It describes the structure of a family. This Ecore model is used as the
input for EMF-REST and outputs ready-to-run-and-test RESTful APIs [3]. A maven
project is being generated from a data model which includes the service implementa-
tion classes in Java as well as a simple JavaScript API.

2https://www.eclipse.org
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Figure 3.3: Example of an Ecore model [3]

Further Approaches

There are also several other model-driven approaches in the domain of RESTful APIs.
For example, Bonifacio et al. [5] present the DSL NeoIDL in their work, to specify
RESTful services. NeoIDL can be extended with a program generator to translate
NeoIDL specifications to source code [5]. Their provided syntax of NeoIDL is similar
to interface descriptions languages of Apache Thrift or CORBA.
Furthermore, Alowisheq, Millard and Tiropanis [39] use UML collaboration diagrams
to model Resource Oriented and RESTful Web Services in their paper about Resource
Oriented Modelling. Pérez et al. [40] describe ROAs with the Application Facade Com-
ponent Model and Verborgh et al. [41] propose a logic-based approach to describe web
API called RESTdesc.
This shows that several other people already worked on model-driven approaches in
combination with RESTful APIs. The biggest difference to the approach presented in
this thesis is that those works focus on modelling and generating server-side code. This
thesis, however, deals with the consumption of RESTful APIs, hence, focuses on the
client-side. Nevertheless, looking at models describing RESTful APIs was extremely
helpful when modelling the consumption of those APIs.

3.2 Web Technologies

This section introduces web technologies that are being used throughout this thesis.
A few frameworks will be introduced to make it easier to comprehend the design
and implementation process of the software later in this thesis. Firstly, the JavaScript
framework React will be introduced which is being used for the development of the
user interface for the code generation process. Secondly, the sever-side tool NodeJS
will be described. It is being used as the platform for the generated web service.
Finally, the GraphQL framework will be explained to better understand the design
decision outlined in the next chapter.
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3.2.1 React

The React3 framework is a library developed by Facebook4 to implement user inter-
faces. It is an open source tool which is implemented in JavaScript. React facilitates
the development of single page applications as user interfaces. The core of React are
components and its compositions which are being realised as JSX files [42].

Components

Chinnathambi [43] introduces React components as: "... reusable chunks of JavaScript
that output (via JSX) HTML elements". They contain both, the control and the view. In
React templates are not required since components contain everything necessary to be
displayed [42]. Listing 3.1 shows an example code snippet of a React component. A
React component is implemented as a function and needs to extend React.Component

(cf. line 3). It also has to implement the render function (line 11 to 13). This function
contains the view model as HTML like elements, which get rendered in order to be
displayed in the view.
React components have properties and a state.

Properties Other components can use sub components and configure them through
their properties. Those properties cannot be changed from inside the compon-
ent but from outside [42]. They can be used to pass values to the component
which is useful when having nested components.

State Each component has a state which is the part that just can be accessed and
changed from inside the component. This inner state can, for example, be used
to store input from a user form [42]. If either the state or the properties of a
component are being changed, the component gets re-rendered.

In a component events can be triggered. To do so a view element needs to specify the
event (e.g. onClick or onChange). It also has to be indicated what happens if the event
occurs, for example, by linking to a function. Such a function will be called when the
event gets triggered for the specific view element.

Listing 3.1: Example of a React component

1 import React from ’react’;
2
3 class ExampleComponent extends React.Component {
4 constructor() {

3https://facebook.github.io/react/
4https://code.facebook.com
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5 super();
6 this.state = {
7 name: "world",
8 };
9 }

10
11 render() {
12 return <h1>Hello, {this.state.name}!</h1>;
13 }
14 }

JSX

React components are implemented as JavaScript Syntax Extension (JSX) files. They
combine code to define the UI as well as code to control elements from the UI. In JSX,
JavaScript code can be extended with XML-like elements which makes template files
such as HTML obsolete [42]. According to Chinnathambi [43], visuals can be defined
in JSX files with a syntax similar to HTML but still getting the power and flexibility
from JavaScript. The code specifying the view is mainly used in the render function
of a React component (cf. Listing 3.1 line 12). In order to make the browser read JSX
files, it needs to transform the JSX code into JavaScript code [43].

3.2.2 NodeJS

NodeJS5 is a runtime environment for javascript. It allows writing JavaScript code on
every platform where NodeJS can be installed [44]. It can be used as a platform for
backends, for example, acting as a server for SPAs such as React or Angular. NodeJS
is single threaded which means that it executes one line of code at a time. Satheesh,
D’mello and Krol [44] describe the goal that NodeJS tries to solve as follows: "It tries
to do asynchronous processing on a single thread to provide more performance and scalability
for applications that are supposed to handle too much web traffic." Thus, it is asynchronous
which means it does not execute the lines of code chronologically from top to bottom
but is able to do multiple operations at a time. NodeJS comes along with a package
manager.

The Node Package Manager

The Node Package Manager (NPM)6 is a built-in package manager. It allows installing
packages easily with the command npm install package. Directories of Node ap-

5https://nodejs.org
6https://www.npmjs.com
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plications contain the folder node_modules were all packages are located which are
being used by the application. Packages are organised in the package.json file by
listing all dependencies that are necessary to run the application. The package.json

file is important when downloading NodeJS applications from the internet that do
not contain the node_modules folder. The required packages can then be installed by
running npm install in this directory.

Express

According to the NPM website, Express7 is one of the most popular packages installed
with NPM. It is a very popular framework for developing NodeJS applications and
contains main building blocks and tools to run a server [44]. An Express application
contains at least two files. Firstly, the previously mentioned package.json. When
executing npm init in the project directory, such a file will be created automatically.
Secondly, an Express applications also contains a server.js file which is the entry
point for the application [44]. Listing 3.2 shows an example of such a file. It imports
the express framework (line 1-2), sets up the server with all its routes (line 4-6), and
specifies the port on which the application runs (line 7-9). For this example, the string
Hello World will be displayed when requesting the URL http://localhost:8080/.

Listing 3.2: Example setup of an Express server [44]

1 var express = require(’express’),
2 app = express();
3
4 app.get(’/’, function(req, res){
5 res.send(’Hello World’);
6 });
7 app.listen(8080, function() {
8 console.log(’Server up: http://localhost:8080’);
9 });

The web service (presented in section 3.3) that is being generated with the tool imple-
mented in the scope of this thesis, is realised as a NodeJS server with the help of the
Express framework. Its implementation will be outlined in section 4.1.

7https://expressjs.com

37

http://localhost:8080/
https://expressjs.com


3 Design

3.2.3 GraphQL

Another technology which will play a major role in this thesis is GraphQL8. As stated
by Buna [45], GraphQL is a language and a runtime. It is a query language for APIs
and a runtime on the server-side to understand GraphQL requests. Later in this thesis
the focus is mainly on the runtime since a GraphQL server is being generated in
the scope of this thesis. However, the benefits of the GraphQL language lead to the
decision to utilise it.
As stated above in REST you have to access resources in exactly the same way as they
were designed. GraphQL uses a different approach to transfer data than REST and
allows the client to send much more powerful queries to the API than it would be
possible with an ordinary REST request. GraphQL is a query language for APIs. The
client can exactly specify the structure of a data entity it wants to be returned and does
not have to stick to the response structure as it was designed by the backend developer.
However, the GraphQL server needs to specify a graph-based schema to define what
data can be accessed [45]. The client then sends queries or mutations based on this
schema to the server and specifies how the response should be structured. The server
responses in the requested format. Thus, the client does not have to transform the
data if it wants a different structure as designed by the API. This also leads to less
complexity in the client.
In GraphQL there are two types of requests: queries and mutations.

Queries Queries in GraphQL are requests that can be sent to the server to retrieve data
of a resource. These queries are read operations and can therefore be compared
to GET requests.

Mutations Mutations are API calls that modify data. Every request that is not a read
operation is in GraphQL defined as a mutation. In REST, mutations can be
compared to POST, PUT and DELETE requests.

As mentioned before, a GraphQL server needs to specify a graph-based schema. It
represents the capabilities of the server and describes the supported types, queries
and mutations. The schema, allows the server to understand the requests coming
from the client and represents the API of the server. Furthermore, a GraphQL server
specifies resolvers which retrieve the data (mostly from a database), requested with
a specific request. Therefore, each query and mutation also needs to implement a
resolve function specifying what the server has to do.

8http://graphql.org
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3.3 Shifting the Responsibility Outside of the Client

This section presents the architectural approach that resulted from the concepts of the
previously described methods and technologies. It demonstrates the idea of introdu-
cing a GraphQL server between the frontend and the services to reduce complexity
in the client. Accordingly, a reference architecture will be proposed for the consump-
tion of RESTful services. Subsequently, it will be justified why a GraphQL server is
reasonable by comparing it GraphQL APIs to REST APIs.

3.3.1 Reference Architecture

As mentioned in section 2.4 consuming data from several different APIs leads to com-
plexity in the client. To counteract this complexity the idea is to shift the responsibility
of the API consumption outside of the client. Therefore, a so called query service will
be introduced in the web application which conducts requests to RESTful services.
Furthermore, this service also handles the subsequent data transformation. The query
service provides one single interface for the client and supplies the data exactly as
needed by the client. This makes further data transformation in the client obsolete.
Figure 3.4 gives an overview of such an architecture.

Single Page 
Application

Web 
Service 1

Web 
Service n

Web 
Service 2

Data 
Transformation

Query Service

Backend

Frontend

. . .

GraphQL API

RESTful API

RESTful API

RESTful API

Figure 3.4: Architectural overview of a web application using the query service

The query service is an instance which runs separately from the client and can be re-
garded as a web service. It is a GraphQL server to allow the client to send more
powerful queries than it would be possible with a RESTful API. For the client it seems
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to be the backend of the web application since this is the place to get the data from
and the only service to communicate with. The query service hides the complexity of
accessing several different services from the frontend. It is inspired by the previously
described gateway pattern which additionally provides data transformation of the API
responses and supplies the data via a GraphQL API to the client.
It provides a GraphQL API to consume RESTful APIs and therefore can be seen as a
GraphQL to REST adapter. The advantages of designing the API for the client in such
way will be discussed in the following.

