
Generic Interfaces to Remote Applications in Open Systems

M. Merz and W. Lamersdorf

Department of Computer Science, University of Hamburg, Vogt-Kölln-Straße 30,
D-2000 Hamburg 54, Germany; eMail: [merz|lamersd]@dbis1.informatik.uni-hamburg.de

Abstract
Future industrial production and engineering environments will profit substantially from

emerging open distributed computer communication network environments. They will, in
principle, be able to benefit from a high potential of services available in such environments to
support individual client applications. In practice, however, free and flexible client/ server
cooperations are frequently hindered by the great and confusing variety of interfaces involved in
accessing various and heterogeneous network services.

In order to support open client/ server cooperations in distributed systems, this contribution
proposes a unifying description mechanism for remote services in computer networks. It de-
scribes an application oriented generic communication service, which facilitates client/ server
cooperation in open systems. Most important basis for such a service is a uniform service
specification mechanism for open server interfaces. Correspondingly, the paper first specifies a
specific service interface description language (SIDL). It then shows how such a service
interface description could also be used for automatic creation of server-specific local human
user interfaces. In combination, a generic network interface description language (NIDL)
specification, as proposed here, supports client applications in open systems by providing a
common mechanism to access and utilize any service available anywhere in the network.

Keyword Codes: C.2.4, H.4, H.5.0
Keywords: Distributed Systems, Communications Applications, Information Interfaces and
Presentation, General

1 . INTRODUCTION

Since the integration of formerly - logically and geographically - separated and heteroge-
neous software systems has become an issue for research and industrial implementation, new
concepts to support this kind of 'interoperability' have gradually emerged: programming lan-
guages have been extended to cover communication requirements between separated modules
[1]; advanced database systems started to support distribution schemata for the allocation of
distributed objects [2]; and specific application oriented communication standards have been de-
veloped for, e.g., accessing remote database services in open network environments [3]. As a
result, the system designer in the context of such a 'distributed application' scenario is now
confronted with a large number of different kinds of interfaces to various services offered
anywhere in the network. The variety of such interfaces can be described between the human

user, on the one hand, and a (potential) multitude of heterogeneous and different remote
applications in the open systems environment, on the other hand. In such a scenario, the
potential cooperation of different users and system component is, in practice however, hindered
by the multitude of different servers and interfaces as generally offered in the heterogeneous
open system network environment.

Consider, as a simple example, an access facility to remote database services in open syst-
ems, which involves the following (different) interfaces (see Figure 1): the user interface
between the human user and a (local) front-end application software, the interface between this
software and appropriate network communication services, its counterpart at the remote site and
the interface between the remote application and its local resources. For each of these interfaces
there are several de-jure and de-facto standards available, but in most cases these standards
have been specified for the requirements of some specialized application contexts (e.g.
electronic mail or document interchange standards [4]) or they concentrate on system-oriented
services, like communication standards, adhering to the ISO reference model for Open System
Interconnection (OSI). Only recently, the interdependence of several of such interfaces between
the human user, on one hand, and remote applications in open systems, on the other hand, has
become an issue for international standardization in the context of the fundamental work on a
general framework for 'Open Distributed Processing' (ODP) of ISO and CCITT [5].

� � � �
� � � � � � � 	 �

 � �
 � �
� � � � � � � � � � �

� � � � � � � � � � � � � � � ! � � � " #
 $ %
 $
� � � � � � � � � � �

& ' (') ' * +

Figure 1: Interfaces between the human user and a remote server

The situation becomes even more complex if we consider future developments of high-
speed communication systems: in future distributed open systems, interconnected by high-
speed networks, a vast number of services will be easily accessible at a high transfer rate and a
high level of distribution transparency [6]. In such environments, remote applications will play
the role of dedicated servers, performing specialized task, rather than monolithic software
systems like today's host applications. Here, remote servers are accessible through specific
server interfaces in a similar way to both local and external communication partners [7].

Especially in a scenario as sketched above, it would create great confusion for human users
if the human interface to such a fine-grained "market of services" was reflected by a similarly
fine-grained structure of different (!) server interfaces. Therefore, access to various services in
open systems could be greatly supported and improved if all accessible services could be de-
scribed in terms of a unified, standardized, and commonly known formal notation. Such a
unifying formalism for network (service) interfaces of any kind is called a 'Network Interface
Definition Language' (NIDL) and serves to provide a corresponding service description for
each server that is directly or indirectly accessible for any (remote) client node [8].

