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Abstract

The DBPL system and its environment support the modular implementation
of advanced data-intensive applications based on integrated database and program-
ming language technology. It provides state-of-the-art system support at application
compile-, link- and run-time as well as tools for incremental application evolution.

1 System Support for Data-Intensive Applications

Databases have proven to be the keystones for the majority of application systems with a
wider functionality, utilization and availability. Therefore, the development of integrated
language and system support for the definition, execution and maintenance of data-
intensive applications gained substantial interest over the past years [BIM*89, BMSW89,
DT88, IMWT90, AB87]. Essentially, this support concentrates on three major goals:

e improved data integrity;
e enhanced program efficiency;
e increased user productivity.

As expected, substantial progress towards these goals requires contributions from
several key areas of computer science, in particular from

e language and compiler technology;
e optimization strategies in searching, computing and scheduling; and
e formal specification schemes for relevant properties of data and programs.

The database programming language project DBPL approaches the above goals es-
sentially by the

e linguistic quality of the DBPL interfaces for data definition and manipulation;

1This work was supported by the European Commission under ESPRIT contract # 892 (DAIDA).



e distinctiveness of the DBPL system implementation; and
e richness of the DBPL environment.

It turns out to be crucial for data-intensive applications to distribute the supported
tasks appropriately over time. While application design time profits from the availabil-
ity of powerful abstraction mechanisms for data and transaction definition, compile time
support is essential for (partial) correctness and consistency, proper error reporting, in-
terface checking and certain classes of optimizations. Run time support is vital for global
efficiency within and among transactions as well as for long-term data integrity. Finally,
the extremely long lifetime of most data-intensive applications requires permanent sup-
port for incremental data and program modification and partial redesign.

While the DBPL language is discussed elsewhere (see, e.g. [MS89, SM90a, SM90b]
and the chapter on “Modular and Rule-Base Database Programming in DBPL” in this
volume), this paper concentrates in section 2 on the presentation of DBPL’s compile
time support and in section 3 on the DBPL run time system. Section 4 describes how
advanced incremental compilation technology can be exploited for long-term program
and system evolution in a tightly coupled interactive programming environment. Further
details of the system components are described in DBPL and DAIDA technical reports
(e.g. [SEM88, SBK*88, NS87]). The paper closes with an outlook on current research in
next-generation DBPL environments.

As of today, the DBPL system exists in two fully source code compatible implemen-
tations, VAX/VMS DBPL and Sun DBPL. Both are written entierly in Modula-2 and
consist of a compilation and a run time environment. The run time system is highly
portable and runs under VAX/VMS 6.1, SunOS 4.1, IBM AIX 3.1 and IBM OS/2. All
operating system dependend code is factored out into four modules for main memory
management, block-oriented file input and output, exception handling and error message
handling. The DBPL compilers generate native code for VAX, respectively Sparc, Mo-
torola and Intel architectures. Both DBPL systems can be integrated deeply into the
DAIDA environment and into commercially available software development environments
(NSE [Cou89], SCCS, CMS).

Figure 1 depicts the overall DBPL system architecture. The left hand side of Fig. 1
sketches how a DBPL program module is first translated by the DBPL compiler then
linked with other compiled DBPL modules yielding executable object code. This object
code interacts through the interface module DBPLRTS with the various layers of the
DBPL run time system (PSMS, CTMS, CPMS, CRDS, SMS; see Sec. 3). Database
objects are stored in files accessed through operating system calls issued by the layer
SMS.

Fig. 1 also outlines the interaction between two DBPL applications running against
shared databases. This sharing is achieved by importing the same database module(s)
into two different programs. Concurrent access to database objects requires a synchro-
nization that is achieved by explicit message passing at three layers of the DBPL system
(CTMS, CRDS, SMS) via LMS services. A centralized scheduling process guarantees
serializable transaction execution for DBPL applications, possibly running on different
network nodes in a DECnet or TCP/IP local area network.
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2 The Optimizing DBPL Compiler

Since DBPL is an upward compatible extension of Modula-2, a language processor for
DBPL has to address all aspects of state-of-the-art compilation technology, ranging from
lexical, syntactic and semantic analysis over error handling to program translation and
optimization [ASU86, KMP82, RA83].

In this section, the focus will be on extensions to programming language technology
to adequately support specific requirements of large scale, long-lived and data-intensive
applications. Generally speaking, it turns out that traditional programming language
technology provides well-engineered and systematic approaches to local program anal-
ysis and standardizable static translation tasks, whereas some specific database system
tasks rely heavily on “global”, program-wide (or even system-wide) information gather-
ing, possibly during program execution. Therefore, an important task in the design of
the DBPL system was the division of labour between the various DBPL system com-
ponents. Program analysis and code optimization is performed statically by the DBPL
compiler, the linker verifies the overall consistency between separately developed system
components at application link-time, while the run time system DBPLRTS cares for
dynamic aspects of database applications like query optimization, storage management,
serialization of transactions and failure recovery for persistent data.

2.1 Input to the Compiler

The languages Modula-2 and DBPL support the partition of large programs into inde-
pendent modules. Each module consists of the definition of an interface and an imple-
mentation. Both parts are called compilation units as they can be modified and compiled
independently. The DBPL compiler checks the consistency between the imports and ex-
ports of the individual modules. The compiler accepts also interface descriptions for
modules that were implemented in other programming languages (C, FORTRAN, Pas-
cal, Ada, ...). Thus, DBPL programs can also be linked with modules of these other
languages.

The built-in compiler rules that determine the mapping from DBPL modules to
their persistent representations (source code, object code, compiled interface definition,
database files, executable files) can be overriden by means of arguments passed to the
compiler or environment variables managed by the operating system.

2.2 Output Generated by the Compiler

A symbol file results from the compilation of a module interface definition. This file
contains, besides of a compact representation of the interface declaration, additional
information necessary for type checking between various modules, compatibility tests,
and the allocation of variables, procedures, and constants.

The result of the compilation of an implementation module is a machine program
containing references to data objects and code segments of other modules. If a program
includes database operations, the DBPL compiler creates additional, external references
to operations of the run time support (see Sec. 3.1). The VAX DBPL compiler directly
creates relocatable object code while the Sun DBPL compiler generates a portable in-
termediate representation of abstract machine instructions. This proprietary Sun IR



code is shared by all Sun compiler front ends (FORTRAN, C, C++, Pascal) and pro-
vides a machine-independent common basis for highly optimizing compiler back ends for
Motorola, Intel and Sparc target architectures [Muc90].

