
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatik

Empirical studies to identify
best practices for addressing
recurring concerns of product
managers and product owners

in large-scale agile development

Louis Leonardo Zschaler

b

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatik

Empirical studies to identify best practices for
addressing recurring concerns of product

managers and product owners in large-scale
agile development

Empirische Studien zur Identifikation
bewährter Praktiken für die Adressierung
wiederkehrender Herausforderungen von

Produkt Managern und Ownern in Large -
Scale Agile Development

Author: Louis Leonardo Zschaler

Supervisor: Prof. Dr. Florian Matthes

Advisor: Ömer Uludağ, M.Sc.

Date: December 16, 2019

d

I assure the single handed composition of this master thesis only supported
by declared resources,

Munich, December 16, 2019 Louis Leonardo Zschaler

Abstract

Agile methods have been put to test for almost 20 years now resulting in
mixed feelings whether or not they will revolutionize software development
and other disciplines. Especially small teams were able to show highly posi-
tive results of agile methods, leading to an increased efficiency and a better
work environment. Big companies become more and more interested in this
trend, but while small teams already face several concerns in applying agile
methods, large-scale agile methods come with a much higher complexity and
a new set of concerns. This is why current literature points out more con-
cerns about large-scale agile development than there are concepts for tackling
these concerns.

In order to provide best practice solutions in form of patterns, the Chair
of Software Engineering for Business Information Systems at the Techni-
cal University of Munich has developed a Large-Scale Agile Development
Pattern Language. Patterns describe practice-proven solutions for recurring
concerns. A pattern language defines the structure of a pattern in a given
context, making it easily available to the industry. In the context of this the-
sis, 11 structured interviews with industry partners have been conducted to
observe recurring concerns and best practices of Product Owner and Product
Manager in Large-Scale Agile Development.

As a result 6 patterns and 30 pattern candidates have been documented in
the Large-Scale Agile Development Pattern Language. Furthermore 23 new
concerns have been identified with the industry partners. In total 58 concerns
have been verified and their frequency shows how urgent each concern is.
The observed patterns have been proven by at least three different industry
partners. The value of the pattern candidates has to be evaluated further
to see if they have the potential to be valuable to many more organizations
with the same or similar concern.

Zusammenfassung

Agile Methoden wurden in den vergangenen 20 Jahren eingehend erprobt,
wobei es immer noch gespaltene Gefühle drüber gibt, ob sie wirklich die Soft-
ware Entwicklung und andere Disziplinen revoluzionieren oder nicht. Vor al-
lem kleine Teams haben einen erheblichen Mehrwert aus den agilen Methoden
gezogen, was nicht nur zur Steigerung ihrer Effektivität geführt hat, sondern
auch zu einem besseren Arbeitsumfeld.
Auch große Firmen interessierten sich nach und nach immer mehr für diesen
Trend, aber dadurch, dass kleine Teams teilweise schon mit Herausforderun-
gen zu kämpfen hatten, wurde es durch die Large-Scale Agile Methoden noch
komplexer und führte zu noch mehr Herausforderungen. Aus diesem Grund
lassen sich in der derzeitigen Literatur mehr Probleme, als Konzepte, die da-
bei helfen diese Probleme zu lösen, finden.
Um dem entgegenzuwirken hat der Lehrstuhl für Software Engineering for
Business Information Systems an der Technischen Universität München (TUM)
eine Large-Scale Agile Development Pattern Language entwickelt.
Patterns beschreiben eine Lösung für derzeitige Herausforderungen, die in der
Praxis bereits getestet wurden. Eine Pattern Language definiert die Struk-
tur eines entsprechenden Patterns in einem Context, der es einfacher für die
Industrie macht, diesen anzuwenden.
Im Rahmen dieser Masterarbeit wurden elf Interviews mit verschiedenen
Partnern aus der Industrie geführt, um derzeitige Herausforderungen zu be-
obachten und diese mit Hilfe der, von Product Ownern und Product Ma-
nagern, verwendeten Lösungsansätze in Large-Scale Agile Development zu
dokumetieren. Ergebnis dieser Feldforschung waren sechs patterns und 30
pattern candidates, die im Bereich Large-Scale Agile Development beobach-
tet wurden. Zusätzlich wurden, neben der Herausforderungen, die schon in
der Literatur zu finden waren, 23 neue Herausforderungen dokumentiert. Al-
les in allem wurden 58 Herausforderungen verifiziert und die Häufigkeit zeigt,
wie relevant diese sind. Die patterns müssen von mindestens drei verschiede-
nen Partnern bestätigt worden sein.
Der Wert eines pattern candidates muss noch weiter bestimmt werden, um
zu evaluieren, ob sie einen Mehrwert für Firmen bringen können, die mit den
gleichen Herausforderungen zu kämpfen haben.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Objectives . 2
1.3 Research Approach . 3

2 Foundation 6
2.1 Agile development . 6

2.1.1 Agile value . 7
2.1.2 Agile principle . 7
2.1.3 Agile practices . 8
2.1.4 Agile frameworks . 8
2.1.5 Agile organizations . 11

2.2 Large-scale agile development 11
2.2.1 LeSS . 12
2.2.2 SAFe . 14

2.3 Patterns . 15
2.3.1 Definition . 15
2.3.2 Pattern documentation 16
2.3.3 Pattern language . 16

3 Related Work 18
3.1 Related work on recurring concerns in large-scale agile devel-

opment . 18
3.2 Related work on pattern languages 20

4 Identification of Recurring Concerns and Best Practices 21
4.1 Methodology . 21
4.2 Findings on recurring concerns 22

4.2.1 Concerns identified by Product Owner and Product
Manager . 22

4.2.2 Identification of Recurring Concerns 29

ii

4.3 Findings on Patterns . 32
4.3.1 Magic estimation . 34
4.3.2 Don’t think a change in too big steps 36
4.3.3 Program Increment (PI) Planning 38
4.3.4 Domain Driven Design 40
4.3.5 Feature Teams . 42
4.3.6 Fully transparent agile project 44

5 Discussion 47
5.1 Key Findings . 47
5.2 Limitations . 48

6 Conclusion 50
6.1 Summary . 50
6.2 Future Work . 51

A Interviews on Identification of Recurring Concerns and Pat-
terns 53

B Documentation of New Concerns 56

C Documentation of Pattern Candidates 63
C.1 Documentation of Coordination Pattern Candidates 63

C.1.1 Structured coaching an entire organization 63
C.1.2 Coordination of current dependencies 66
C.1.3 Structured request for demand 68
C.1.4 Communication channel to maintain agile role within

organization . 70
C.1.5 Agile Governance . 72
C.1.6 Dual-Track Agile . 74
C.1.7 Clustering / Template 76

C.2 Documentation of Methodology Pattern Candidates 78
C.2.1 Velocity Measurement 78
C.2.2 Continuously changing the improvement method 80
C.2.3 Mapping storypoints to other KPI’s 82
C.2.4 Change Backlog . 84
C.2.5 Value stream analysis 86
C.2.6 Nexus Sprint . 88
C.2.7 Portfolio Backlog . 90
C.2.8 Weighted shortest job first 92
C.2.9 Improvement Backlog 94

iii

C.2.10 Mob-Testing . 96
C.2.11 T-shirt size estimation 98
C.2.12 Agile Ninja . 100
C.2.13 System Thinking . 102

C.3 Documentation of Viewpoint Pattern Candidates 104
C.3.1 Burndown Chart . 104
C.3.2 Storymap . 107

C.4 Documentation of Anti-Pattern Candidates 110
C.4.1 Don’t let the Product Owner be the only interface to

the team . 110
C.4.2 Don’t think a change in too big steps 112
C.4.3 Don’t instate a field specialist as Product Owner with

no technical background 114
C.4.4 Don’t let teams work in the same constellation for too

long . 116
C.4.5 Don’t manage an unnecessary amount of requirements

in one program . 118
C.5 Documentation of Principle Candidates 120

C.5.1 The Agile Connector 120
C.5.2 Culture of empowering decision making 122
C.5.3 Intercultural team building 124
C.5.4 Proactively involve key stakeholder in the progress with

every increment . 126

iv

Chapter 1

Introduction

The first chapter will introduce this thesis by showing the current status
of Agile and Large-Scale Agile Development in the literature and the need
for documenting best practices of concerns for Product Managers and Prod-
uct Owners in a pattern language. Furthermore it will present the research
objectives that are to be answered and how to approach them.

1.1 Motivation

For 20 years now agile methods have changed the way of collaboration for
many teams and organizations. Iterative cycles of lean processes and deliver-
ing increments regularly result in more flexibility, more value to the customer
and shorter time-to-market. According to a study conducted by The Stan-
dish Group International, Inc. in 2015, agile projects are almost four times
more successful than waterfall projects. [1] Combined with the shorter time-
to-market, this also leads to cost reduction. [1] These benefits has inspired
more and more people to adapt agile principles and values. So far mostly
small companies were able to transform their organization towards agile, but
fast growing and changing markets with increasing competition is forcing
large companies to get faster as well.

While agile frameworks originally were designed for small and self-organized
teams with usually not more than 10 members [2], large companies with
three-digit team sizes are faced with the challenge to scale agile methods to
their needs. Large-Scale agile frameworks like LeSS [3] and SAFe R© [4] try
to enable large projects and companies to achieve the same benefits by scal-
ing the traditional agile methods and having many agile teams work on the
same product. The positive impact could be huge. The Chaos Report 2015

1

CHAPTER 1. INTRODUCTION

evaluated over 10,000 projects, showing that large size agile projects have six
times the success rate as large size waterfall projects. [1]

However, there are many new challenges to be dealt with. The literature
on dealing with challenges when becoming agile is full of publications [5] but
the literature for large-scale agile development is scare. There are only a
few positive examples like Lego [6] or Spotify [7] that managed a successful
transformation. But for many documented challenges or concerns, there are
no solutions or best practices to be found in the literature. [8]

A fast and efficient way to document solutions for recurring concerns are
patterns. Uludağ et. al. defined a large-scale agile development pattern
language to structure patterns in this very field. [9] It categorizes identified
concerns, defines five different kinds of patterns and unlike other pattern
language, it relates the documented patterns to different stakeholders. Espe-
cially Product Managers and Product Owners will have to face to concerns
when managing not one but several agile teams. This new level of complexity
will raise questions like how to distribute tasks, what to do with cross-team
dependencies and how to keep a strong communication between all these
self-organized teams.

1.2 Research Objectives

This thesis goal is to contribute patterns for Product Managers and Prod-
uct Owners as part of the Large-Scale Agile Development Pattern Language
(LSADPL). [9] In order to achieve that, the following research questions (RQ)
will be answered within this paper.

Research Question 1: What are recurring concerns of Product Managers
and Product Owners in Large-Scale Agile Development?

There are a great number of concerns when it comes to Large-Scale Agile
Development. The problem is, that the list of publications evaluating these
problems is rather short. That’s why it is important to examine what the
concerns for Product Owners and Product Managers are and how to evade
them. Without these concerns, it would not be possible to identify different
patterns, because they need to be applied to recurring concerns.

Research Question 2: What are best practices for addressing recurring
concerns of Product Managers and Product Owners in Large-Scale Agile De-

2

1.3. RESEARCH APPROACH

velopment?

After identifying the concerns of Product Owners and Product Managers
in RQ1 it is necessary to observe and evaluate different possible solutions. If
you monitor a solution approach three or more times you can call it a pattern.
Every solution, that is being used less than three times is no pattern yet, but
is handled as a pattern candidate and can still give valuable information.

Research Question 3: Which anti-patterns should Product Managers and
Product Owners avoid in large-scale agile development?

Analogical to RQ2 the third Research Question tries to identify several Anti-
Patterns and interpret them. Just like Patterns they need to be applied at
least three times to gain the label Anti-Pattern. If used less than three times
they can not be called Anti-Pattern but Anti-Pattern Candidate.

1.3 Research Approach

The method used for this thesis is called Pattern-Based Design Research.
The goal of this approach is ”to balance rigor and relevance in Information
System research”. This approach focuses on patterns that are observed in
practice. Pattern-Based Design Research consists of four activities: observe
& conceptualize, pattern-based theory building & nexus instantiation, solu-
tion design & application and evaluation & learning (shown in figure 1.1 on
page 4). This thesis scope will focus on the first two activities. [10]

The first activity represents the problem diagnosis. Good practices from dif-
ferent industries are observed and later documented with a specific pattern
structure in order to get a set of pattern candidates. In this thesis eleven
structured interviews are the primary source for finding pattern candidates.
The structure of a problem diagnosis normally contains at least three or four
elements: problem, solution, context and forces. Depending on the applica-
tion domain the conceptualization might be more detailed. [10]

The second activity of pattern-based theory building & nexus instantiation
describes how to evolve pattern candidates into a pattern language by bring-
ing several patterns into relationship. If you observe the same use case at
least three times it becomes a pattern. This pattern must then be set into
relationship with already existing patterns to gain a structured set of pat-
terns called pattern language. [10]

3

CHAPTER 1. INTRODUCTION

Figure 1.1: Pattern-based design research [10]

Evolving the pattern language then into a design theory would be the next
step, but is out of scope for the purpose of this thesis. The results of the
pattern language shall later be used in practice in large-scale agile environ-
ments in order to tackle an existing concern by implementing one or several
related solutions.

The following thesis is structured as followed. Chapter two, the foundation
discusses the fundamental elements, that were used for this work like Agile
Software Development. To get a better insight in the different elements this
sub-chapter is divided in four parts: agile value, agile principle, agile prac-
tices and agile frameworks, while agile frameworks mainly describes Scrum
as an exemplary and well known agile frameworks. The second sub-chapter
of the foundation will take a closer look on large-scale agile development,
how it differs from the original agile development and give an insight on two
large-scale frameworks. The third part will analyze the concept of patterns
as a way of documenting best practice solutions.

Chapter three summarizes the most important and relevant work regarding
agile software development, Large-Scale Agile Development and patterns.

4

1.3. RESEARCH APPROACH

Chapter four will describe the process of identifying recurring concerns and
best practices and the methodology that was used. Chapter five discusses
the results, that where gained by analyzing the interviews held and the last
chapter summarizes the results of this thesis and an outlook on future work.

5

Chapter 2

Foundation

The following chapter will explain all relevant terms and concepts that build
the foundation of this thesis. It will first explain the main elements of agile
software development, how it was created, why there was a need for new de-
velopment methods and illustrate one exemplary framework for agile software
development. Based on that, this chapter aims to clarify what Large-Scale
Agile Development means in this context and bring two frameworks as an
example. In addition to that, this chapter will conclude in describing the use
of patterns as a method for providing findings in a fast way.

2.1 Agile development

Traditional software development already brought out several development
models based on the Software Development Lifecycle [11]. The basic con-
cept of traditional software development is that development is a theoretical
process, thus fully definable [12]. But for many use cases this approach does
not apply, which created the need for a new method that builds upon an
empirical process.

First approaches for agile software development started in the 1990s [12].
Kent Becks publication ”eXtreme Programming” in 1999 [13] led to an in-
creasing popularity in this matter. While several researchers worldwide pub-
lished papers independently from each other, their findings had a lot in com-
mon. 17 of them composed the Agile Manifesto in 2001 which lays the
foundation for today’s agile methods and processes. These 17 authors came
to the conclusion that this new approach requires a certain mindset. That is
why processes and methods alone won’t lead to the expected outcome. Agile
values and principles are required as well.

6

2.1. AGILE DEVELOPMENT

2.1.1 Agile value

The group of 17 authors, also known as ”The Agile Alliance”, believed that
agile methodologies require an environment that sets a higher focus on the
people. Such an environment shall have people not working on a project
because they have to, but because they want to see the project succeed. In
order to create such a motivation, not based on monetary motives only, the
Agile Manifesto describes the following values for agile software development:
[14]

• Individuals and interactions over processes and tools.

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

2.1.2 Agile principle

The second part of the Agile Manifesto describes agile principles. These
principles are to be seen as guidelines and build together with the agile
values, the foundation for all agile practices. Again the focus is very much
on the customer and the people working in an agile environment. The Agile
Manifesto lists 12 principles: [14]

• Our highest priority is to satisfy the customer through early and con-
tinuous delivery of valuable software.

• Welcome changing requirements, even late in development. Agile pro-
cesses harness change for the customer’s competitive advantage.

• Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale.

• Business people and developers must work together daily throughout
the project.

• Build projects around motivated individuals. Give them the environ-
ment and support they need, and trust them to get the job done.

• The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.

• Working software is the primary measure of progress.

7

CHAPTER 2. FOUNDATION

• Agile processes promote sustainable development. The sponsors, devel-
opers and users, should be able to maintain a constant pace indefinitely.

• Continuous attention to technical excellence and good design enhances
agility.

• Simplicity–the art of maximizing the amount of work not done–is es-
sential.

• The best architectures, requirements, and designs emerge from self-
organizing teams.

• At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.

2.1.3 Agile practices

Unlike principles, agile practices are concrete instructions that can be used
for solving one or several problems. Practices define how to do something in
a certain stage of the Software Development Lifecycle (SDLC). One example
for agile practices can be the use of Story Cards [15]. This method describes
a set of activities executed in an early stage of the SDLC as part of the
requirement engineering. It aims to provide customers a way of documenting
the requested behaviour of the target system to the developing team. Each
functionality will be one story card. One of the benefits of this principle is
the customer-centric approach from the very beginning of the project which
is directly connected to the third agile value of the Manifesto [14]. So agile
practices can guideline people to adopt agile values or principles and help
understand their importance.
Other examples for agile practices can be test-driven development [16] or
pair-programming [17].

2.1.4 Agile frameworks

Frameworks are taking in values, principles and practices to provide guide-
lines in approaching a certain goal. They provide a loose structure without
being to detailed and leave room for other practices and tools to be included.
Unlike methodologies, who are aiming to provide a holistic set of methods
and guidelines to describe an entire life cycle, as in software development for
instance the SDLC. [18]

Agile frameworks in particular usually have in common that they aim to

8

2.1. AGILE DEVELOPMENT

keep the planning phase very short and reach a minimum valuable product
in the implementation phase as fast as possible. A short planning phase is
thereby reached with multiple iterations through the SDLC. This iteration
makes the process agile because it passes the planning phase various times,
giving developers and software engineers the possibility to constantly adapt
the software to outer circumstances. This possibility for constant adaption
is the most significant advantage over traditional (plan-driven) software de-
velopment frameworks. Examples for traditional frameworks, among others,
are the V-Model [19] or the waterfall model [20].

Figure 2.1: The Scrum Process [21]

Probably the most known and used agile framework is Scrum (shown in
figure 2.1 on page 9). The official Scrum Guide, published by Ken Schaber
and Jeff Sutherland, defines Scrum as ”a framework within which people
can address complex adaptive problems, while productively and creatively
delivering products of the highest possible value”. [21] It is a lightweight
framework which is easy to understand, but still difficult to master. The
special aspect about it is, that its not just a process or simple technique.
Instead it is a scheme, within which you can apply different processes and

9

CHAPTER 2. FOUNDATION

techniques to help improve the team, working environment and most impor-
tant the product you are working on. [21]

To understand Scrum, its essential to know all the components included.
Scrum consists of a team and their rules, roles, artifacts and events. Each
team member has a particular role which is crucial not only for the success
of a particular project but also for the use of this framework. [21] In total
there are three different roles: Product Owner, Scrum Master and the De-
velopment Team.