This paper focuses on the joint and unified design and description of both communication
and user interfaces in a heterogeneous open system scenario. The goal aimed at here is a generic
system software component, which dynamically generates the required user interfaces from any
specific 'Service Interface Description' (SID) expressed in terms of the standardized NIDL (see
Figure 2). In such a scenario, the SID could serve both for determining the network interface of
a remote server and for its (e.g. graphical) appearance at the presentation level of a local human
user interface [9].

, - . / - .
0 1 1 2 3 4 5 6 3 7 8

& ' (') ' * +9 : ; : < = > ? ; @ : < A B > : @ C D : E C @ : F G G H = > B @ = C ; I

Figure 2: Integration of interfaces and components in the client/server-model

The paper is organized as follows: section 2 gives a survey about potential problems when
applying current client/server interfacing techniques in the context of an open systems
background. Based on these facts, requirements for a successfull client/server interaction are
elaborated in Section 3. Afterwards, a client/server interaction model is presented and, based on
this model, a prototype implementation, including an introduction to the service interface
description language SIDL (Section 4). Some conclusions are finally presented in Section 5.

2 . INTERFACING PROBLEMS IN OPEN SYSTEMS

As a motivating example, a car reservation service is considered that a car rental company
offeres to its clients based on a distributed application service. Several questions arise within
this context: how are data entry forms to be presented at a remote client's site? How is the
service access to be supported for a client? What does the client's software need to know about
the service considered? And how can the validity of the data transferred be assured? Finally,
how does the client software adjust to a possible release change of the server interface?

As a first step, the following sections give a short classification of these interfacing pro-
blems at client/server-systems in open distributed environments. This classification focusses on
problems arising specifically in an open systems context.

2 . 1 Heterogeneity Problems
There are several levels of heterogeneity in open distributed processing that emerge from the

integration of different multi-vendor hardware and software components. At a distinct level,
heterogeneity is even demanded, as the specialization of software systems requires "non-stan-
dard" implementations. In general, however, heterogeneity hinders the desired cooperative in-
teraction of distinct distributed applications.

At the lowest level of heterogeneity, different hardware implementations and, thus, varying
physical representations of data values at each respective local system have to be integrated by
corresponding mapping mechanisms between heterogeneous system components. In the
context of the ISO OSI reference model for open system communication, this transformation
task is performed by the presentation services at level 6 of the ISO OSI reference model [10].

At a higher level of abstraction, heterogeneity problems address differences in services and
resource management functions: communicating applications first have to agree about a jointly
supported protocol as well as about certain communication quality attributes. Local resources,
like file systems, databases or operation system services, can not be accessed from remote
systems if different and inconsistent interfaces are supplied. At last, applications semantics may
vary themselves, even though their syntax and semantics may seem virtually identical at the in-
terface level.

In general, the most promising approach to tackle heterogeneity problems is to standardize
interfaces or applications as a whole. A standardization procedure, however, is a time consu-
ming process and hinders an immediate "publication" of new services. Therefore, generic
application oriented communication standards may be well suited for defining the basic com-
munication protocols necessary for each class of similar applications (like, e.g., Remote
Database Access, RDA)[11].

In our case of integrating communication and user interface description techniques, the stan-
dardization may also cover the syntax of a service description that is then transmitted as an in-
dividual 'protocol data unit' (i.e. standardized message) over the network. Thus, each indivi-
dual server is able to export such a description of its services provided to any of its potential cli-
ents in a unified way.

2 . 2 Service Access Problems
The next important question to be addressed in such a scenario is, for example, how to ini-

tiate an access to a remote application before actually interact with it?
In the context of a Local Area Network (LAN), e.g., local 'context servers' may be acces-

sible via a dedicated 'name server'. Using such a server, a client may send a service ID to the
name server and then receive all (or some, the 'best possible', etc.) information necessary to
perform a remote service invocation. Here, the name server's task is to check whether a service
is registered under the given ID by, e.g., looking up a local table. In this simple case, only re-
quired and registered service IDs have to be matched, since developers of client and server
applications took specific care for these IDs to conform to each other. In more complex
scenarios the match between client requirements and server potentials could be provided by a
specific distributed system service (a so called 'trader' or 'broker' component) based, for ex-
ample, upon a more extensive formal specification of both requestor and server
functionality [12].