3.3.2 Comparing GraphQL with REST

GraphQL is getting more attention when it comes to API development and some even
call it the next generation of API design [46]. As both REST and GraphQL have their
benefits and limitations this section explains why it makes sense to use GraphQL for
the query service and not an ordinary REST API.
As Stowe [47] states it: "GraphQL and REST are designed to solve different challenges".
Furthermore, he reasons that REST supports having an agile, evolving and version-
less API whereas GraphQL is in place to allow querying data models. In REST the
language used for the request is different to the one used for the response, whereas in
GraphQL those are directly related [45].
When retrieving data from a relational database a developer can exactly specify what
data to get from the database, with the help of a SQL query. Requesting data from
an API via REST does not provide such powerful querying functionality. Of course
it is possible to send query parameters along in the HTTP request but as soon as
the queries get more complex REST has its boundaries. For example, when getting
the union or intersection of two different fields [48]. When it comes to relationships
between entities the client has to take the data as designed by the client. To understand
this problem consider the following example:
A user has a name and can be friends with several other users. There are at least two
ways to design the API:

• Two endpoints: /user/{id} returning a user and its name and
user/{id}/friends returning the friends of a user (a list of users).

• One endpoint: /user/{id} returns the user including all friends.

In the first case, to retrieve the name of a user and his/her friends, two API request
need to be conducted. In the second case just one request is needed but for each
request all friends of the user are also passed along even if just the name is needed.
Which leads to sending a lot of data overhead along with the response which is not
being used in all cases.
Listing 3.3 shows how such a request could look like in GraphQL. Here a user’s name
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is loaded and all his friends. When removing line 4 to 6 just the name will be loaded.
It is even possible to go deeper in the user relationship by adding the line friends{

name } after the second name field. This allows loading the friends of a user and all
their friends within one request.

Listing 3.3: GraphQL query example

1 query {
2 user(id: "100") {
3 name
4 friends {
5 name
6 }
7 }
8 }

Being able to sent such detailed queries to an API allows the client to specify in more
depth what data it wants to be returned. In REST the client does not have any control
over the response [45]. This advantage of GraphQL can reduce the data transforma-
tions on the client-side, hence, it helps reducing complexity in the client. This is also
beneficial because the client knows exactly what to expect as a response since it can
precisely specify the structure of the data.
However, there are also scenarios where REST has its advantages, for example, when
it comes to the evolution of APIs. It is mentioned as a disadvantage of GraphQL that
the API cannot evolve as with REST because of being tightly coupled with the client
and changing the API would break the client [47]. This might be an important point
when designing APIs of large backends. However, in the case presented in this thesis,
the only purpose of the GraphQL API is serving data from other APIs to the client.
Therefore, it only needs to be adapted if it is desired by the client. In fact the pre-
viously presented architecture supports API evolution really well since the evolution
would happen in the RESTful APIs that are being consumed. Hence, the API con-
sumption simply has to be adapted in the query service and the client does not have to
be touched. It, therefore, will always be fully functional.
To have a clearer idea of this query service and how it can be generated as a GraphQL
server, the following section describes its meta model, hence, what information it
contains and how it is structured. Section 3.5 demonstrates how this query service is
modelled by the developer and how the subsequent generation process works.
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3.4 Modelling RESTful Service Consumption

This section presents a meta-model describing the query service. It reveals what in-
formation is needed to conduct CRUD (create, read, update, delete) operations on
RESTful APIs. To establish this model, client-side applications have been inspected to
find out how they handle their data transfer with the backend.

3.4.1 Analysing Established Frameworks

For example, in Angular9 a usual approach would be to implement an Angular service
for each resource. This Angular service then contains functions that conduct CRUD
operations to a RESTful API with the help of the ng-resource module. A simple
example of such an Angular service is shown in Listing 3.4. A service has a function
to resolve data (cf. line 7) with a function name and arguments. In order to conduct an
API request the service is creating a $resource object from the ng-resource module.
A URL is passed to the resource object (cf. line 3) as well as a URI parameter (cf. line
4). A look at the Angular documentation [49] reveals what further elements could be
useful for other cases (e.g. header parameters).

Listing 3.4: Example of an Angular service [49]

1 app.service(’User’, function($resource) {
2 var User = $resource(
3 ’http://example.com/api/user/:userId’,
4 {userId:’@id’}
5 );
6
7 function get(uId, cb){
8 return User.get({userId:uId}, cb);
9 }

10 }

Other frameworks such as NodeJS where analysed regarding API consumption in a
similar manner. Additionally, API specification frameworks such as Swagger or RAML
which describe RESTful APIs on the server-side were investigated. Taking a look at
all these frameworks made it possible to understand what the important elements of
API consumptions are. It resulted in a generic model for the consumption of RESTful
APIs. This generic model is represented in the model of the query service since the
main goal of this service is the consumption of RESTful APIs.

9https://angular.io
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3.4.2 The Query Service Model

Figure 3.5 shows the meta-model of the query service. A query service contains general
information about the server such as a name, description, author and on which port
it should run for the development process. It contains two other models: a data model,
and a model describing RESTful service consumption (represented as resolvers).

Data Model

The data model is specifying the data structure of the frontend. It is used by the query
service to define the return type of a resolver or an argument type passed to the resolver
function. Hence, it is needed to know how to provide the data to the view. The data
model consists of data entities which include several parameters, defined by a name and
a type.

Resolver Model

A query service also consists of several resolvers. Those resolvers are functions which
represent the API for the client by providing CRUD operations on data to the client. It
can be called by the name of the resolver function and by potentially passing arguments
along. Since the query service just manages access to several different RESTful services
a resolver also has one or many API requests. This is the part which handles the com-
munication with a RESTful API to provide the data transfer supplied by this resolver.
The API request contains the URL of the API and may include several query- and URI
parameters. Each API request also contains an HTTP Method (GET, POST, PUT, etc.)
describing which CRUD operation to conduct. Where applicable, header parameters, a
body and/or authentication need to be passed along with the request.
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Query Service Model Query Service

name: String
description: String
author: String
port: Int

Data ModelResolver
name: String
return type: String

API Request

body: String

Argument
name: String
type: String
required: Boolean

11..*

0..*1..*
Entity

name: String

Parameters
name: String
type: String

1..*

1..*HTTP Method Authentication
username: String
password: String

Header Parameter
name: String
value: String

1

GET

POST

PUT

DELETE

HEAD

OPTIONS

0..* 0..1

Query Paramers
name: String
value: String

0..*

URL
protocol: String
host: String
path: String

URI Paramers

name: String

0..*

1
CONNECT

PATCH

TRACE

Figure 3.5: Meta-model of the query service

3.5 Code Generation Process

To develop a query service this thesis presents a semi-automatic process which is driven
by the meta-model described in the previous section. Figure 3.6 gives an overview of
the process which is accomplished with the help of a web application. It is composed
of four steps: 1 construction of the model by the developer using the UI of the
application resulting in a PIM, 2 transformation of the PIM to a PSM to support the
format of a GraphQL server, 3 code generation based on the PSM, and 4 manual
code refinement by the developer.
After justifying the design decisions for the query service in the next subsection, each
step of the process is being described in greater depth in the following subsections.
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Figure 3.6: Overview of the model transformation process

3.5.1 Platform Decision

The goal is to provide an implementation of the architecture presented in section 3.3.
Therefore, a semi-automatically generated query service is being provided. As stated in
section 3.3 it is implemented as a GraphQL server. Hence, the client can send queries
and mutations to the query service in order to retrieve data. The query service, however,
still uses HTTP requests targeting RESTful APIs. This means it is not required to
consume APIs supporting GraphQL. The query service can also be seen as an adapter
for REST APIs to be able to send GraphQL requests in the client.
As mentioned in section 3.2 the GraphQL client does not have to transform the data if
it wants a different structure as designed by the API. This concept supports the idea
of complexity reduction in the client and led to the decision using a GraphQL server
for this approach. The main elements of a GraphQL server are the schema and resolvers
which define the GraphQL queries and mutations.

Schema A GraphQL server has to define its schema and resolvers. A schema describes
the API of the GraphQL server. It specifies what queries and mutations can
be sent to the server by stating the name, arguments and return type of each
query/mutation. The schema also contains the data model of the API, describing
what resources exist. This is, for example, necessary for the return types of the
queries and mutations.

Resolver Resolvers specify for each query and mutation what operations need to be
performed. For example, reading data from a database (query) or creating a new
object and writing it to a database (mutation). In the case of the query service the
resolvers specify what APIs to consume in order to retrieve the requested data.
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In the scope of the presented tool, the Apollo10 framework will be used to imple-
ment the query service. The Apollo framework defines how to realise and structure a
GraphQL server. Accordingly, the concept of both Apollo and GraphQL influence the
PSM. But firstly the focus is on the PIM.

3.5.2 Model Construction

The generation process of the query service starts with the construction of the PIM.
This is a semi-automatic step since the developer has to specify the model according
to his/her needs. The model construction is supported by the interface of the web
application. The meta-model from section 3.4 is represented as a user form in the
interface which then has to be filled out by the developer. For example, the developer
has to define the data model and the different APIs to access in order to resolve the
data. After the developer finishes constructing an instance of the model it is stored in
a JSON object for further process of the application.

3.5.3 Model Transformation

The next step is a model-to-model transformation as the PIM has to be transformed
to a PSM. This is just an interim step for the code generation and therefore invisible
to the developer. A PSM is based on a concrete platform [2]. In this case the platform
is a GraphQL server. As mentioned before, a GraphQL server is specified by defining
a schema and resolvers. The model which was constructed in the previous step, thus,
needs to be transformed to be able to generate the platform afterwards.
Accordingly, this schema and the resolvers have to be constructed in the format as spe-
cified by the GraphQL specification [50]. That is why the model transformer consists
of a schema-builder and a resolver-builder which both take the PIM as input to extract
the information from there.

