
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis Informatics

Topic Classification for Clauses in Terms of
Services with Machine Learning

Jan Robin Geibel

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis Informatics

Topic Classification for Clauses in Terms of Services with
Machine Learning

Themenklassifizierung für Klauseln in Allgemeinen
Geschäftsbedingungen mit maschinellem Lernen

Author: Jan Robin Geibel
Supervisor: Prof. Dr. Florian Matthes
Advisor: Daniel Braun, M.Sc.
Date: October 15, 2020

Ich versichere, dass ich diese Bachelorarbeit selbständig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.

München, den 17. September 2020 Jan Robin Geibel

Acknowledgments

I would like to thank Daniel Braun for his continued support and advice during this
project.

vii

Abstract

General terms and conditions are of significant importance in today’s economy. They de-
fine to a large extent the circumstances under which transactions are conducted and ser-
vices are offered. In light of the large number of terms of service agreements entered into
today, as well as their complexity, it does not seem feasible for individual consumers to
monitor their implications in detail. In fact, several studies indicate that few consumers
actually read the many contracts they conclude online. It is, thus, of vital interest how Ar-
tificial Intelligence and software applications may be used to effectively communicate the
content of terms of services or highlight their potentially controversial elements in order to
protect consumers. Hence, the goal of this thesis is to investigate possibilities of using Ma-
chine Learning to automatically classify individual terms of such agreements according to
their topic. A large part of the project is concerned with devising a suitable categorization
as well as building and labeling an adequate corpus which Supervised Learning algo-
rithms can be trained with. The theoretical bases of various Machine Learning algorithms
are elaborated and their ability to accurately identify a clause’s topic is experimentally in-
vestigated. The results obtained during the project and the algorithms’ observed behavior
as well as the potential causes are presented and discussed.

ix

x

Contents

Acknowledgements vii

Abstract ix

1. Introduction 1

2. Related Work 3

3. The Corpus 5
3.1. Description of Classes . 5
3.2. Distribution of Clauses Among Classes . 10

4. Background 15
4.1. Data Preprocessing . 15

4.1.1. Tokenization and Stopwords . 15
4.1.2. Lemmatization and Stemming . 15

4.2. Feature Engineering . 15
4.2.1. Term Frequency-Inverse Document Frequency 15
4.2.2. Word Embeddings . 16

4.3. Machine Learning Algorithms . 16
4.3.1. Support Vector Machines . 16
4.3.2. Logistic Regression . 17
4.3.3. k-Nearest Neighbors . 17
4.3.4. Multilayered Perceptron . 19
4.3.5. Convolutional Neural Network . 20
4.3.6. Long Short-Term Memory . 21

5. Implementation 25
5.1. Data Preprocessing . 25
5.2. Feature Engineering . 26
5.3. Machine Learning Algorithms . 26

5.3.1. Support Vector Machines . 26
5.3.2. Logistic Regression . 28
5.3.3. k-Nearest Neighbors . 29
5.3.4. Multilayered Perceptron . 29
5.3.5. Convolutional Neural Network . 30
5.3.6. Long Short-Term Memory . 34

xi

Contents

6. Results 35
6.1. Evaluation Metrics . 35

6.1.1. Accuracy . 35
6.1.2. Recall . 35
6.1.3. Precision . 36
6.1.4. F1-Score . 36

6.2. Discussion and Evaluation of Results . 37

7. Conclusion 47

Appendix 48

A. Appendix 49
A.1. Detailed Results Level 2 Predictions . 49
A.2. Training Process . 59

Bibliography 61

xii

1. Introduction

Standard form contracts have become a significant part of today’s economy, governing bil-
lions of transactions every year [3]. Their importance only seems to increase as the number
of purchases made online grows larger. Yet, consumers appear to rarely read the numerous
terms of service agreements they enter into today [27]. The cost of reading and assessing
rather than finding those agreements seems to be the primary reason for consumers to
simply accept them without actually knowing their contents [3].
Interest in the potential use of Artificial Intelligence and software for consumer protection
applications, for instance detecting possibly unfair clauses [24], has grown as a conse-
quence. The goal pursued by this thesis is hence to investigate the use of Machine Learn-
ing to classify individual clauses of terms of service agreements according to their topic.
In particular, this thesis focuses on online consumer contracts being used by e-commerce
platforms.