The Product Owner is responsible for the whole project, meaning he en-
larges the outcome of the work that the developing team accomplishes and
also manages the Product Backlog to ensure, that it is transparent for every-
one, meaning they understand the items within the Backlog and know what
task they have to work on next. The Product Owners success depends on
whether the team respects all decisions made and also on how every task is
prescribed to keep the amount of dependencies low. [21]

The second role, the Scrum Master is responsible for the success of the team
including helping everyone to understand the principles of Scrum and make
them work. Also the Scrum Master acts as a broker between the inside team
members and everyone outside, to make sure every interaction between them
is high in value. [21]

The Development Team is organizing its own work, which means that they
are self responsible. They work cross functional and each team member is
equal. Scrum does whether recognize titles nor sub-teams or accountability
to only one team member. Some may have specialized skills but these belong
to the whole team and not just to an individual.

Beside those three roles the scrum framework also contains five main events:
Sprint, Sprint Planning, Daily Scrum, Sprint Review and Sprint Retrospec-
tive. The most important event within Scrum is a Sprint. You can define it
as a time-box, normally two to four weeks, in which a release candidate is
produced and marked as done. [21] Before you start a Sprint the team comes
together for a meeting also called the Sprint Planning, where you define the
Sprint Backlog based on the Product Backlog. [22] To keep those goals in
mind the team meets up every morning to the Daily Scrum, a short meeting
where every team member gives a short recap of what they have achieved
since the last, what they will do until the next meeting and if they have any
difficulties that might require help or actions of an other team member. [23]

10

2.2. LARGE-SCALE AGILE DEVELOPMENT

At the end of every sprint the team meets up for a Sprint Review and a
Sprint Retrospective. The reason for doing the Review, is to go through the
Increment and modify the Product Backlog if necessary. [21] The Sprint Ret-
rospective helps the Scrum team to look back at their way of working and
to reflect it, so that work can be improved in the next Sprint. This Retro-
spective is about three hours long and held before you start the next Sprint
Planning. You don’t only talk about the work and how to improve it, you
also talk about the relationships within the team, the processes and tools. [21]

However, the scalability of agile methods can easily reach it’s limits because
they all talk about one agile team, where the maximum number of team
members is usually considered as ten. The Scrum Guide suggested 7 ± 2
members per team based on the psychology paper ”The Magical Number
Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing
Information”. [24] Later they increased the range making it 6 ± 3 members
per team but the limit to 9 members stands. Other papers support this ap-
proach, stating that big teams are way less efficient. [2] Does this mean that
large organizations with teams consisting of three-digit member amounts are
not able to profit from agile methods?

2.1.5 Agile organizations

Agile development does not have to stop at team level. Agile principles and
values can be applied within the whole organization. Thereby traditional hi-
erarchical structures are usually to overcome (shown in figure 2.2 on page 12).
In this context an organization does not have to equal a company. Agile or-
ganizations can also be applied to just a department or main section within a
company. Growing companies like start-ups have to start building structures
in their organization and can then easily decide where to go. Bigger compa-
nies with already existing structures have to go through a change process to
become an agile organization, often referred to as Agile Transformation. The
bigger the organization, the more complex, difficult and time-consuming the
agile transformation.

2.2 Large-scale agile development

The first agile frameworks never considered scalability but with an increasing
interest in agile development, new frameworks came up trying to bring agile
methods to a new scale. The common answer over several large-scale agile
frameworks is to split the project into several agile teams. This leads to a

11

CHAPTER 2. FOUNDATION

Figure 2.2: Agile Organization & Culture [25]

manageable controlling layer, focusing on the collaboration among the teams
while there are agile practices within each team and around them. However,
due to the enormous complexity that comes along with such big projects, the
scope of Large-Scale agile frameworks goes far beyond just the team level. A
new level of complexity brings new concerns for the organization. So applying
agile frameworks to large companies has it’s pros and cons.
Among the most common frameworks for Large-Scale Agile Development are
LeSS and SAFe R©.

2.2.1 LeSS

Agile methods were originally designed for small teams. Due to their suc-
cess they inspired bigger companies to adapt those methods and use them
for Large-Scale efforts. The fact, that they were designed for small teams
means, that Large-Scale Agile Development comes with some concerns, the
teams need to deal with. Craig Larman and Bas Vodde, founders of LeSS,
separated it into two different frameworks: LeSS and LeSS huge. While the
first one fits for two and up to eight teams, LeSS huge is for more than
eight. [3] LeSS is scrum, applied to many different teams, so they are able
to work cross-functional. Its about applying the elements and principles to
a Large-Scale project and to keep it as easy as possible. Those teams, that
work together have one common goal, meaning that everyone is responsible
for the whole project, not only one part of it. LeSS is customer-centric, it
focuses on the real problems and tries to find a solution.

12

2.2. LARGE-SCALE AGILE DEVELOPMENT

LeSS does still have a Product Backlog, one Product Owner, one Prod-
uct and one Sprint, regardless how many different teams are working on the
project. [3] But besides that, each team has its own Scrum Master and Fea-
ture Team. Scrum has five different events and so does LeSS. All teams work
within the same Sprint, meaning that they have a common Sprint Planning,
Review and Retrospective, and not one each. But when it comes to Sprint
Planning there is one huge difference from Scrum: you have two different
phases, Sprint Planning One and Sprint Planning Two.

In Phase One the different teams, or a couple of representatives meet with the
Product Owner to create the Product Backlog and clarify all items (shown
in figure 2.3 on page 14). After that either each team has its own Sprint
Planning, Phase Two, based on their Backlog where they are designing and
planning the work they have to do, or if some teams have a Backlog that is
quite similar, they do a multi-team Sprint Planning to identify their common
projects to prevent doing tasks twice. At the end of every Sprint you have a
Review and two Retrospectives. The difference to traditional scrum is, that
you have a team Retrospective and an Overall Retrospective attended by
Product Owner, Managers, Scrum Master and a couple of team representa-
tives. [3]

13

CHAPTER 2. FOUNDATION

Figure 2.3: Less Sprint Planning [3]

2.2.2 SAFe

Like LeSS the Scaled Agile Framework (SAFe) is a framework, that can be
used in Large-Scale Agile Software Development and combines methods like
Kanban, Scrum and Extreme Programming with Lean Thinking and Lean
Product Development, which makes it easier for huge enterprises to use agile
principles. [26] SAFe provides not only artifacts but also collaboration and
follows a centralized strategy. [27] There are three different levels when it
comes to SAFe, while SAFe 4.0 has the highest scaling factor.

There a four layers that can be applied to SAFe. The first two, the team
layer and the program layer are mandatory, the third and fourth, the Large
Solution and the Portfolio layer, can additionally be applied, whether its
needed or not. [4]

As mentioned before, SAFe has the highest scaling factor and can be used for
the entire organization. [4] The bottom consists of the team layer. The Scrum
that is used on this level is a bit different from the ’normal’ Scrum, that was
explained a bit earlier in this thesis, its based on XP and has between five

14

2.3. PATTERNS

to eight team members and a Scrum Master and Product Owner. [26] Each
Product Owner has a very strong team focus and is responsible for about
one or two teams besides supporting the Product Management.

Above the team you have the Program Level. This level contains the Agile
Release Train (ART) and has between five and ten teams (between 50 and
125 people) that work together on one train. The special thing about this
level is, that you do not work on projects, you work on so called programs.
Huge companies normally have several trains and Programs. [26] Every re-
quirement are administered by the Produt Manager on the program level and
the Product Owner uses them to make a story for the different teams. After
about five iterations, what would be around ten weeks, you create a program
increment containing all the different increments that were implemented by
the different teams. This outcome can, but must not be delivered by the
Agile Release Train. [26]

The large solution is the third level. It is not necessary but optional and
is mainly used when it comes to building large hard- or software systems. Its
contains different elements like the solution train, solution intent or solution
management.

The upper level is called the Portfolio Level. Here all the different pro-
grams are defined. Just like the Program Level, huge companies normally
work with more than one portfolio and their teams. The portfolio is not
only responsible for budget but also for target measures, while a normal in-
vestment is aimed between six and twelve month. [26] The target measures
are called Epics and you differ between a Business Epic, which is customer
oriented and an Enabler Epic, that is based on technical solutions. [26]

2.3 Patterns

2.3.1 Definition

”A pattern is a general, reusable solution to a common problem in a given
context.” [28] – Alexander M. Ernst, 2010

A pattern always consists of three different elements: a context, a problem
and its solution. They are often used to communicate solutions for a common
problem in various fields of software engineering, like a sample solution, that
can be used over and over again. [29] Patterns are not obtained by developing

15

CHAPTER 2. FOUNDATION

them. To receive a pattern, you monitor how certain solutions are applied to
a problem and document those results. But not every solution is a pattern.
It needs to be applied at least three times to fall into this category. [30] This
is what is called the rule of three: ”[...] a good pattern should have three
examples that show three insight-fully different implementations.”

2.3.2 Pattern documentation

To describe a pattern normally a format, called the Alexandrian form is used.
This form does not have a determined design, but shows a couple of possible
elements for describing a pattern. Generally the first thing you do is to give
this particular pattern that is being created a name. [31] After doing that you
analyze the problem that has to be solved. That makes it easier for those,
who want to use the pattern as well, because they’ll know when exactly to
apply it. After that you define the context, because it may only make sense
to apply it in this specific context and not somewhere else. [31] This step
increases the efficiency, making sure everyone else understands where it has
to be used. You can also describe the forces, meaning the external influences
that act upon the problem. Why is it so difficult to solve? It is not possible
to affect the problem, but what can be done is to work against it, that’s
why a good pattern can resolve one, or even more forces. After analyzing the
problem and trying to figure out why it is so difficult to solve, you may find a
solution. To make the solution clear to everyone you do not only explain the
solution, you describe the structure and behavior by describing how to build
the solution, sometimes even showing different variants of it, because there
might be a couple of different ways. It is also possible to draw a picture for
most patterns, to visualize them and make the path of solving even clearer.
Every author can extend the description of a patterns with more categories,
like consequences, pros and cons using it, where else it was used, there is no
particular schema that you have to stick to. [31]

Only a few patterns deserve to be called perfect and can stand on their
own. A good pattern does not only find a solution to a problem, it also tells
what forces might not have been solved or even if other patterns should be
applied and how they changed the context. [31]

2.3.3 Pattern language

Different patterns can also be combined with each other, making it easier
to compare them. The result is called Pattern Language. This is a sorted
collection of several patterns that makes it easier for the user of this language

16

2.3. PATTERNS

to find a solution to his problem. This thesis is based on Large-Scale Agile
Development Pattern Language (LSADPL) and can be describes with the
following model (shown in figure 2.4 on page 17):

Figure 2.4: LSADPL UML Diagram [9]

This model categorizes patterns in five different categories:

• Coordination Patterns (CO-Patterns)

• Methodology Patterns (M-Patterns)

• Viewpoint Patterns (V-Patterns)

• Anti-Patterns (A-Patterns)

• Principles

17

Chapter 3

Related Work

In this chapter an overview of the current literature regarding the recur-
ring concerns in Large-Scale Agile Development and the Pattern Language
is given.

3.1 Related work on recurring concerns in

large-scale agile development

This Thesis is part of the research project of Uludağ,Ö. and is thereby based
on mainly two publications. In the publication ”Identifying and Structuring
Challenges in Large-Scale Agile Development based on a Structured Litera-
ture Review”, Uludağ et al. are exploring the field of challenges in Large-
Scale Agile Development by identifying and reviewing 73 relevant sources.
As a result 79 challenges of 14 different stakeholders were being documented
and categorized in 11 categories. [32]

Stakeholders:

• Agile Coach

• Business Analyst

• Development Team

• Enterprise Architect

• Portfolio Manager

• Product Manager

18

3.1. RELATED WORK ON RECURRING CONCERNS IN
LARGE-SCALE AGILE DEVELOPMENT

• Product Owner

• Program Manager

• Scrum Master

• Software Architect

• Solution Architect

• Support Engineer

• Test Team

• UX Expert

Categories:

• Culture & Mindset

• Communication and Coordination

• Enterprise Architecture

• Geographical Distribution

• Knowledge Management

• Methodology

• Project Management

• Quality Assurance

• Requirements Engineering

• Software Architecture

• Tooling

Based on this research, Uludağ et al. created the Large-Scale Agile Develop-
ment Pattern Language, to address challenges and concerns in Large-Scale
Agile Development because his literature review shows that there are many
challenges, that are not being addressed within the literature. [9]

Another approach in identifying challenges of this field was made by Dikert
et al. with their publication ”Challenges and success factors for large-scale

19

CHAPTER 3. RELATED WORK

agile transformations: A systematic literature review”. [5] This literature re-
view differs from Uludağ et al. in a way that Dikert et al. adding 29 success
factors that have been identified and categorized.

Another paper worth mentioning was published by Julian M. Bass under the
name ”Artefacts and agile method tailoring in large-scale offshore software
development programmes”. [33] Bass conducted 46 practitioner interviews
identifying 25 artifacts within 5 categories. Identifying concerns was not his
primary goal but a necessity for his research.

3.2 Related work on pattern languages

Patterns and pattern languages were firstly introduced 1977 by Alexander
et al. in the context of architectural planning for buildings and towns [34].
The North Face pattern, for instance, targets buildings which have a big
side facing north. The sun will usually cast a long shadow behind them, so
the pattern proposes to populate this area with things that do not require
sunlight [35].

As mentioned in chapter 2, patterns are general solutions to common prob-
lems, while pattern languages are cohesive collections of patterns. Architec-
tural planning, in contrast to software architecture, revolves around space
and habitability. Nonetheless, pattern languages can help solving software
architecture problems just as well [36].
In 1987, Cunningham and Beck first applied both patterns and pattern lan-
guages to software architecture. The authors created a pattern language to
solve common problems in object-oriented programming [37]. According to
Salingaros, patterns are ”a powerful tool for controlling complex processes”,
explaining how patterns and pattern languages became successful in com-
puter science [38].

20

Chapter 4

Identification of Recurring
Concerns and Best Practices

The following chapter will show the findings on recurring concerns and best
practices for Product Owners and Product Manager. Chapter four is therefor
presenting the results, that the author gained in the interviews. First part of
this chapter will be the description of the methodology, that was used for the
interviews. After that all concerns, that where identified are listed. In the
last part of this chapter the identified patterns, and the pattern candidates
are being listed.

4.1 Methodology

The goal of this work was to identify recurring concerns and best practices in
Large-Scale Agile Development, by analyzing problems found in recent liter-
ature and identify new concerns. For this we used semi-structured interviews
as shown in the figure below.

Figure 4.1: Structure of an interview

One interview was estimated for about 90 minutes and was divided into
five different parts:

21

CHAPTER 4. IDENTIFICATION OF RECURRING CONCERNS AND
BEST PRACTICES

1. Introduction:
The first five minutes are being used, that the participants can intro-
duce themselves and tell something about their work and the company
they work in.

2. Identify I:
The participant was asked to identify at least three concerns that they
face in their work as a Product Manager or Product Owner.

3. Describe I:
Based on the identified concerns they are facing, they are describing
the solutions, that are addressed to solve those concerns.

4. Identify II:
In this phase the participants get a list of already existing concerns and
are asked to tick those of, that they have been facing too.

5. Describe II:
After going through that list they are ask to pick those three, that
they have been facing the most and describe how they deal with those
concerns in their daily work.

After finishing the interviews, the patterns, anti-patterns and if necessary
new concerns are documented and analyzed. The outcome was then be-
ing send back to the participants to make sure that everything has been
documented correctly and to get some feedback. If a pattern candidate was
observed three or more times we consolidated the containing information and
defined it as a pattern. This pattern is then correlated to existing patterns
to bring it into the structure of the Large-Scale Agile Development Pattern
Language.

4.2 Findings on recurring concerns

4.2.1 Concerns identified by Product Owner and Prod-
uct Manager

As mentioned before, the first part of the interview was, that every partic-
ipant should describe their most recurring concerns, that they have to deal
with in their daily work life. Next they were asked to describe them to the
author, so that they could be documented properly. Due to the limited time
of the interview, most of them had time to explain three concerns, some
of them described even more. After eleven interviews with seven Product

22

4.2. FINDINGS ON RECURRING CONCERNS

Owners and 4 Product Managers there were 23 new concerns discovered.
Following all mentioned concerns are listed and described:

ID Role
Interviewees
Experience

Company’s
Experience

Industry
Company
Size

1
Product
Owner

3 - 6 years
More than 6
years

Service Sector
More than
200.000

2
Product
Manager

1 - 3 years 1 - 3 years Telecommunications
5001 -
10.000

3
Product
Manager

1 - 3 years 1 - 3 years Service Sector 11 - 50

4
Product
Owner

3 - 6 years
More than 6
years

Service Sector
More than
200.000

5
Product
Manager

1 - 3 years
More than 6
years

Financial Services,
Insurance, Retail

100.001 -
200.000

6
Product
Owner

3 - 6 years
More than 6
years

Service Sector 251 - 500

7
Product
Owner

1 - 3 years 1 - 3 years Transport, Logistics
More than
200.000

8
Product
Owner

1 - 3 years 1 - 3 years IT, Technology 1 - 10

9
Product
Manager

1 - 3 years 3 - 6 years Automotive
More than
200.000

10
Product
Owner

1 - 3 years 3 - 6 years Automotive
More than
200.000

11
Product
Owner

1 - 3 years 3 - 6 years Automotive
More than
200.000

• C-101 Communication channels from higher hierarchy to lower:
The higher a hierarchy, the longer the communication channels. An in-
formation from a higher management level reaching to a low operational
level can take time and information can get lost on the way. This con-
cern is categorized as Communication & Coordination on the Portfolio
Level.

• C-102 Comparability of Storypoints outside teams/projects:
Storypoints are fictive and only make sense within one development
team. Nevertheless, they’re an important indicator for the complexity
of a Story/Sprint and the productivity among team members. Thereby
the possibility for further calculation and planning appears to be inter-
esting. This concern is categorized as Culture & Mindset on the Team

23

CHAPTER 4. IDENTIFICATION OF RECURRING CONCERNS AND
BEST PRACTICES

Level.

• C-103 Collision of Program Management and agile methods:
Usually a program contains several milestones, so deadlines that has to
be met. But on the basis of agile principles, there will be no commit-
ment to a distinct deadline months ahead. This concern is categorized
as Project Management on the Program Level.

• C-104 Stagnating continuous improvement process:
If a developer is in a long time project with mainly the same team,
going through the continuous improvement process for too often, the
actual improvement will stagnate because of missing new influences.
This concern is categorized as Methodology on the Team Level.

• C-105 Management dealing with a loss of control:
Managers have a steering role, controlling what the employees have
to do and how to do it. Now due to agile practices, teams are self-
organized and decide on their own how to reach a certain goal. This
can feel like a loss of control to the management. This concern is
categorized as Culture & Mindset on the IT Organization Level.