In open service environments at a global scale, an ID-based service selection is possible but
not satisfactory for client service users: IDs have to be centrally reserved for each service
offered, and IDs have to be known in advance by clients for all accessible servers that provide
potentially useful functions for clients in addition to the specific server interfaces. This situation
could be greatly improved if services could be described and identified by potential clients se-
mantically, i.e. not only by a more or less characteristic service name or ID, but in terms of a
certain specification of their semantic functionality and respective properties. If such a service
description is available, the service selection mechanism (which is a part of the 'trader' function
- see below) for the client would not be restricted anymore to using IDs as the only attribute for

specifying and identifying services but could be based on a limited match of the attribute
semantics of both the client request and the respective server function [13]. However, even this
simple task of attribute based matching of client requests to registered services requires
additional support by the new distributed service component which supports matching client
request to the 'right' server functions available anywhere in the network. In advanced
distributed open system scenarios, such a component is called a 'trader' [14].

2 . 3 Conformance Problems
In heterogeneous distributed systems, client calls are usually transmitted to remote server

functions via an abstract communication mechanism: the Remote Procedure Call (RPC)
component [15]. The RPC communication mechanism aims at hiding nearly all distribution and
communication problems to RPC users - even in certain (e.g. message transmission) error
situations. For a local system component, which uses RPC - for example a client calling a re-
mote server - all server functions are locally represented by a so called 'stub' function. This
stub component, which is a part of any distributed RPC based communication function, then
does all necessary transformation from local to communication contexts (resp. vice versa) and
cares for message transmission and reception.

J K L M N O P K Q R S K T U V S

W X Y Z [\] ^ _ ` ^ _

a b

c

d e

f g g h i j k l m f g g h i j k l m

n o p q n o p q

r

s

t

u

v

w x y x z { | { y } ~ � � { y � � ~ � | ~ | y x � � � { y � ~ y z x |

� { � � � | } ~ � � { y � � ~ � | ~ } � � { � | � ~ y z x |

w x y x z { | { y } ~ � � { y � � ~ � | ~ � { y � { y � ~ y z x |

� { � � � | } ~ � � { y � � ~ � | ~ | y x � � � { y � ~ y z x |

� ~ } x � � y ~ } { � � � � � ~ � � { y � { y � � | {

Figure 3: Remote procedure calling phases

In advanced distributed systems based on RPC, the necessary local stub can be
automatically generated, based on a respective local and remote interface specification. In
addition, when using such 'stub generators' to automatically create client and server interface
code, client and server parameter types will implicitly match since they are derived from the
same interface specification.

In open systems environments, however, the situation is somewhat more difficult: deve-
lopers of client and servers applications are, in general, remote and unknown to each other; cli-
ents are not supposed to supply specific compilers for client's interface stubs. Further, they can
not rely on an interface description as imported from a remote server site since data types, as
defined at the server node, may not conform to the server's actual interface data types - or the
exporting component may be faulty or even malicious.

In order to automatically support the development of interfaces between both client and ser-
ver components in open systems, at least two requirements have to be fulfilled: first, the
protocol data unit (i.e. the 'message') that carries the request has to contain type information
about the parameter values it contains and, second, a service description has to be imported by
the client from the server in order to (type) check the conformance of the actual request parame-

ters and types with those of the server as specified in its service description. To avoid using
uncompiled source code stubs, the service description notation should be interpreted directly by
a generic client stub.

2 . 4 Standardization Problems
As a consequence of what was addressed in the preceding paragraphs, an extended, forma-

lized, and unified - i.e. standardized - service interface description technique is a necessary
prerequisite for any effort - human or system supported - to match client requests and server
offerings in an open systems scenario. Such a standard service description mechanism could
then become a basis for a more elaborate trader service component that supports client and
server matches in open system environments, where client and server functions are not only
provided on distinct nodes of the network, but also independently developed and, in many
cases, unrelated and unknown to each other.

The issue in this case is to commit to a reasonable scope of standardization aspects: are only
syntactical aspects to be defined as it is the case with ASN.1 [10] or are service primitives to be
covered as well? At what extent is the interdependence between user interface elements, data
types and service primitives a standardization matter: a standard could prescribe types and their
appearance at the user interface level or it could be more appropriate to design a generic service
with the option for application specific extensions.