Machine Learning is a field of Computer Science concerned with the design of algorithms
that are able to automatically learn a set of decision rules and patterns implicit in a given
data set, rather than having to program those rules explicitly [31]. In supervised Learn-
ing, the branch of Machine Learning this thesis is mainly concerned with, the algorithm is
presented with a large number of data points each of which is assigned a label describing
a certain characteristic of interest. The algorithm hence attempts to learn the relationship
between the training examples and their assigned labels implicit in the given data set, in
order to infer a label for previously unknown data points [31]. Thus, one prerequisite for
the deployment of supervised learning is the availability of an annotated data set that rep-
resents the characteristics of interest. A large part of the project is, therefore, concerned
with building and labeling an adequate corpus accordingly.
A clause of a terms of service agreement can in some cases address a variety of topics at
once. Rather than receiving a single label, each data point may, therefore, be assigned a
set of labels. The problem at hand is, thus, not just characterized by multiple classes but
also an instance of multi-label classification. Multi-label classification describes a classifi-
cation problem in which multiple labels can be assigned to a data point simultaneously [7].

Machine Learning has found numerous applications in the context of legal contracts and
proceedings. The first chapter of this paper briefly reviews prior related work and pre-
vious attempts to classifying clauses of online consumer contracts and privacy policies of
online platforms.
Devising a suitable categorization of clauses of terms of service agreements and assem-
bling a corpus accordingly has been a significant part of this project. Consequently, the
second chapter is intended to give a general understanding of the origin and key charac-
teristics of the data as well as the classes used during the process.
The subsequent chapter provides a brief overview of the theoretical bases of the data pre-

1

1. Introduction

processing techniques as well as the various Machine Learning algorithms used.
Thereafter, the way key elements of the project were implemented is described and the
concrete architectures of the deep learning models used throughout the project are por-
trayed.
Subsequently, the metrics used to evaluate the performance of individual classifiers are
briefly explained and their expressiveness as well as their potential shortcomings are out-
lined. Furthermore, the project’s experimental procedure and the obtained results are de-
scribed in chronological order. Finally, possible explanations for the algorithms’ observed
behavior are discussed.
The last part of this thesis summarizes the project’s results and makes some concluding
remarks. Additionally, possible next steps that go beyond the current project’s scope are
elaborated.

2

2. Related Work

Machine Learning has been repeatedly applied in the context of legal contracts and pro-
ceedings. Examples include the prediction of court decisions [1], the extraction of argu-
ments from legal documents [26] or the detection of claims in legal judgments [22]. The
ones most relevant to this project, however, are attempts to classify the clauses of online
consumer contracts according to their contents and their fairness as well as the use of clas-
sification algorithms for clauses in privacy policies of online platforms.

Lippi et al. attempt to use Machine Learning models to identify potentially unfair clauses
of terms of service agreements [23]. The experimental study uses a comparably small cor-
pus containing consumer contracts from 20 online platforms such eBay or Amazon and
labels identifying each sentence’s topic and estimating its fairness in form of a numeric
value. Rather than classifying entire clauses, the authors focus on classifying individual
sentences. The authors investigate the use of two SVM-based classifiers and a kernel ma-
chine which uses Tree Kernels.

In 2019 Lippi et al. introduce CLAUDETTE, a Machine Learning system to semi-automatically
identify possible unfair clauses in online terms of service agreements [24]. A corpus con-
sisting of 50 online consumer contracts is assembled and, similar to the one described
above, contains for each sentence labels identifying its topic and indicating its potential
unfairness in form of a numeric value. They train and evaluate several Machine Learning
algorithms, including a variety of SVM’s (see Section 4.3.1.) and different combinations
thereof, a CNN (see Section 4.3.5.), a LSTM (see Section 4.3.6.) and finally use an ensemble
algorithm which combines the predictions of the described models.