• C-107 Spread agile mindset through entire organization:
Whether it’s a project or a department within a company that works
with agile methods, a lack of understanding of agile methods within
other parts of the company will lead to communication gaps and in-
compatibilities to other stakeholders. This concern is categorized as
Culture & Mindset on the Enterprise Level.

• C-108 Identifying dependencies between teams:
When describing new tasks or User Stories in the Backlog, it might be
that these tasks have dependencies between each other. These depen-
dencies should be identified as early as possible, especially to reduce
dependencies between several teams when assigning the tasks. This
concern is categorized as Communication & Coordination on the Pro-
gram Level.

• C-109 Alignment of self-organized teams:
Agile teams organize themselves but also have to align in the big pic-
ture with the other teams. This rising complexity will result in an
additional administrative burden to the Product Owner. This concern
is categorized as Culture & Mindset on the Program Level.

24

4.2. FINDINGS ON RECURRING CONCERNS

• C-110 Patience during the Agile Transformation:
The time for an Agile Transformation highly depends on the complexity
of the organization. Such an organizational change promises benefits
that will not be visible right away and have to be waited for by the
employees. This concern is categorized as Culture & Mindset on the
Portfolio Level.

• C-111 Managing dependencies between teams:
In software development there will always be technical dependencies
among developers and their tasks. The scaling of agile development
will in most cases lead to dependencies among teams as well. Those de-
pendencies are more difficult because the communication among teams
is slower than among developers within a team. This concern is cate-
gorized as Communication & Coordination on the Program Level.

• C-112 Disconnect between corp. strategy and execution:
An agile transformation often starts on the operational level, where
most agile practices are being executed. The higher management on
the strategical level is often missing agile experiences which leads in-
compatibilities between these levels and different working practices.
This concern is categorized as Communication & Coordination on the
Portfolio Level.

• C-113 Understanding the demand for the Agile Transforma-
tion:
People tend to refuse change or anything that’s new, if they don’t see
any need for a change. Changing processes and changing the way of
working will also change working habits. And changing habits requires
way more energy from the human brain than staying in the same habits.
So people will not see the need without an external trigger. This con-
cern is categorized as Culture & Mindset on the Enterprise Level.

• C-114 Maintaining equal quality among teams:
An equal quality of teams is important in administer and planning a
project. There are two main reasons for an imbalance between teams:
Stuffing the team with unequal experienced developers in the first place
and a different impact of the continuous improvement process of each
team. This concern is categorized as Software Architecture on the Team
Level.

25

CHAPTER 4. IDENTIFICATION OF RECURRING CONCERNS AND
BEST PRACTICES

• C-115 Stakeholders being faced with higher amount of meet-
ings:
Within the traditional process, stakeholders are used to define and ap-
prove a set of requirements and then just answering on upcoming ques-
tions during the implementation phase. In agile development there is
a planning phase within each cycle and stakeholders will constantly
find meetings (like Sprint Planning or Retrospective) in their calendar
throughout the entire project. This concern is categorized as Commu-
nication & Coordination on the Enterprise Level.

• C-116 Estimation of complex demands/requests:
The more complex a demand, the more difficult and time-consuming
the estimation for it. But how to estimate an agile program when
the Backlog just starts with a few user stories and will be more filled
throughout the project. This concern is categorized as Requirements
Engineering on the Portfolio Level.

• C-117 Emotional impact of Agile Transformations to employ-
ees:
A change on employee’s processes, work environments or practices has
a direct impact on their habits. A very common first reaction of the
human brain to changing habits is rejection. But rational thinking will
say to do what the boss says. Every individual reacts differently to
this conflict and in the worst case might need additional support. This
concern is categorized as Culture & Mindset on the Enterprise Level.

• C-118 Establish a common vision of the product:
A more complex project means more people are involved and in order
for the project to be successful, everyone needs to have a common un-
derstanding of the ”big picture”. From the customer, over the business
analyst to the developers and tester. This concern is categorized as
Project Management on the Portfolio Level.

• C-119 Improving processes in agile organizations:
Once the agile transformation is complete, an organization still has
to improve continuously and adapt to external circumstances. This
improvement process should then also follow the agile principles. This
concern is categorized as Methodology on the IT Organization Level.

• C-120 Product Owner lacking technical understanding:
The Product Owner acts as an interface between stakeholders and the
development teams. Furthermore he is the owner of the product back-
log. In this function he needs to have a certain depth of technical

26

4.2. FINDINGS ON RECURRING CONCERNS

understanding to be able to prioritize or divide tasks properly. This
concern is categorized as Software Architecture on the Program Level.

• C-122 Knowledge exchange between teams:
One agile team is a close cooperating unit, usually located within the
same room or offices, where a knowledge exchange happens naturally or
during the several Dailies, Retrospectives, etc. A knowledge exchange
between several teams is not given like that. This concern is categorized
as Knowledge Management on the Program Level.

• C-124 Managing recurring requirements efficiently:
When the same requirements are not managed by the same team it
might happen, that something is developed from scratch even though
it could have saved a lot of money communicating This concern is
categorized as Project Management on the Program Level.

• C-125 Dealing with market specific requirements due to local
circumstances:
An international operating company will not be able to roll-out all of
their solutions world wide. Local circumstances like legal requirements,
geographical differences or just a different scale of the companies offices
can require different solutions in different markets for the same task.
This concern is categorized as Geographical Distribution on the Enter-
prise Level.

• C-126 Growing size and complexity of the Backlog:
A large-scale development program includes many different features
that has to be managed in the Backlog. But with this growing com-
plexity it is difficult to keep the overview over all user stories and their
priorities and dependencies. This concern is categorized as Require-
ments Engineering on the IT Organization Level.

There are different levels, on which concerns can appear (shown in figure
4.2 on page 28). Each of the identified concerns are listed to one category,
but it is possible that they appear on more than one level. In this thesis,
there are three levels, that appear the most. Seven of the identified concerns
were found on the Program Level and on the Enterprise Level and the Port-
folio Level there were found five each. In the interviews there were only three
concerns, that where stated to the Team Level and two were found on the IT
Organization Level. Product Owners and Product Managers normally work
on the Program Level, why it isn’t surprising, that most of the concerns ap-
pear on this level. The other two levels, most concerns could be listed to the

27

CHAPTER 4. IDENTIFICATION OF RECURRING CONCERNS AND
BEST PRACTICES

Enterprise Level and the Portfolio Level. The Portfolio Level is right above
the Program Level. It is starts and coordinates all new programs and delves
with the requirements definition. Problems on this level can occur within
the requirements definition or between the establishment and the common
vision of the product. The Enterprise Level is not only the highest strategic
level, but also maintains the IT organization and other departments. A lot
of the key stakeholders are allocated in different departments, that’s why the
communication can be really challenging for Product Managers and Product
Owners.

Figure 4.2: Identified concerns distributed in levels of scale.

Beside the different levels the concerns can be classified into, there are
also different Categories (shown in figure 4.3 on page 29) which they can be
divided into. All together there are eleven different categories. The identified
concerns could be divided into eight of them, three of them (Tooling, Software
Architecture and Quality Assurance) could not be detected. Most of the con-
cerns appeared in Culture & Mindset and Communication & Coordination.
The first one mainly focuses on the agile transformation and the change of
view, every employee on all different hierarchical levels within the company
has, changing into thinking in a agile way and not in the traditional anymore.
Second, there are a lot of concerns listed within the category Communication

28

4.2. FINDINGS ON RECURRING CONCERNS

& Coordination. One of the main responsibilities of a Product Owner and a
Product Manager is the control function and especially the Product Owner
is a important interface between the Key Stakeholders and the Development
Team. That’s why it is not remarkable, that is one of the main categories
for the observed concerns. The concerns delve into how to orchestrate the
collaboration between the different teams in a complex project.

Figure 4.3: Identified concerns distributed in categories.

4.2.2 Identification of Recurring Concerns

In the second part of the interview every participant got a list of already
identified concerns, including the ones found in the literature. They worked
their way through the list to see, if any of those concerns recur in their com-
pany as well. The following figures show how many of the participants have
the same problems and how important it is to find a sustainable solution for
these concerns. All in all there were eleven Product Managers and Product
managers interviewed, but not all of them got the same list of concerns, be-
cause some of them were identified later. Behind every concern there is a
number, that shows how many of them got a list with this particular pat-
tern on it. That is why ”Growing size and complexity of the Backlog” and
”Establishing a common understanding of agile thinking and practices” both
have 100% even tough one of them was observed by eleven industry partners
and the other one only by two.

29

CHAPTER 4. IDENTIFICATION OF RECURRING CONCERNS AND
BEST PRACTICES

Figure 4.4: List of concerns by frequency of observation (Part 1)

30

4.2. FINDINGS ON RECURRING CONCERNS

Figure 4.5: List of concerns by frequency of observation (Part 2)

31

CHAPTER 4. IDENTIFICATION OF RECURRING CONCERNS AND
BEST PRACTICES

4.3 Findings on Patterns

During the interview 36 pattern candidates have been identified. They got
divided into 2 V-Patterns, 6 Principles, 17 M-Patterns, 8 CO-Patterns and
5 Anti-Patterns. As mentioned before, a pattern candidate turns into a
pattern, when it is observed three times or more. The following figure shows
the distribution of the different patterns. (shown in figure 4.6 on page 32)

Figure 4.6: Identified patterns and pattern candidates by category

In the following all identified Patterns and Anti-Patterns are described:

• M-13 Magic estimation

• A-02 Don’t think a change in too big steps

• CO-06 Program Increment (PI) Planning

• M-04 Domain Driven Design

• M-05 Feature Teams

• P-01 Fully transparent agile project

32

4.3. FINDINGS ON PATTERNS

Figure 4.7: All identified patterns and pattern candidates

33

CHAPTER 4. IDENTIFICATION OF RECURRING CONCERNS AND
BEST PRACTICES

4.3.1 Magic estimation

Pattern overview
ID M-13
Name Magic estimation
Alias –
Summary Magic estimate is an exercise for Scrum teams to do a

rough estimation on a whole product backlog. It is very
fast and therefor delivers very good results.

Example
The department for demand management at InsuranceAG noticed, that they
spend a lot of time estimating new demands. A request for demand is raised
whenever another department wants to start an IT supported project. But
based on the estimated time and costs, many requests were withdrawn, which
makes the work on a very detailed estimation useless.

Context
Whenever there is a request for demand, it will not necessarily evolve into
the start of a project.

Problem
The following concern is addressed by this M-Pattern:
C-116: Estimation of complex demands/requests

Forces
Sometimes a request for demand is placed to gain more information about
the complexity about the project without the intention of starting it. Per-
forming full requirements engineering is the perfect basis for a very concrete
estimation, but too much effort when it’s not clear whether the projects ac-
tually comes to fruition.

Solution
To perform the Magic Estimation a team of Requirements Engineers and ex-
perienced developers is needed. The Requirement Engineers have to roughly
break down the demand into epics or User Stories, showing what most likely
needs to be done to fulfill the demand. Based on this set, the experienced
developers will now do a relative estimation, defining which Epic requires
more or less effort than another one. They will start by defining a refer-
ence Epic with a known effort and give it a fictive number (for instance
story points). The estimation will be based on the Fibonacci sequence

34

4.3. FINDINGS ON PATTERNS

[1,2,3,5,8,13,21,34,55,89,144, . . .], meaning every estimated item will be on
this very scale and cannot be placed in between numbers. The developers
will take turns placing a new item on the scale or move an existing one if
they’re not satisfied with its position. Items that are being moved too often
will be taking out and be discussed at the end.

Variants
Instead of the Fibonacci sequence, other fictive scales like the Cohn scale
[0,1,2,3,5,8,13,20,40,100] can also be used. The procedure stays the same.

Consequences
Benefits:

• Easy to give a meaningful estimation in a short period of time

• Deduce when all tasks in the Backlog will be done

• If some team members disagree, they can talk about the problems and
solve them

• Less effort in analysis

Liabilities:

• Less precise prediction

See Also
...

35

CHAPTER 4. IDENTIFICATION OF RECURRING CONCERNS AND
BEST PRACTICES

4.3.2 Don’t think a change in too big steps

Pattern overview
ID A-02
Name Don’t think a change in too big steps
Alias –
Summary Big changes in an organization can cause negative ef-

fects. The bigger the change, the more likely it is, that
the employees, who will be affected most by the change,
will offer resistance. It is better, to implement changes
in small steps, to make them sustainable.

Example
After identifying silos in a company and trying to break them open, they de-
fined a goal that they wanted to achieve. They decided to adapt the change
immediately with only one small interim solution, meaning that they applied
a huge change in a short time.

Context
The problem appears, whenever the management of a company tries to coun-
teract against internal silos with adapting change too quick and it is not
accepted by the employees.

Problem
The following concern is addressed by this Anti-Pattern:
C-19: Dealing with internal silos

Forces
When planning a change, it sometimes appears difficult to break it down
into smaller steps. The bigger the applied change, the higher the chance for
employees offering resistance to it.

General Form
Implementing a change in the daily operations of a company can be challeng-
ing. Changing a running system isn’t something that can be done overnight.
Transform a system and develop a new way of doing things need time and a
lot of effort. Choosing a new way of action and implement it without making
adjustments or listen to what the employees want will not make all problems
go away, it will rather cause even more problems. Change a system and make
it work needs a lot of effort and interim steps, so that the employees can get
used to the new way of doing things and to make adjustments if necessary.

36

4.3. FINDINGS ON PATTERNS

It can even take several years to change a system properly and make it work.

Consequences
Benefits:

• Fast change/transformation

Liabilities:

• Risks the success of a change/transformation

• Increasing risk for resistance offered by the employees

• Current situation of the organization can get worse instead of better

Revised Solution
By downing the change into smaller steps and adapting the changes in smaller
cycles.

See Also

• M-06: Change Backlog

37

CHAPTER 4. IDENTIFICATION OF RECURRING CONCERNS AND
BEST PRACTICES

4.3.3 Program Increment (PI) Planning

Pattern overview
ID CO-06
Name Program Increment (PI) Planning
Alias High-Level sprint planning
Summary The Program Increment Planning is an event attended

by several stakeholders to establish a common vision of
the product, plan ahead the program by defining mile-
stones and to identify dependencies among user stories
and teams.

Example
At ConsultingCo they pried open all Epics into different User Stories and
every team got an area of responsibilities. After merging the solutions of
several teams, the outcome wasn’t always as expected, because the individ-
ual teams didn’t have the context that they would have needed.

Context
The more teams work on the same project, the more likely this problem oc-
curs.

Problem
The following concerns are addressed by this CO-Pattern:
C-118: Establish a common vision of the product
C-126: Size and complexity of the backlog

Forces
It is difficult to fully communicate the product vision to every member of
each team, but in many situations, it is important for the developer to un-
derstand the full context of a project. Large Scale Projects usually contain a
lot of Epics, User Stories and Tasks, but the more items the backlog contains,
the more difficult it is to manage and maintain it.

Solution
A Program Increment (PI) is a periodically created Increment, based on the
Increments of the different teams, which can but must not be delivered and
deployed. A PI usually take 8-12 weeks and always starts with the PI Plan-
ning.

38

4.3. FINDINGS ON PATTERNS

“Program Increment (PI) Planning is a cadence-based, face-to-face [. . .],
aligning all the teams [. . .] to a shared mission and Vision.” Copyright
c© Scaled Agile, Inc.

This event will be attended by Product Owners, Product Managers, Business
Stakeholders, Development Teams, Enterprise Architects and Requirement
Engineers. Based on the most important and already estimated features in
the backlog the attendees establish a common vision of the upcoming PIs.
Thereby they will discuss the features more in detail, identify dependencies
between features and between teams, define milestones and socialize within
the entire program to build a stronger team spirit.

Variants
Depending on the scope and the complexity, not everyone has to attend the
PI Planning. Sometimes it is enough if the Product Owner invites one repre-
sentative from each agile team and business stakeholders in addition to that,
if needed.

Consequences
Benefits:

• Establish a common vision of the product across all team members and
stakeholders

• Identifying dependencies and document them

• Gaining a road map for the upcoming weeks and months

Liabilities:

• High planning effort

Other Standards
This pattern is also advised by the scaled agile framework (SAFe 4.6).

39

CHAPTER 4. IDENTIFICATION OF RECURRING CONCERNS AND
BEST PRACTICES

4.3.4 Domain Driven Design

Pattern overview
ID M-04
Name Domain Driven Design
Alias –
Summary Domain Driven Design (DDD) helps conceptualize a de-

velopment project while having a close communication
to the concerned business experts. By dividing the soft-
ware into domains, it will reduce the amount of depen-
dencies

Example
At AutomotiveCo different departments were querying several requests and
were constantly facing communication problems. The developers were miss-
ing on specific expertise which was important for the requested implementa-
tion. The problem was that with each request the department was collab-
orating with a different development team and always had to explain their
field of expertise, either in whole or in part again.

Context
The problem occurs whenever a department is querying several requests and
therefor collaborates with not the same but different development teams.

Problem
The following concerns are addressed by this M-Pattern:
C-111: Managing dependencies between teams
C-72: Considering required competencies when assigning teams to tasks
C-126: Growing size and complexity of the Backlog

Forces
Querying several requests to the IT organization does not mean, that the
same developers implement all requests. Developers cannot be a specialist
in any field possible and learning an additional field of specialty takes time.

Solution
Domain driven design describes domains of specialty, based on business de-
partments, and allocates responsibilities within the IT Organization to main
departments, departments or groups of development teams. These defined
domains will gain specialty knowledge within that very business field and can
thereby understand a new request more easily. The responsible developers or

40

4.3. FINDINGS ON PATTERNS

departments will handle any current maintenance, any operations and any
new request within this domain.

Variants
If the complexity of the domain requires it, it is possible to finer divide a
domain into sub-domains. This can be helpful if a sub-domain is complex
enough on its own but between the sub-domains within one domain may ex-
ist defined dependencies. Such known dependencies can be documented and
then be handled faster or even be automated with a defined interface to it.

Consequences
Benefits:

• Stronger focus on the customer and his needs

• Developers gain a basic understanding of the customers business pro-
cesses and will become experts in that field

• Developers will adopt business terms, which will lead to a common
language

• Domains usually have little dependencies to other domains

• Clearly defined responsibilities

• The Backlog within a domain will not vary so much in size

Liabilities:

• Requires a certain size of the IT organization, otherwise the workload
to the domains might not be distributed evenly

• If a domain grows out of its scope, the responsibilities to it have to be
redefined

See Also
...

41

CHAPTER 4. IDENTIFICATION OF RECURRING CONCERNS AND
BEST PRACTICES

4.3.5 Feature Teams

Pattern overview
ID M-05
Name Feature Teams
Alias –
Summary While planning a software project, the software will be

divided into it’s features. One feature will be imple-
mented by one team. This will help reduce dependencies
among teams.

Example
ConsultingCO had a program with three different applications and defined
three different teams. One team per application. Since they were working
agile, their User Stories in the backlog contain end-to-end functionality. Usu-
ally these functionalities had to be implemented on at least two applications.
This led to technical dependencies between the teams and thereby additional
effort in communication and planning.

Context
This problem occurs whenever assigning tasks to different teams and is most
likely to happen when structuring the program in traditional component
teams.