The VAX and the Sun compiler both extract detailed information about linguistic
objects (variables, types, procedures, statements) occuring in a DBPL program. This
information is made accessible (in various formats) to other tools in the DBPL environ-
ment, for example to support automatic inter-module dependency checking, high-level
interactive debugging, effective source code browsing or sophisticated program profiling.

While a database module is being translated, the compiler creates, if necessary, an
empty database and an internal description of the database scheme in the data dictionary
via calls to the DBPL database system (see Sec. 3.1).

2.3 Overall Compiler Structure

The DBPL compiler front end (see Fig. 1) translates a module in four passes. Each pass
is being executed by completely independent parts of the compiler. The communication
between the passes takes place via main memory data structures containing a compressed
representation of all objects (constants, types, variables, and procedure signatures) de-
clared in the program and its system environment, and via sequential interpass files.
Thereby, the output of pass ¢ is the input for pass ¢ + 1. The output of pass 4 is ei-
ther an object program in the VAX-11 link format, extended by information for the run
time debugger or a file in the Sun IR format. The individual passes have the following
functions:

Pass 1: Lexical and syntactical analysis. The source text is partitioned into individ-
ual symbols, stored as tokens in the interpass file. Identifiers are collected in a
symbol table and substituted by unique tokens as well. The output of pass 11is a
syntactically correct DBPL program, augmented by declarations of the imported
modules.

Pass 2: Analysis of all declarations within the imported definition modules and within
the module that actually has to be compiled. For variables and constants, memory
is allocated in the address space of the compiled program. Simultaneously, the
compiler creates pointer structures as a one to one image of all declarations within
the program, such that type and address information are available in the following
passes. Statements are left unchanged and simply passed on to pass 3.

Pass 3: For definition modules, the compilation ends with the output of a symbol file.
Otherwise, the actual statements (procedure bodies) are analyzed. This includes
the check of type compatibilities within expressions, statements, and procedure
parameters.

Pass 4: The DBPL front end does not perform any significant optimizations. Therefore,
the code generation can be executed by means of a single scan, one statement at a
time. Basically, the input of pass 4 is a copy of the bodies of the different procedures
and modules of a program unit.

Back End: The Sun DBPL compiler utilizes Sun’s compiler-back end that not only sup-
ports code generation for various target architectures but that also applies state-of-
the-art code optimizations like tail call optimization, automatic inlining, aggregate



breaking, loop-invariant code motion, strength reduction, common subexpression
elimination, copy and constant propagation, register allocation, loop unrolling or
unused code elimination.

The DBPL front end has to perform a careful program analysis to support the aggres-
sive optimization technologies employed in the back end. The clean separation between
the DBPL compiler and its run time support (as described in Sec. 3) turned out to
greatly simplify this task, e.g. by shielding the compiler from possible aliasing of cursor
variables, sharing of buffer frames or concurrent updates on shared variables.

The following two subsections give some insight into the novel problems arising in the
analyisis and translation of a database language and approaches to their solution in the
DBPL compiler.

2.4 Program Analysis

Besides of trivial changes to the scanner for the recognition of the new keywords (CON-
STRUCTOR, ON etc.), the parser, which is based on the principle of recursive descent,
had to be extended by procedures to identify the various new productions of DBPL.

Although DBPL has a LL(1)-grammar (i.e., can be analyzed with a one symbol
lookahead without backtracking), symbol sequences within construction predicates are
rearranged in pass 1 in order to simplify the (strictly sequential) code analysis. Since
the exertion of these rearrangements can also be nested (nested relational expressions for
NFZrelations), pass 1 was extended by a stack, its elements being lists of symbols.

The internal data structures of the compiler had to be expanded in order to describe
the following objects:

Variant Records: Code generation for aggregates and the analysis of relational queries
requires more detailed information about the branches of a variant record than
present in Modula-2 compilers.

Relations: A relation type representation consists of the relation element type and a
fully expanded list of atomic key components.

Selectors, Constructors: In opposition to a procedure, the signature of a selector or
a constructor is described by two parameter lists, by a result type and by a set of
access restrictions in case of a selector.

Modules: Global modules can have the additional attribute database.

Variables: The compiler distinguishes internally between variable parameters, value pa-
rameters, ON-parameters, WITH-parameters and “normal variables”. The latter
are further divided into global variables (static allocation), local variables (au-
tomatic allocation), variables at absolute addresses (no allocation), variables in
separate compilation units, persistent variables in database modules and variables
in quantified boolean expressions and selective access expressions.

In addition to obvious type checking extensions for relation, selector and constructor
types, the step from Modula-2 to DBPL introduces the following three qualitatively new
program analysis tasks:



1. Loop variables in for each statements and quantified expressions have a scope that
is local to a statement or a subexpression. The compiler has to resolve bindings for
such (overlapping) scopes.

2. In particular cases, the type of an aggregate or of a constructor can only be de-
termined based on information about the context in which it is to be used. This
requires a limited form of “target typing”, as found, for example, in compilers for
the programming language ADA.

3. The possibility to attach access restrictions (“read”, “insert”, “update”, ...) to se-
lected relation variables requires a more detailed mode checking than in traditional
Modula-2 compilers that essentially distinguish between immutable values and mu-
table variables only. Compared with the cost of traditional dynamic run-time access
control in database management systems (measured in system complexity and ex-
ecution time), the mode checking extensions to the compiler incurred a negligible
overhead.

2.5 Program Translation

Virtually all extensions from Modula-2 to DBPL were undertaken without interference
with the machine dependent parts of the code generation in order to obtain a high
portability of the compiler. Therefore, many operations of DBPL are (conceptually)
implemented by sequences of equivalent statements of Modula-2, containing calls to the
runtime support module DBPLRTS (see 3.1). Accordingly, the VAX DBPL and the Sun
DBPL compiler utilize the same compilation strategies despite significant differences in
details of the compilation process (register allocation, code generation).

Each of the following sections deals only with one particular aspect of the compi-
lation of DBPL programs. However, the reader should be aware of the fact that the
language principle of orthogonality stressed by the DBPL language definition requires
implementation strategies that cover arbitrary combinations of these individual compi-
lation patterns.

2.5.1 Aggregates

For the construction of an aggregate, the compiler reserves storage in the local address
space of the currently compiled procedure. The elements of a record or an array are
stored consecutively in this storage space. Subsequently, the aggregate can be delivered
directly to a procedure or stored in a variable. Nested aggregates are created in place.