Lagioia et al. build on the results achieved by CLAUDETTE and explore the possibility of
using memory-augmented deep learning (MANN) models (refer to [37] or [16] for more
information) to identify unfair clauses of terms of service agreements [19]. The goal pur-
sued by the authors was to investigate whether the use of a knowledge base of human
expert rationales of determining a clause’s fairness can improve the performance on the
given classification task. They, too, focus on the classification of sentences but confine the
scope to those unfairly limiting the particular platform’s liability. The corpus used is made
from 100 consumer contracts and the employed knowledge base consists of legal rationales
developed by two experts. The experimental results show a significant improvement of
performance in comparison to the thus far deployed deep learning models. The MANN
also outperforms the SVM, though to a lesser degree.

The application of Machine Learning in the legal evaluation of privacy policies is, for ex-
ample, investigated by Contissa et al. [9]. The authors use a web crawler to surveille and
retrieve the privacy policies of a number of online services. The corpus assembled for the

3

2. Related Work

experimental study consists of 14 privacy policies. The sentences of those were decided
to either provide sufficient or insufficient information in regard to the processing of data,
contain unclear language or reference a potentially problematic data processing. In a first
step, several algorithms for identifying problematic clauses are evaluated. In a second
step, an SVM was trained to identify the class describing in what way the given clause is
legally problematic.

4

3. The Corpus

The corpus was assembled in order to train and evaluate supervised Machine Learning
algorithms to identify the topics of clauses of terms of service agreements used by e-
commerce websites. It consists of 5020 clauses in German that were obtained from 142
e-commerce shops. The majority of these are located in Germany with the exception of
one being headquartered in the United Kingdom, one in the Netherlands, one in Luxem-
burg and two in the Czech Republic.
Figure 3.1. shows the nature of the products being offered by the e-commerce shops the
data was obtained from. The categorization is, however, not mutually exclusive resulting
in a sum greater than 142. Furthermore, it is also not intended to be a completely exhaus-
tive categorization that covers the entire e-commerce spectrum but merely to provide a
generic understanding of the origin of the data. A general store refers to an e-commerce
platform offering a large variety of product categories such as amazon.com.

For each clause, the corpus contains an identifier as well as information about the e-
commerce website it was obtained from in addition to its title and actual text. It further
includes the title of the paragraph the clause belongs to and if present the text describing
the paragraph and thus applying to all clauses contained therein.

3.1. Description of Classes

The clauses obtained were divided into several classes according to their contents. The
classification, however, only distinguishes clauses based on their topics and makes no as-
sessment whether or not their legal implications are the same. A clause that, for example,
addresses possible warranty claims and explicitly stipulates them receives the label war-
ranty:contractualClaims, even if the claims mentioned may be identical to the ones estab-
lished by the law.

The clauses and the associated information were manually collected from the websites of
the above-mentioned e-commerce shops and stored in an Excel file. The same Excel file fur-
ther includes the information about the e-commerce platforms the clauses were obtained
from. The data was annotated within the same file and later exported to a CSV format in
order to simplify their future use.

The classes used throughout the project were partly provided by the SEBIS Chair1 which
this project is supervised by and partly derived in an iterative manner by repeatedly
grouping clauses according to their contents. In every iteration, a finer distinction between
different topics was made. The classification follows a hierarchical approach and assigns

1Chair for Software Engineering for Business Information Systems of the Technical University of Munich

5

3. The Corpus

0 10 20 30 40 50 60 70
Frequency

 toys
eyeglasses

pet supplies
general store

grocery
pharmaceuticals

photography
outdoor and camping

toys
clothing

furniture
automotive

sports
office supply

tools
consumer goods
household goods

electronics and appliances

Pr
od

uc
t C

at
eg

or
y

Figure 3.1.: Nature of products sold by e-commerce shops the data was obtained from

a rather broad label (level 1 hereafter) in a first step. These broad classes are in some
cases then further subdivided into more granular classes (level 2 hereafter) according to
the particular aspect of a topic they are addressing. Not every terms of service agreement
collected, however, necessarily contains clauses belonging to every of the classes described
below.

batteryElectronicsAndPackaging: Clauses involving the disposal of batteries, electronics
or packaging or the associated environmental regulations.

choiceOfLaw: Clauses defining the law the contract is governed by.

codeOfConduct: Clauses concerning codes of conduct to which the particular e-commerce
shop has subscribed.

contractChange: Clauses stipulating the e-commerce shop’s right to unilaterally change
its terms of service agreement.

contractLanguage: Clauses stipulating in which languages the contract can be concluded.

contractObject: Clauses describing aspects of the product or service which is the object of
the contract.

contractStorage: Clauses specifying whether the contract text is saved after the contract is
concluded.