Problem
The following concerns are addressed by this M-Pattern:
C-111: Managing dependencies between teams
C-72: Considering required competencies when assigning teams to tasks

Forces
A User Story should always contain one end-to-end functionality which can
require development effort within different components, applications or sys-
tems. One end-to-end functionality should always be implemented within
one sprint which might require for complex functionalities that more than
one team has to work on it. One end-to-end functionality often requires
implementation on different application layers which thereby needs several
different specialists.

Solution
To avoid dependencies between the different teams it is necessary to imple-
ment feature teams. Feature teams are cross-functional and long-lived. They

42

4.3. FINDINGS ON PATTERNS

choose their tasks one by one from the Product Backlog and complete them.
Therefor they focus on the system productivity, rather than the productiv-
ity of a single component. The feature team has the complete responsibility
for this task and each component of it. In order to be able to implement a
feature on all application layers necessary, every team has developers with
different skills. So a feature team could i.e. exist of four frontend developer,
two backend developer and a database specialist.

Consequences
Benefits:

• Shared responsibilities

• Customer-centric approach

• Focus on system productivity instead of individual productivity

• Reducing dependencies between teams

Liabilities:

• Difficult to implement

• Need expert engineering practices

Other Standards
This pattern is also advised by Large-Scale Scrum (LeSS).

43

CHAPTER 4. IDENTIFICATION OF RECURRING CONCERNS AND
BEST PRACTICES

4.3.6 Fully transparent agile project

Pattern overview
ID P-01
Name Fully transparent agile project
Alias –
Summary To actually understand agile methods, it’s best to

work/live it. The top level management usually lacks
agile experience and understanding. Therefore the team
needs to show full transparency to get all stakeholders
on board and show them the benefits of an agile project
management.

Example
At a company, a large-scale development project was implemented but the
key stakeholders to this project were not so familiar with agile practices,
which lead to communicational problems. The stakeholders did not under-
stand why this project was running differently and thereby why the interac-
tion and communication with the project was different as well.

Context
The less experience the organization has with agile methods, the more this
will be a concern. The first people to fully understand the agile mindset are
people who directly work with it (Developer team, Scrum Master, Product
Owner). To get this mindset through the who organization reaching every
possible stakeholder will take time. Until than there will be a gap of under-
standing that needs to be filled.

Problem
The following concerns are addressed by this P-Pattern:
C-44: Dealing with communication gaps with stakeholders
C-110: Patience during the Agile Transformation
C-113: Understanding the demand for the Agile Transformation

Forces
It is literally not possible to train every employee of an organization in agile
methods at the same time. There will be people closer to the topic with more
experience than others. This is why this problem is hard to solve.

44

4.3. FINDINGS ON PATTERNS

Solution
Build a fully transparent project structure. It must be possible for all stake-
holders to see every activity of the project. Public task boards are one
example to do that. All stakeholders must have the possibility to attend
every meeting. This is especially in the beginning of the project important
to align everybody and make sure to have the same understanding on how
to proceed.
In order to achieve that, the project needs a single point of information where
the key information is stored and maintained. Key information can be:

• Project description

• Contact persons

• Meetings

• Task board(s)

• Milestones

• Documentation about the product (wiki)

• Documentation about interfaces and dependencies

Variants
A fully transparent project is a passive solution where the stakeholders must
get active to close the gap of understanding. If that is not happening (usu-
ally when the gap is too big for that) then the project needs to have active
communication to align the stakeholders. This would usually be done by the
Product Owner.

Consequences
Benefits:

• Alignment of all stakeholders involved

• Giving the possibility for more understanding without forcing addi-
tional tasks to the stakeholders

Liabilities:

• Full transparency might be of inconvenience for the development team.
Here communication to the team is needed to show them the need for
this method

45

CHAPTER 4. IDENTIFICATION OF RECURRING CONCERNS AND
BEST PRACTICES

See Also
-

Other Standards
-

46

Chapter 5

Discussion

In the first part of the following chapter the key findings of this master thesis
are discussed and the results, presented in chapter 4, are reflected. The
second part shows the limitations this work had to deal with.

5.1 Key Findings

The research objective of this thesis were the recurring concerns of Prod-
uct Managers and Product Owners in Large-Scale Agile Development and
observing best practices solving those problems. A common technique to
document these solutions are patterns, in this case the goal was to document
them as a part of the Large-Scale Agile Development Pattern Language.

Findings on recurring concerns
During the interviews with the industry partners 23 new concerns were ob-
served and the frequency of all in all 58 concerns was analyzed. Concerns
in Large-Scale Agile Development can be classified into eleven different cat-
egories. The newly observed concerns could be classified into eight of them.
Interview participants, who are in a state of agile transformation mainly in-
dicated patterns within the Culture & Mindset category. Those, who do
development performance for other companies mainly struggle with concerns
within the Communication & Coordination and the Project Management
category. The majority of the industry partners could state more concerns
than best practices. That’s a sign, that there is a need for a research in this
field.

Findings on best practice solutions documented as patterns
After stating their concerns, the interview partner explained, what best prac-

47

CHAPTER 5. DISCUSSION

tices they would apply for this particular concern. A best practice is doc-
umented as a pattern candidate. Altogether 36 pattern candidates were
documented. The following six candidates were mentioned by three or more
people from different companies and thereby evolved into a pattern:

• M-13 Magic estimation

• A-02 Don’t think a change in too big steps

• CO-06 Program Increment (PI) Planning

• M-04 Domain Driven Design

• M-05 Feature Teams

• P-01 Fully transparent agile project

The documentation of these best practices was very well received by all in-
terview partners. A lot of them were familiar with the concept of patterns
and think, that this research is really relevant, because they still have to face
a lot of concerns within Large-Scale Agile Development due to the fact, that
this concept was created for small teams.

5.2 Limitations

The main source for this thesis is semi-structured interviews. Beside the eval-
uation of the information, that were gained in the interviews, the author also
has the responsibility to do a critical reflection on the used method. When
it comes to the reliability of a qualitative research, there are three criteria,
that have to be checked: confirmability, dependability and credibility.

Confirmability: By confirmability it means the objectivity of the researcher.
It is important to be objective as a researcher, meaning it can be helpful to use
knowledge, that has been collected before the interview, just like literature
and empirical knowledge. It is important, that the outcome is only based
on the interviewee and not on the personal preferences of the researcher.
Writing a study report might help to make the research as transparent as
possible. [39, p.19]

Dependability: The understanding of dependability, also referred as re-
liability, is that the study should have the same outcome, if it would be
repeated within the same circumstances, using the same methods and par-
ticipants. [40, p.2] This is especially relevant for research, that is in its early

48

5.2. LIMITATIONS

stages. But nevertheless, the field of Large-Scale Agile Development is fast-
moving, which leads to the assumption, that repeating the same study in a
year of two could lead to different results, even though the same methods
are applied to the same participants. There are three reasons for that: the
first reason is, that within the literature new papers are delivered on a high
frequency, meaning that some patterns and concerns identified within the
interviews are later already being covered. Second, the organization, or envi-
ronment where the interview partner operates in, can change, making some
identified patterns or concerns obsolete, or leading to new ones. The third
point is that, the individual can develop its own knowledge and experience
within this field, leading to new best practices.

Credibility: The credibility of a study, also called the internal validity,
“refers to how well an experiment is done, especially whether it avoids con-
funding (more than one possible independent variable [cause] acting at the
same time). The less chance for confounding in a study, the higher its in-
ternal validity is.“ [41] It is important to make sure, that every interview
was hold in the same condition and every interviewee has the same con-
text. [39, p.19] To ensure the credibility of this thesis, every participant go
the same material, used for the interviews, as well as a short overview on the
topic including the goal of the interview and the current state of research.
The participants were asked to name their most current concerns without
knowing which ones were already identified, which helped them to focus on
their concerns and not just on the ones that were already identified. It is
expected, that because of the limited time frame for every interview, as well
as the limited number of interviews, there are more concerns and patterns
that could have been identified.

49

Chapter 6

Conclusion

This chapter summarizes the results of this thesis in chapter 6.1 and gives
some insight on future work in 6.2.

6.1 Summary

For several years agile methods have been proven and brought a lot of ben-
efits for their users. Due to the fact, that these methods were created for
small teams it has been difficult for bigger companies to apply those meth-
ods and benefit from them. Scaling up agile methods is leading to a series
of new concerns. Those concerns have been debated in the latest literature,
but there are hardly any best practices documented.

The intention of this thesis was to observe recurring concerns, that Product
Owners and Product Managers are facing in Large-Scale Agile Development.
Therefor the author interviewed eleven stakeholders to determine their best
practices in solving those concerns. Those best practices where documented
as a pattern candidate, or if observed at more than three different indus-
try partners, as a pattern within the Large-Scale Agile Development Pattern
Language. In order to achieve that, three Research Questions were developed
and were answered within this thesis:

Research Question 1: What are recurring concerns of Product Managers
and Product Owners in Large-Scale Agile Development?

To discover the concerns Product Managers and Product Owners in Large-
Scale Agile Development are facing, they were asked to name their most
recurring concerns, that they are dealing with in their daily work. Alto-

50

6.2. FUTURE WORK

gether seven Product Owners and four Product Managers were interviewed.
The concerns, that were found within the different interviews, were listed in
chapter 4. Overall 23 new concerns were identified.

Research Question 2: What are best practices for addressing recurring
concerns of Product Managers and Product Owners in Large-Scale Agile De-
velopment?

Based on those interviews the best practices on addressing those concerns
were documented. When observed more than three times those best prac-
tices evolved into a pattern. If a solution has only been used less than three
times, it is handled as a pattern candidate. 36 new pattern candidates were
identified. 6 of them evolved into a pattern. Three of them where M-Patterns,
one a CO-Pattern, one a Anti-Pattern and one a Principe. The patterns were
described in chapter 4, whereas the pattern candidates can be found in the
Appendix.

Research Question 3: Which anti-patterns should Product Managers and
Product Owners avoid in large-scale agile development?

Other than Patterns, that show a solution to a concern, Anti-Patterns are
a typical mistake, that is made in Large-Scale Agile Development and show
how the concern should not be solved. Just like pattern candidates, anti-
patterns candidates have to be observed at least three times to be called an
anti-pattern. Within the interviews the author discovered five anti-pattern
candidates, one of them was observed three times, so it turned into an anti-
pattern.

6.2 Future Work

As mentioned before, this thesis had a limited time frame of five month.
Investigating the current concerns for a longer time would add value to the
research and would help to find best practices to solve those concerns in
Large-Scale Agile Development. The research objective were Product Man-
agers and Product Owners, but it would be possible to extend this to other
stakeholders, working with LSAD to expand the knowledge that was gained
within this thesis. The pattern candidates have to be examined further to
evolve more of them into a pattern.
Also, pattern-based research design defines, that a pattern has to be proven
in the industry. The time frame did not allow this, why the next step of this

51

CHAPTER 6. CONCLUSION

research should be to fulfill this step.

52

Appendix A

Interviews on Identification of
Recurring Concerns and
Patterns

Note: If you have large models, additional evaluation data like questionnaires
or non summarized results, put them into the appendix.

1. General Questions

(a) Do you see yourself as a Product Owner or a Product Manager?

(b) How is your role designated in your company?

(c) How long have you been working in scaled agile development?

(d) How long has your company been working with scaled agile de-
velopment?

(e) Does your company work internationally?

(f) Which sector does your company operate in?

(g) How many employees does your company have?

(h) Are we allowed to contact you again for further research? (For
example test reading the analyzed patterns or further questions
regarding the given answers.)

2. Questions on Recurring Concerns

(a) What are the most recurring concerns you face in your role as a
Product Manager/Product Owner?

(b) On which scaling level have you observed these concerns?

53

APPENDIX A. INTERVIEWS ON IDENTIFICATION OF RECURRING
CONCERNS AND PATTERNS

(c) How often have you observed these concerns?

(d) In which of these categories would you classify these concerns?

3. Questions on Best Practices for most recurring Concerns

(a) How do you tackle this concern?

i. Is there a concrete project or product, in which this pattern
was used?

ii. When does this problem occur?

iii. Which concern can be addressed with this pattern?

iv. Why is this concern difficult to solve?

v. How can this concern be solved?

vi. Are there different variants to this pattern?

vii. What pros and cons do occur using this pattern?

viii. Is this pattern used in combination with any others?

ix. What other standards or frameworks recommend this pat-
tern?

x. Where does the data for this pattern come from?

(b) What should you avoid to not have this concern?

i. Is there a concrete project or product, in which this anti-
pattern was used?

ii. When does this problem occur?

iii. Which concern can be addressed with this anti-pattern?

iv. Why is this concern difficult to solve?

v. How do you find this anti-pattern in practice?

vi. What pros and cons do occur using this anti-pattern?

vii. How can this anti-pattern be avoided?

viii. Is this anti-pattern used in combination with any other pat-
tern?

ix. What other standards or frameworks recommend this anti-
pattern?

4. Questions on Concerns identified in Literature

(a) Which of those concerns, that have been identified in the litera-
ture, have you observed in your role as Product Owner/Product
Manager?

(b) How do you tackle this concern?

54

i. Is there a concrete project or product, in which this pattern
was used?

ii. When does this problem occur?

iii. Which concern can be addressed with this pattern?

iv. Why is this concern difficult to solve?

v. How can this concern be solved?

vi. Are there different variants to this pattern?

vii. What pros and cons do occur using this pattern?

viii. Is this pattern used in combination with any others?

ix. What other standards or frameworks recommend this pat-
tern?

x. Where does the data for this pattern come from?

(c) What should you avoid to not have this concern?

i. Is there a concrete project or product, in which this anti-
pattern was used?

ii. When does this problem occur?

iii. Which concern can be addressed with this anti-pattern?

iv. Why is this concern difficult to solve?

v. How do you find this anti-pattern in practice?

vi. What pros and cons do occur using this anti-pattern?

vii. How can this anti-pattern be avoided?

viii. Is this anti-pattern used in combination with any other pat-
tern?

ix. What other standards or frameworks recommend this anti-
pattern?

5. Discussion

(a) Do you have any additional comments?

55

Appendix B

Documentation of New
Concerns

56

ID Name Description Category Scaling
Level

C-
101

Communication
channels from
higher hierar-
chy to lower

The higher a hierarchy, the longer the communication
channels. An information from a higher management
level reaching to a low operational level can take time
and information can get lost on the way.

Communication
& Coordina-
tion

Portfolio
Level

C-
102

Comparability
of Storypoints
outside team-
s/projects

Storypoints are fictive and only make sense within one
development team. Nevertheless, they’re an important
indicator for the complexity of a story/sprint and the
productivity among team members. Thereby the possi-
bility for further calculation and planning appears to be
interesting.

Culture &
Mindset

Team
Level

C-
103

Collision of
Program Man-
agement and
agile methods

Usually a program contains several milestones, so dead-
lines that has to be met. But on the basis of agile princi-
ples, there will be no commitment to a distinct deadline
months ahead.

Project Man-
agement

Program
Level

C-
104

Stagnating
continuous
improvement
process

If a developer is in a long time project with mainly the
same team, going through the continuous improvement
process for too often, the actual improvement will stag-
nate because of missing new influences.

Methodology Team
Level

C-
105

Management
dealing with a
loss of control

Managers have a steering role, controlling what the em-
ployees have to do and how to do it. Now due to agile
practices, teams are self-organized and decide on their
own how to reach a certain goal. This can feel like a loss
of control to the management.

Culture &
Mindset

IT Orga-
nization
Level

57

A
P
P
E
N
D
IX

B
.
D
O
C
U
M
E
N
T
A
T
IO

N
O
F
N
E
W

C
O
N
C
E
R
N
S

ID Name Description Category Scaling
Level

C-
107

Spread ag-
ile mindset
through entire
organization

Whether it’s a project or a department within a com-
pany that works with agile methods, a lack of under-
standing of agile methods within other parts of the com-
pany will lead to communication gaps and incompatibil-
ities to other stakeholders.

Culture &
Mindset

Enterprise
Level

C-
108

Identifying de-
pendencies be-
tween teams

When describing new tasks or user stories in the Back-
log, it might be that these tasks have dependencies be-
tween each other. These dependencies should be identi-
fied as early as possible, especially to reduce dependen-
cies between several teams when assigning the tasks.

Communication
& Coordina-
tion

Program
Level

C-
109

Alignment of
self-organized
teams

Agile teams organize themselves but also have to align
in the big picture with the other teams. This rising
complexity will result in an additional administrative
burden to the Product Owner.

Culture &
Mindset

Program
Level

C-
110

Patience dur-
ing the Agile
Transformation

The time for an agile transformation highly depends on
the complexity of the organization. Such an organiza-
tional change promises benefits that will not be visible
right away and have to be waited for by the employees.

Culture &
Mindset

Portfolio
Level

C-
111

Managing de-
pendencies
between teams

In software development there will always be technical
dependencies among developers and their tasks. The
scaling of agile development will in most cases lead to
dependencies among teams as well. Those dependencies
are more difficult because the communication among
teams is slower than among developers within a team.

Communication
& Coordina-
tion

Program
Level

58

ID Name Description Category Scaling
Level

C-
112

Disconnect
between corp.
strategy and
execution

An agile transformation often starts on the operational
level, where most agile practices are being executed.
The higher management on the strategical level is often
missing agile experiences which leads incompatibilities
between these levels and different working practices.

Communication
& Coordina-
tion

Portfolio
Level

C-
113

Understanding
the demand
for the Agile
Transformation

People tend to refuse change or anything that’s new, if
they don’t see any need for a change. Changing pro-
cesses and changing the way of working will also change
working habits. And changing habits requires way more
energy from the human brain than staying in the same
habits. So people will not see the need without an ex-
ternal trigger.

Culture &
Mindset

Enterprise
Level

C-
114

Maintaining
equal quality
among teams

An equal quality of teams is important in administer
and planning a project. There are two main reasons for
an imbalance between teams: Stuffing the team with
unequal experienced developers in the first place and a
different impact of the continuous improvement process
of each team.

Software
Architecture

Team
Level

59

A
P
P
E
N
D
IX

B
.
D
O
C
U
M
E
N
T
A
T
IO

N
O
F
N
E
W

C
O
N
C
E
R
N
S

ID Name Description Category Scaling
Level

C-
115

Stakeholders
being faced
with higher
amount of
meetings

Within the traditional process, stakeholders are used to
define and approve a set of requirements and then just
answering on upcoming questions during the implemen-
tation phase. In agile development there is a planning
phase within each cycle and stakeholders will constantly
find meetings (like sprint-planning or retro) in their cal-
endar throughout the entire project.

Communication
& Coordina-
tion

Enterprise
Level

C-
116

Estimation
of complex
demands/re-
quests

The more complex a demand, the more difficult and
time-consuming the estimation for it. But how to esti-
mate an agile program when the backlog just starts with
a few user stories and will be more filled throughout the
project.

Requirements
Engineering

Portfolio
Level

C-
117

Emotional
impact of
Agile Trans-
formations to
employees

A change on employee’s processes, work environments
or practices has a direct impact on their habits. A very
common first reaction of the human brain to changing
habits is rejection. But rational thinking will say to do
what the boss says. Every individual reacts differently
to this conflict and in the worst case might need addi-
tional support.