Schema Builder

A GraphQL schema specifies a data model, queries and mutations. The definition of
the data types can be extracted from the data model of the query service model (cf.
Figure 3.5). Each entity has to be introduced with the types key word, followed by
the entity name and the list of the parameters.
The queries and mutations definition in the schema can be derived from the resolver
model of the query service model. Figure 3.7 shows what elements to extract from
the resolver model to construct the GraphQL schema (related elements highlighted
with the same colour). If a resolver is classified as a query or a mutation depends
on the HTTP method (blue) of the related API request. If it is a GET method it is a

10https://www.apollodata.com
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query (since no data will be changed) and otherwise it will be treated as a mutation.
A query/mutation definition starts with the name (red) and subsequently lists all
arguments with the name (green) and return type (purple). If an argument is required
it is indicated with an exclamation mark after the type definition. The query/mutation
definition concludes with the return type (yellow).
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Figure 3.7: Related information between the resolver model and the GraphQL schema

Resolver Builder

Information for GraphQL resolvers is extracted from everything related to the resolver
model of the query service model. Firstly, the resolver is transformed to a function by
extracting its name and arguments from the query service model. Subsequently, the re-
lated API requests need to be constructed. Since NodeJS is being used as the runtime,
they are being transformed in the format of http.request11 and https.request12

functions, respectively. Therefore, the HTTP request options are extracted from the
model (method, body, authentication, header- and query parameters) and are passed
to the request function together with the URL.
After all resolvers from the query service model are transformed to resolver functions,
they are grouped together and build a new model. This new model is platform specific
due to GraphQL and NodeJS.

11https://nodejs.org/api/http.html#http_http_request_options_callback
12https://nodejs.org/api/https.html#https_https_request_options_callback
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3.5.4 Rendering

The third step is a model-to-code transformation. Alike the previous step the ren-
derer is also an automatic process and therefore, invisible to the developer. Four files
(schema.js, resolvers.js, package.json, and server.js) are rendered and sub-
sequently exported by the web application. This process is supported by the template
system mustache13. The mustache templates contain the static content, meaning the
code that has to occur in the files no matter how the constructed model looks like.
Those templates also indicate where the variable content needs to be placed. The con-
texts are the variable code parts which are represented by the model from the previous
step. Those get rendered into the mustache templates, resulting in the four code files.
They contain the following elements from the model of the previous step:

schema.js As the name reveals, schema.js contains the GraphQL schema. Hence, it
holds the data model and information about what query and mutation functions
exist.

resolvers.js The resolver functions which were constructed in the previous step are
embodied in this file.

server.js The only information the server.js file contains from the model is the port.
This file is the core of the server and includes schema.js and resolvers.js.

package.json The package.json file is important to manage locally installed pack-
ages for the server. However, it also contains general information about the
application from the model such as the name, description and the author.

These four files are sufficient to have a runnable server. The application developer
just has to run the commands npm install and npm start in the directory of the
output folder and the GraphQL server will locally run on the specified port.

3.5.5 Code Refinement

In MDSD 100% code generation is possible only for exceptional cases [2]. Thus, such
a process almost always includes a step carried out manually by the application de-
veloper.
In this process the manual step relates to the resolvers. The code that needs to be
added manually specifies what happens after the API request completed. Most likely
the developer might want to transform the data coming from the RESTful services.
Especially when consuming third party APIs the data model on the server-side differs
to the one on the client-side. Accordingly, the received data needs to be mapped to

13https://mustache.github.io
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the data model expected by the client.
It was not possible to model this data transformation subsequent to the API request
without restrictions to common use cases. The problem is that the transformation
rules need to be specified by the developer. Only he/she knows what fields of the
received data belongs to what fields of the target data model. Especially when mer-
ging data from several APIs to one entity this seems to be a step that cannot be done
automatically.
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The previously described code generation tool automatically creates the query service
based on a specified model. This chapter presents the architecture and implementation
of this tool as well as the generated query service. For both software projects, the imple-
mentation decisions will be outlined as well as the architecture. It will be elaborated
how the design explained in the previous chapter was realised as a software.

4.1 The Query Service

The query service is a NodeJS server generated with the process described in section 3.5.
It supports the reference architecture presented in section 3.3 and therefore is being
used to consume RESTful APIs and provide the received data to a client. Firstly, the
frameworks which were used to implement such a service will be explained. Secondly,
its architecture will be presented by describing each generated file and its function.

4.1.1 Implementation Decision

As stated in chapter 1 the goal is to reduce complexity in the client when consuming
several RESTful APIs. This aim also lead to the design decisions of the query service
since it should not counteract the issue by adding complexity. Therefore, the following
technologies were used to implement the service.

NodeJS For the query service the JavaScript based NodeJS was chosen as the platform.
It is convenient to configure since it technically just needs two files to run the
server (server.js and package.json). This supports the aim of having a light-
weight service. To facilitate the implementation of such a server the framework
express was used. Furthermore, the NodeJS libraries http and https are being
used to realise the API requests.

GraphQL Reducing complexity on the client side is also a goal tried to be solved by
GraphQL. As previously stated, it allows clients to send more powerful requests
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than with REST and define more precisely what to expect as a response. Fur-
thermore, the queries prevent the urge to send multiple request for one desired
dataset. Using GraphQL can, therefore, reduce the necessity of conducting data
transformations on the client side. Hence, the idea was to GraphQL as a runtime
for the server, to profit from these benefits.

Apollo To make the server GraphQL based, Apollo framework is being used. It
provides a library to facilitate the development of a GraphQL server. Accord-
ingly, the developer needs to specify a GraphQL schema as well as the related
resolver functions.

4.1.2 Architecture

Figure 4.1 shows the structure of the folder generated by the tool. It is a lightweight
server since it just contains four generated files: sever.js, package.json, schema.js
and resolvers.js. To run the server npm install has to be executed first in the
console of the folder. This command downloads all packages that are being used in
the code (e.g. graphql) and stores them to a folder (node_modules). Subsequently,
the server can be started with npm start and reached on the specified port.

Figure 4.1: Folder structure of a generated query service

Figure 4.2 gives an overview of the architecture of the query service. All previously
mentioned files are represented in the file except for package.json. This file is only
important for describing which packages being used by the implementation as ex-
plained before. It contains general information about the application as well as pack-
age information. However, it does not play a role in the architecture of the running
sever.
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Figure 4.2: Architecture of a query service

server.js

This files is the centre of the application since it uses the other two files to create a
GraphQL server. It contains the app constant denoting the express application and
creates it by calling the top level express() function [51]. It specifies the port, config-
ures the application as a GraphQL server and defines the routing for HTTP requests.
Technically it would be enough if the server would also contain the schema and resolv-
ers. This would make the other two files obsolete but would make it difficult for the
developer, working with the generated code, to read it. Therefore, the decision was to
have the GraphQL schema and resolvers in two separate files to enhance readability.

schema.js

The schema file contains a String representing the generated GraphQL schema which
describes the API of the server. The schema defines what entities exist and how to
access them. Listing 4.1 shows an example of such a generated schema. It defines the
Project entity and describes how it can be accessed by the client in order to receive or
write data. It is possible to query all projects or a specific one. Furthermore, projects
can be deleted as defined by the mutation.
The schema file also imports the resolvers to combine them together with the schema
to an executable GraphQLSchema. This executable schema then can be used by the
server.js file to configure the GraphQL server.

Listing 4.1: Example of a GraphQL schema

1 type Project {
2 projectId: String
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3 name: String
4 description: String
5 duration: Float
6 nrCommits: Int
7 }
8
9 #the schema allows the following query:

10 type Query {
11 projects: [Project]
12 project(projectId: String!): Project
13 }
14
15 #the schema allows the following mutations:
16 type Mutation {
17 deleteProject(projectId: String!): Project
18 }

resolvers.js

The resolvers file contains the JSON object resolveFunctions which holds all the
resolver functions generated by the code generation tool. Each query or mutation
from the schema is represented as a resolver function in this file to specify where the
data comes from. A resolver function implements the access to the APIs, transforms
the response data and returns it. Listing 4.2 shows an example of a generated resolver.
The example resolve function is called projects and returns all JIRA projects (Please
note that the example shows a generated resolver that has not been manually refined
yet.). Therefore, it accesses the JIRA API to retrieve the desired data. To send an
HTTP request to an API (cf. line 13) the resolver file contains the makeAPIRequest

function which is basically calling the NodeJS function http.request and handles its
response.

Listing 4.2: Example resolver function projects

1 projects() {
2 //API request
3 var url = new URL.parse(
4 ’https://myexampleproject.atlassian.net/rest/api/latest/project’
5 );
6 var options = {
7 host: url.host,
8 method: ’GET’,
9 path: url.path,
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10 auth: ’username’+’:’+’password’,
11 headers: {}
12 };
13 var apiReq = makeAPIRequest(options, url.href, ’’);
14
15 return apiReq.then((resp) => {
16 //transform response to JSON object
17 var responseJSON = JSON.parse(resp);
18
19 /*
20 * TODO: INSERT MANUAL CODE REFINEMENT HERE
21 * transform the data from the api response and return it
22 */
23 return responseJSON;
24
25 }).catch((err) => console.error(err));
26 }

4.1.3 Testing

Once the query service is generated and manually refined it should be tested. The
server supports, therefore, the in-browser IDE GraphiQL1 which allows exploring the
specified GraphQL schema. It can be reachead by accessing the path /graphiql on
the specified port. A screenshot of the interface can be found in the appendix in
subsection B.2. This testing step is useful to see if the manual code refinement was
done correctly but also to test if the specified APIs respond with the data as expected.
The GraphiQL testing interface is divided into four components. On the left side of
the UI there are two fields to specify the testing input. In the upper field queries or
mutations can be entered which is supported by auto completion. The lower field
allows the user to specify query variables if necessary. In the middle of the UI the
response of the query/mutation will be output. With this output it can be verified if
the query service works as expected. The right hand side of the GraphiQL UI shows
the documentation of the GraphQL schema. All supported queries and mutations can
be found there as well as their return types etc.