In the following sections we concentrate on an executable typed protocol description.

3 . ELEMENTS OF AN INTERFACE DESCRIPTION LANGUAGE FOR OPEN
SYSTEM SERVICES

As stated above, RPC provides an appropriate cooperation paradigm and communication
mechanism for client/ server applications in distributed environments. For open networking
system at a global scale, however, an additional important question is to be raised: how can an
RPC interface description (as known, e.g., from Sun RPC) be conceptually extended to satisfy
at least the following problems:
• First, an abstraction layer has to be created to cover those heterogeneity problems, which

arise from any mismatch of the involved interfaces as shown in Figure 1.
• Second, means to express the functionality of a server to both, human and software clients,

are to be supplied to a common trading service.
• Third, since clients and servers do not provide implicit knowledge about each other's

interfaces, it has to be explicified dynamically to prevent mismatching interaction.
• Finally, a sufficient level of generality is required if the previous aspects are covered by an

integrating standard.
Applied to the car rental example, a service interface description notation should define all

necessary elements that enable the car booking task to human clients: different user interfaces
might be involved, invalid data values and types are to be rejected. The user may first enter a
specification form of the required car and thereafter acknowledge a final order form. Therefore,
several structural and behavioral constraints have to be explicated within the service description.

Consequently, we have identified the following elements of an extended interface descrip-
tion:

3 . 1 Type and Procedure Description
The necessary information about service functionality and interface could, in a RPC scena-

rio, be provided based on a unified and standardized service interface description language
(SIDL) for the remote procedure call interfaces of any remote service available to any client in
the network.

Automatic stub generation is well applicable in local area network environments, where both
client and server code is written and used by a limited group of closely related developers [16].
In open system environments, however, a user is not expected to be able to compile and link
client interface code. Under such conditions, a generic client interface with an interpreting stub
would be more appropriate. But having only a generic communication interface, the client
application code still remains server specific. By replacing this code with a generic user inter-
face, the client application as a whole is able to adapt dynamically (i.e. 'automatically') to any
interface as required by a server. Therefore, the following aspects have to be formalized as well
in order to be interpretable by generic client applications:

3.2 Export Description
A server's location is, in general, not known to a client in the open network. If a user

searches for a service to utilize in such a scenario, a communication connection can not be
established between client and server unless it has acquired a matching service description. In
advanced distributed application environments, this task of selecting an appropriate service and
providing the communication link to it is supported by a trader component or service. The
trader's task is to register service descriptions, which are to be received from servers from
anywhere in the network, and then to facilitate a client's search for a specific service according
to its request. In an attribute list based service description technique as proposed here, the
server provides two alternate service descriptions techniques: the export description and natural
language tags. Correspondingly, a trader offers two alternate service acquisition techniques in
our model:
1. A trading mechanism, based on attribute lists (the export description) [17].
2. An interactive browsing mechanism through registered services by the user based on

natural language tags.
To support the task of service selection, the service interface description as proposed in this

paper is extended by an export description, which characterizes the interface of a server as a
whole on the basis of a server specific (formalized and standardized) attribute list.

3 . 3 User Interface Description
In our service interface description technique, the interface description items (such as type,

procedure, state and export description) are extended by a label and a comment attribute for
each service description. These extensions may be used to supply natural language annotations
of the item they are bound to. They serve as an additional redundant, user-oriented tag to
support an interactive analysis of service characteristics, which are available and potentially
useful for specific client request in the network.

Since a generic user interface is driven by the service interface description, type-specific
editors for data values can help to prevent potential type mismatches. Each type that can be defi-
ned within the service description is automatically mapped into a specific editor structure.
Further constraints, like subrange types for integers, should be possible to define. These const-
raints should be reflected by specific user interface objects, which prevent input of not type

conforming data values. Thus, the generic client application is able to prevent transmission of
faulty parameters to remote servers.

In order to reflect, e.g., a subrange type, several user interface objects are selectable; there-
fore, the service description language is additionally extended by various presentation hints for
the respective data types. These descriptions can then be used to automatically create a
(graphical) user interface representation of the respective remote service interface values on a
local I/O device - independent of the server and its function accessed in the open network envi-
ronment.