Culture &
Mindset

Enterprise
Level

C-
118

Establish a
common vision
of the product

A more complex project means more people are involved
and in order for the project to be successful, everyone
needs to have a common understanding of the ”big pic-
ture”. From the customer, over the business analyst to
the developers and tester.

Project Man-
agement

Portfolio
Level

60

ID Name Description Category Scaling
Level

C-
119

Improving pro-
cesses in agile
organizations

Once the agile transformation is complete, an organiza-
tion still has to improve continuously and adapt to ex-
ternal circumstances. This improvement process should
then also follow the agile principles.

Methodology IT Orga-
nization
Level

C-
120

Product Owner
lacking techni-
cal understand-
ing

The Product Owner acts as an interface between stake-
holders and the development teams. Furthermore he is
the owner of the product backlog. In this function he
needs to have a certain depth of technical understanding
to be able to prioritize or divide tasks properly.

Software
Architecture

Program
Level

C-
122

Knowledge ex-
change between
teams

One agile team is a close cooperating unit, usually lo-
cated within the same room or offices, where a knowl-
edge exchange happens naturally or during the several
dailys, retros, etc. A knowledge exchange between sev-
eral teams is not given like that.

Knowledge
Management

Program
Level

C-
124

Managing
recurring re-
quirements
efficiently

When the same requirements are not managed by the
same team it might happen, that something is developed
from scratch even though it could have saved a lot of
money communicating

Project Man-
agement

Program
Level

C-
125

Dealing with
market specific
requirements
due to local
circumstances

An international operating company will not be able to
roll-out all of their solutions world wide. Local circum-
stances like legal requirements, geographical differences
or just a different scale of the companies offices can re-
quire different solutions in different markets for the same
task.

Geographical
Distribution

Enterprise
Level

61

A
P
P
E
N
D
IX

B
.
D
O
C
U
M
E
N
T
A
T
IO

N
O
F
N
E
W

C
O
N
C
E
R
N
S

ID Name Description Category Scaling
Level

C-
126

Growing size
and complexity
of the Backlog

A large-scale development program includes many dif-
ferent features that has to be managed in the Backlog.
But with this growing complexity it is difficult to keep
the overview over all user stories and their priorities and
dependencies.

Requirements
Engineering

IT Orga-
nization
Level

62

Appendix C

Documentation of Pattern
Candidates

C.1 Documentation of Coordination Pattern

Candidates

C.1.1 Structured coaching an entire organization

Pattern overview
ID CO-01
Name Structured coaching key stakeholders in entire organiza-

tion
Alias –
Summary In many cases just one or a few projects/departments

work with agile methods but not the entire organization.
Nevertheless there will be dependencies or interactions
with other stakeholder. In order for such a collabora-
tion to be effective, both sides should at least have a
common understanding of agile methods. This is why it
can be very usefull to also coach employees who don’t
necessarily work agile.

Example
At MobileCo one internal program initiated the need for agile practices.
Being the first agile program a lot of communicational gaps towards their
stakeholders existed. Since many processes where not aligned to agile prac-
tices the program could not gain all benefits.

63

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

Context
This problem occurs whenever an agile transformation of the organization is
planned or ongoing. Furthermore this problem can occur, when having an
agile project without the rest of the organization aligning to it.

Problem
The following concerns are addressed by this CO-Pattern:
C-110: Spread agile mindset in entire organization
C-86: Emotional Consequences of Agile Transformations
C-87: Patience during the Agile Transformation

Forces
It is literally not possible to train an entire organization in agile methods at
the same time. It usually starts within one project or one department but
then has to spread more into the organizational structure. But during this
process will be a gap between employees already aligned and people not hav-
ing been trained in agile methods yet. Not everyone has the same knowledge
requirement regarding agile methods.

Solution
An agile transformation within a company usually starts with one project.
This is project needs to be trained in agile methods first. If that agile ap-
proach was successful and should be used in more projects within the com-
pany the management buy-in has to be obtained. As soon as the goal is
to be an agile organization the agile mindset has to be spread in the whole
organization. To be overly productive and efficient, it is necessary to train
employees as agile coaches. Furthermore, key positions, that have the high-
est need for a coaching, have to be identified. A common key position are
Stakeholders, working together with an agile project.
An extended understanding of agile methods within the organization encour-
ages the alignment of agile processes and the understanding and the need for
an agile organization.

Variants
The coaching can exclusively be done by external coaches but by training
internal employees as coaches who have a better understanding of the day-
to-day business they are an efficient source that costs less money in the long
run.

Consequences
Benefits:

64

C.1. DOCUMENTATION OF COORDINATION PATTERN
CANDIDATES

• To align the entire organization is very sustainable and will be very
useful in the long run

• Better alignment of agile processes

• Common understanding for the need of an agile transformation

Liabilities:

• This approach will take a lot of time. Depending on the organizational
size even years.

• Not every department should necessarily work agile. There needs to be
an evaluation where the coaching makes sense and where not.

See Also
C-Pattern: Fully transparent agile project

65

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.1.2 Coordination of current dependencies

Pattern overview
ID CO-02
Name Coordination of current dependencies
Alias –
Summary In Large-Scale agile programs there will always occur

dependencies between the teams. This pattern aims to
identify dependencies early and manage them in a effi-
cient way.

Example
At ConsultingCo an agile program was executed. Due to the complexity de-
pendencies between the teams could not be eliminated. Some dependencies
were identified late during the implementation process which made it difficult
to manage them putting this sprint goal into risk.

Context
This problem might occur whenever several agile teams are working within
the same project.

Problem
The following concerns are addressed by this CO-Pattern:
C-108: Identifying dependencies between teams
C-111: Managing dependencies between teams

Forces
Large-Scale agile programs gain a complexity where dependencies among
teams cannot be excluded completely. The later dependencies are identified
the more difficult it is to react on it.

Solution
An active communication and knowledge exchange between the teams will
help identify dependencies early and manage current dependencies. The
exchange between the teams can happens in three different ways: 1. Cross-
section architecture: Providing a cross-section architecture, will bring more
transparency to the project. Each team will understand their role within the
big picture and will also understand what the other teams will provide. 2.
Scrum Master Meeting: Every team plans their own Sprint. After that the
Scrum Masters meet up and discuss their outcome, to identify dependencies
and try to coordinate them. 3. Every Scrum Master attends every daily of

66

C.1. DOCUMENTATION OF COORDINATION PATTERN
CANDIDATES

every team: The dailies of every team are coordinated at a different time, to
make sure every Scrum Master can attend every Daily.

Variants
If the complexity of the projects requires an even closer collaboration be-
tween the teams, the Scrum of Scrum Meeting defines a stricter way of the
steps described above.

Consequences
Benefits:

• Early identification of dependencies

• Constant coordination of dependencies

• Close knowledge exchange between teams

• Creating a team spirit not only within the team, but among all teams

Liabilities:

• High amount of coordinating meetings

See Also
-

67

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.1.3 Structured request for demand

Pattern overview
ID CO-03
Name Structured request for demand
Alias –
Summary If a customer has a complex demand and requests an

estimation, this can be very time consuming and in the
end the customer might not go through with the project.
A structured request for demand requires the customer
to answer a set of questions in order to raise a demand.
By answering these questions the customer will have to
think about the business case and how this will bring
him value. This can prevent unnecessary requests.

Example
At InsuranceCo the business department was sending a request for a new
online platform. They asked how long it would take to apply this and how
much it would cost. Due to the fact, that is was a bigger project, the IT
department took about two weeks to estimate time and price. After the
IT discussed everything with the business department they decided, that it
would be to expensive. On this account it was a waste of effort for the IT.

Context
This problem occurs whenever requested demands have to be estimated be-
fore they evolve into a project.

Problem
The following concern is addressed by this CO-Pattern:
C-106: Estimation of complex demands/requests

Forces
Sometimes a request for demand is placed to gain more information about
the complexity about the project without the intention of starting it. Per-
forming full requirements engineering is the perfect basis for a very concrete
estimation, but too much effort when it’s not clear whether the projects ac-
tually comes to fruition.

Solution
The process for requesting a demand within an organization needs to de-

68

C.1. DOCUMENTATION OF COORDINATION PATTERN
CANDIDATES

fine what kind of information are required for placing a request. Thereby a
request of demand has to contain information about:

• Business value

• Related business units

• Additional positive impact like saving of time

• Effort/Impact Analysis

By defining this information as required it ensures that the stakeholders have
to make sure, their demand is actually business relevant and this lowers the
risk of unnecessary workload on estimation.

Variants
The required information for a request of demand can vary, based on several
factors like company size or industry.

Consequences
Benefits:

• Less unnecessary requests

• The quality of a request is ensured, leading to a more efficient process

Liabilities:

• Increased time exposure for the business departments

See Also
M-13: Magic Estimation

69

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.1.4 Communication channel to maintain agile role
within organization

Pattern overview
ID CO-04
Name Communication channel to maintain agile role within

organization
Alias –
Summary Sometimes people cannot fully put their agile role into

practice because their higher management doesn’t work
with agile methods and thereby setting them borders.
An additional comm. channel can help contest a deci-
sion from out of the agile environment if necessary.

Example
A Product Owner was running a program within his company, managing the
Backlog. According to agile practices the PO is the only person responsible
for managing the Backlog. In this company the program was agile because
it was an agile IT organization, but the rest of the company was not agile.
Due to high hierarchies, the PO got overruled in his prioritization, meaning
he couldn’t fully live his agile role.

Context
This problem occurs whenever the operational level is working agile but the
processes on the strategy level are not aligned.

Problem
The following concern is addressed by this CO-Pattern:
C-112: Disconnect between corp. strategy and execution

Forces
If an IT organization decides to work completely agile, it still has no author-
ity above that. Agile principles are not considering high hierarchies.

Solution
One should always try to maintain his agile role with all entitlements and
duties. If an organizational unit (e.g. an IT organization) is becoming agile
but the structure around it still isn’t, there has to be communication chan-
nels that help maintaining one’s agile role.
If an agile role gets restricted in its doing, it needs to communicate that

70

C.1. DOCUMENTATION OF COORDINATION PATTERN
CANDIDATES

disconnect to the corresponding manager on the strategic level. This can be
a structured workflow in form of a request. That request needs to contain
the following information:

• Related strategical decision

• Content of that decision

• Requested deviation to the decision

• Reason for the deviation

• Benefits of changing decision

• Related agile value/principle/practice

The potential for a successful request increases if the communication channel
is not direct from any individual to a strategic manager directly, but through
a “trusted middleman”. That middleman would be a high management po-
sition within the agile organizational unit (e.g. strategic management of IT
organization).

Variants
The description of the communication channel up the hierarchy, cannot be
described in detail because it’ll vary from organization to organization.

Consequences
Benefits:

• Better alignment of agile and non-agile organizational units

• Attempt to stick to the framework as much as possible

• Helps to close communication gaps

• Helps to understand the need for becoming agile

Liabilities:

• No guarantee for success

• Requires management buy-in

See Also
-

71

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.1.5 Agile Governance

Pattern overview
ID CO-05
Name Agile Governance
Alias –
Summary An agile organization can apply a continuous improve-

ment process using agile methods as well. A regular
meeting for improvement proposals and an immediate
application of a solution after a successful decision mak-
ing process can bring the same speed from agile projects
to agile organizations.

Example
At LogisticsCo, a department was driving an ongoing agile transformation.
During this process, concerns occurred that had to be addressed towards
their higher management.

Context
This concern occurs within every agile organization of a large scale.

Problem
The following concern is addressed by this CO-Pattern:
C-119: Improving processes in agile organizations

Forces
Applying changes to a large organization always contains the risk of being
unsuccessful or leading to some kind of unplanned disadvantage. But orga-
nizational changes often appear in a long cycle time.

Solution
Employees in an agile environment should have an opportunity to scruti-
nize the development of the organization and how to improve processes for
a better agile alignment. The Agile Governance Meeting is an event that
is taking place every three month. Employees can suggest topics about an
organizational change that shall be part of the agenda and be discussed. Two
employees are responsible for planning this event and afterwards the respon-
sibility will switch. Anyone is invited to attend this meeting, but it is not
mandatory and the attendance for each person highly depends on the topics
on the agenda.

72

C.1. DOCUMENTATION OF COORDINATION PATTERN
CANDIDATES

When a topic from the agenda is discussed, it follows a distinct scheme to
keep it efficient:

• A proposal will be created

• Questions for clarification can be raised

• A discussion round is established

• The proposal will be reworked based on the discussion

• Possible objections can be made

• Counter question the proposal. “What are possible risks?”

• Vote for or against the proposal

• If a proposal got approved, it effective immediately if not defined dif-
ferently

Variants
The scheme for the Agile Governance Meeting can vary, depending on differ-
ent factors within the company.

Consequences
Benefits:

• Scrutinizing the organization and the agile transformation

• Continuous improvement on an organizational level

Liabilities:

• Since the participation is voluntary, it cannot be assured that all rele-
vant people are reached

See Also
-

73

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.1.6 Dual-Track Agile

Pattern overview
ID CO-07
Name Dual-Track Agile
Alias –
Summary Dual-Track Agile is a method, that assures that the ap-

proach solving a problem always is the most efficient and
best. This is enabled by a Dual-Track System, meaning
there is not only a Delivery Track, but also a Discovery
Track.

Example
At DevelopmentCo, a program was very well planned and implemented. Af-
ter finishing the User Story and presenting it to the other teams, a other
team told them, that there was a library implemented shortly before, that
would have solved this problem even better.

Context
The problem occurs, whenever the different teams don’t communicate to-
gether properly, which entails that there is no knowledge exchange.

Problem
The following concern is addressed by this CO-Pattern:
C-121: Knowledge exchange between teams

Forces
Each agile team is a self-organizing unit, who’s strong collaboration will auto-
matically lead to knowledge exchange within a team. But there is no defined
process for an exchange between several teams. If the work, that the different
teams are doing, isn’t transparent enough, the other teams might not know,
that they can actually benefit from each other.

Solution
To solve this concern Dual-Track Agile was developed. Dual-Track means,
that a team works on two parallel tracks: Discovery Track and Delivery
Track. Those two sub-areas work hand-in-hand. The outcome of the Deliv-
ery Track, where Product Owner and Usability Engineer work on together
are for example new concepts or prototypes, still a mere hypothesis. The
Usability Engineer and the Product Owner are responsible for gathering in-
formation and the concept.

74

C.1. DOCUMENTATION OF COORDINATION PATTERN
CANDIDATES

The Development Track contains the actual development of all planned fea-
tures. In this whole development process, they support each other by testing
the outcome and improve it. Even if something from the Discovery track is
discarded, it can still add value to their future work. It’s important, that the
whole team knows its responsibility for the project and that everyone has to
take part in both tasks.

Variants
-

Consequences
Benefits:

• Continuous improvement

• Mutual support within the team

Liabilities:

• Developing an idea does not implement, that it is actually profitable,
meaning it might be a waste of time

• Finding a new best practice does not automatically mean, that it is
worth the effort

See Also
-

75

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.1.7 Clustering / Template

Pattern overview
ID CO-08
Name Clustering / Template
Alias –
Summary Standardizing the different parameters of similar

projects by analyzing their goal, input, outcome and
their implementation helps to save work capacity and
money.

Example
At AutomotiveCo they always started planning new projects from scratch,
even though they could have used their know-how from the previous projects.
Applying their knowledge from previous projects could have saved them a
lot of time and money.

Context
This problem occurs when different teams and suppliers that are responsible
for the projects.

Problem
The following concern is addressed by this CO-Pattern:
C-124: Managing recurring requirements efficiently

Forces
It is difficult to identify similar requirements that can be clustered for a gen-
eralized solution. A generalized solution has to define standards, while being
flexible and considering possible variations.

Solution
To solve this problem, projects, areas or domains has to be identified, that
have a similar or the very same scope (also see M-04: Domain Driven De-
sign). To then define a template solution, the last three previous projects of
an area or domain and their implementation are analyzed. Comparing the
different steps and procedures, a standard that could have been applied to
all those projects is developed.
After developing this standard, it is compared with a project where this
standard wouldn’t work. Going through the different steps, the question is
asked, if this project is so important, that it would make sense, to adjust the
standard closer to this particular project. After calculating all standards, a

76

C.1. DOCUMENTATION OF COORDINATION PATTERN
CANDIDATES

template, that can be applied on all projects is implemented, written down
and given to all relevant employees, working on the projects. There might
be some projects, that have never been executed before: If this happens
goal, the input and the outcome is analyzed. After that a process, that is as
value-stream-optimized as possible, is developed. It might happen, that the
standard can’t be applied to a project, because it is to different. If this hap-
pens, the template and the project are compared with each other to analyze
which interfaces can be standardized.

Variants
Instead of writing the template down and handing them to the employees,
how-to videos are provided and uploaded on the intranet. The material is
not provided in any written or recorded form, instead there are “experts”
within the teams, consulting, if any questions or problems occur.

Consequences
Benefits:

• Saving time, because less work capacity is needed

• Saving money, because less consulting companies are used

• Applying the same standardized solutions, leads to less problems

Liabilities:

• Working on these standards need a high workload

• Standardization sets limits to the project, because it might not be the
optimal solution

See Also
M-04: Domain Driven Design

77

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.2 Documentation of Methodology Pattern

Candidates

C.2.1 Velocity Measurement

Pattern overview
ID M-01
Name Velocity Measurement
Alias –
Summary Velocity measurement takes in information from previ-

ous sprints to calculate a forcast for how much work
will be done in the next one. This can be done for single
teams or overall.

Example
At DevelopmentCo the Product Owner managed an agile program. At the
beginning of the program a deadline had been defined which had to be ful-
filled. This collides with agile principles.

Context
This problem occurs whenever you manage your program agile.

Problem
The following concern is addressed by this M-Pattern:
C-103: Predictability in agile Program Management

Forces
The backlog is not completely defined in the beginning of the program but
will change over time.
User Stories can vary in their complexity and thereby it is difficult to predict
how many User Stories are being completed per sprint.

Solution
A prerequisite is that all items in the Backlog has to be estimated in Story
Points.
A Sprint has to be performed normally based on the Sprint Backlog. At the
end of a sprint the completed User stories of every team are being aggregated
to calculate the total amount of story points. User stories that have been
started but not completed are not being counted and will be carried into the
next sprint. Once the total amount of story points for the last sprint have

78

C.2. DOCUMENTATION OF METHODOLOGY PATTERN
CANDIDATES

been calculated the same thing is done for the last three sprints. With these
figures the average amount of story points per Sprint can be calculated. This
will help to predict the story point throughput per sprint.

Variants
If the different sprints by each team aren‘t synchronized you still calculate
the story point throughput of each team and aggregate when the last sprint
is done.

Consequences
Benefits:

• Planning security in how much work can be done per sprint

• Planning security in how long the program will last

• Comparability between the team to be able to identify very strong or
very weak teams

• Increasing precision over time

Liabilities:

• A high amount of user stories that are just almost done can affect the
accuracy

See Also
V-01: Burndown Chart

79

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.2.2 Continuously changing the improvement method

Pattern overview
ID M-02
Name Continuously changing the improvement method
Alias –
Summary Going through the very same improvement process for

too often can lead to a stagnation of the improvement in
the team. Changing the improvement method can lead
to new perspectives, more creativity and thereby more
improvement.