4.2 The Code Generation Tool

The process of generating the query service was already described in section 3.5. This
section elaborates how it was implemented as a React application. Firstly, the imple-

1https://github.com/graphql/graphiql
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mentation decisions will be justified. Subsequently, an overview of the architecture
will be presented followed by a closer look at each component.

4.2.1 Implementation Decision

The code generation tool is implemented as web application. It contains a user in-
terface by means of which the developer can construct the model. Additionally, the
application also implements the model-transformation process to generate the query
service from the constructed model. For the development of this application the fol-
lowing technologies where used.

React The code generation tool is a React application. The model described in sec-
tion 3.4 is realised as the UI of the application where each element of the model
is represented as a React component. It was decided to use React because no
routing is needed for the application and it allows implementing the model
component-based.

MDBootstrap For the UI design, the material bootstrap framework was used. It
provides ready to use UI components and allows a consistent UI design.

Mustache In the backend Mustache was used as a technology to support the code
generation process. The framework conducts rendering of static templates with
variable contexts. This functionality was used to transform the PIM to code
files. The output of the Mustache rendering process was written to files with the
file-saver library and compressed with the jszip library.

4.2.2 Overview

Architecture

The query service creator tool is a React web application which implements the code
generation described in the previous chapter. An overview of the architecture of the
web application is represented by Figure 4.3.
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ui-components

<<use>>

<<use>>

modelTransformer
+ transformToGraphQLModel(serviceModel: JSON): JSON
- constructSchema(serviceModel: JSON): JSON
- constructResolvers(serviceModel: JSON): JSON

coderGenerator
+ renderSeverFiles(graphQLModel: JSON)

ResolversModel

AppControl
+ handleGenerateServerButton(event: Event)

DataModelServiceConfig

DataEntity ResolverEntity

ApiRequest

11

* *

1

* mustache
templates

<<use>>

Figure 4.3: Architecture of the code generation tool

The AppControl component is the centre of the application and directs the pro-
gram flow. The user interface is realised by React components (cf. Figure 4.3
ui-components) that represent the different elements of the query service model. The
components are united by the AppControl as one interface. It also handles the event
that gets triggered when the developer finished constructing the model. Hence, the
AppControl communicates with the ModelTransformer to transform the PIM to a
PSM. Additionally, the AppControl component also makes use of the CodeGenerator

to transform the PIM to a server which uses mustache files to create the code.

Dynamic View

After presenting the static components of the code generation tool, now a dynamic
description follows to show how the components interact with each other. For this
purpose Figure 4.4 displays the sequence of the code generation.
After the developer finished constructing the model it has to be submitted in order to
trigger the code generation process. The AppControl component, which handles the
submission event, passes the model instance along to the ModelTransformer. There
it will be transformed into a suitable model for the GraphQL server by constructing
the GraphQL schema and resolver functions. Once the model is in the correct format
the files can be rendered by the CodeGenerator. Therefore, the AppControl compon-
ent passes the JSON object constructed by the ModelTransformer which holds the
model information (graphQLServiceModel) to the CodeGenerator. Subsequently,
the CodeGenerator creates the files (schema.js, resolvers.js, server.js, and
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package.json), renders the mustache templates with the JSON object, and writes
the output to the created files.

ui: UserForm appControl: AppControl cg: CodeGeneratorDeveloper

Specify Model
submit(serviceModel)

generateServer(graphQLServiceModel)
output files

server
.js

package
.json

schema
.js

resolver
.js

mt: ModelTransformer

transformToGraphQLModel(serviceModel)

constructSchema()

constructResolver()
graphQLServiceModel

Code Generation Tool

Figure 4.4: The process of the code generation tool

4.2.3 User Interface

The UI consists of React components which are grouped in the folder ui-components.
These components are .jsx files containing templates defining the view as well as the
JavaScript functions controlling the different components in the view. Each one of
these components consists of a web form which is being filled out by the applica-
tion developer to construct the related part of the model. The UI consists of three
major components: serviceConfig, dataModel, and resolversModel. In the follow-
ing each component will be described in depth by illustrating the user interface and
explaining the different fields.

General Information

The serviceConfig component specifies general information of the query service and
its view is shown in Figure 4.5. The application developer at least has to specify
the name of the application (application name) and the local port where the generated
server will run (8080 by default). The fields author name and application description are
optional. Once the fields are filled out, the ok button has to be pressed in order to
send the data to the AppControl component.
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4.2 The Code Generation Tool

Figure 4.5: Screenshot of the tool’s UI specifying general information

Data Model

The data model of the query service is represented by the dataModel component. The
user can specify the desired amount of entities by adding new ones with the add entity
button. Therefore, dataModel consists of several dataEntity components, each one
representing one entity of the data model. The user has at least to specify the name of
an entity (entity name). Furthermore, it is possible to specify any number of parameters
related to that entity. For that purpose the parameter name and parameter type have to be
defined. Allowed parameter types are the GraphQL types: String, Int, Float, Boolean,
ID or an array of those (e.g. [Int]). Additionally, it is possible to use one of the defined
entities as a parameter type and to establish relationships between entities in that way.
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Figure 4.6: Specification of a data enity with the code generation tool

Resolvers

The resolverModel component allows the application developer to create any num-
ber of resolver functions. For that purpose it consists of resolverEntity components
that can be added by clicking the add resolver button. For each resolver a name (resolver
name) and return type needs to be specified. For the return type the same input values
are allowed as explained for the data model. Moreover, the user can define arguments
to pass along with the resolver. For each argument the name and type needs to be
indicated as well as if the argument is required. If an id has to be passed along to
retrieve a specific object this would be a required argument, however, if an argument
is just in place to filter results it would be optional.
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4.2 The Code Generation Tool

Figure 4.7: Specification of a resolver function with the code generation tool

Furthermore, for each resolver function multiple API requests can be defined. Ac-
cordingly, a resolverEntity component consists of apiRequest components. An
API request requires the URL of the targeted API and the HTTP method (GET by de-
fault). If the application developer wants to pass URI parameters along with the URL
(e.g. the id of the resolver function argument), those need to be indicated in the URL
by curly brackets (e.g. /{projectId}). Additionally, a request body (for POST and PUT
methods) or authentication credentials (username and password) can be added. If the
application developer wants to add query and header parameters to the request, this
can be done separately from the URL in the parameter section. For each parameter
the name and value has to be specified as well as if it is a header or query parameter.
For both the parameter value and authentication credentials there are two use cases.
The first case is that the user wants to specify a concrete value, then this should be
surrounded by quotes if its a String value. In the second case, the user wants to pass
a variable along (for example a value passed to the resolver function as an argument),
then the user just enters the name of the variable (without quotes).
Once the construction process is finished the user can click on the generate server button
to trigger the code generation process.
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Figure 4.8: Specification of an API request in the resolver with code generation tool

4.2.4 Model Transformation

Once the model was submitted by the application developer, the appControl passes
along the PIM to the modelTransformer. It transforms the model to a PSM and re-
turns it to the appControl.
Figure 4.9 shows the dynamic process of the model transformation. In this diagram
each function of the modelTransformer is being represented as an object. The public
function transformToGraphQLModel controls the process and constructs four separ-
ate models, one for each server file. The transformation to the server and package
model is a simple step since relevant information just have to be extracted from the
serviceModel (step 1 and 2 ).
In step 3 the GraphQL schema gets constructed by calling the constructSchema

function. It extracts the data model from the service model and creates GraphQL
types on from this information. Moreover, it constructs the queries and mutations for
the schema by calling the constructOperator function. An operator will be added to
the schema as a query if the HTTP method of the related API request is a GET method
or as a mutation otherwise. After the construction process of the GraphQL schema
finished it will be returned.
The most complex step of the model transformation is the construction of the re-
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4.2 The Code Generation Tool

solver functions (step 4 ). It starts with the call of the constructResolvers function.
Firstly, it extracts all resolvers from the service model. To construct the resolver func-
tions, it loops through the resolvers, calls the constructResolverFunction method,
and passes along the resolver. This function then extracts all API requests related to the
resolver and creates API request code by calling the constructAPIRequest method.
To actually construct code for the API request the function extracts the relevant infor-
mation from the API request and renders them in a mustache template. Once all API
requests are returned, the constructResolverFunction method also renders the rel-
evant information in a mustache template to create the code for the resolver function.
The resulting resolver function will then be returned to constructResolvers which
collects all resolver functions and returns them as the graphQLResolverModel.
Finally, the transformToGraphQLModel method puts together all four models and
returns them to finalise the model transformation process.

transformToGraphQLModel transformToServerModel constructSchema

transformTo
GraphQLModel
(serviceModel)

transformTo
ServerModel(serviceModel)

transformToPackageModel

Model Transformation

constructOperator constructResolvers constructResolverFunction constructAPIRequest

serverModel
transformToPackageModel(serviceModel)

packageModel

constructSchema(serviceModel)

graphQLSchemaModel

constructOperator
(resolver)
operator

loop
[Resolver]

constructResolvers(serviceModel)

constructResolvers
Function(resolver)

loop
[Resolver]

loop

[APIRequests]
constructAPI

Request(apiReq)

apiRequest

resolverFunction

graphQLResolverModel
graphQLModel

1

2

3

4

Figure 4.9: Sequence diagram of the model transformation process

4.2.5 Code Generation

The final step of the code generation tool is a model-to-code transformation. For
this purpose generateServer function of the CodeGenerator is being called and
the GraphQL model from the previous step is being passed along. The code gen-
erator uses the model to render the four mustache templates: server.mustache,
package.mustache, schema.mustache and resolvers.mustache. The output of the
rendering process is being written to the four server files (server.js, package.json,
schema.js and resolvers.js). Those files are structured as specified at the begin-
ning of this chapter by Figure 4.1. Finally the files are being output as a zip folder.
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After this step, the server is fully generated and process of the code generation tool
finished.
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This chapter evaluates the approach by developing two example web applications with
the help of the code generation tool. For each of the two examples, a scenario of an
application will be explained, followed by the development process supported by the
code generation tool. Subsequently, two frontends will be compared, where one is
utilising the query service and the other one is handling the API consumption itself.
Furthermore, the development process will be analysed and limitations on the code
generation tool will be stated.