2.5.2 Run Time Type Descriptions

Many operations of the DBPL run time system are generic (i.e., their operands can
pertain to different types). For example, the operation DBPLRTS.CreateRelation is
generic in the sense that it can be used to create relations of parts, relations of suppliers
or sets of integers. The actual type is defined by a supplementary type description
generated by the compiler. Such a type description has a tree structure as shown in
figure 3. Thereby, type constructors are identified by inner nodes, their sons represent
the corresponding element types, whereas leaves are formed by the built-in simple types

(CARDINAL, INTEGER etc.).
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Figure 3: Run-time type descriptions

type Date = record Day, Month, Year: CARDINAL end;
Receipts = relation Delivery of record Delivery: Date; Price: REAL; end;
Table = array [1..20] of Receipts;

The generation of such a hierarchical type description is exerted once at runtime in pos-
torder (i.e., starting at the leaves). Each node contains additional information, depending
on its type, e.g. the byte size of a simple type value, offset, name and size of a record
component, index bounds and element sizes of an array, order of succession and position
of the primary key components of a relation.

2.5.3 Persistent Variables

The compiler employs the operations CreateDB and CreateDBVar of the runtime sys-
tem (DBPLRTS) in order to create a new database during compilation. Thereby, the
structure of a database variable is defined by a type description (see previous section).

The compiler inserts code at the beginning of the module initialization to open the
databases that belong to an application program. It also generates code to perform the
user-defined initialization operations for a database that is opened for the first time. The
compatibility between the persistent variables at run time and the database description
utilized at compile time is checked by means of a time stamp.

Every access to a non-relational persistent variable is indirect (i.e., the application
program utilizes a pointer to the value of the persistent variables). In order to enable
a synchronized multi-user access and an efficient buffer management, every access to a
database variable via these pointers is enclosed by the operations GetDBVar and Re-
leaseDBVar generated by the compiler.



2.5.4 Temporary Variables

Values of relation, selector and constructor types are implemented as instances of abstact
data types (ADTs). Thus, for objects of these types, the compiler merely allocates pointer
variables. The creation, deletion and modification of these objects is accomplished by
means of runtime system calls. For example, local relations are created at the beginning
and deleted at the end of a procedure, so that relations are allowed within recursive
procedures as well. The parameter passing of relations, selectors, and constructors may
require the generation of temporary copies of these objects.

2.5.5 Transactions

Transactions are translated by the compiler like procedures, extended by an additional
prologue and epilogue. By means of the prologue, the runtime system is provided with
the operation BeginTransaction and possibly with supplementary information concerning
persistent variables (e.g., database relations) that may be accessed by the transaction in
read or write operations. This information gives rise to important optimizations in the
DBPL system, e.g. deadlock prevention by preclaiming or special treatment of read-only
transactions.

An EndTransaction operation is generated in the epilogue of a transaction to initiate a
transaction commit. The implementation of DBPL transactions requires a limited form of
exception handling. During the execution of a transaction body, application-generated
exceptions (division by zero, user abort) lead to a controlled abort of the transaction
(UNDO). Exceptions generated by the DBPL runtime system provide a mechanism to
restart a transaction at arbitrary points in time (e.g. if a deadlock is detected). The
compiler generates appropriate information needed by the VMS / Unix operating system
to perform the necessary procedure stack unwinding operations for such exceptions.

2.5.6 Identification of Relations

The existence of NF2relations and selected relation variables requires a uniform and
efficient identification mechanism for relation variables at the interface to the runtime
system. The chosen mechanism (ADT Relation in the layer DBPLRTS, see Sec. 3.1)
satisfies the following demands:

e The actual operations on relations are separated from the selection of subvariables
in hierarchical objects.

o Nested NFZ?relations are treated exactly like normalized relations.

e Selected relation variables defined by selector applications can occur as operands
in relational operations.

2.5.7 Relation-Valued Operations

DBPL operations on individual relation elements (GetTuple, UpdateTuple etc.) and
navigational operations (Lowest, Next etc.) are mapped directly to operations of the
runtime system. Relation-valued operations (quantified predicates, calculus expressions,
assignments of entire relations to relation variables, applications of selectors), however,
are not realized by means of (nested) loops in the object code. Instead, the runtime



system receives a compact internal representation of the operation(s) in form of a predi-
cate tree containing attributes. The execution of an arbitrarily complex relation-valued
operation is accomplished in three steps:

1. Evaluation of simple (non-relational) parts of the expression and address compu-
tations, utilizing inline code.

2. Generation of a predicate tree by means of a sequence of operations of the runtime
system, thereby binding operands to program variables.

3. Evaluation of the operations on the dynamically bound operands as defined by the
predicate tree.

The predicate tree generated in step 2 (see Fig. 4, p. 15) contains, if necessary,
additional references to type structures as in Fig. 3. The generation of a predicate is
performed node by node in a preorder traversal.

2.5.8 Selectors and Constructors

Selectors and constructors are represented at runtime exclusively by means of predicate
trees. Therefore, predicate trees are allowed to contain parameters as well as (possibly
cyclic) references to other predicate trees, together with a list of actual parameters.
The runtime system provides symbolic operations for the manipulation of predicate trees
(copy, delete, expand, .. .; see Sec. 3.2). With the help of these elementary operations, the
compiler can implement selector and constructor declarations as well as variables, partial
parameter substitution, selector applications and the usage of selectors and constructors
in relational constructors and iterators.

2.5.9 Iterators

In DBPL, iterations over relations that are selected by predicates may modify the value
of the range relation by assignments to the control variable. Already at the beginning
of the iteration, the runtime system receives not only the identification of the range
relation variable and the description of the predicate that has to hold for every element
of the iteration, but also information about the kind of access that is performed on
the iteration loop variable (read and/or write access). Again, this static compile-time
information turns out to be extremely valuable for bulk iteration optimizations in the
runtime system.

3 The Multi-User DBPL Database System

The layered architecture of the DBPL run time system (Fig. 1) is roughly equivalent
to the architecture of other relational or object-oriented database systems [SM91, CT86,
PSS*87, St090]. It is excelled by its support for non-relational persistent objects, tempo-
rary relations, recursive queries, complex objects and client-server architectures. Fig. 2
gives an idea of the relative complexity of the various DBPL system implementation
tasks measured in lines of Modula-2 source code.



3.1 DBPLRTS — The DBPL Runtime System Interface

The module DBPLRTS represents the only interface to the runtime system. It is accessed
by compiled DBPL object programs and by interactive tools (e.g. the DBPL database
browser) that require database system functionality. The foremost function of this mod-
ule is the isolation of applications from implementation details of the database system.