Example
At DevelopmentCo, a development team was in a long-term project. During
their Retrospectives, some topics were coming up every time. Either because
they were very ambitious or their value add wouldn’t justify the effort, the
suggest topics never came to fruition. But talking about the same topics over
and over again was stagnating the improvement process in the team.

Context
This problem occurs whenever members of the development team go through
the same improvement process for too often. For instance, if the same prob-
lem or topic comes up too often in a retrospective, people won’t react on it
or improve it.

Problem
The following concern is addressed by this M-Pattern:
C-109: Continuous improvement remains static after a certain amount of
time

Forces
To improve something means to change something. But it’s not easy to con-
stantly change something while being stuck in the same process.

Solution
To get a better mindset for the people to actually change something in their
work habits, you also have to change the improvement process. Here are
various options to switch up things. Frequently new improvement processes
should be applied to help think out of the box. Here is a list of possible
improvement processes:

80

C.2. DOCUMENTATION OF METHODOLOGY PATTERN
CANDIDATES

• Rapid Improvement Events

• Value Stream Mapping

• 5 Why’s

• DMAIC

Variants
Employee transfers between teams can also lead to an improvement. New
people bring a new mindset to the team.

Consequences
Benefits:

• The continuous improvement process can improve itself

• Trying out different versions of an improvement process will also show
what works best for what team

Liabilities:

• People don’t like change. If one improvement process works for one
team and then it’s changing again, can also be destructive

See Also
-

81

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.2.3 Mapping storypoints to other KPI’s

Pattern overview
ID M-03
Name Mapping storypoints to other KPI’s
Alias –
Summary Storypoints are fictive and only make sense within one

development team. By mapping them to other KPI’s,
they have more meaning and can be used for continu-
ously calibrating the forecast instead of referencing user
stories.

Example
At ConsultingCo, several agile projects have been implemented already but
they were not able to use this knowledge for estimating upcoming projects
in time and budget. The problem was that they were estimating their User
Stories in Story Points, which is a fictive number that shall not have any
further meaning.

Context
This problem occurs whenever User Stories are being estimated with Story
Points and shall further on be used to calculate time, effort or any other key
figure based on the Story Points.

Problem
The following concern is addressed by this M-Pattern:
C-108: Story Points are not comparable outside teams/projects

Forces
Story Points are meant to be fictive and are not related to any rational key
figure like time.
Several teams can have a different understanding on what amount of Story
Points matches what time and effort.

Solution
Story Points can be used for estimation if the associated story is being refer-
enced to another key performance indicator (KPI). For instance, if the Story
Points shall make a statement about the time of a future story/feature/pro-
ject, the referenced KPI must be about time as well. Possible KPI’s can be
the time used for a user story or the Story Points estimated within on sprint,
where a sprint is a defined period of time.

82

C.2. DOCUMENTATION OF METHODOLOGY PATTERN
CANDIDATES

These references will be used for further predictions.

Variants
Any KPI’s that can be related to Storypoints can be used as reference for
further predictions.

Consequences
Benefits:

• Making more use of a key figure already being collected.

• Helping predictions to be more precise.

Liabilities:

• Story Points are meant to be fictive and any developer should not map
them to any other figure like costs or time. But this mapping in the
head can happen very fast and is hard to undo

See Also
-

83

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.2.4 Change Backlog

Pattern overview
ID M-06
Name Change Backlog
Alias
Summary The Change Backlog is a set of items that describe

tasks regarding an organizational change. As any other
Backlog it is the basis for a Sprint Backlog, which in
this case assures that organizational changes are imple-
mented step by step.

Example
A large sized company was planning an organizational transformation to
break down internal silos. Therefore, they estimated a three-year duration
and a change roll-out each year. So, one roll-out was prepared and planned
for 12 months until all changes were applied at once. The results weren’t as
good as expected, mainly because of a strong resistance by the employees.

Context
This problem can occur whenever large organizational changes are applied.

Problem
The following concerns are addressed by this M-Pattern:
C-19: Dealing with internal silos
C-117: Emotional impact of Agile Transformations to employees

Forces
To break down internal silos, the structure of the organization has to be
changed, which is a difficult procedure.
The bigger the change, the higher the risk of employees offering resistance.

Solution
An organizational change or a transformation will be performed by a team
of experts. E.g. when trying to break down internal silos, one expert per
silo will join the team, making it a cross-functional team. When planning an
organizational change, it should start with identifying tasks that have to be
performed. These tasks are managed in a Backlog, with everything that a
Backlog requires, like estimating tasks or prioritize them.
Afterwards this Backlog will be the basis to a Sprint Planning. Sprints re-
garding an organizational change will differ in their timeframe though, being

84

C.2. DOCUMENTATION OF METHODOLOGY PATTERN
CANDIDATES

longer than a Sprint in e.g. software development. The entire change or
transformation will thereby be performed using agile practices.

Variants
-

Consequences
Benefits:

• Sustainable change

• Smaller changes will increase the success as well as the acceptance

• Problems or mistakes can be identified and fixed faster

Liabilities:

• Applying all agile principles might not be reasonable at this point.
Planning a change doesn’t need to be completely transparent

See Also
-

85

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.2.5 Value stream analysis

Pattern overview
ID M-07
Name Value stream analysis
Alias –
Summary A value stream is a assembler for value just like its orga-

nization and delivering. Using this might help to break
through the silos.

Example
A consulting company has different lines like design, data, event, consulting
and training. The problem is, that the different lines don’t work together
properly, which would make a huge difference, because not cooperating with
the other lines leads to only bailing out the potential within one silo and not
all of them.

Context
This problem appears whenever functional units within a company’s hierar-
chical structure are only focused on their own function but lacking interfaces
to other units.

Problem
The following concern is addressed by this M-Pattern:
C-19: Dealing with internal silos

Forces
Cooperating between the different lines or silos might be difficult because
there is sometimes still a rivalry between them, which leads to not wanting
the others to gain any profit. To break down the barriers between the silos,
it is required to obtain the management buy-in on a high strategical level.
Depending on one’s position within the company’s hierarchy, this can be very
difficult to achieve.

Solution
A value stream is an assembler for value just like its organization and deliv-
ering. Using this might help to break through the silos.
To start with, a representative of each silo meets up to discuss the different
value streams. First it is necessary to analyze the value stream of each silo
by its own, and after that identifying the interfaces between all silos, to see
how and where the different silos are connected. By doing that, it should be

86

C.2. DOCUMENTATION OF METHODOLOGY PATTERN
CANDIDATES

possible to connect each and every silo together and see all connections in
the Value Stream. This helps to not only see the work of one silo but to draw
the whole picture and gain a higher consciousness between the silos and the
employees.

Variants
Instead of representatives of each silo, the value stream analysis can also be
conducted by external consultants. This might help to when dealing with
internal office politics.

Consequences
Benefits:

• See the whole picture and not only the silos

• Increase the motivation by showing the employees how working to-
gether can actually increase the outcome

Liabilities:

• - The analysis takes some time and because there is only one represen-
tative of each silo, it could be difficult to communicate the outcome of
the analysis

See Also
-

87

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.2.6 Nexus Sprint

Pattern overview
ID M-08
Name Nexus Sprint
Alias –
Summary The Nexus Sprint is an Artifact of the Nexus Framework

and helps to scale the original Scrum Process to large-
scale agile development. One big advantage is, that the
several development teams do not necessarily have to
synchronize there Sprints.

Example
At a company, they ran a program and divided the teams by the applica-
tions that had to be maintained. These applications had fix release cycles,
but every application had a different release cycle, which made it difficult for
the teams to synchronize their sprints.

Context
This problem occurs whenever outer circumstances have an influence on some
sprint periods.

Problem
The following concern is addressed by this M-Pattern:
C-78: Synchronizing sprints in the large-scale agile development program

Forces
Some outer circumstances like dedicated release cycles for applications are fix
and cannot be changed. The result of a sprint is a release-ready increment,
but if it doesn’t fit the release cycle of the related application, it is not really
deployable.

Solution
Development teams can apply a nexus sprint. This form of the sprint plan-
ning does not necessarily require the teams to synchronize their individual
sprints, even though it is suggested.
If several Sprints have to be performed asynchronous, the Product Owner
has to defined Sync Points. These define a strict timeframe after which a
release-ready increment is being created. That means, that Sync Points de-
fine an overall Sprint for the entire program. Team Sprints don’t have to
synchronize with the Sync Points, but the Product Owner has to make sure,

88

C.2. DOCUMENTATION OF METHODOLOGY PATTERN
CANDIDATES

which Backlog Items will have to be ready until the next Sync Point.

Variants
-

Consequences
Benefits:

• Teams are able to work more independent

• More flexibility in planning and structuring the program

Liabilities:

• Scales only up to 9 teams

• More coordination effort to the Product Owner

See Also
-

Other Standards
The nexus framework is a scaled form of the Scrum, developed by the same
authors.

89

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.2.7 Portfolio Backlog

Pattern overview
ID M-09
Name Portfolio Backlog
Alias Strategical Backlog
Summary The Portfolio Backlog is a Backlog on the highest hi-

erarchal level of an organization, managing strategical
initiatives using agile practices.

Example
At a large company, the IT organization was working by agile values and
principles using the SAFe framework. The company’s strategy on the other
hand was located in a traditional organized department and delivered results
once a year. That restrained the IT Organizations strategic level to fully
follow agile principles.

Context
This problem occurs whenever the operational level follows agile processes
while the processes on the strategical level are not aligned.

Problem
The following concern is addressed by this X-Pattern:
C-113: Disconnect between strategy and operation

Forces
The need for becoming agile usually comes from the operational level, which
is why the transformation usually starts there as well. But since the strate-
gical level is located higher within the hierarchy, the operations has no au-
thority to make them align their processes. Applying an agile framework for
large companies reaches far beyond team or program level, but fully aligning
all processes takes time.

Solution
Agile practices can be adopted through the entire organization up to the
highest hierarchical level, which helps to align all agile processes. The Port-
folio Backlog is a set of business and enabler Epics that have been approved
and prioritized by the Portfolio Management. It receives direct impact from
the organizations vision and will help the organization, their partner and
customers to plan with upcoming releases. So the Portfolio Backlog can be
seen as a strategic roadmap. It’s epics will await implementation and will

90

C.2. DOCUMENTATION OF METHODOLOGY PATTERN
CANDIDATES

later move forward to an Agile Release Train or Solution Train. By handling
high-level strategic topics using agile practices, it perfectly aligns with the
rest of the organizations agile processes. Also will the estimation of large
strategical topics be easier than usual, because defining them as Epics makes
it possible to estimate them based on Storypoints. This will be based on the
collected data from previous projects, making the estimation more precise.

Variants
Such large Epics are sometimes also defined as a Saga, to illustrate the com-
plexity of the initiative. A Saga would then again contain several Epics. But
this approach is also controversial. All items within a Backlog are in a way
User Stories, having the very same characteristics. Defining a large hierar-
chy for Backlog items will not necessarily add value but could also confuse
instead.

Consequences
Benefits:

• - Alignment to other agile processes

• - Better forecast for strategical initiatives

• - More transparency of the organization’s strategy

Liabilities:

• Agile practices must be fully understood, otherwise this pattern will
lose its benefits

Other Standards
The Portfolio Backlog was introduced by the scaled agile framework (SAFe)

91

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.2.8 Weighted shortest job first

Pattern overview
ID M-10
Name Weighted shortest job first
Alias WSJF
Summary Weighted shortest job first is a technique to prioritize

the Backlog by calculating the value of each item. It
thereby follows the theory, that item of the same value
with lower estimated time are more valuable because
their value add can be faster done.

Example
During the implementation of a project, ConsultingCo was facing the prob-
lem that the higher management of their customer disagreed with the struc-
ture of the project, meaning the prioritization of some items and why they
would have to wait so long for some results.

Context
This problem occurs whenever there is a communicational gap with stake-
holders or when processes between strategy and operation are not enough
aligned.

Problem
The following concerns are addressed by this M-Pattern:
C-44: Dealing with communication gaps with stakeholders
C-113: Disconnect between strategy and operation

Forces
Agile practices are mainly used on the operational level and not the manage-
ment level. That is why the management might not understand how agile
practices are being applied.
There are a lot of communication problems, because most of the time there
is only one person functioning as an interface between these two levels, which
can lead to a loss a information or misinterpretation.

Solution
A precondition is, that the tasks have been estimated already. By calculating
the cost of delay and the duration of each job, it is possible to find out, which
task should be done first.

92

C.2. DOCUMENTATION OF METHODOLOGY PATTERN
CANDIDATES

Cost of Delay = User-Business Value + Time Criticality + Risk Reduction
and/or Opportunity Enablement
To calculate the duration you can use different patterns, just like Magic Esti-
mation or T-Shirt Sizes. After calculating these two values, the cost of delay
is divided through the duration of a task.
The outcome of this shows, which task is the weighted shortest job, that
should be done first.

Variants
There are different patterns that can be used to calculate the duration of a
job, so as Magic Estimation or T-Shirt-Sizes or any other method to measure
the duration of a task.

Consequences
Benefits:

• Triggers an active information exchange between strategy and opera-
tion

• Prioritizing jobs based on the economic efficiency

• Easy and quick to prioritize new backlog items and classify them, be-
cause there is no need to discuss it

Liabilities:

• The calculation is based on a subjective measurement, which means,
there is still some uncertainty left

See Also
-

Other Standards
SAFe 4.6

93

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.2.9 Improvement Backlog

Pattern overview
ID M-11
Name Improvement Backlog
Alias –
Summary Code quality can vary because of many reasons. If

experienced developers see the possibility for code im-
provement while working on a different task, they don’t
always manage to implement it right away without
threaten the completion of the sprints goal. Therefor
the should have a distinct place for documenting such
improvements for later or for others to implement.

Example
At DevelopmentCO different developers have more or less experience. It
happened various times that experienced developers were working on one of
their tasks while identifying a possible improvement in someone else’s code.
Sometimes even in the code of another teams’ team member. Unfortunately,
they were not able to implement the improvement right away without jeop-
ardiesing the goal of the current sprint.

Context
Whenever improvements of medium or high effort are being detected.

Problem
The following concern is addressed by this M-Pattern:
C-114: Maintaining equal quality among teams

Forces
Possible improvements that are neither implemented right away nor docu-
mented can easily be forgotten. The effort for implementing an improved
solution can vary and thereby sometimes exceed the developer’s capacity. A
developer always has to prioritize the tasks in the current sprint and thereby
the current sprint goal over improved solutions.

Solution
Whenever a developer identifies a possible improvement in the code, he will
follow these steps:
“Do I have free capacity to implement the improvement right away?”
o Yes: Implement the improvement

94

C.2. DOCUMENTATION OF METHODOLOGY PATTERN
CANDIDATES

o No: Create a task in a separate Improvement Backlog and document the
steps for the improvement

Thereby it doesn’t matter if the improvement was identified in one’s own
code, or someone else. An identified possible improvement could be an un-
clean code, performance issues or others.
During the Retrospective new items in the Improvement Backlog are being
presented and discussed in the team.
The Improvement Backlog can provide tasks during a sprint planning or can
be considered by developers with free capacity if the Sprint Goal is not in
jeopardy.

Variants
-

Consequences
Benefits:

• Encourages an active knowledge exchange among teams and team mem-
bers

• Helps to assure a constant quality among all teams

• Separates improvement tasks from other tasks to not blow up the Back-
log

Liabilities:

• Could lead to rather document tasks than doing them right away

• Could be, that the improvement Backlog is growing way faster than its
tasks are being solved as well

See Also
-

95

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.2.10 Mob-Testing

Pattern overview
ID M-12
Name Mob-Testing
Alias –
Summary Mob-Testing is a way of manual testing the UI of an

application. It gives great insights about how the user
actually interacts with the UI. Mob-Tests can also be
used as a demo for stakeholders to watch or participate,
which involves stakeholders more in the project and also
leads to a better feedback for the development team.

Example
At ConsultingCo a business department requested the implementation of
a new software tool. This program was implemented using agile methods.
After implementing the first MVP the stakeholder was introduced to the
software and his feedback was mainly positive. After a second milestone the
stakeholder was not satisfied at all and was criticizing aspects, he could have
already seen in the first MVP.

Context
This problem occurs whenever key stakeholders are not enough involved in
the progress of a program.

Problem
The following concern is addressed by this M-Pattern:
C-44: Dealing with communication gaps with stakeholders

Forces
Stakeholders expect that their needs are being implemented according to
their wishes and therefor don’t see a need to constantly follow the process.
Most stakeholders want to spend the least time possible on a program with
the biggest valued possible.

Solution
A Mob-Testing is an event where all developers or some representatives of
every development team including Scrum Master, Product Owner and Prod-
uct Manager come together to extensively test the UI on selected features.
During this event there are four different roles, that the different participants
can step into. The four roles are: the driver, the facilitator, the navigator

96

C.2. DOCUMENTATION OF METHODOLOGY PATTERN
CANDIDATES

and the mob. The driver will receive a task from the navigator which he has
to solve. A task constitutes an end-to-end functionality. An example would
be: “create a new user in the system”. The navigator is not allowed to give
any hints on how to solve the task or how to navigate through to the correct
menu. Thereby the UI will be tested on its usability. During this whole time
the facilitator checks if all rules are complied strictly. If the driver has a
problem or can’t find what he is looking for, he is allowed to ask the mob
some questions. The mob consists of all the other participants. After every
tested functionality the role of the driver and the navigator changes. The
facilitators stay the same during the event. The main role of the mob is to
observe the behavior of the driver to gain feedback on how the software will
be used.

Variants
A Mob-Demo follows the very same structure as the Mob-Testing event with
the only difference, that the key stakeholders are invited as well, who will
find themselves in the role of the driver or a member of the mob. Thereby
the key stakeholders get detailed insights on the implemented software and
developers are able to observe hands-on experience of the potential customer
which will give them valuable feedback.

Consequences
Benefits:

• Involving key stakeholders

• Valuable feedback for developers

• Knowledge exchange between developers and stakeholders

• Stakeholders might find defects, that the developers haven’t detected
yet

Liabilities:

• Time-consuming

• Finding to many defects might cause a lack of confidence in the project
or the developers

See Also
P-06: Proactively involve key stakeholder in the progress with every incre-
ment

97

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.2.11 T-shirt size estimation

Pattern overview
ID M-14
Name T-shirt size estimation
Alias –
Summary Estimating a new demand can be time consuming which

is unnecessary in many cases. In a very early stage – usu-
ally before the project starts – a very rough estimation
delivers all informaiton needed. In this case t-shirt sizes
(S, M, L, XL) are being mapped to a period of time for
how long the project may takes.

Example
The department for demand management at InsuranceAG noticed, that they
spend a lot of time estimating new demands. A request for demand is raised
whenever another department wants to start an IT supported project. But
based on the estimated time and costs, many requests were withdrawn, which
makes the work on a very detailed estimation useless.

Context
Whenever there is a request for demand, it will not necessarily evolve into
the start of a project.