5.1 Example Case 1 - Consuming Multiple APIs

The first example is the web application that was already mentioned in chapter 2. It is
an example scenario of the consumption of multiple RESTful APIs in order to retrieve
data for the client.

5.1.1 Example Scenario

The idea of the example web application is to provide statistics about completed soft-
ware projects related to an organisation and make predictions based on this data for
future projects.
Figure 5.1 shows a mockup of how a view of such an application could look like. The
user interface is structured as a master-detail view and provides a list of all the soft-
ware projects. When a user clicks on a project, more details and statistics about it will
be shown. The project statistics contain values such as the total duration of the project,
the average duration per issue, the total number of lines of code added/deleted, and
the average number of lines of code added/deleted per commit. Additionally, in the
project detail view all issues related to this project are listed. Once clicked on an issue
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more details of this issue will be provided such as the number of lines of code which
were added/deleted to complete the issue.
Based on the statistics from the projects the app predicts the workload of future pro-
jects. General information about the projects and issues can be received from the JIRA
API given that the organisation utilises JIRA as a project management tool. Code
related data is being provided by the GitHub API assuming the organisation uses Git-
Hub as a project repository.
For the sake of evaluating the code generation tool only the part of the development
process which relates to the consumption of the JIRA and GitHub API is being con-
sidered. Other development steps such as the user interface implementation are not
really relevant here.

Data from the JIRA API Data from the GitHub API

Figure 5.1: Mockup of the example web application and where its data comes from
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5.1 Example Case 1 - Consuming Multiple APIs

5.1.2 Development Process

We start the implementation process by constructing an instance of the query service
model with the help of the tool presented in section 3.5. Figure 5.2 presents an over-
view of that model instance. To be able to generate the server we need to fill out the
user form of the tool.

General Information

First of all, the general information about the web service that is going to be generated
have to be entered. Table 5.1 gives an overview of the form fields and their values for
specifying the general information. The name of the service, the author’s name, the
local port on which the service runs for development purposes, and a description of
the service have to be entered. The fields application name and port are required.

Table 5.1: General information fields and values specified for the example app

Field Name Value

Application Name WorkloadEstimator QueryService
Author Niklas Scholz

Port 8080
Application Description The query service for the workload

estimator app.

Data Model

Subsequently, the data model for the client side has to be established. To present the
data in a web application as stated in the previous section, it is useful to have two
entities: Project and Issue (cf. Figure 5.3).
The Project entity contains general information about the project as well as statistics.
For example, it holds information about the number of lines of code added/deleted.
The project also consists of issues. The Issue entity contains information and statistics
about a specific issue.
In the user form two entities (Issue and Project) have to be created. For each entity
parameters need to be added by entering the parameter name and type. Valid types
are String, Int, Float, Boolean, one of the created entities or an array of those (e.g.
[Int]).
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5.1 Example Case 1 - Consuming Multiple APIs

Project
projectId: String
name: String
description: String
nrIssues: Int
totalDuration: Float
averageDuration: Int
nrCommits: Int
totalLocAdded: Float
totalLocDeleted: Float
averageLocAdded: Int
averageLocDeleted: Int

Issue
issueId: String
summary: String
type: String
timeSpent: Int
nrSubtasks: Int
locAdded: Int
locDeleted: Int

1 *

Figure 5.3: Data model of the example web application

Resolver

As a next step, the definition of resolver functions follows to specify from what APIs
the data for the entities comes from. Three resolver functions are necessary: projects
returning a list of all software projects, project retrieving data of one specific project
including its issues, and issue returning detailed information related to that issue.
Table 5.2 shows what information related to the resolver functions need to be entered
(excluding the API requests). Not all three resolver functions will be explained in
detailed but the specification of projects will be presented as an example. The
values that have to be entered for each API request can be found in Figure 5.2.

Table 5.2: Resolver functions necessary for the query service

Arguments
Resolver Name Return Type

Name: Type API Requests

projects [Project] - JIRA
project Project projectId: String JIRA

repoName: String GitHub
issue Issue issueId: String JIRA

commitId: String GitHub

The first values to enter are the resolver name (projects) and the return type, an array
of projects ([Project]). The API request related to the resolver targets the JIRA API. The
projects resolver is needed for the master view listing all the projects. In this case
just the project related values projectId, name and description are needed (cf. Figure 5.1).
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In order to retrieve that data, accessing the JIRA API is enough.
The request is a HTTP GET method with the following URL: https://
exampleorga.atlassian.net/rest/api/latest/project. Username and
password need to be entered in order to authenticate to the JIRA server. Query and
header parameters do not need to be entered.
The other two resolver functions need to be specified accordingly. After all fields are
filled out, the code for the server can be generated.

Manual Code Refinement

To finish the development of the query service, the generated code needs to be refined
manually. Therefore, code must be added in the resolver functions to specify what
happens after each API request completed. Mostly, data which is needed in the client
has to be extracted from each API response. In some cases also calculations need to be
conducted such as compute the average number of lines of code added per issue.
Listing 5.1 shows the manual code refinement of the projects resolver. The response
of the JIRA API is being transformed to a JSON object (cf. line 3). Subsequently, for
each project of that JSON object the key, name and description is being extracted and
added to an array (cf. line 5 to 12).

Listing 5.1: Manual code refinement for the JIRA API response of the projects resolver

1 apiReq.then((resp) => {
2 //transform response to JSON object
3 var responseJSON = JSON.parse(resp);
4
5 var projects = [];
6 for(var i in responseJSON){
7 var project = {
8 projectId: responseJSON[i].key,
9 name: responseJSON[i].name,

10 description: responseJSON[i].description
11 };
12 projects.push(project);
13 }
14
15 return projects;
16
17 }).catch((err) => console.error(err));

Now the server is in place and can be started to handle the communication with the
APIs. The next step is the development of the client which only needs to access the
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established GraphQL server to receive the data. The view can display this data without
further transformations since it is being returned exactly as needed.

5.2 Example Case 2 - A Series of API Requests

The second example case deals with the same application as the first one. The only
difference here is that the focus is not only on accessing multiple APIs but also on the
sequence of those requests.

5.2.1 The Chronological Order of API Requests

The problem of the chronological order of API requests occurred while working on
this thesis. The first example dealt with the consumption of two APIs in order to
retrieve data. If the either the JIRA or the GitHub API request is conducted first does
not matter. However, there are cases where it does matter which API to access first.
For example, when the response data of a first API request is required for a second
API request. Such a case where it does matter in which order the API requests are
sent will be further referred to as the chronology of API requests.
Encountering this problem lead to the question how to model such a sequence of API
requests and how to handle such cases in the code generation tool. The chronology
of API requests cannot be described by a static model such as the query service model.
It cannot be represented which API request to conduct first, since static diagrams do
not represent time [52]. It can describe which APIs to access but not in what order
since this is a dynamic aspect. Therefore, to describe the chronology of API requests
a dynamic model is needed which describes the query service interacting over time
[52]. The UML sequence diagram allows modelling this dynamic aspect.
How the chronological execution of API requests can be realised in the code generation
tool will be shown in the following by developing such an example case.

5.2.2 Exampe Scenario

The scenario is the same as in example 1. The only difference is when requesting a
specific project or issue the whole data entity should be returned without needing to
specify the GitHub repository name or commit id. To still be able to link the JIRA data
with the correct GitHub data imagine the following scenario:
The organisation utilising the web application have the guidelines to connect JIRA
projects to GitHub repositories. Therefore, each JIRA project contains the URL to the
related GitHub repository in the link field of the general information about the project.
Furthermore, the organisation has made the restrictions to put the URL of the GitHub
commit in the link field of the related issue when it is completed. In this way the JIRA
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data is linked to the GitHub data but in order to know what GitHub resource to access
a request to the JIRA API is required.

5.2.3 Development Process

The implementation process of this example corresponds to the process of the previous
example (same general information, data model etc.). The only steps that need to be
carried out differently are the specifications of the project and issue resolvers. Since
they have to be realised in a very similar manner, just the specification of the project

will be presented as an example.

Resolver

To define the project resolver, firstly, the name (project) and return type (Project) need
to be entered. In order to be able to retrieve the correct project, the projectId needs to
be specified as an argument for the function. Since the JIRA project key is being used
as the id, the type is a String. Subsequently, the specification of the APIs to consume
follow, in order to fetch the data related to the project. Three API requests are required
and need to be carried out in a strict order to retrieve all data. Figure 5.4 shows the
sequence of the three API requests.

• The first API request is targeting the issues resource of the JIRA API. To just
retrieve the project related issues the projectId (the function argument) is be-
ing passed along as a query parameter. Entering authentication (username and
password) is also required to be able to access the data. From the response the
following data for the project entity can be extracted: name, description, issues,
nrIssues, totalDuration and averageDuration.

• In order to get the missing data from the GitHub API the link to the GitHub
repository needs to be retrieved. This can be done by another request to the JIRA
API. This time the target is the project resource. Therefore, the projectId has to
be passed along as a URI parameter (in the URL indicated with {projectId}).
From the URL linking to the GitHub repository the owner and name of the
repository can be extracted. These two values are necessary for the third API
request to retrieve statistics about the repository.

• The third API GET request targets the stats resource of the GitHub API, passing
along the repository owner and name as URI parameters. From the response we
can calculate the missing fields (nrCommits, totalLocAdded, totalLocDeleted,
averageLocAdded and averageLocDeleted) for the requested project and finally
return the project object.
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5.2 Example Case 2 - A Series of API Requests

Query Service JIRA API GitHub API

project query

GET project issues

issues

GET project details

project details

repo statistics

GET repo statistics

extract repo 
name and owner 
from GitHub URL

extract issue 
details and 

calculate statistics

transform 
GitHub data

Client

project

project(projectId)

Figure 5.4: Request sequence for the resolver function project

Table 5.3 gives an overview of how to fill out all the fields in the UI, related to the
API requests of the project resolver. It is very important that they are specified
in the exact order since the code will be generated so that API request one will be
executed before API request two (and two before three etc.). In this way the problem
of the chronological order of API requests can be solved by the code generation tool.
Listing 5.2 shows an example of how the code is being generated in such a case. It is
being realised by chaining promises where the promises are API requests. Only after
the first promise resolved, the second promise gets returned and will subsequently be
settled. In this scenario this means that after the first promise resolved, data will be
extracted from the response and used for the second API request (cf. Listing 5.2 line 1
to 4). The second API request will be returned (line 5) and once it is resolved the data
can be extracted from that response (line 8).