DBPLRTS exports the following abstract data types: values of type Type are runtime
representations of DBPL type structures (see Fig. 77), Databases identify open databases
during program execution, Expressions identify DBPL query expressions which are eval-
uated and optimized by an interpreter at run time, Relations identify relation variables,
and Transactions identify active transactions.

The data type Relation may illustrate the power and orthogonality that can be
achieved by the consequent use of abstract data types in the DBPL system. A Re-
lation value at the DBPLRTS interface may denote a normalized or a non-normalized
relation, a base relation variable or a relational attribute, a persistent database relation
or a temporary intermediate result. Furthermore, a Relation may be equipped with a
selection predicate that defines integrity constraints that are to be preserved by relational
updates on the relation variable. By virtue of this uniform identification mechanism, a
given DBPLRTS operation (e.g. AssignRelation) which accepts parameters of type Re-
lation can be used in a large number of programming situations and can still provide
tailored implementations for special parameter combinations (e.g. assignments between
temporary relations).

In addition to these types, the interface DBPLRTS exports the semi-abstract data
types Bytesize and Address which are needed for the identification of program variables,
database variables, relation element buffers and attributes within relation elements.

DBPLRTS provides all relevant functions required for each of the exported ADTs
listed above:

e Definition of DBPL type structures (see figure 3);

e Definition of new databases and database variables (CreateDB, CreateDBVar),
enumeration of the variables, indices and types of a database module;

e Opening and closing of databases as well as binding of scalar database variables to
program addresses (OpenDB, CloseDB, OpenDBVar);

e Transaction management (BeginTransaction, EndTransaction, Commit, UseEx-
pression, TransactionBody, HandleException);

e Synchronization of the access to non-relational database variables (GetDBVar, Re-
leaseDBVar);

e Operations concerning relations and predicates (i.e., all operations provided by the

layer PSMS, see Sec. 3.2);
e Iteration loops (Beginlteration, Step, Stoplteration);

e Synchronized access to relation elements via their primary key value (GetTuple,
ReleaseTuple);



e Creation, deletion and update of hierarchically structured objects (CreateObject,
DropObject, AssignObject).

Most of the functions mentioned above are implemented in the lower layers PSMS),
CTMS and CRDS. Only the following functionality is realized within the layer DBPLRTS
itself:

e Exceptions (e.g., division by zero) occuring within an application are handled to
enable the correct termination of transactions.

e Database variables that are not of type relation and that do not contain relation-
valued components are mapped to long records (see section 3.6) in a specific
database relation. Entries to the data dictionary (layer CRDS) are maintained
for the handling of these database variables.

e Iterations over relations restricted by a predicate are implemented within this layer.
At the commencement of an iteration, all relation elements satisfying the selective
access expression are stored in a temporary relation which is then taken as the
basis for the iteration itself. This expensive copy process is avoided if the compiler
is able to guarantee that the body of the iteration statement is free of updates to
the range relation.

e Nested GetDBVar and GetTuple operations issued in different static contexts by
the compiler for the same database object have to be identified dynamically in
order to share the same application tuple buffer and to preserve the semantics of
traditional variable updates.

e The operations CreateObject, DropObject and AssignObject are intended to sim-
plify the code generation. They help to manipulate composed variables containing
relations, selectors and constructors as substructures (e.g. variables of type Table,
defined on page 8).

3.2 PSMS — Evaluation of Parameterized and Recursive Queries

Since the language DBPL strongly encourages the use of named, parameterized query
expressions (selectors and constructors), an important requirement for the DBPL sys-
tem implementation was to support query optimization also for expressions that involve
multiple, independently developed and dynamically bound query expressions. Therefore,
the exported PSMS operations resemble those found at a standard set-oriented database
interface (evaluation of a set-valued or a boolean-valued expression, bulk insertion, dele-
tion, update and assignment). However, since these expressions may contain references
to other expresssions and actual parameters to be substituted for the formal parameters
of the referenced expression, the expressive power of PSMS operations is well beyond
relationally complete queries [ERMS91].

On the other hand, selectors and constructors as realized by PSMS also support more
traditional database system tasks like the

e definition of views and the resolution of queries on views to queries on the under-
lying base relations;



o definition and check of predicative integrity constraints and access restrictions;
e evaluation of recursive fixed-point queries (as found in deductive databases).

The PSMS interface is centered around the ADT Expression and provides functions
to create elementary expressions from constants and (program or logical) variables, to
combine expressions to new expressions (comparison, conjunction, disjunction, quantifi-
cation) and to introduce references as well as parameters into an expression. PSMS
operations are provided for symbolic manipulations of expressions (CopyExpression,
DropExpression, StoreExpression, GetExpression, Substitute WithInPredicate, Prepare-
ForEvaluation) prior to their evaluation yielding a set-valued (Evaluate) or boolean-
valued (BooleanValue) result.

Values of the ADT Expression are implemented as attributed abstract syntax trees
that contain pointers to other attributed abstract syntax trees, to global program vari-
ables and to type descriptions. PSMS Expressions are evaluated by a mapping to Pred-
icates of the module CPMS which are in turn evaluated by CPMS routines (Evaluate,
BooleanValue, Assign, Insert, Delete, Update). For non-recursive queries, this mapping
can be understood as a simple expansion process that replaces a reference to another ex-
pression by a copy of that expression in which formal parameters are subsituted by their
corresponding actual parameters. For recursive references between query expressions like
in the definition of transitive relationships (e.g., ancestors, transitive subparts, strongly
connected components), such a naive expansion process would not terminate. As de-
scribed in detail in [ERMS91], PSMS constructs for a given query @ a graph G that
represents the used by relationship between named query expressions (more precisely:
between parameterized instances of named query expressions) in Q.

Cycles in G correspond to recursive query expressions in  that have fized-point
semantics. Furthermore, each edge in G can be either be marked as “positive” or “neg-
ative”. Negative edges result from negated or universally quantified subexpressions. It
can be shown that a stratified [Naq89] recursive query in DBPL corrsponds to a graph
G that does not have cycles involving negative edges. If the analyis of a graph indicates
a non-stratified query, the transaction that issued the query is terminated with an error
message. Otherwise, the graph is partitioned into its strongly connected components G
that are then evaluated bottom up component by component, replacing evaluated subex-
pressions (subgraphs) by their relational result. The evaluation of each (cyclic) strongly
connected component requires an iterative fixed-point computation.