Problem
The following concern is addressed by this M-Pattern:
C-116: Estimation of complex demands/requests

Forces
Sometimes a request for demand is placed to gain more information about
the complexity of the project without the intention of starting it.
Performing full requirements engineering is the perfect basis for a very con-
crete estimation, but too much effort when it’s not clear whether the projects
actually comes to fruition.

Solution
There are normally five different T-Shirt Sizes: XS, S, M, L, XL. XS is the
smallest and XL the biggest. Not those sizes are assigned to every initiative
to estimate how small or big it will be.

98

C.2. DOCUMENTATION OF METHODOLOGY PATTERN
CANDIDATES

Small tasks, that won’t cost much or only need a short amount of time,
get size XS or S, the bigger the task, the bigger the size. There is no mathe-
matical formula to define what defines the different sizes, but there is a least
a general comprehension. After defining the different sizes for the project, it
is necessary to map them to a distinct time frame and budget.

Variants
Sizes can be given different values, depending on how big the projects are,
that the company has.

Consequences
Benefits:

• Saving of time Premature estimation helping to assess the extent of a
certain project

Liabilities:

• Less precise

• Time-consuming

See Also
-

99

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.2.12 Agile Ninja

Pattern overview
ID M-15
Name Agile Ninja
Alias –
Summary The Agile Ninja is a variation of an Agile Coach. This

role is applied whenever there are organizational restric-
tions because of which the Agile Coach cannot fulfill his
role completely.

Example
At LogisticsCo they implemented a program, where they defined an agile
coach for every team. Because of capacity problems the agile coach had to
take on technical tasks. That was leading to that the agile coach not being
independent anymore, what entailed, that he couldn’t live out his role prop-
erly. This caused problems, because his guidance wasn’t impartial anymore.

Context
The problem occurs whenever roles wrongly defined or misunderstood.

Problem
The following concern is addressed by this M-Pattern:
C-56: Defining clear roles and responsibilities

Forces
For many agile roles there is superficial knowledge which is why the pure
name can lead to misunderstandings.
Not every organization gives the opportunity to act out a role exactly as
defined in a framework.

Solution
Due to outer circumstances given by the organization structure it is not al-
ways possible to implement the role of an Agile Coach within an agile team.
If such restrictions are given, a similar role needs to be defined, making sure
no misunderstandings exist, based on the name of the role.

The Agile Ninja is a part of an Agile Team and takes on tasks like any
other team member, but he is also especially skilled in agile practices and
functions as a contact person regarding questions on the agile methods.

100

C.2. DOCUMENTATION OF METHODOLOGY PATTERN
CANDIDATES

The Agile Ninja can be compared with an Agile Coach, but the difference is,
that he cannot be completely impartial, due to the fact that he has respon-
sibilities just like any other in the agile team.

Variants
–

Consequences
Benefits:

• Not only a team member but also a coach

• One distinct contact person for Agile Methods

Liabilities:

• Not completely impartial

See Also
–

101

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.2.13 System Thinking

Pattern overview
ID M-16
Name System Thinking
Alias
Summary System Thinking is a theory that aims to describe the

basic functioning of complex systems. It thereby goes
through the two phases of Analysis and Synthesis to
first focus on each component within the system and
furthermore their relationships within the system.

Example
A consulting company has different lines like design, data, event, consulting
and training. The problem is, that the different lines don’t work together
properly, which would make a huge difference, because not cooperating with
the other lines leads to only bailing out the potential within one silo and not
all of them.

Context
This problem appears whenever functional units within a company’s hierar-
chical structure are only focused on their own function but lacking interfaces
to other units.

Problem
The following concern is addressed by this M-Pattern:
C-19: Dealing with internal silos

Forces
Cooperating between the different lines or silos might be difficult because
there is sometimes still a rivalry between them, which leads to not wanting
the others to gain any profit. To break down the barriers between the silos,
it is required to obtain the management buy-in on a high strategical level.
Depending on one’s position within the company’s hierarchy, this can be very
difficult to achieve.

Solution
The solution for breaking through those silos is system thinking. Here the
focus is not just on one line, it tries to see the whole system and analyze
the relationships between the different lines, rather than just focus on one.
There are two approaches to describe the system. The first one is to analyze

102

C.2. DOCUMENTATION OF METHODOLOGY PATTERN
CANDIDATES

and describe the individual components and find out what they can do. The
second one is the synthesis which describes the relationship between those
components so that it is possible to not only view the possibilities of each
individual but to figure out how they can work together.
That does not only help to gain new insights by getting the view of all differ-
ent lines on one project, but also increases the communication between them
and the outcome for the whole company.

Variants
Depending on how big the company is, it might be different how deep you
decompose the silo into components.

Consequences
Benefits:

• Gaining a higher outcome for the company

• Increasing the communication within the different silos

• Interdependences become transparent

Liabilities:

• Analyzing the components and their relationships is a time-consuming
process

• Implementing the identified changes to the organization will be a high
level change and thereby critical

See Also
-

103

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.3 Documentation of Viewpoint Pattern Can-

didates

C.3.1 Burndown Chart

Pattern overview
ID V-01
Name Burndown Chart
Alias –
Summary The burn chart visualizes the velocity of a program and

thereby shows weather the program is within the esti-
mated time schedule.

Example
At DevelopmentCo the Product Owner managed an agile program. At the
beginning of the program a deadline had been defined which had to be ful-
filled. This collides with agile principles.

Context
This problem occurs whenever you manage your program agile.

Problem
The following concern is addressed by this V-Pattern:
C-103: Predictability in agile Program Management

Forces
The backlog is not completely defined in the beginning of the program but
will change over time. User Stories can vary in their complexity and thereby
it is difficult to predict how many User Stories are being completed per sprint.

Solution
The Burndown Chart tries to predict the overall time needed to complete the
program. The x axis describes the time in sprints while the y axis describes
the amount of remaining Story Points. At the end of each sprint, a new point
of remaining story points is being added to the chart. The red dashed line
predicts the end of the program (see figure).

104

C.3. DOCUMENTATION OF VIEWPOINT PATTERN CANDIDATES

Variants
-

Consequences
Benefits:

• Visualization of the projects time course

Liabilities:

• The explanatory power decreases if there have been changes to the
capacity of one or more teams

See Also
M-01 Velocity Measurement

Other Standards
-

105

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

Data Collection
The amount of remaining Story Points is being documented in the Backlog.
The number of Sprints is based on the program’s deadline (if given). The
single points for the Story Point history within the charge is being calculated
by the Velocity Measurement.

106

C.3. DOCUMENTATION OF VIEWPOINT PATTERN CANDIDATES

C.3.2 Storymap

Pattern overview
ID V-02
Name Storymap
Alias Program Board
Summary A storymap can help visualize the overall project scope

as well as dependencies among user stories and can easily
be adjusted if the scope changes.

Example
At ConsultingCo they pried open all Epics into different User Stories and
every team got an area of responsibilities. After merging the solutions of
several teams, the outcome wasn’t always as expected, because the individ-
ual teams didn’t have the context that they would have needed.

Context
The more teams work on the same project, the more likely this problem oc-
curs.

Problem
The following concerns are addressed by this V-Pattern:
C-118: Establish a common vision of the product
C-126: Size and complexity of the backlog

Forces
It is difficult to fully communicate the product vision to every member of
each team, but in many situations, it is important for the developer to un-
derstand the full context of a project. Large Scale Projects usually contain a
lot of Epics, User Stories and Tasks, but the more items the backlog contains,
the more difficult it is to manage and maintain it.

Solution
With a growing number of items, the backlog gets too complex. To prevent
this problem, it is necessary to visualize all user stories, to not only get a
better overview, but also show the dependencies between the different items
to maintain the customer focus. This is called a User Story Map and does
not only show the order but also which features the different tasks belong to
and how important the User Story is.
The first step is to write every User Story on one card or piece of paper and
pin it onto the wall. Be doing that a “map” with an overview of the whole

107

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

project is created. After that all cards are sorted after priority (vertical) and
the time when it has to be finished (horizontal). The last step is to point
out the dependencies by connecting the relevant User Stories with each other.

Variants
The considered level can vary, based on how specified the Backlog is and on
the current focus. So instead of User Story level, it could be more roughly
on Epic level or more detailed on Task level. It is not only possible to make
a physical board, but also to create it online, so everybody has an easy access.

Consequences
Benefits:

• Helping everyone to better understand the backlog and thereby the
projects scope

• Good oversight because of the visualization

• Allows to break down the different items into smaller ones

• Easy to view all dependencies

• Encourages the communication of the team members

108

C.3. DOCUMENTATION OF VIEWPOINT PATTERN CANDIDATES

Liabilities:

• Time-consuming

• Steady updating required, otherwise the board loses its value

• If it is a physical board, its only available for the team members, that
are close to it. Provided photos of the board, would have to be updated
all the time, to make sure everyone is up to date.

See Also
CO-01: Velocity Measurement

Other Standards
-

Data Collection
The Items for the Storymap come from the Backlog. At one planning event,
attended by Development Teams, Scrum Masters, Agile Coaches, Product
Owners, Product Managers and/or Stakeholders, the items will be ordered
chronologically and dependencies will be identified.

109

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.4 Documentation of Anti-Pattern Candi-

dates

C.4.1 Don’t let the Product Owner be the only inter-
face to the team

Pattern overview
ID A-01
Name Don’t let the Product Owner be the only interface to

the team
Alias –
Summary If the outer circumstances of an agile project are chang-

ing, then the project has to adapt to that very change
which can be a minor detail or fundamental different
scope. The product owner is the only person who can
bring this change into the project since he is the owner
of the projects Backlog.

Example
At ConsultingCo, due to the structure of the company and the current
project, the Product Owner was the only instance that received information
from stakeholders, passing them on to the team. At one point the overall
scope for the project changed. But due to misunderstandings or disagree-
ment, the Product Owner did not apply the changed scope correctly to the
Backlog, which lead the project to the wrong direction.

Context
This problem can occur when the projects scope changes.

Problem
The following concern is addressed by this Anti-Pattern:
C-101: Product Owner is the only instance to the team

Forces
If the scope of the project is changing, you never know how the Product
Owner is reacting to it, communicating it to the team and implementing it
into the backlog.

General Form
At the beginning of every project the overall scope is being communicated

110

C.4. DOCUMENTATION OF ANTI-PATTERN CANDIDATES

and all stakeholders align themselves to commit to the projects goal and how
to get there. During the projects implementation outer circumstances can
change, forcing the project to do a fundamental change to its scope. A new
scope is communicated top-down and the actual change in the Backlog is
only being implemented by the Product Owner. If he/she does not approve
with the new scope or misinterprets is the teams will still follow their backlog
and thereby the Product Owners perspective.

Consequences
If one or several development teams are not reacting to the new project scope,
the projects business case can partly or fully get lost.

Revised Solution
Have in general a second communication channel next to the Product Owner,
for instance the Agile Coach. That way you not necessarily take away au-
thority or power from the Product Owner but have another control instance
to assure that the project is always going the right way.

See Also
-

Other Standards
-

111

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.4.2 Don’t think a change in too big steps

Pattern overview
ID A-02
Name Don’t think a change in too big steps
Alias –
Summary Big changes in an organization can cause negative ef-

fects. The bigger the change, the more likely it is, that
the employees, who will be affected most by the change,
will offer resistance. It is better, to implement changes
in small steps, to make them sustainable.

Example
After identifying silos in a company and trying to break them open, they de-
fined a goal that they wanted to achieve. They decided to adapt the change
immediately with only one small interims solution, meaning that they ap-
plied a huge change in a short time.

Context
The problem appears, whenever the management of a company tries to coun-
teract against internal silos with adapting change too quick and it is not
accepted by the employees.

Problem
The following concern is addressed by this Anti-Pattern:
C-19: Dealing with internal silos

Forces
When planning a change, it sometimes appears difficult to break it down
into smaller steps. The bigger the applied change, the higher the chance for
employees offering resistance to it.

General Plan
Implementing a change in the daily operations of a company can be challeng-
ing. Changing a running system isn’t something that can be done overnight.
Transform a system and develop a new way of doing things need time and a
lot of effort. Choosing a new way of action and implement it without making
adjustments or listen to what the employees want will not make all problems
go away, it will rather cause even more problems. Change a system and make
it work needs a lot of effort and interim steps, so that the employees can get
used to the new way of doing things and to make adjustments if necessary.

112

C.4. DOCUMENTATION OF ANTI-PATTERN CANDIDATES

It can even take several years to change a system properly and make it work.

Consequences
Benefits:

• Fast change/transformation

Liabilities:

• Risks the success of a change/transformation

• Increasing risk for resistance offered by the employees

• Current situation of the organization can get worse instead of better

Revised Solution
By downing the change into smaller steps and adapting the changes in smaller
cycles.

See Also
M-06: Change Backlog

113

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.4.3 Don’t instate a field specialist as Product Owner
with no technical background

Pattern overview
ID A-03
Name Don’t instate a field specialist as Product Owner with

no technical background
Alias –
Summary Sometimes when a business department is the driver for

a new IT project, they want to gain more control to it by
instating the Product Owner with an employee of their
own department. But this decision is often not rational
and will risk the project’s success.

Example
At AutomotiveCo they instated someone from a specific department as Prod-
uct Owner, thinking he would have a lot of useful insights. The problem was
that he did not have enough technical knowledge which caused some bad
decisions for the project.

Context
This problem occurs whenever the instated Product Owner has no technical
background.

Problem
The following concern is addressed by this Anti-Pattern:
C-120: Product Owner lacking technical understanding

Forces
As the interface between the development teams and the customer, the Prod-
uct Owner needs to have both professional and technical understanding.

General Form
In big companies the responsible department normally triggers a new IT
project and thereby takes the role of the customer. As a financial sponsor
the department tries to take a huge influence on the outcome of the project.
One way to do so is to instate the Product Owner out of their own depart-
ment. This influence is way to strong and this decision should not be made
by the department, but by the IT instead. This often leads to a lack of
technical understanding of the Product Owner which might be required in

114

C.4. DOCUMENTATION OF ANTI-PATTERN CANDIDATES

key decisions throughout the project.

Consequences
Benefits:

• The Product Owner has a lot of professional understandig and can
thereby define the tasks specifically.

Liabilities:

• Wrong decisions in key situations can have strong negative impact on
the projects success.

Revised Solution
Staffing decisions should entirely be made by the IT department. The role of
the Product Owner requires a basic technical understanding of the current
project.

See Also
-

Other Standards
-

115

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.4.4 Don’t let teams work in the same constellation
for too long

Pattern overview
ID A-04
Name Don’t let teams work in the same constellation for too

long
Alias –
Summary Continuous improvement is an important aspect of ag-

ile principles and there are many different improvement
processes and methods that help follow this principle.
But if a team constantly works in the very same constel-
lation, the improvement of each individual team member
will stagnate.

Example
At DevelopmentCo, a development team was consisting of the very same
members for almost two complete programs, each with a duration of one
year. Late during the second program a new developer from another team
joined this one. Until then the development team wasn’t aware of having a
problem in their continuous improvement. It was only realized when the new
developer brought in new ideas, new skills and new creativity.

Context
This problem occurs when several development teams within a program are
working very separate from each other without any structured exchange of
knowledge.

Problem
The following concern is addressed by this Anti-Pattern:
C-121: Knowledge exchange between teams

Forces
People don’t like change, so developers will not necessarily want to switch
teams. The problem is difficult to identify, because individual improvement
is difficult to measure.

General Form
A development team that works in the very same constellation for 9 months
or more will be a strong team and know each other very well. That might

116

C.4. DOCUMENTATION OF ANTI-PATTERN CANDIDATES

include personal code style, undocumented naming specifics or any other
common collaborations that should’ve been documented as a standard prac-
tice but there was no need identified within the team. That way they will
perfectly learn how to collaborate with each other but not necessarily with
other developers from other team, other programs or other companies.

Consequences
Benefits:

• The team will most likely be more effective than a completely new team

• Less effort for documentation of specific functionalities because it’s just
known within the team

Liabilities:

• The team will be tempted to document less

• The continuous improvement process can also be destructive if bad
practices sneak in within a team

Revised Solution
Encourage developers to switch teams after a certain amount of time. De-
pending on different factors, stagnation can begin after 6 months. Never
have the very same constellation of a team after one complete program or
after more than one year. New developers will bring new thoughts to the
team which will benefit the teams moral.

See Also
M-02: Continuously changing the improvement method in retros

Other Standards
-

117

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.4.5 Don’t manage an unnecessary amount of require-
ments in one program

Pattern overview
ID A-05
Name Don’t manage an unnecessary amount of requirements

in one program
Alias –
Summary When a program is tailored within the IT Portfolio

Level, there is various different ways how to do so. But
since a program is considered as complex anyway it
might happen that the scope of a program is too big.
This will blow up the Backlog and lead to an unneces-
sary complexity.

Example
At AutomotiveCo, the IT Organization used Domain Driven Design (see M-
04) to define responsibilities within the organization but they were not able
to gain all benefits of this pattern. One domain was containing a number
of subdomains and each subdomain was still very complex with a lot of re-
sponsibilities. On Backlog was maintained per domain, which in some cases
reached a complexity, that was very difficult to handle.

Context
This problem occurs whenever a program or domain is not tailored enough,
so that the Backlog might contain a huge number of items.

Problem
The following concern is addressed by this Anti-Pattern:
C-126: Growing size and complexity of the Backlog

Forces
Sometimes domains are tailored based on shared resources and budget. In
that case it is difficult to plead against the defined standard. Some programs
or domains are difficult to split any further because of their dependencies
within.

General Form
There are numerous reasons for why a Backlog is reaching a size, which’s
complexity is not efficiently to handle any more. It might be that the pro-

118

C.4. DOCUMENTATION OF ANTI-PATTERN CANDIDATES

gram or domain is tailored badly. It might be that the responsibilities require
this size. Or it could also be that the Backlog was growing over time. Nev-
ertheless, at a certain size (which depends on the industry, the organization
and other factors) the Backlog will lead to new concerns, which could’ve been
avoided.

Consequences
Benefits:

• All in one place, keeping the number of contact persons low

Liabilities:

• Can lead to inefficiency

• One Product Owner might not be able to orchestrate all tasks within
the Backlog

Revised Solution
Tailor a Backlog to a manageable size and adjust it at a later point if neces-
sary.

See Also
-

Other Standards
-

119

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.5 Documentation of Principle Candidates

C.5.1 The Agile Connector

Pattern overview
ID P-02
Name The Agile Connector
Alias –
Summary The agile connector is part of the high-level management

in an organization and functions as an ambassador for
everything regarding agile methods or the agile trans-
formation.

Example
The management of ConsultingCo decided to transform the entire company
to an agile organization. This process took a lot of time and energy and had
his biggest concerns in dealing with doubts in employees and get everybody
on board. The problem was, that many employees didn’t know how and
where to address their concerns about the transformation.

Context
This problem occurs whenever the high-level management is not perfectly
aligned throughout the agile transformation.

Problem
The following concerns are addressed by this P-Pattern:
C-95: Missing orientation of leadership
C-110: Spread agile mindset in entire organization

Forces
Agile methods lead to more self-organized working which also means a shift
in the way of leadership. The old pyramid structure for hierarchy and the
command-and-order leadership style does not align with the agile manifesto.
So high-level managers will have to define their role differently.