Listing 5.2: Example code of two API requests with one being dependend on the other

1 apiReq1.then((resp) => {
2 // extract data from response to use it for next API request
3 var respData = extractRelevantData(resp);
4 var apiReq2 = makeAPIrequest(respData);
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5.3 Comparing the Approach to Conventional Frontend Development

5 return apiReq2;
6 }).then((resp) => {
7 //do something
8 var data = extractRelevantData(resp);
9 return data;

10 }).catch((err) => console.error(err));

However, if multiple API requests need to be conducted which do not depend on each
other this approach is not recommendable. API request two would always wait for
request one to settle before being carried out and hence waits for API request one. A
better solution for such a case would be to use Promise.all([apiReq1, apiReq2])

to resolve the promises. In this way the requests can be carried out in parallel.

Manual Code Refinement

After the model instance was constructed and the server generated, the code has to
be refined manually as a final step. Also in this example, code needs to be added
in the resolver function to specify what has to happen after each API request com-
pleted. For example, in the project resolver function for all three API requests, data
transformations need to be added manually:

• After the first API request completed all issues related to the project need to be
extracted from the response and added together with the project name to the
project JSON object. Furthermore, on the basis of all issues the average and total
duration of the issues needs to be calculated.

• The required part of the API response is the URL to the GitHub repository.
From the URL the name and owner of the repository can be extracted. Those
two values then need to be added to the third API request.

• The response of the third API request is important to calculate the missing fields
regarding the commits and lines of codes. Subsequently, those values need to be
added to the project object which then can be returned.

After manually refining the code, the server is fully functional. As a next step the user
interface can be developed which receives the data from that server.

5.3 Comparing the Approach to Conventional Frontend
Development

This section compares two frontends with each other. One of the frontends belongs to
an application using the query service for the RESTful API consumption. The other is a
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frontend developed in the conventional way, handling the RESTful API consumption
itself by using Angular services. The goal is not to evaluate the development process
as in the previous sections but to compare the architectures of the frontends to see if
using the reference architecture really reduces complexity in the client. Therefore, not
the entire architecture of the application will be compared but simply the architecture
of the client.
The example application that has been implemented here with two different ap-
proaches, is the same scenario as for the previous sections. However, the scenario
has been slightly simplified. The application consists of two different views: a master
view listing all projects, and a detail view showing a specific project. It was decided
not to implement the detail view of an issue to make the example smaller and hence
easier to compare.
In the presented architecture not every single file is represented but just the com-
ponents which are necessary to understand differences. For example, files such as
index.html, the app.module or the app.component will not be shown since they do
not add value to the comparison and are present in both frontends anyway.

5.3.1 Implementing RESTful API Consumption as Angular Services

The conventional approach to develop such a web application is, for example, imple-
menting it as a single page application with the Angular framework. Angular is based
on the MVC pattern, hence, such a frontend can be divided into three components
[53]. As outlined in section 2.4 in SPAs the three components are: views presenting
data, controllers handling user interaction from the UI as well as transferring data
between service and view, and data services requesting data from an API.
Figure 5.5 displays the frontend architecture of the example scenario implemen-
ted as an Angular client. Obviously, the architecture could also be designed in
a different way than presented here. This is just an example and one way to
do it. As the figure reveals there are two views: the projects-list.view lists
all projects, and the project-detail.view shows more information about a pro-
ject when clicking on a specific project from the list. Both views present data
in their view through Angular’s data binding by being connected to a control-
ler. For this purpose, the projects-list.controller contains a projects vari-
able and the project-detail.controller contains a project variable. When
the projects-list.controller is being instantiated, the constructor calls the
getProjects function to retrieve a list of all projects from the data service. There-
fore, the jira-data.service contains a getProjects function which sends an HTTP
request to the JIRA API. It is enough to call the JIRA service, since for the project
list just the ids and names of the projects are needed. jira-data.service returns
a promise containing the response data to the controller. The response data is not
exactly structured as needed for the view, hence it needs to be transformed by the
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5.3 Comparing the Approach to Conventional Frontend Development

transformProjectData function.
When a user clicks on a concrete project from the list the project-detail.view

will be displayed. Therefore, the project-detail.controller will be instantiated
and the constructor calls the getProject function. A project contains data from
the JIRA project but also from the GitHub repository statistics. Accordingly, the
jira-data.service and the github-data.service will be called. Both Angular
services send HTTP requests to the JIRA and GitHub API, respectively. The API re-
sponses need to be transformed in the controller. For example, statistics about the
project and repository have to be computed. These data transformations are being
conducted by the function transformProjectData and transformRepoData. Sub-
sequently, the transformed data needs to be merged into one project JSON object and
finally can be displayed in the view.

project-detail.controller
+ project: Project
- getProject(id: String)
- transformProjectData(projectData: JSON)
- transformRepoData(repoData: JSON)

projects-list.controller
+ projects: Project[]
- getProjects()
- transformProjectsData(projects: JSON)

projects-list.view

project-detail.view

jira-data.service

+ getProjects(): Promise<any>
+ getProject(id: String): Promise<any>

github-data.service

+ getRepository(repoName: String): Promise<any>

<<injects>>

<<injects>>

<<injects>>

frontend

Figure 5.5: Architecture of a conventional frontend contructed without a query service

5.3.2 Implementing RESTful API Consumption with the Query Service

Using the query service to handle RESTful API consumption leads to a client architec-
ture represented by Figure 5.6. The frontend is also Angular based but additionally
uses the Apollo framework in order to be able to communicate with the query service
by sending GraphQL queries. The application obviously has the same views as the
previously presented Angular app. Moreover, the two controllers, exchanging data
with the view, are also represented in this architecture.
In such a frontend, just one data service is necessary since it communicates only with
one API, namely the GraphQL API of the query service. The project-data.service

consists of two functions: getProjects and getProject. Both functions send a query
to the query service API and receive their data exactly as required by the view. They
pass the response data as an observable to the controller. The controller only has to
store the data in the variable (projects or project) which is bound to the view. The
data transformations are conducted in the query service which makes further trans-
formations in the client obsolete.
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project-detail.controller
+ project: Project
- getProject(id: String)

projects-list.controller
+ projects: Project[]
- getProjects()

projects-list.view

project-detail.view

project-data.service

+ getProjects(): Observable<Project[]>
+ getProject(id: String): Observable<Project>

<<injects>>

<<injects>>

frontend

Figure 5.6: Architecture of a frontend using the query service

5.3.3 Comparing the Two Frontends

Comparing the two presented architectures reveals that the frontend, consuming the
JIRA and GitHub API directly, contains more code. In this comparison only the fron-
tend architectures are being analysed since the aim of the reference architecture is to
ensure a lightweight frontend. As previously mentioned, the conventional Angular
frontend is a matter of design and could be realised in a different way. For example,
the data transformations could have been implemented in the data service instead of
the controller. However, they have to be implemented somewhere in the code and
this will still be on the client-side (since third party APIs are being consumed). The
data services could also be realised as one service but this also would not reduce the
amount of code.

Differences

The major differences of the two architectures are the data transformations in the
controllers as well as the API consumptions in the data services. When utilising the
query service, no data transformations are necessary on the client-side, since the data
is being returned by the GraphQL API exactly as needed in the view. Furthermore,
consuming the JIRA and GitHub API requires more code than sending two queries to
a GraphQL server. The reason is that more than two HTTP requests need to be sent
to the APIs in order to fetch all required data (the API requests that are necessary to
conduct have been outlined in the previous sections).

Inference

The JIRA and GitHub APIs still need to be consumed when using a query service and
the response data also needs to be transformed. However, this code is shifted away
from the client (to the query service) leading to less complexity on the client-side. When
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making use of the suggested reference architecture, the frontend developer does not
need to think about how to fetch data from several APIs and how to implement the
Angular services. In this way the entire focus can be on the user interface and how to
present the data.
Nonetheless, the differences between the two architectures presented here are just
marginal. This is due to the scope of the presented example scenario. When scaling
up the number of APIs to consume, however, the amount of data service will increase
as well as the data transformations. Thus, it might not be worth the effort using the
query service for a small example. Nevertheless, the comparison has shown that the
reference architecture does reduce the complexity in the client which is beneficial for
a scenario consuming several RESTful APIs.

5.4 Advantages

This section evaluates the advantages of the presented approach based on the ex-
amples presented in the previous sections. It states why it is useful to utilise the web
application when developing a web application. The benefits are related to using a
model-driven approach and the reference architecture presented in this thesis.

5.4.1 Model-Driven Software Development

The code generation tool is driven by a model and based on MDSD. Hence, using
the tool for the software development process of an application leads to advantages
related to MDSD. In the following the main advantages of MDSD will be presented.

Software Quality The goal of MDSD is to enhance software quality. Automatic code
generation leads to well structured and consistent code since it will always be
generated precisely in the same way. Once an architecture has been defined as a
model it will recur uniformly in the implementation [2].

Reusability and Portability The focus in MDSD lies on the development of PIMs
which do not depend on a technology and therefore can be easily ported [54]. Re-
usability is also being enhanced since the code generation tool can be used over
and over again for web applications. The goal of developing a model-driven tool
is, therefore, to have code being used by several web applications instead of just
one.