The DBPL system provides two alternative strategies for this fixed-point computa-
tion: The naive strategy computes the fixed-point of a set of recursive set expressions
starting with the empty set and by repeated application of the set expressions to the
result derived in the previous iteration. The preferred PSMS strategy is to apply a delta
transformation [GKB87] to the set expressions prior to their repeated evaluation. Al-
though this symbolic transformation increases the complexity of the set expressions, it
typically reduces the evaluation time by an order of magnitude. Essentially, this “wave-
front” optimization simply avoids the redundant recalculation of a large number of result
tuples in consecutive iterations by exploiting the monotonicity of stratified queries. The
naive evaluation strategy is only employed in “pathological” cases where the delta trans-
formation would result in an exponential blow-up of the number of relations involved in
multi-way joins.

As mentioned above, PSMS makes heavy use of query optimization and query evalau-



tion functions exported by the layer CPMS. Since PSMS typically re-evaluates a given
non-recursive query expression several times in short succession, it turned out to be ad-
vantageous to have separate functions for the symbolic optimization of a query expression
against a given database (CPMS. Transform) and its evaluation (CPMS.Evaluate).

3.3 CTMS and LMS — Multi-Level Transaction Management

In a multi-user environment, operations on persistent objects have to be synchronized
against each other. In DBPL the unit of concurrency control and recovery is the trans-
action.

The DBPL system utilizes a three-level synchronization scheme (indicated by the ar-
rows to module LMS in Fig. 1). Serializability and recovery of (flat) user-defined DBPL
transactions is achieved by appropriate CTMS locking and logging strategies at the ab-
straction level of complex objects and set-oriented expressions over these objects. The
design decision to put CTMS below PSMS considerably simplifies the structure of expres-
sions to be analyzed by the scheduler (i.e. no recursion, no references to other expression)
while maintaining a sufficient high level of abstraction (essentially relational calculus ex-
pressions) to support advanced concurrency control mechanisms (like predicative locking
or validation).

CTMS synchronization and recovery works under the assumption that individual
CRDS operations (like InsertTuple, GetTuple) are executed atomically and that con-
flicts arising from the concurrent use of access paths or from specific page allocation
strategies for complex objects are also handled internally by the layer CRDS. CRDS
operations are therefore nested transactions and require appropriate locking and log-
ging mechanisms [BSW88, Wei88]. In fact, this division of labour between higher and
lower-level transactions can be also found between the layers CRDS and SMS since SMS
operations are again executed atomically and recoverable.

The foremost advantage of such a nested transaction scheme is its strong support
for flexible, modular database system architectures since higher-level transactions can
abstract from the implementation details of lower-level transactions and transactions on
each layer can exploit local knowledge about possible concurrently executing transactions
on their abstraction level. For example, the layer CRDS is capable of avoiding deadlocks
by acquiring locks on CRDS objects in a commonly agreed order.

Since locks of lower-level (CRDS, SMS) transactions are already released at the end
of a subtransactions, another advantage of nested transactions (often quoted in the lit-
erature [BSW88]) is a gain in parallelism for massive multi-user applications. In DBPL,
however, the increased parallelism does not yield a corresponding increase in total trans-
action throughput since nested transactions introduce some bookkeeping overhead (e.g.
there are three logs and lock requests on three distinct layers for a given user-level oper-
ation).

The layer LMS provides the generic services required for the implementation of trans-
actions (handling of a write-ahead-log, distribution of lock requests from application pro-
grams to the centralized scheduler, generation of lock identifiers). Each of the layers
CTMS, CRDS and SMS specializes these services for its own purposes: CTMS maintains
a wait-for graph to detect deadlock situations and utilizes a multi-granularity locking
scheme [GLP75], while the index management in the layer CRDS employs a tailored
graph locking protocol for B-link trees [LY81] that supports concurrent updates. Page



1: root
select
2: project 6: quant 8: monadic
X =
3: project 5: variable 7. variable 9: variable 10: const
X...Month A[20] X...Year 1988
4: variable
x...Day

Figure 4: Predicate tree for a DBPL query expression

and record operations are synchronized using a standard strict two-phase locking scheme.
The current DBPL system does not provide crash recovery since all log records are
not forced to stable storage but are simply kept in main memory.

3.4 CPMS — Transformation and Evaluation of Complex Object
Queries

Essentially, CPMS is composed of two components: Evaluation System and Transforma-
tion System. Both components deal with problems created by allowing predicates over
type-complete data objects. The major interdependences between the two components
are based on the fact that the predicate transformation module is aware of the needs
of the evaluation module and transforms predicates into a structure that is considered
advantageous for its evaluation.

The layer CPMS exports (1) data structures for the internal representation of predi-
cates, (2) equivalence transformations on predicates to achieve a standardized predicate
structure or an improved query evaluation efficiency, and (3) evaluation routines for quan-
tified boolean predicates [some/all r in rel (predicate)], set-valued expressions [each r
in rel: predicate], and the test of the validity of a predicate for a given relation element
tup [some/all r in rel (predicate(r, tup)].

A predicates is represented by a predicate tree. Nodes are used to define the elements
of a predicate, whereas edges describe its syntactical structure. Fig. 4 sketches the
predicate tree for the following single-variable query:

{x.Delivery.Day, x.Delivery.Month} of each x in A[20]: x.Delivery.Year=1988

Eight different node types suffice to represent arbitrary complex DBPL queries: con-
stant nodes appear in terms and projection lists; index nodes represent array accesses;
variable nodes can be either bound to quantifiers (some, all, each) or to a global program
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Figure 5: Evaluation procedures for DBPL queries and their mutual dependencies

variable (variables are identified internally by numbers that are unique within a given
expression); projection nodes are used in the target list of a query or in the definition of a
key access; term nodes are further distinguished into monadic, dyadic and boolean terms;
connection nodes represent disjunctions or conjunctions; quantification nodes introduces
scopes for bound relational variables; root nodes correspond to relational expressions. A
root node contains the hierarchical type description of the relational result type. A root
node can represent an empty relation, a relation variable, a selective access expression,
a selector or constructor, or a single relation element.

PSMS provides several algorithms for the transformation of predicate trees into se-
mantically equivalent trees. Some of them (elimination of negations, elimination of empty
ranges, constant folding, transformation into prenex normal form) aim at a standardiza-
tion, simplification and decomposition of queries in order to simplify the subsequent
query evaluation or query optimization process. Other transformations are used for
query optimization tasks. Some of them employ algebraic equivalences (propagation of
filters and projections over joins and unions), others introduce implementation-oriented
access mechanisms (primary key, secondary key or hierarchical access) into the query
representation.