3 . 4 State description
In general, servers can be classified as stateless and statefull servers. Services of a stateless

server can be invoked in any order, while in the case of statefull servers only a subset of all
possible invocation sequences is allowed. A specification of this subset of allowed state transi-
tions is part of the protocol description of that respective server. If a formal service description
contains information about those 'legal' server states, remote clients could also acquire that
description and restrict client behaviour to only that which is allowed at the server interface.

Consequently, the last part of our service interface description is a formal description of a
state transition automaton which specifies legal server states and transitions as initiated by ser-
ver functions and service requests. By defining communication states as a part of the service
description interpreted at run time, they are not "hard wired" within client and server instances.
Therefore, the state description serves as an application protocol specification.

3 . 5 Implementation Architecture Overview
In the following, the general system architecture of a prototype system environment is

presented, which implements in a small example the basic components of a distributed client/
server environment with formally and uniquely defined interfaces as presented above. A first
prototype of the respective main system components has been implemented in the context of a
locally distributed heterogeneous open system network environment.

The corresponding system model involves four kinds of components: client, client agent
(CAG), server agent (SAG) and server. Clients and servers consist of application code and an
interface to their respective local agents. The interaction between clients and servers can be divi-
ded into 5 phases: start-up of the components, binding between client and server, service invo-
cation, unbinding, and shut-down of the components. The process of binding implies the selec-
tion of a server as well as the import of the server's service description. As shown in Figure 4,
at the beginning of a binding the service description is stored at the server's site after being con-
verted from an external representation. The next step is the transfer of the service description to
both agents, where it is stored persistently. Only the internal representation of a service descrip-
tion needs to be standardized since it is interchanged between heterogeneous components.

During a service invocation RPC parameters are transferred via both agents in order to per-
form the necessary conformance checks. If there is a mismatch between specified types and the
parameter types transferred, it is discovered by the agent local to the sender, and an error code
is returned.

Instead of involving a specific client application, parameter values are mapped directly to the
user interface level. Therefore, the generic user interface supports functions for the user to
select an appropriate server, to examine the service procedures offered by this server and,
finally, to invoke selected procedures. Thus, the communication-oriented process of binding
between client and server is reflected at the user level by this service selection process.

The actual service invocation requires the user to supply the RPC with parameter values.
Therefore, the generic user interface generates a typed form for parameter entry (Figure 8). The
required type description is retrieved from the local CAG. Return values are presented in the
same way.

� � � � � � | { y � y { | { y
� ~ � � ~ y z x � } { � � { } �

� � � { � | � � � { � | � � { � | � { y � { y � � { � | � { y � { y

� { � | � x � � { � y { � { � | x | � ~ � ~ � � � � � � | { y � x � � � | x � � x y � � � { � � { � y { � { � | x | � ~ �

Figure 4: Transfer of service description from server to other components involved

By involving this generic style of user interface to remote services, a conformance between
the client and server interfaces is given implicitly. The possibility of non-conformance is,
however, left at the semantic level of an application. The effort of client developement is, there-
fore, reduced to only one implemention per hardware and software platform.

The prototype, implemented according to the model described above, supports the integra-
tion of user interface and communication service aspects. Developing a new server application
requires solely to code service procedures upon the server communication interface and to
describe these procecedures by means of a SIDL service description: the formal parts as type,
procedure, state and export description and, optionally, the informal part of the user interface
description as natural language tags.

The prototype implementation was developed on the basis of the SUN RPC library using
XDR (eXternal Data Representation) [16] as presentation service. The technical environment
consists of IBM RS/6000 and Sun SPARC Stations running AIX and SunOS as operating
systems. In an implementation designed for heterogeneous and open system scenarios, the
allocation of the involved client and server components to hardware systems is not restricted to
the example configuration as shown in Figure 5.

� � � � � � � � � � � � �

¡ � ¢ £ � �

� � � { � | ¤ ~ � � � | ~ � y x � { y

� � � { � | ¤ ~ � � � | ~ � { y � { y
� � � � � x y } � � � � � x y } ¥

� ¦ § � � ¨ © © ©
� � � � � x y } ¥

� ¦ § � � ¨ © © ©

� � � � � x y } ¥
� ¦ § � � ¨ © © ©

� � � � � x y } ¥
� ¦ § � � ¨ © © ©

� { y � � } { � } ª � � � � | � ~ � w � x � {
� { y � � } { � � � ~ } x | � ~ � w � x � {

Figure 5: Prototype implementation

4 . A SERVICE INTERFACE DESCRIPTION LANGUAGE

This section presents some technical details of the Service Interface Description Language
(SIDL) as proposed in this paper. As a consequence of the service description elements as pre-
sented above, a SIDL service interface description contains four main components:
• The type description, defining at least one type for RPC parameters to be transferred,
• the procedure description, which describes remote services as a procedural interface,
• an optional state description in case of statefull servers, and
• an export description, which classifies the service exported on basis of attribute lists. The
remaining user interface description is syntactically integrated into these components.