6

3.1. Description of Classes

contractTermination: Clauses concerning the termination of subscription agreements.

customerSupport: Clauses referring to an e-commerce shop’s customer support and pos-
sibilities for customers to voice concerns, ask questions or make a complaint.

dataProtectionAndProcessing: Clauses addressing data protection, the processing of data
or the disclosure of personal information to third parties.

definition: Clauses defining terms used throughout the terms of service agreement.

• definition:consumer: Definition of a consumer in terms of the particular agreement.

• definition:customer: Definition of a customer in terms of the particular agreement.

• definition:entrepreneur: Definition of an entrepreneur in terms of the particular
agreement.

• definition:workday: Definition of a workday in terms of the particular agreement.

• definition:other: Other definitions used throughout the particular agreement. Exam-
ples include definitions of digital content or products for demonstrational purposes.

delivery: Clauses addressing any aspect of the delivery of products or services offered by
the particular e-commerce shop.

• delivery:acceptance: Clauses regarding the acceptance of a delivery by the customer
and the consequences should a delivery fail due to a reason the customer is respon-
sible for.

• delivery:collection: Clauses concerning the customer’s option to personally collect
the contract object.

• delivery:costs: Clauses addressing the costs of the delivery.

• delivery:destination: Clauses regarding the delivery address, geographical limita-
tions of the delivery or the delivery to packing stations.

• delivery:inspectionAndDamages: Clauses addressing the inspection of the deliv-
ered goods upon arrival as well as damages to the product that may occur during
the delivery.

• delivery:liability: Clauses stating which contract party carries the liability for po-
tential damages or the potential loss of products that are being delivered as well as
the moment in time that liability passes from the vendor to the customer.

• delivery:method: Clauses regarding the method the contract object is being deliv-
ered by. This can, for instance, mean the delivery services or freight company that is
commissioned to deliver the contract object, or the way digital content is transmitted
electronically.

7

3. The Corpus

• delivery:partialDeliveries: Clauses regarding the possibility of the order being split
into multiple deliveries.

• delivery:productAvailability: Clauses concerning the availability of products.

• delivery:time: Clauses specifying or addressing the time frame within which the
contract object is expected to be delivered to the customer.

disputeResolution: Clauses concerning the resolution of disputes in front of a consumer
arbitration board and the online platform for dispute settlement provided by the European
Commission.

intellectualProperty: Clauses referring to the ownership of intellectual property, copy-
rights and rights of third parties.

liabilityScope: Clauses stipulating the scope of the liability assumed by the particular e-
commerce shop.

orderRestrictions: Clauses concerning any restrictions of the order. This can be export
controls or limitations placed by the particular e-commerce shop on the product quantities
that can be ordered.

party: Clauses referring to any of the contract parties.

payment: Clauses concerning the payment of the products or services being purchased by
the customer.

• payment:costs: Clauses addressing possible costs in regard to the payment of the
order.

• payment:creditRating: Clauses regarding an assessment of the customer’s credit-
worthiness and the accuracy of his information.

• payment:default: Clauses specifying when a customer is defaulting on a payment
and the resulting consequences.

• payment:invoice: Clauses concerning the invoice for the particular order.

• payment:method: Clauses regarding any aspect of the payment methods offered by
the particular e-commerce shop.

• payment:nettingAndWithholding: Clauses addressing the customer’s right to net
receivables or withhold payments.

• payment:time: Clauses specifying when a payment is due.

8

3.1. Description of Classes

placeOfFulfillment: Clauses referring to the contract’s place of fulfillment.

placeOfJurisdiction: Clauses defining the contract’s place of jurisdiction.

prices: Clauses concerning the prices quoted by the particular e-commerce shop.

realization: Clauses addressing the circumstances of the conclusion of the contract.

• realization:offerAndAcceptance: Clauses specifying what stipulates an offer to con-
clude a contract and when and how such an offer is accepted.