The PSMS transformation system also utilizes cardinality information about relations
involved in a query expression. Thereby, one can distinguish between data-independent
and data-dependent transformations. Even though the former are executable by the
compiler, the DBPL system carries out all transformations at run time. Although this
leads to an additional expense during runtime, there are also some advantages: the com-
piler can work with a simplified internal structure of predicates; interactive components
can pass user-defined predicates on to the runtime system without preceding transfor-
mations; all transformation routines and data structures for predicate trees are localized
in a single component of the database system.

The main strategies of the current DBPL query optimizer to efficiently deal with com-
plex objects are to minimize the read set of a query, to exploit the primary key access



structures maintained in the layer CRDS not only for flat relations but also for subre-
lations in complex objects, and finally to minimize the repeated re-evaluation of target
expressions involving relational subqueries. Furthermore, CPMS can rely on powerful
complex object operations provided by CRDS to efficiently access and copy complete
substructures of hierarchically structured objects. For flat relations, many of the algo-
rithms developed for the Pascal /R, system and previous DBPL system versions are still
employed [JK83, Koc84, JK84].

Fig. 5 may give an idea of the highly recursive structure of the evaluation procedures
for complex object queries that is implied by the orthogonality of type constructors
and query expressions in DBPL. The evaluation procedures are not only capable of
evaluating set-oriented expressions, but they can be also employed to evaluate boolean-
valued quantified expressions and to check integrity constraints on individual relation
elements (as required by the layer PSMS).

As a first cut, the central evaluation algorithm of the CPMS evaluation system can be
understood as a nested loop algorithm extended to handle relational subqueries and target
expressions. The algorithm employs sophisticated bookkeeping mechanisms (so-called
“virtual” conjunctive and disjunctive normal forms and arrays of bit-sets of modified
loop variables) to re-use partial results computed in earlier iteration steps. Further-
more, sequential scans over (sub)relations can be replaced by value-oriented (primary or
secondary) key accesses provided by CRDS operations (FindKey, FindRange).

3.5 CRDS — Type-Complete Relational Database Management

Using the facilities for fixed-sized short records and variable-sized long records exported
by the storage management system SMS, CRDS offers an external, abstract view on
complex objects of the DBPL type-complete data model. CRDS implements the ADTs
Type, Relation, Key and Database used by the upper DBPL system layers.

The primary concern for the design of the CRDS interface was to achieve the complete
functionality for all kinds of relations in a uniform way. In particular, this includes the
possibility of selective and associative access to (nested) relations of arbitrary depth. The
interface offers the following services:

e Creation of type structures;
e Creation, opening and closing of root relations;

e Monadic and dyadic relation operators applicable to arbitrary relations and com-
binations thereof (ClearRel, Card, Empty, AssignRel);

e Navigational and direct access via the primary key (FindFirst, FindNext, Find);
e Retrieval of relation elements or parts thereof (GetTuple);
e Modification of relation elements (InsertTuple, UpdateTuple, DeleteTuple);

e Definition of secondary access paths for root relations and their employment in con-
ventional and non-standard search routines (FindFirstKey, FindKey, FindRange);

e Procedures for the handling of variable-sized long attributes (GetLongField, In-
sertInLongField, DeleteFromLongField, UpdateLongField);



(Map-Id) | Rel-Id | Parent-Id | Brother | Brother | Key- | Data-
left right Part | TID

Figure 6: Structure of a map

e BOT, EOT and UNDQO operations.

The module CRDSDatabases offers additional features for manipulating databases
(create, open, drop) and data dictionaries. Data dictionaries are implemented as relations
of tuples with variable-sized long attributes and are also made available to higher levels
of the DBPL system for their private purposes.

Relational data structures are implemented in the layer CRDS as follows: tuples of
first normal form (“flat”) relations are mapped directly onto fixed-sized SMS records.
If the tuple size exceeds the maximum page size of the underlying operating system (as
defined at DBPL installation time, e.g. 4K), CRDS automatically maps these tuples onto
page-spanning long records. In both cases, tuples are identified via stable tuple identifiers
(TIDs) and a B-link tree is utilized to enforce the primary key constraint and to speed
up direct and sequential access to relation elements. The B-link tree is an extension of
the B*-tree, efficiently solving the problems given by concurrent operations on this kind
of data structure [LY81]. The DBA can define dynamically additional secondary indices
for relation variables that are also maintained by CRDS operations.

CRDS utilizes a key-oriented chained map concept for a compact representation of
the structure of NFZ?relations. This storare concept is a substantial extension of the
map structures presented in [LKMT84] to provide fast indexed, sequential and key-based
access to (nested) relations of arbitrary depth. It is based on a separation between user
information and structural information:

e Complex relation elements are decomposed by a concatenation of all non-relational,
fixed-sized attributes at the different levels, storing them together as a flat SMS
(long or short) record. The dissection starts at the top level, and nested relations
are then decomposed recursively.

e A data structure called map is associated with each root element, containing in-
formation about the relationship and the key-based order of the (nested) relation
elements. They can be accessed by their storage identifier (77D), also contained
within the map.

A map is implemented as a SMS long record and is interpreted a vector of numbered
entries (Map-Id, see Fig. 6). Each entry corresponds to exactly one of the (nested)
relation elements obtained during the decomposition. The different columns of the map
have the following meaning:

Rel-Id: Nested relations are uniquely numbered within each NFZrelation type;
Parent-Id: Reference to the map entry of the parent tuple that contains this element;

Brother left /right: Reference to the entry of the brother tuple with the next lower or
higher key value;
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Map

Key-Part: A fixed-sized key value prefix of the corresponding tuple;
Data-TID: The storage identifier of the atomar fragment of the tuple.

Whereas a pair [Rel-1d, Parent-Id] uniquely identifies a nested relation, thus being
useful to model the hierarchical relationship, the two brother columns — constituting
a doubly connected list structure — function as a (sequential) access path to each of
the nested relation elements. Their performance is enhanced by the key prefix which
in most cases prevents data from having to be accessed. As, apart from the pair [Map-
TID, MaplIndex], elements of nested relations are addressed indirectly, this SuperTID
represents a stable database address.

As illustrated in Fig. 7, a NF2relation is implemented by a B-link tree that functions
as an index to maps which in turn provide access to all the data records that make up
an element of the root relation.

3.6 SMS — Persistent Storage Management

The layer SMS performs rather traditional DBMS system tasks like record allocation,
record identification, buffer management and free space management. In addition to
fixed-sized data records, SMS also exports page spanning long records. Long records are
of dynamical and almost unrestricted size and allow partial retrieval and modification.
A long record is organized by means of a directory storing the length and the address
(TID) of all short records belonging to it. The directory itself is also implemented as a
short record. This implies that the length of an individual long record is bounded by
ﬁ%. Typical page sizes between a half and 4K lead to a maximum length of
43K — 2.8MByte.