« ¬ ­ « ® ¯ ° ® « ± ­ « ² ³ ² ´ ® ² µ

¶ · ¸ · ¹ º » ¼ ½

¾ ¿ ¿ À » ¼ ½ Á Â Ã ¿ ½ º

� { � { } | � x y � � � � { � � � | �

� Ä w Å � { � { } | � x y � � Å � Æ � � Ç È È È É Ê
� Ä w Å � � � { � � � | � È È È Ê
� Ä w Å ¦ ~ ~ � � x y � È È È Ê

È È È
� Å � Ë � � Å � { � { } | � x y Ç

� Å Ì Í Å � � � { � { } | � x y � Ê
� Å � Í � � � � � { | � y � � Ê

È È È
É Ê

È È È
� � � � Å � Ç

� Î � � Ï � { � { } | � x y Ð Ñ � s Ê
� s Ï � { � { } | � x y Ð Ñ � s Ê

� s Ï ¦ ~ ~ � � x y Ð Ñ � Î � � Ê
� s Ï � ¤ ~ y | Ð Ñ � Î � � Ê

É Ê
Å Ò w Æ � � Ç È È È É Ê

¶ · ¸ · ¹ º » ¼ ½

Figure 6: A service interface and the description in SIDL notation

4 . 1 Data Type Declarations
Any remote procedure call may require structured parameter or return values to be transmit-

ted to and from client and server interfaces. Therefore, an orthogonal and complete type system
is necessary to describe these types uniquely. In distributed systems, pointer or reference types
are not allowed since their values are invalid outside of their local context. However, transfor-
mation functions have to be supplied to transform between tree or list structures as a local repre-
sentation and unique bit sequences as a general transfer representation.

Accordingly, the SIDL type system contains the following types:

Basic types:

INTEGER, DATE, CARDINAL, FLOAT, CHAR, STRING and TEXT

Structured types:

RECORD { ... }, CHOICE { ... } and SEQUENCE {...}

Opaque type:

ANY

The TEXT type refers to a text file on the local workstation, which can be embedded into a
RPC parameter. CHOICE specifies the variant part of a RECORD discriminated by a type tag.
A SEQUENCE type denotes a repetition of identical subtypes. The opaque type ANY allows
dynamic types, which are dynamically received at runtime but not checked for conformance,
since their actual type can not be anticipated at binding time.

According to the SIDL syntax definition, a type declaration can be extended optionally by a
list of attribute/ value pairs. These may concern subrange restrictions of a type or hints for the
user interface representation. The following parameter type

TYPE SelectCarT RECORD {
STRING, LABEL "Booking Date";
INTEGER, LABEL "Mileage", RANGE TINY 50 10000;
INTEGER, LABEL "# Days", RANGE TINY 1 100;
INTEGER, LABEL "Model", COMM "For a broader range

of models consult our
service at main branch",

RANGE RADIO 3 "BMW 323" "VW Golf" "Fiat UNO";
STRING, LABEL "Customer Name";
STRING, LABEL "First Name";
STRING, LABEL "Street";
STRING, LABEL "Zip Code";
STRING, LABEL "City";
CHOICE {

INTEGER LABEL "Visa";
INTEGER LABEL "Master";
INTEGER LABEL "Amex";
INTEGER LABEL "Invoice";
} LABEL "Payment";

};

defines a record type that contains nested structured and basic types. Some integers are
constraint types restricted to a subrange of, e.g., 100 in the case of the "# Days" field. Thus,
range constraints can be considered by a generic user interface in order to reject input of data

values that do not satisfy the type constraints. Extension list attributes are a subject to standardi-
zation in order to be interpreted correctly at heterogeneous sites. For the automatic generation of
user interfaces, however, they are treated as hints, since they may not necessarily be considered
by the generator.