Development Speed The increase of the development speed can be achieved by auto-
mation [2]. Using code generation tools leads to less work for developers. Plat-
form specific details do not need to be designed or written down [54]. The
developers can focus entirely on constructing the PIM and will not be distracted
by bugs or syntax errors (except when doing manual code refinement).
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Manageability of Complexity Völter et al. [2] name as a further advantage of MDSD
the manageability of complexity. This can be accomplished through abstraction.
Focussing on the PIM allows the developer to concentrate on the problem itself
and not on implementation details related to a technology. Thus, the complexity
is reduced by programming on a more abstract level.

To sum up, the main benefits of such a code generation tool are the automation of the
development process and the abstraction of the problem.

5.4.2 Leightweight Client

In section 5.3 a frontend using the query service for RESTful API consumption was
compared to a frontend without using such a service. The comparison has shown that
the reference architecture presented in section 3.3 does reduce complexity in the client.
Accordingly, utilising the tool for web applications allows the frontend developer to
focus on the design of the user interface and user experience. It shifts the responsibility
of the data consumption outside of the client. This also counteracts the problem of
having a monolithic frontend in a microservice architecture. Because of having to
deal with all the services, the frontend might become more complex and hence the
application cannot fully benefit from the advantages of microservices [32]. Shifting
the API consumption outside of the client scales down the complexity in the frontend.
This was the goal of establishing such a reference architecture. The idea was not to
reduce complexity in general, but to have a less complex and more changeable client.
Such a client is also a benefit when an API which is being consumed by the web
application changes. Its consumption needs to be modified accordingly. Due to the
presented reference architecture such API changes just need to be applied to the query
service. The client does not need to be touched and therefore will stay fully functional.

5.4.3 Focus on Important Elements

The development process of the two example scenarios showed that using the tool
allows quick access to APIs. As soon as you specify the URL and other requested
parameters (header-, URI- or query parameters) of an API consumption you will re-
ceive working code to access the API. A developer would just have to read into the
API specification of the service to access but not in the specification of a framework to
access the APIs.
For an application like the one presented it is really convenient to use such a tool.
Especially the second example application required a lot of thought in terms of the
data model. It had to be considered where to get the data from as well as how to link
it together. Therefore, reading into the API specifications is necessary to find out how
to retrieve the values. However, using the tools allowed focussing on the data itself
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and thinking about in what sequence the API requests need to be conducted. No time
needed to be wasted on the implementation details as the semantics of a programming
language. A developer does not have to think about how to realise the implementation
of conducting an API request not before the other request completed. It is enough to
specify the API request in the desired sequence. This is convenient, especially when
being new to a programming language or framework. Hence, the tool allows putting
the focus on the important parts of the development process.

5.4.4 Further Benefits

There are further benefits of using the code generation tool which did not emerge from
the presented examples.

• The API of the generated query service can easily be tested. The server provides
a user interface called GraphiQL1 which is reachable by accessing the path
/graphiql of the server. This allows trying out if the API response with the
correct data after refining the code manually.

• Caching will be done automatically in the client. The query service uses the Apollo
framework to establish a GraphQL server. Additionally, it is advisable to use
the Apollo framework also in the client to facilitate the implementation of a
GraphQL client. This framework is, for instance, used by the example imple-
mentation in the comparison of the two frontends. The Apollo framework has
various features and one of them is caching. As stated by Apollo: "...the tree
structure of GraphQL lends itself extremely well to client-side caching" [55]. The struc-
ture of a query or a mutation can easily be matched to the cache to see if the
same request has already been conducted before. All requests are automatically
cached by the Apollo framework. However, if it is desired not to use caching it
can be overwritten by the forceFetch option [55].

• The code generation tool can be used offline. The tool itself does not need any
server since data is not being stored in a data base. It just needs to load the
JavaScript files once from a server and subsequently does not require any internet
connection.

• The presented model describes the consumption of RESTful APIs and therefore
affiliates in the description of web applications. There are several ways to de-
scribe different elements of a web application (e.g. data model, process model,
view model) and the presented model now proposes a way to model API con-
sumption.

1https://github.com/graphql/graphiql
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5.5 Limitations

Certainly, the presented approach is not the silver bullet to the problem of the con-
sumption of multiple APIs. It was not intended to present a solution that is better
then all other approaches that already targeted the problem. The idea was to focus on
different aspects, mainly the complexity reduction in the client. Clearly, this approach
also has its drawbacks and use cases when it is not recommendable. Therefore, this
section presents its limitations.

5.5.1 Downsides of MDSD

There are also limitations that come along with MDSD. In the previous section it was
explained what benefits are related to automatic code generation. It allows having
consistent code since it is being generated the exact same way every time using the
tool. Therefore, it is extremely important to be very precise when developing such
code generation tools. Implementing an error in the code that will be generated, can
propagate this mistake in every application using this tool. As mentioned by Kleppe,
Warmer and Bast [54] the payback for the effort of implementing model transforma-
tions is high but it needs to be carried out by highly skilled people.
One of the biggest limitations on the code generation tool is roundtrip engineering.

Roundtrip Engineering

Roundtrip engineering is about the synchronisation of the model and the generated
code. It describes the possibility to make changes in both the model and the code
and that the changes will always propagate bidirectional [2]. Forward engineering de-
scribes that if changes are made in the code they will also appear in the model. Reverse
engineering describes the opposite, changes in the code will propagate to changes in
the model. As stated by Völter et al. [2] this is a common issue in MDSD because it
supports forward engineering but not reverse engineering. The reason for this is that
in MDSD the model is more abstract than the code.
In the case of the presented model-driven tool the problem appears as follows: when
constructing the model, the code generation process is influenced by the model and
therefore represents the model. However, when now making changes in the code, the
model will not be updated accordingly.
The problem even goes a bit further. Forward engineering is possible due to genera-
tion code from the model but since the model is not being stored in a database it will
be lost once quitting the tool. Hence, the model is not permanently in synchronisation
with the code. When, for example, one of the consumed APIs changes (e.g. when a
new API version was released) the developer has two options: either adjust the code
manually or specify a complete new model. In the latter case, though, code that was
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added manually needs to be written all over again.
Even if the idea to solve this issue, would be to store the model in a database, further
problems occur. When generating code from the model, subsequently manually refin-
ing this code and then adjusting the model again, what happens with the manually
added code? How can this be stored in order not to loose it when generating code
again from the updated model?

5.5.2 Level of Abstraction

The model presented in section 3.4 was described as a generic model. This is true
when considering that it is a model for RESTful service consumption. However, it is
not the highest level of abstraction since it is limited to the REST technology. In order
to have a more abstract model it would be necessary to consider all possible ways
of communicating with services. Even though REST is widely used on the internet,
there are other concepts for APIs [56]. For example, an API using the Simple Object
Access Protocol (SOAP) cannot be described with the presented model. Hence, the
developer utilising the code generation tool is restricted to the consumption of APIs
that are considered as RESTful.

5.5.3 Manual Code Refinement

In the section on roundtrip engineering it was already mentioned that manual code re-
finement can lead to problems when trying to counteract the issue. However, manual
code refinement is generally a limitation on the code generation tool. Obviously, the
tool would be easier to use if the code generation is 100% automatically. For a de-
veloper having to refine the code manually makes using the tool more complex. This
step in the development process implies understanding the code that was being gen-
erated and being able to work with the used platform (NodeJS) and programming
language (JavaScript). Mostly data just needs to be extracted from the API response
by accessing a JSON object and returning that data. This should not be an obstacle for
a web developer. But when having to do more complex transformations on the data
and the developer is not very familiar with the language this might make the devel-
opment process harder. It would be, therefore, desirable if the application developer
could choose what platform of programming language to use for the generated query
service. Thus, it can be ensured that the frontend developer understands the generated
code much more easily.

5.5.4 Usability

Not only manual code refinement is a limitation on usability. The code generation
tool is not an application that could be easily used by any user. It requires coding
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knowledge especially in terms of HTTP request to RESTful APIs. The idea was to
provide a tool for frontend developers who are familiar with such artefacts. However,
even for experienced frontend developers using such a tool the first time requires a
familiarisation process. The general idea of the application needs to be understood as
well as how to construct the model. This can be a time consuming step in the process
of application development and therefore it might not make sense to sue such a tool
in all cases. Using the tool just once, for an application that does not need to consume
lots of different APIs might not be worth the effort. In such a case manual coding
could be quicker. Therefore, it is advisable to use the code generation tool when the
data comes from several different APIs in order to profit from the advantages such as
a quicker development process and complexity reduction in the client.
It should be noted that the tool was not truly evaluated in terms of usability in the
two example cases. The development of the example applications was not conducted
by a developer who never used the tool before. It is obviously easier to use a tool for
someone who developed it than it would be for someone seeing it the first time.
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This final chapter concludes the present thesis. The conclusions will be listed which
can be drawn on the basis of this work as well as the main limitation of the presented
approach. Additionally, an outlook will be presented which outlines the future work.

6.1 Conclusion

The aim of this thesis has been to present a model-driven approach for the consump-
tion of RESTful APIs in single page applications. Therefore, a reference architecture
has been presented which shifts the consumption of RESTful APIs outside of the client.
Additionally, a meta-model describing RESTful API consumption has been introduced
as well as a code generation tool which is driven by this model. In order to achieve
those contributions, related work and state-of-the-art methodologies and technologies
have been analysed. Furthermore, the approach has been developed and evaluated
in different ways in the scope of this thesis. Those procedures lead to the following
conclusions that can be drawn from the results of this thesis:

• The consumption of RESTful services can be modelled. Analysing the state-of-
the-art in web development technologies revealed the building blocks of RESTful
API consumption. This led to the meta-model described in section 3.4 which acts
as a basis for the code generation process.

• Consuming data from several different RESTful APIs leads to complexity in the
client. This was found out from research. In single page applications more
responsibility is shifted to the client. SPAs have to handle RESTful service con-
sumption and related data transformations especially when data comes from
third party APIs which do not provide the data in the desired way.