An important taks of SMS in the DBPL system is to provide persistence abstraction:
SMS clients need not to be aware whether record operations are executed locally in main
memory data structures or on a remote machine on persistent data structures. The only
difference lies in the fact that only record operations on shared data structures have to
be executed atomically and recoverable.



Since DBPL supports client-server architectures and client machines have their own
page buffers, there is a need for a cache coherence protocol between concurrently execut-
ing clients. An important optimization to minimize network traffic and to significantly
speed up remote database accesses is achieved by “piggy packing” the time stamps re-
quired by the cache coherence protocol to higher-level lock messages sent to the central
LMS lock server (see Fig. 1).

In contrast to other database management systems, the DBPL system makes heavy
use of the possibility to distribute disjoint database objects to different operating system
files. This complicates the internal identification of data records and the free space man-
agement, but simplifies database evolution, backup and access control using operating
system programs.

4 DBPL-USE — A Language-Sensitive Editor

Data-intensive applications are developped in contexts, in which certain of the required
computational objects may preexists. This applies to newly developped application pro-
grams which have to comply with already existing databases, their type definitions,
predefined transactions, views etc. as well as to local modification of existing application
programs which have to maintain the interfaces to the constant part of their environment.

In this situation, substantial support can be gained by editing facilities with a cer-
tain amount of syntactic and semantic knowledge about the context in which local pro-
gram extension and modification takes place. This support requires, of course, an editor
which is sensitive to the language in which databases are defined and applications are
programmed. In an integrated linguistic framework as given by DBPL, such a language-
sensitive tool (DBPL-USE!) can be pushed very far by exploiting advanced software
generating and synthesizing tools [RT88, RT89] based on attribute grammers [Rep83].

Productivity in defining and extending computational objects benefits from the fol-
lowing properties of advanced editing environments:

e The amount of text that has to be entered by the user can be extremely reduced
without producing cryptic code. The user merely selects one of the possible con-
structs at the current position instead of entering the text itself. The selection is
carried out according to the definition of the language.

e The editor is working in a tree-oriented fashion. A top down approach in the
development of design objects is therefore enforced.

e Layout rules and documentation standards may be set throughout a user commu-
nity; the editor is completely responsible for the layout of the design objects (this
is accomplished by unparsing rules).

e Most of the syntactic and many of the semantic details need not be remembered
by the user. On selection of a menue item, a whole text pattern is inserted auto-
matically.

e References to objects defined in related documents can be checked with respect to
their appropriate use (it does not matter whether this feature is provided by the
language definition or not).

IDBPL Usage Sensitive Environment, see also Fig. 1.



e Certain semantic errors and all syntax errors are discovered and reported at the
earliest possible stage (on input).

o A wide range of semantic preserving transformations on the source text level can
be done automatically.

The acceptance of the environment is improved by state-of-the-art interactive inter-
face technology?.

4.1 Compiler Generation Technology

Mainly due to two reasons, language editors qualify perfectly for the application of mod-
ern software generation technology. First, the knowledge about the target objects of a
language-sensitive editor — programs in a specific language with its syntactic restric-
tions, type and scope rules etc. — can easily be formalized, e.g., by semantic actions or
Attribute Grammars. Second, most of the language independent functionality of editors
is “standard” and can be provided by a set of predefined library functions accessed by a
Synthesizer Generator.

The two rival approaches to integrate semantic analysis into a language-sensitive tool
can be characterized as follows:

Semantic actions: Every change of a design object implies the call of imperative rou-
tines that inspect and update the altered context. Every such routine must have
a corresponding “inverse” one. The main problem concerning this approach is to
determine the range of changes after the modification of a program. Advantageous
is the use of global data structures (symbol tables), that can be read and updated
being at an arbitrary node of the syntax tree. Therefore, the semantic action ap-
proach is very efficient concerning space. For compiler generating systems or, more
generally, for all systems that work on complete source objects and do not need
incremental updates, this approach is rather efficient.

Attribute Grammars: They describe properties of a language by means of semantic
equations. Design objects are represented as attributed syntax trees. As opposed
to the semantic action approach, the changes needed in case of a program modi-
fication are given imlipicitly in the formalism. Therefore, the design of attribute
grammars does not have to consider the internal representation of a design object.
Obtaining a new, consistently attributed tree after a modification is not a matter
of design, but can be done automatically by means of an incremental attribution
algorithm [Knu68, Knu71, Rep83]. A major drawback of attribute grammars is
their considerable space consumption. This is due to the fact that every node on
the path between the node of information creation and the node of information use
must store all the propagated information?.

The Synthesizer Generator (henceforth called sgen), developed by Thomas Reps and
Tim Teitelbaum at Cornell University, accepts an attributed grammar as its input and

2There exist (functionally equivalent) DBPL-USE editor versions for Sun View, Open Look and plain
X-Windows environments.

3This problem seems to be overcome by means of remote attribute updating. The synthesizer generator
permits a restricted form of such remote access.



constructs a full screen editor from this grammar. The editor accepts exactly the words
(structured text objects) that can be derived by the given grammar and executes the
semantic checks and actions specified there. The grammar must be written in a language
that has been developed specifically for the definition of attribute grammars, namely the
Synthesizer Specification Language. In order to process the specification and to construct
the editor, the following actions are taken:

1. The grammar is parsed whereby completeness (exactly one semantic equation must
exist for every nonterminal in the affected productions) and termination (every
sequence of derivations must have a terminating production) are checked.

2. The generator tests the grammar for “orderedness”. This can be done in polynomial
time.

3. Lexical definitions (regular expressions) are passed to Lex [LS75] which constructs
a finite automaton for the lexical analysis according to the specified regular expres-
sions.

4. Parsing rules are translated into a form that is suitable as an input for the compiler
generator Yacc [Joh75]. Yacc is then called to construct a pushdown automaton
(which is implemented as a procedure in C source code) according to these rules.

5. Evaluation strategies are computed for every possible situation and translated into
C procedures.

6. Transformations and wunparsing declarations are translated into appropriate se-
quences of function calls.

7. The created C program is compiled and the library functions supplied by the editor
are linked.

The Synthesizer Generator Specification Language is a strongly typed, side-effect free
language based on the concept of a term algebra defining sets of operator-operand trees
(i.e. abstract syntax trees). The trees that can be derived from a given nonterminal are
considered as terms. The operators of these terms denote nodes of a tree whereas the
operands denote subtrees, hence terms again. Nullary operators are the atomic objects
of these trees (leaves).