4 . 2 Service Procedure Interface Description
Service procedures may differ in parameter type or in call semantics. To define these

procedures, they are supplied with an attribute list that contains at least the mandatory attributes
REQUEST and RESULT, which refer to SIDL data types. Further attributes controlling the
remote procedure call semantics can be supplied optionally.

The following example shows how natural language extensions are embedded into a
procedure description. The standardized keyword COMM (for 'comment') is followed by an
annotation that contains hints for the human user on the intended procedure semantics. This
information should be accessable for a human user while gathering for a suitable service at a
generic trader function.

PROCEDURE SelectCar {
REQUEST SelectCar;
RESULT ResultType;
TIMEOUT 120, COMM "Check availability takes time";
/* more optional attributes */
}, COMM "Claims reservation,

committed by CommitBooking";

The interactive trading mechanism requires natural language annotations as given by the
COMM extension presented above. A server developer is encouraged to use annotations within
the service description as well as a client's user is encouraged to browse through a trader
directory when searching for appropriate services in the network. Finally, the generic user
interface should provide the possibility to retrieve this additional information about the service
procedures the user is currently working with.

4 . 3 State Description
As mentioned above, stateless servers can performe client requests at the server site in any

order. Stateful servers, however, require a client to issue server calls in an distinct order. In the
car rental example, this would mean that a reservation can only be committed by a user when
preceeded by a car model selection. Such restrictions on how to use a specific server are, in
general communication specifications, part of the protocol or state description of the respective
server's behaviour. Usually, state-transition diagrams, resp. finite state machines, are used to
model the range of valid sequences of potential service calls. Since states, as they appear at the
RPC interface level, are specific for the server application, a individual application protocol
specification has also to be supplied for each service as part of the service interface description
(see Figure 7).

During the client/ server interaction, the server state is traced by the CAG and SAG in order
to provide a state conformance check for further RPCs. State specifications may also contain an
extension list with annotations for each transition, resp. for the state description as a whole.

Ó Ô Õ
Ö Ô × Ø Ù Ö Ô × Ø Ù � Î � � � s

� ~ z z � � � } x | � ~ � � | x | { �

� � � � � } x | � ~ � � | x | { �

Figure 7: Server states and their definition in the state description

4 . 4 Export Interface Description
The export interface specification is an optional part of a service interface description and

provides an attribute list which characterizes the service as a whole. In contrast to, e.g., exten-
sion list keywords, export definition attributes are not standardized within the scope of SIDL;
they are currently restricted to providing an option for additional informal and server specific
service descriptions (which, of course, could lateron be standardized as well). For example, the
following export definition describes a car rental service:

EXPORT {
SERVICE_CLASS CAR_RENTAL;
SERVICE_NAME "RentACar";
SERVICE_FEE_CATEGORY PER_INVOCATION;
SERVICE_FEE_CURRENCY USD;
SERVICE_FEE_CHARGE 0.1;
};

4 . 5 User Interface Description
The user interface specification of a remote service in open systems provides some additio-

nal hints for a client, which may use it for an automatic (graphical or window) presentation of
the typed data values. Such hints have to keep a distinct level of abstraction in order to allow a
wide range of potential window managers to support an implementation of a generic user inter-
face on top. Type-specific editors of such interfaces may vary in their visual appearance, e.g.
the type 'TINY integer' may be graphically represented as a slider or as an entry field. Figure 8
gives an example on how the user interface specification could be used for automatically gene-
rating a query form from the respective SIDL service interface description.

As an example, the upper right window of Figure 8 shows a service description file, where
the type SelCarT is defined and used as parameter type for the SelCar service procedure.
On the left side the generic client application is shown after binding to the car rental service,
which supplies this procedure. The form windows in the left part of Figure 8 represent the
parameter value for the procedure invocation. The actual parameter transfer is effected by
pressing the "Write TDO" button: a Tagged Data Object (TDO) is generated from the current
data value and sent to the server. The transfer syntax of this data object is checked for
conformance by the CAG, resp. SAG component.

(See appendix)

Figure 8: Prototype application

5 . CONCLUDING REMARKS

This contribution aimed at improved system support for the problem of matching specific
application program client requests with arbitrary but appropriate generic remote server interface
functions as provided at dedicated server nodes in modern distributed and heterogeneous
computer network environments. Such open systems environments typically contain a
multitude of heterogeneous and autonomous client and server components which occasionally
cooperate in performing specific distributed application tasks.