• The approach presented in the scope of this thesis reduces complexity in cli-
ent. This has been shown in the evaluation by the comparison of two frontend
architectures where one was developed with a query service and one without.
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• Nonetheless, there are also limitations on the approach that have been revealed
in this thesis. The biggest limitation on the tool is roundtrip engineering. The
problem with roundtrip engineering is that with the presented code generation
tool a query service can be generated, however, if the code will be changed, the
model is not being updated accordingly. Furthermore, if it is desired to add or
delete an API request, the model cannot be modified since it is not being stored.
Hence, the code needs to be adjusted manually in such a case.

6.2 Future Work and Outlook

To keep this work in the scope of a master’s thesis some restrictions have been made.
Those are reflected in the limitations on the tool which have been outlined in sec-
tion 5.5. Future work should address those limitations. Particularly, it is reasonable to
focus on the following aspects:

Generic Model As mentioned in the limitations section, the meta-model only de-
scribes RESTful API consumption. Therefore, the code generation tool is only
capable of generating code for RESTful API requests. It would make sense to go
up one level in the abstraction and allow data exchange with any kind of server.
This would result in a more generic model than the one presented in this thesis.

Store Model Another helpful feature for the code generation tool is the possibility to
store the constructed model. This helps adjusting to the model if APIs change or
have to be added. However, for such a feature it has to be preconceived how to
store the manual code refinements with the model so that they are not lost when
generating the server anew.

Real-Time API Management A further approach to solve the problem of adding and
deleting APIs to the query service could be real-time API management. Such
an approach is presented by Gadea et al. [57] who also propose a reference
architecture for the consumption of RESTful APIs. They introduce an approach
which allows real-time management of microservice APIs. They do not provide
client-side code for the consumption of REST APIs but they allow adding and
removing APIs during runtime. This could be a nice extension to the approach
presented in this thesis.

Mapping Data Models The disadvantages that come along with manual code refine-
ment have already been discussed. One way to avoid this problem could be a
mapping process for the data models in the UI of the code generation tool. The
user would specify in the UI how to map the data model from the response data
of the RESTful API, to the data model of the client. However, integrating such a
feature in the user interface seems not to be a trivial task.
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6.2 Future Work and Outlook

User Testing In the evaluation the tool has been used to implement example applica-
tions. This step has been conducted by myself. Of course also research assistance
were involved in the feedback of the code generation tool but no other users. Ac-
cordingly, it would be reasonable to perform user tests to evaluate and refine the
tool in more depth. This could enhance the usability which is essential for third
party users working with the tool. In general it would make sense to evaluate the
tool and reference architecture in more depth by developing a bigger example
application.

Security Adding security features to the query service is another aspect for future work.
For example, OAuth could be added to the service which allows a secure con-
nection between the client and the query service.

There are several more aspects that could be optimised, however, the main objective
of modelling RESTful API consumption and generating the related code has been
achieved.
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Glossary

A

API Application Programming Interface
app application

B

BaaS Backend as a Service
BFFs backends for frontedends

C

CRUD create, read, update, delete

D

DSL Domain Specific Language

E

EMF Eclipse Modeling Framework
ESB Enterprise Service Bus

H

HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol

I

IDE Integrated Development Environ-
ment

J

Java EE Java Platform, Enterprise Edition
JCA Java EE Connector Architecture
JSON JavaScript Object Notation

JSX JavaScript Syntax Extension

M

MBE Model-Based Engineering
MDA Model-Driven Architecture
MDD Model-Driven Development
MDE Model-Driven Engineering
MDMA Model-Driven Model Architec-
ture
MDSD Model-Driven Software Develop-
ment
MVC Model View Control
MVVM Model View ViewModel

N

NPM Node Package Manager

O

OMG Object Management Group

P

PaaS Platform as a Service
PIM Platform-Independent Model
PSM Platform-Specific Model

R

RAML RESTful API Modeling Language
REST Representational State Transfer
ROA Resource Oriented Architecture

S

SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
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Glossary

SPA Single Page Application

U

UI user interface
UML Unified Modeling Language
URI Uniform Resource Identifier
URL Uniform Resource Locator

W

WADL Wep Application Description Lan-
guage

X

XMI XML Metadata Interchange
XML Extensible Markup Language

96



Appendix

A User Guide for the Code Generation Tool

This section presents a user guide for the code generation tool. It describes how to
download and install the tool as well as its utilisation.

A.1 Prerequisites

Git

To clone the repository from GitHub, git is needed. It can be downloaded from:
http://git-scm.com/

Node

Node tools such as the node package manager (npm) are required to install and run
the project. Node can be downloaded from:
http://nodejs.org/

A.2 Download

The implementation of the code generation tool is open source and can be down-
loaded from the following link:

https://github.com/niklas92/service-modelling-tool

The project can also be cloned by entering the following command in the con-
sole:

Listing 1: Command to clone the repository

1 git clone https://github.com/niklas92/service-modelling-tool.git
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A.3 Installation

Before being able to build the project all packages, the implementation is depend-
ent on, need to be install. Therefore, switch to the project directory and install the
packages with npm:

Listing 2: Command to install dependencies

1 cd service-modelling-tool
2 npm install

After the dependencies have been installed, the project has to be build and started.
For the build process the module bundler webpack1 is being used. The following
command is enough to build and run the application.

Listing 3: Command to build and start the app

1 npm start

Subsequently, the application can be accessed by directing to: http://localhost:
8000.

A.4 Model Specification

Once, the application was started, the user can construct an instance of the model
in the UI by entering data in the user form. In the following, all fields that can be
specified in the form are listed and explained.

General Information

The first fields to fill out, specify general information about the quer service that is
going to be generated. The fields application name as well as port are required.

1https://webpack.github.io
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A User Guide for the Code Generation Tool

Table 1: Overview of the general information fields

Field Name Expected Values Description
Application Name String The name of the query service

Author Name String The name of the developer constructing
the model

Port Int The port on which the query service
will run for testing purposes (default is

8080)
Application
Description

String A description of the query service

Data Model

As a next step the data model of the client has to be specified. This is necessary so
that the query service returns the requested data in the correct format to the client. Any
number of entities can be defined here. The definition of one entity requires filling out
the following fields:

Table 2: Overview of the data model fields

Field Name Expected Values Description
Entity Name String The name of the entity

Parameter Name String The name of the parameter which is
contained in that entity

Parameter Type String The type of the parameter (checkout
allowed types: subsection A.5)

Resolver

To specify where the data related to the specified data model comes from, resolver
functions have to be determined. Any number of resolver functions can be specified.
The fields resolver name and return type are required.
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Table 3: Overview of the resolver function fields

Field Name Expected Values Description
Resolver Name String The name of the resolver function

Return Type String The type of the response of the resolver
function (checkout allowed types:

subsection A.5)
Argument Name String Name of an argument that can be

passed to the resolver function
Argument Type String The type of the argument (checkout

allowed types: subsection A.5)
Required Boolean Specifies if the argument has to passed

along with the function or if it is
optional

For each resolver function, several API request can be specified to determine where
the data comes from that is being returned by the resolver. The url field is required.

Table 4: Overview of the API request fields

Field Name Expected Values Description
URL String The url of the API to consume.

Including its URI parameters
(surrounded by {})

HTTP Method GET, POST, PUT,
DELETE

The HTTP method used by this request

Request Body JSON Object body data that has to be sent along with
the request

Authentication
Username

String The username for basic authentication
with the API

Authentication
Password

String The password for basic authentication
with the API

Parameter Name String The name of the parameter that will be
passed along with the request

Parameter Value String The type of the parameter that will be
passed along with the request (checkout

allowed types: subsection A.5)
In Header, Query Specifying weather the parameter is

passed along in the header or in the
query of the request
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A.5 Supported Types

In some fields of the tool’s user form, parameter types have to be defined. According
to Facebook [50] the accepted types are the following ones:

• Int: 32-bit integer

• Float: floating-point value

• String: UTF-8 char sequence

• Boolean: true or false

• ID: unique identifier

• Collections: In order to specify a collection of a certain type it has to be defined
as an array of that type (e.g. [Int]).

• Custom types: If it is desired to use a custom type, it has to be defined as an
entity in the data model of the quer service model.

A.6 Dependencies

Table 5: Dependencies of the query service

Name Modules Version URL
Express express 4.14.0 expressjs.com
Apollo graphql 0.8.0 apollodata.com

graphql-server-express 0.4.2
graphql-tools 0.8.0

B User Guide for the Query Service

Once the model has been constructed through the UI of the tool, the code can be
generated by clicking the generate server button. The query service will be generated
automatically by the tool and downloaded as a zip file. This section explains how to
run the query service and how the built-in testing interface works.

B.1 Installation

Firstly, the downloaded zip file has to be extracted. Subsequently, all packages the
query service is dependent on, need to be installed. Therefore, execute the following
command in the project directory:
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Listing 4: Command to install dependencies

1 npm install

After the dependencies have been installed, the NodeJS server can be started with:

Listing 5: Command to start the query service

1 npm start

Subsequently, the query service will run on the specified port (8080 by default).

B.2 Testing

Once the query service is running, it can be tested with the help of GraphiQL. GraphiQL
is a testing framework which allows sending queries and mutations to the GraphQL
API of the query service. It can be accessed by directing to http://localhost:8080/
graphiql (or a different port if the default port has been changed when constructing
the model). Figure 1 shows a screenshot of the GraphiQL UI. On the left hand side
test requests can be entered. Queries or mutations can be inserted in the upper field.
Related query variables can be entered in the lower field. After sending the request to
the server by pressing the "play" button, the response will be displayed in the middle
view. The schema can be explored on the right hand side of the GraphiQL interface.
There, all types, queries, and mutations are listed.
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Figure 1: Screenshot of the testing interface GraphiQL

B.3 Dependencies

Table 6: Dependencies of the code generation tool

Name Modules Version URL
React react 15.6.1 reactjs.org

react-dom 15.6.1
react-tap-event-plugin 2.0.1

Webpack webpack 3.3.0 webpack.github.io
Mustache mustache 2.3.0 mustache.github.io

mustache-loader 1.0.0
Material UI material-ui 0.18.7 material-ui.com

JSZip jszip 3.1.3 stuk.github.io/jszip/
FileSaver file-saver 1.3.3 npmjs.com/package/file-

saver
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