Solution
A successful agile transformation has to be driven from the high-level man-
agement. So there needs to be a very good understanding of agile methods
and what this transformation means for the organization. Therefor one or
a few members of the high-level management should take the role of an Ag-
ile Connector. This role is responsible for communication and knowledge

120

C.5. DOCUMENTATION OF PRINCIPLE CANDIDATES

exchange throughout the whole company and further on to customers and
suppliers as well. Important requirement for this role is knowledge and ex-
perience in agile methods, coaching and leadership.

Variants
-

Consequences
Benefits:

• Employees know exactly where to address their concerns

• One or a few people of the higher management will drive the transfor-
mation very much forward

• A transformation can appear very abstract. But with Agile Connectors
it becomes more tangible

Liabilities:

• Depending on the number of requests, it can be time-consuming for
that very manager

See Also
-

Other Standards
-

121

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.5.2 Culture of empowering decision making

Pattern overview
ID P-04
Name Culture of empowering decision making
Alias –
Summary This principle focusses on establishing a culture which

helps empowering employees to make decisions and han-
dle situations self-organized teams can be exposed to.

Example
At ConsultingCo, a large-scale agile software development project was exe-
cuted. The Product Owner was managing the Backlog and the development
teams were implementing their items from the Sprint Backlog. After hav-
ing implemented an item, it was the common understanding that this item
wasn’t adding value. The related development team had doubts about the
item beforehand but didn’t say anything.

Context
This problem might occur when managing self-organized teams.

Problem
The following concern is addressed by this P-Pattern:
C-74: Empowering agile teams to make decisions

Forces
Making decision is a skill that have to be learned, not every employee will
have that skill right away. When employees got used to following orders by
their boss, being a part of a self-organized team will put them into new sit-
uations, that they have to deal with.

Solution
When traditional teams have a project leader, that instructs the team, telling
them what to do, the team members have to think less about the big pic-
ture and just follow instructions. Self-organized teams have no hierarchy and
have to figure out these things by themselves. Teaching employees in self-
organized teams how to handle new situations and how to be able to make
decisions or to bring up a topic is best be done by establishing the right
culture to it. It starts with the Product Owner, Scrum Masters and Agile
Coaches. These are the ones establishing a culture of empowering decision
making. This is done by clearly communicating:

122

C.5. DOCUMENTATION OF PRINCIPLE CANDIDATES

• Don’t ask. Just do it.

• Every input is valuable

• You are entitled to a different opinion

• As managing personnel, we can make mistakes to. Tell if you don’t
understand a decision.

These general rules have to have to be a common understanding within the
entire project. Especially passive teams, who are more reserved in their com-
munication need more focus in setting these guidelines.
Second step is the teaching and mentoring within a team. Agile teams should
always be stuffed in a way, that people with little experience work together
with people with a lot of experience. This means the experience in soft skills,
making decisions, bring up new topics or addressing a problem. That will
constantly help people to grow as fast and as much as possible.

Variants
-

Known uses
-

Consequences
Benefits:

• Enables an active exchange among the team

• Helps the team to grow together

Liabilities:

• With every team member, it takes time to teach such soft skills

• While learning such soft skills, team members might make unfavorable
decisions

See Also
-

Other Standards
-

123

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.5.3 Intercultural team building

Pattern overview
ID P-05
Name Intercultural team building
Alias –
Summary A group of people working on the same thing does not

automatically become a team and the distance is an ad-
ditional challenge for cross-shore agile teams. But this
can be tackled by flying to each others locations, meeting
each other in person and actively working on becoming
a team.

Example
At InsuranceCo, an agile team from India was added to a running program
but the collaboration was not as successful as expected. The communication
and commitment on several tasks did not go well based on (what they as-
sumed) was a different mindset.

Context
This problem occurs whenever agile teams from different countries and espe-
cially different cultures are collaborating together in an agile program.

Problem
The following concern is addressed by this P-Pattern:
C-61: Dealing with cultural differences between cross-shore agile teams

Forces
Different cultures have a different way of doing their work and they might
have a different expectation. Geographical distance makes team building dif-
ficult.

Solution
To tackle this problem, several different actions or events can help to break
down cultural barriers and help every individual in the group to identify as
part of a team. To help grow the team together, it is useful to organize
teambuilding events, like workshops, a dinner or even a weekend getaway
with all team members to enable cultural exchange also outside the office.
Workshops will help to gain a common vision of what to accomplish as a
team and at the same time the team members will learn about their cultural

124

C.5. DOCUMENTATION OF PRINCIPLE CANDIDATES

differences or the way how things in the other country is done, helps under-
standing the other teams better. Therefore, it is important that this process
is bidirectional, meaning that not only inviting a team but also visiting a
team is important, to see both sides. This can have a positive impact on how
the colleagues work together and show understanding for their foreign team
members.

Variants
If it is not possible to meet in person, due to limited time or a limited budget,
weekly online video chats would be compensation instead.

Consequences
Benefits:

• Breaking through cultural barriers and learn to understand the different
way of thinking and doing things.

• Connect with colleagues over the world

Liabilities:

• Time consuming

• Maybe not useful for a project, that’s limited for a short period of time

See Also
-

Other Standards
-

125

APPENDIX C. DOCUMENTATION OF PATTERN CANDIDATES

C.5.4 Proactively involve key stakeholder in the progress
with every increment

Pattern overview
ID P-06
Name Proactively involve key stakeholder in the progress with

every increment
Alias –
Summary In traditional methods like waterfall, stakeholders are

used to define a set of requirements and then being rarely
involved during the implementation process. With ag-
ile methods stakeholders are more frequently consulted
and need to be involved more in the current status and
progress of the project.

Example
At DevelopmentCo, an agile program for the implementation of a SaaS so-
lution was conducted. Some key stakeholders were adding new requirements
throughout the program. The problem was, that their requirements did not
fit into the logical structure or the user interface of the application at that
very point. They simply didn’t see the bigger picture and the value add they
were hoping for would’ve been way less if the requirements were implemented
accordingly, without checking back.

Context
This problem occurs whenever key stakeholders are not following the progress
of a project as much as they should.

Problem
The following concerns are addressed by this X-Pattern:
C-44: Dealing with communication gaps with stakeholders

Forces
Stakeholders that are not familiar with agile practices don’t understand, that
their active participation throughout the project is very much required. Most
stakeholders want to spend the least time possible on the project with the
biggest value add possible.

Solution
There are two prerequisites for involving stakeholders into the programs

126

C.5. DOCUMENTATION OF PRINCIPLE CANDIDATES

progress:

• all information necessary are available to the stakeholders. Therefor
also see P-01: Fully transparent agile project

• The current version of the project must be deployed regularly, for in-
stance by a CI/CD pipeline

Stakeholders must regularly be exposed to the current version of the project.
That can be done by:

• Mailing the current deployed version including a link to it

• Inviting stakeholders to the Retrospective

• Inviting stakeholders to an exclusive meeting

• Inviting stakeholder to participate in a mob-test (see M-12: Mob-
Testing)

Variants
If stakeholders are invited to a Retrospective, this can also be realized by
splitting this meeting into two parts. The first part would be for everyone,
presenting the results from the last sprint. The second part would be without
stakeholders, talking about technical difficulties. If the stakeholders are in-
cluded in the second part as well, they might lose interest and skip upcoming
meetings.

Consequences
Benefits:

• Getting faster and better feedback by the stakeholders

• Enabling stakeholders to formulate new requirements more accurate

Liabilities:

• If stakeholders don’t see the need for this principle, they will see this
as additional time requirements

See Also
M-12: Mob-Testing
P-01: Fully transparent agile project.

127

List of Figures

1.1 Pattern-based design research [10] 4

2.1 The Scrum Process [21] . 9
2.2 Agile Organization & Culture [25] 12
2.3 Less Sprint Planning [3] . 14
2.4 LSADPL UML Diagram [9] 17

4.1 Structure of an interview . 21
4.2 Identified concerns distributed in levels of scale. 28
4.3 Identified concerns distributed in categories. 29
4.4 List of concerns by frequency of observation (Part 1) 30
4.5 List of concerns by frequency of observation (Part 2) 31
4.6 Identified patterns and pattern candidates by category 32
4.7 All identified patterns and pattern candidates 33

128

List of Tables

129

Bibliography

[1] Standish Group International. The chaos report. United States of Amer-
ica, 2015.

[2] Mike Cohen. Succeeding with Agile. Addison-Wesley, 2010.

[3] Craig Larman and Bas Vodde. Large-scale scrum: More with LeSS.
Addison-Wesley Professional, 2016.

[4] Richard Knaster and Dean Leffingwell. SAFe 4.5 Distilled: Applying the
Scaled Agile Framework for Lean Enterprises (2Nd Edition). Addison-
Wesley Professional, 2nd edition, 2018.

[5] Kim Dikert, Maria Paasivaara, and Casper Lassenius. Challenges and
success factors for large-scale agile transformations: A systematic liter-
ature review. Journal of Systems and Software, 119:87–108, 2016.

[6] Omar A El Sawy, Pernille Kræmmergaard, Henrik Amsinck, and An-
ders Lerbech Vinther. How lego built the foundations and enterprise
capabilities for digital leadership. MIS Quarterly Executive, 15(2), 2016.

[7] Henrik Kniberg and Anders Ivarsson. Scaling agile@ spotify.
online], UCVOF, ucvox. files. wordpress. com/2012/11/113617905-
scaling-Agile-spotify-11. pdf, 2012.

[8] Ömer Uludag, Martin Kleehaus, Christoph Caprano, and Florian
Matthes. Identifying and structuring challenges in large-scale agile
development based on a structured literature review. In 2018 IEEE
22nd International Enterprise Distributed Object Computing Conference
(EDOC), pages 191–197. IEEE, 2018.

[9] Ömer Uludağ, Nina-Mareike Harders, and Florian Matthes. Document-
ing recurring concerns and patterns in large-scale agile development.
2019.

130

BIBLIOGRAPHY

[10] Sabine Buckl, Florian Matthes, Alexander W Schneider, and Chris-
tian M Schweda. Pattern-based design research–an iterative research
method balancing rigor and relevance. In International Conference on
Design Science Research in Information Systems, pages 73–87. Springer,
2013.

[11] Marian Stoica, Marinela Mircea, and Bogdan Ghilic-Micu. Software
development: Agile vs. traditional. Informatica Economica, 17(4), 2013.

[12] Ken Schwaber. Scrum development process. In Proceedings of the 10th
Annual ACM Conference on Object Oriented Programming Systems,
Languages, and Applications (OOPSLA, pages 117–134, 1995.

[13] Kent Beck and Cynthia Andres. Extreme programming: Embrace
change, 1999.

[14] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew
Hunt, Ron Jeffries, et al. Manifesto for agile software development. 2001.

[15] Helen Sharp, Hugh Robinson, Judith Segal, and Dominic Furniss. The
role of story cards and the wall in xp teams: a distributed cognition
perspective. In AGILE 2006 (AGILE’06), pages 11–pp. IEEE, 2006.

[16] Kent Beck. Test-driven development: by example. Addison-Wesley Pro-
fessional, 2003.

[17] Laurie Williams and Robert Kessler. Pair programming illuminated.
Addison-Wesley Longman Publishing Co., Inc., 2002.

[18] Scott Ellis. Frameworks, methodologies and processes. http:

//vsellis.com/frameworks-methodologies-and-processes/, 2008.
Accessed: 2019-10-13.

[19] Barry W. Boehm. Verifying and validating software requirements and
design specifications. IEEE software, 1(1):75, 1984.

[20] Kai Petersen, Claes Wohlin, and Dejan Baca. The waterfall model
in large-scale development. In International Conference on Product-
Focused Software Process Improvement, pages 386–400. Springer, 2009.

[21] Ken Schwaber and Jeff Sutherland. The scrum guide-the definitive guide
to scrum: The rules of the game. SCRUM. org, Nov-2017, 2017.

131

http://vsellis.com/frameworks-methodologies-and-processes/
http://vsellis.com/frameworks-methodologies-and-processes/

BIBLIOGRAPHY

[22] scrum.org. What is sprint planning? https://www.scrum.org/

resources/what-is-sprint-planning, 2019. Accessed: 2019-10-30.

[23] scrum.org. What is a daily scrum? https://www.scrum.org/

resources/what-is-a-daily-scrum, 2019. Accessed: 2019-10-31.

[24] George A Miller. The magical number seven, plus or minus two: Some
limits on our capacity for processing information. Psychological review,
101(2):343, 1994.

[25] AOE GmbH. Agile methods & processes in companies. https://www.

aoe.com/en/agile.html, 2019. Accessed: 2019-11-06.

[26] braintime.de. Safe kompakt. https://www.braintime.de/

methoden/ueberblick-scaled-agile-framework-beratung/

safe-grundlagen-kompakt/, 2019. Accessed: 2019-11-06.

[27] KnowledgeHut. Less vs safe R©: Which certification should you
choose and why? https://www.knowledgehut.com/blog/agile/

less-vs-safe-which-certification-should-you-choose-and-why,
2019. Accessed: 2019-11-06.

[28] Alexander M Ernst. A pattern-based approach to enterprise architecture
management. PhD thesis, Technische Universität München, 2010.

[29] Veli-Pekka Eloranta, Marko Leppänen, and Kai Koskimies. Using do-
main model for structuring pattern language. In In: Peltonen, J.(ed.).
SPLST’09 & NW-MODE’09, Proceedings of 11th Symposium on Pro-
gramming Languages and Software Tools and 7th Nordic Workshop on
Model Driven Software Engineering, 26-28.8. 2009, Tampere, Finland.
Tampere University of Technology. Department of Software System. Re-
port, 2009.

[30] Amr Elssamadisy. Agile Adoption Patterns: A Roadmap to Organiza-
tional Success (Adobe ebook). Addison-Wesley Professional, 2008.

[31] James O Coplien. Software design patterns: Common questions and an-
swers. The patterns handbook: Techniques, strategies, and applications,
13:311, 1998.

[32] Christoph Caprano Florian Matthes Ömer Uludağ, Martin Kleehaus.
Identifying and structuring challenges in large-scale agile development
based on a structured literature review. Chair for Informatics 19, 1(1):7,
2017.

132

https://www.scrum.org/resources/what-is-sprint-planning
https://www.scrum.org/resources/what-is-sprint-planning
https://www.scrum.org/resources/what-is-a-daily-scrum
https://www.scrum.org/resources/what-is-a-daily-scrum
https://www.aoe.com/en/agile.html
https://www.aoe.com/en/agile.html
https://www.braintime.de/methoden/ueberblick-scaled-agile-framework-beratung/safe-grundlagen-kompakt/
https://www.braintime.de/methoden/ueberblick-scaled-agile-framework-beratung/safe-grundlagen-kompakt/
https://www.braintime.de/methoden/ueberblick-scaled-agile-framework-beratung/safe-grundlagen-kompakt/
https://www.knowledgehut.com/blog/agile/less-vs-safe-which-certification-should-you-choose-and-why
https://www.knowledgehut.com/blog/agile/less-vs-safe-which-certification-should-you-choose-and-why

BIBLIOGRAPHY

[33] Julian M Bass. Artefacts and agile method tailoring in large-scale off-
shore software development programmes. Information and Software
Technology, 75:1–16, 2016.

[34] Jack Quinan and Christopher Alexander. A Pattern Language: Towns,
Buildings, Construction. Leonardo, 14(1):80, 1981. Accessed: 2019-12-
12.

[35] Yehuda E. Kalay. Architecture’s new media: Principles, theories, and
methods of computer-aided design. MIT Press, 2004.

[36] M.J. Mahemoff and L.J. Johnston. Principles for a usability-oriented
pattern language. In Proceedings 1998 Australasian Computer Human
Interaction Conference. OzCHI’98 (Cat. No.98EX234), pages 132–139,
Adelaide, SA, Australia, 1998. IEEE Comput. Soc.

[37] Ward Cunningham and Ken Beck. Constructing abstractions for
object-oriented applications. Journal of Object-Oriented Programming,
2(2):17–19, 1989.

[38] Nikos A. Salingaros. The structure of pattern languages. arq: Architec-
tural Research Quarterly, 4(2):149–162, 2000.

[39] Hanna Kallio, Anna-Maija Pietilä, Martin Johnson, and Mari Kangas-
niemi. Systematic methodological review: developing a framework for a
qualitative semi-structured interview guide. Journal of advanced nurs-
ing, 72(12):2954–2965, 2016.

[40] Katie Moon, Tom Brewer, Stephanie Januchowski-Hartley, Vanessa
Adams, and Deborah Blackman. A guideline to improve qualitative
social science publishing in ecology and conservation journals. Ecology
and Society, 21(3), 2016.

[41] INDIANA UNIVERSITY BLOOMINGTON. Internal validity. http:

//www.indiana.edu/~p1013447/dictionary/int_val.htm. Accessed:
2019-12-12.

133

http://www.indiana.edu/~p1013447/dictionary/int_val.htm
http://www.indiana.edu/~p1013447/dictionary/int_val.htm

	Introduction
	Motivation
	Research Objectives
	Research Approach

	Foundation
	Agile development
	Agile value
	Agile principle
	Agile practices
	Agile frameworks
	Agile organizations

	Large-scale agile development
	LeSS
	SAFe

	Patterns
	Definition
	Pattern documentation
	Pattern language

	Related Work
	Related work on recurring concerns in large-scale agile development
	Related work on pattern languages

	Identification of Recurring Concerns and Best Practices
	Methodology
	Findings on recurring concerns
	Concerns identified by Product Owner and Product Manager
	Identification of Recurring Concerns

	Findings on Patterns
	Magic estimation
	Don't think a change in too big steps
	Program Increment (PI) Planning
	Domain Driven Design
	Feature Teams
	Fully transparent agile project

	Discussion
	Key Findings
	Limitations

	Conclusion
	Summary
	Future Work

	Interviews on Identification of Recurring Concerns and Patterns
	Documentation of New Concerns
	Documentation of Pattern Candidates
	Documentation of Coordination Pattern Candidates
	Structured coaching an entire organization
	Coordination of current dependencies
	Structured request for demand
	Communication channel to maintain agile role within organization
	Agile Governance
	Dual-Track Agile
	Clustering / Template

	Documentation of Methodology Pattern Candidates
	Velocity Measurement
	Continuously changing the improvement method
	Mapping storypoints to other KPI's
	Change Backlog
	Value stream analysis
	Nexus Sprint
	Portfolio Backlog
	Weighted shortest job first
	Improvement Backlog
	Mob-Testing
	T-shirt size estimation
	Agile Ninja
	System Thinking

	Documentation of Viewpoint Pattern Candidates
	Burndown Chart
	Storymap

	Documentation of Anti-Pattern Candidates
	Don’t let the Product Owner be the only interface to the team
	Don't think a change in too big steps
	Don't instate a field specialist as Product Owner with no technical background
	Don't let teams work in the same constellation for too long
	Don't manage an unnecessary amount of requirements in one program

	Documentation of Principle Candidates
	The Agile Connector
	Culture of empowering decision making
	Intercultural team building
	Proactively involve key stakeholder in the progress with every increment