In order to support application development for open client/ server environments, the paper
addresses the important problem of appropriately describing the multitude of various and diffe-
rent (user and server) interfaces in a uniform, standardized and machine-readable way. Such a
description represents a basic prerequisite for systematic computer support for distributed client/
server applications. This cooperation is, in practice however, often hindered by the lack of ade-
quate (formal) interface description mechanisms. Therefore, the paper proposes a concept,
describes a language and shortly mentioned a corresponding prototype implementation for a
unifying network/ service interface description technique.

In result, the proposed service interface description language (SIDL) helps to reduce both,
complexity, required to access heterogeneous services in open systems, as well as implementa-
tion effort, required for realizing open distributed applications considerably by providing the
necessary system support for uniquely specifying all involved user client and server communi-
cation interfaces. Finally, we have demonstrated how such interface specifications can also be
used for the automatic creation of a local human user interface to any remote server with a
corresponding formal service description, as proposed in this paper.

Future work in this area concentrates, e.g., on a relaxation of the interaction restrictions
between user oriented and communication oriented components. For example, the human user
interface should be freed from acting as a visual parameter entry stub for RPC invocation while
keeping the concept of generality via loaded service description at binding time. Therefore, a
deeper examination of corresponding User Interface Management System (UIMS) technologies
and their relationship to respective communication oriented services seems advisable, especially
for future large-scale distributed information services in open systems.

6 . REFERENCES

[1] W. Lamersdorf, et. al.: Database Programming for Distributed Office Systems, IEEE
Office Automation Symposium, Los Alamitos, 1987

[2] M. Oeszu, P. Valduriez: Principals of Distributed Database Systems, Prentice Hall, New
Jersey, 1991

[3] ISO / IEC JTC 1 / SC21 / WG 3: Information Processing Systems - Open System
Interconnection (OSI): Remote Database Access (RDA), International Standard 9579,
1993

[4] J. Rosenberg et al.: Multi-media Document Translation - ODA and the EXPRESS
Project, New York, 1991

[5] P. Linington: Introduction to the ODP Basic Reference Model, in: International IFIP
Workshop on ODP, Berlin, 1991

[6] APM Ltd.: ANSA - An Application Programmer's Introduction to the Architecture,
Cambridge, UK, 1991

[7] APM Ltd.: ANSA - An Engineer's Introduction to the Architecture, Cambridge, UK,
1989

[8] M.S. Verrall: Unity Doesn't Imply Unification or Overcoming Heterogeneity Problems in
Distributed Software Engineering Environments, in: The Computer Journal, Vol. 34, No.
6, 1991

[9] M. Merz: Generische Unterstützung verteilter Client/ Server-Kooperation in offenen
Systemen (Generic Support for Distributed Client/ Server Cooperation in Open Systems),
Diploma Thesis, Dept. of Computer Science, University of Hamburg, 1992

[10] P. Gaudette: A Tutorial on ASN.1, Technical Report NCSL/SNA, 1989
[11] S. Pappe: Datenbankzugriff in offenen Rechnernetzen (Database Access in Open

Systems), Springer-Verlag, Berlin, 1991
[12] M. Bearman, K. Raymond: Federating Traders: An ODP Adventure, in: Proceedings

International IFIP Workshop on ODP, Berlin, 1991
[13] A. Wolisz, V. Tschammer: Service Provider Selection in an Open Services Environment,

in: Second IEEE Workshop on Future Trends of Distributed Computing Systems, IEEE
Computer Society Press, Los Alamitos, 1990

[14] J. Nehmer, F. Mattern: Service Modeling in Distributed Operating Systems, in: Second
IEEE Workshop on Future Trends of Distributed Computing Systems, IEEE Computer
Society Press, Los Alamitos, 1990

[15] A. Birrel, B. J. Nelson: Implementing Remote Procedure Calls, in: ACM-TOCS, Vol. 2,
1984

[16] Sun Microsystems: Network Programming Guide, 1990
[17] R. N. Chang, C. V. Ravishankar: A Service Acquisition Mechanism for the Client/

Service Model in Cygnus, in: 11th International Conference on Distributed Computing
Systems, Arlington, Texas, 1991