Since operators are associated uniquely with a production of the grammar, the defi-
nition of a set of trees may be considered as a type definition for the nonterminal which
generates these trees. Attribute definitions are carried out in the same way and there-
fore attribute values are abstract syntax trees themselves. Simple predefined types?* are
(possibly infinite) sets of primitive trees (they only consist of the root of a tree).

For a more detailed discussion of the particular DBPL-USE specification and gener-
ation process see [Nie91].

4.2 The Language-Sensitive Editor DBPL-USE

In a multi-lingual and semi-formal environment like DAIDA there will always be a need
for the production of language texts under user control. On the CML level, this is the

4The predefined simple types are integer, real, bool, char, string, and references.



only way to get information into the system, but also on lower levels pieces of code will
have to be produced manually. On the DBPL level, for example, there may be specific
sets of formally justified definition modules for which — at a given system development
stage — the implementation modules may be hand-coded or re-coded, e.g., for prototyping
or for reasons of performance. DBPL-USE supports those needs for “programming in
the small” by enforcing the interfaces of the definition modules plus all the syntactic and
semantic rules of the DBPL language. Furthermore, it enforces the standards that have
been set for program documentation and layout.

A text that has been edited by DBPL-USE is known to be more than just a sequence
of characters; instead, the global knowledge base can be made aware of the fact that
the text is a DBPL program which meets guaranteed semantic and syntactic criteria.
The extent to which the knowledge represented by the tool may become explicit and
common knowledge via the global knowledge base depends, of course, on the knowledge
representation framework used in both components.

The central objectives of the implementation of DBPL-USE are semantic support
for the strong typing of DBPL and syntactic support for expanding and restructuring of
programs. Thereby, the user should have maximal freedom in choosing his style of editing.
This is achieved by enabling menue driven insertions of every possible language construct
as well as text input and parsing even for structures of low granularity. Furthermore,
not only program expansions can be accomplished by selecting menue items but also
restructurings of DBPL statements, simplifications of boolean expressions and derivations
of (frames for) implementation modules out of definition modules and vice versa.

The DBPL-USE objectives are accomplished by extracting the context information
from DBPL language constructs and using it to check contextual constraints which can
be roughly characterized through the notions type, scope and mode:

Type Rules Since DBPL is a statically typed language, complete type consistency checks
can be done at compile time. DBPL-USE utilizes the incremental availability of
typing information to do type checks at the earliest possible point in time, i.e., at
edit time. The uniformity of the DBPL type rules across all DBPL objects — from
volatile computational data (e.g. boolean variables) to persistent databases greatly
improves the exploitation of type information by the editor.

Scope Rules The scope of an identifier is the part of the program text in which it
may be referenced. Scope rules determine the various scopes depending on the
positions where the identifiers are declared. As it is the case in DBPL, the possible
regions can also depend on the kind of usage (e.g., use within statements or within
declarations). The application of scope rules associate every applied occurence
of an identifier uniquely with the proper declaration. The scope rules of block-
structured languages like Pascal or C are refined in DBPL as follows: (1) the scope
of exported identifiers can be extended by import declarations to other, non-nested
scopes; (2) identifiers introduced in for each and with statements or in quantified
expressions (some, all, each) have a scope that is local to individual subexpressions
or statements.

Sophisticated scope rules (like the rules encountered in DBPL) support higher levels
of abstraction in the organization of large systems. The concept of locality allows
programmers to concentrate on a small, understandable set of names, abstracting
from declarations which are valid elsewhere in the system.



Object Modes The mode of an object denotes the possible usage of this object in
the context of expressions, statements, declarations etc. In this way, additional
control concerning accidental use is imposed. In programming languages the mode
usually is declared by a keyword preceding the object declaration (e.g., type, var),
but some modes are given implicitly. For instance, the declaration of a procedure
defines a constant object. This object may be used as a statement or in assignments
to procedure variables but not as the target of an assignment. DBPL provides
the following object modes: constant, variable, type, value parameter, variable
parameter, field, tagfield, procedure, transaction, selector, constructor and module.

4.3 A Session with DBPL-USE

The editors functionality is illustrated by a small but typical editor session. If the editor
is started without any input file the following pattern is displayed in a newly created
window:

module <name>

begin
<statement>

end <name>.

The symbols included in “< >” are placeholders refering to nonterminals of the DBPL
grammar. They denote positions where the program is syntactically incomplete.

Transforms
insert_hefor
ASSIGN

REL-PLUS
REL-MINUS

Figure 8: Pop-up-menue and transformation selection

From the transformations enabled at the current source text position — corresponding
to the root of the DBPL grammar — the expansions Def-Module and Imp-Module and
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Figure 9: Change propagation and incompatibility messages

the option Database are enabled. The user selects Imp-Module. After inserting the
module name and selecting the (not yet expanded) node <statement>, the user chooses
to display the actual transformation menue to choose a DBPL statements to be inserted
at this source code position (see Fig. 8). After a few more steps, the user has expanded the
program by some type, variable and transaction declarations. By renaming the attribute
Name in the record type Person, two program inconsistencies are detected by the editor
and immediately tagged by the error message “identifier not declared” within the source
text (see Fig. 9).

The current DBPL-USE implementation includes full recognition of the extended
type-complete syntax of DBPL and provides full type and mode checking as well as
control of internal import and export of DBPL objects.

Under the assumption that for some applications the user community of a specific
database may exceed that of a certain (special-purpose) language, we are considering spe-
cializations of DBPL-USE to editors that are sensitive to specific sets of DBPL modules,
thus providing editors that provide programming against specific DBPL databases.

5 On Next-Generation DBPLs

The DBPL system demonstrates how very expressive and orthogonal database program-
ming languages can be implemented by a judicious combination of today’s programming
language and database technology, achieving a high degree of data integrity, program
efficiency and user productivity.

Recent advances in programming language research towards expressive type systems,
user-defined iteration abstractions and highly effective compilation schemes indicate that



it may be possible for next-generation DBPLs to support specific database programming
requirements (declarative bulk data manipulation, transparent persistence management,
concurrent transactional database updates) without resorting to massive built-in func-
tionality like in the DBPL system.

In our current work in database programming language design and system imple-
mentation we therefore investigate systematic approaches to support typical database
requirements (data independence, global query optimization) for user-defined, general-
ized bulk data structures (lists, trees, dictionaries, collections of two-dimensional objects)
[MS91a, MS91b]. A challenging research issue is to find adequate linguistic support to
smoothly integrate database application and database system programming in order to
assist the methodical construction of system extensions that are necessitated by database
language extensions.
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