• realization:orderProcess: Clauses describing the technical details of the contract con-
clusion and the order process.

retentionOfTitle: Clauses stipulating the moment in time the ownership of the contract
object passes to the customer.

rightToRefuse: Clauses defining the e-commerce shop’s right to refuse to accept an order.

salvatorius: Salvatorian clauses.

scope: Clauses defining the scope of the particular terms of service agreement as well as
the objection to any general terms and conditions the customer may have.

sellerWithdrawalRight: Clauses stating cases in which the particular e-commerce shop
has the right to withdraw from the contract.

userAccount: Clauses referring to the customer’s user account and the registration pro-
cess.

vouchersDiscountsPromotionsGiftcards: Clauses concerning promotional campaigns, dis-
counts or gift cards in any regard.

warranty: Clauses addressing the customer’s warranty claims.

• warranty:contractualClaims: Clauses referring to guarantees given by the manu-
facturer of the products being offered or those explicitly stipulating any warranty
policy.

• warranty:exclusion: Clauses explicitly excluding certain types of products or defects
from the stated warranty claims.

• warranty:lapse: Clauses specifying the time period after which the stated warranty
claims lapse.

• warranty:legalClaims: Clauses stipulating that the legal warranty claims apply.

9

3. The Corpus

withdrawal: Clauses addressing the customer’s ability to withdraw from the contract after
its conclusion. This includes both the legal withdrawal right as well as withdrawal options
voluntarily offered by the particular e-commerce shop.

• withdrawal:consequences: Clauses describing the consequences of a withdrawal
from the contract.

• withdrawal:exclusion: Clauses describing types of products or contracts for which
no withdrawal right exists.

• withdrawal:form: The form which needs to be filled out by the customer to exercise
his withdrawal right.

• withdrawal:right: Clauses informing the customer about his right to withdraw from
the contract and the timeframe during which that right can be exercised.

3.2. Distribution of Clauses Among Classes

The distribution of clauses among level 1 classes is heavily skewed as is shown in Figure
3.2. The five most frequently occuring classes delivery, payment, realization, warranty and
withdrawal make up about half of the labels given to clauses.

The distribution of clauses among level 2 classes (Figures 3.3.−3.8.) is similarly concen-
trated. For instance, 45.6% of the level 2 labels given to clauses belonging to the level 1
class payment were the label payment:method.

10

3.2. Distribution of Clauses Among Classes

Figure 3.2.: Distribution of clauses among level 1 classes

11

3. The Corpus

Figure 3.3.: Distribution of Level 2 classes within Level 1 class definition

Figure 3.4.: Distribution of Level 2 classes within Level 1 class delivery

12

3.2. Distribution of Clauses Among Classes

Figure 3.5.: Distribution of Level 2 classes within Level 1 class payment

Figure 3.6.: Distribution of Level 2 classes within Level 1 class realization

13

3. The Corpus

Figure 3.7.: Distribution of Level 2 classes within Level 1 class warranty

Figure 3.8.: Distribution of Level 2 classes within Level 1 class withdrawal

14

4. Background

4.1. Data Preprocessing

4.1.1. Tokenization and Stopwords

Tokenization describes the breaking up of text data into individual components, the so-
called tokens, such as words or phrases. Stopwords are words that occur in the majority
of the documents or texts to be classified and thus carry little information. Stopwords are,
therefore, often removed from the data set [18].

4.1.2. Lemmatization and Stemming

In order to reduce the complexity of the data set while preserving the information it con-
tains, different varieties of a single word which carry the same semantic meaning are con-
solidated. Two common strategies are stemming and lemmatization [18]. Stemming de-
scribes a method in which different varieties of a word are replaced by a common form
[25]. Lemmatization is a way of normalizing a word by either stripping it of its suffix or
appending one. Both strategies are inherently similar. However, lemmatization algorithms
do not necessarily result in a word’s stem and may thus produce different results in some
cases [29]. Lemmatization has been found to outperform stemming with one possible rea-
son being that it also takes a word’s synonyms under consideration which stemming does
not [4]. Hence, lemmatization is used throughout this project.

4.2. Feature Engineering

4.2.1. Term Frequency-Inverse Document Frequency

One method to extract features from the corpus that can be represented mathematically is
the so-called Term Frequency-Inverse Document Frequency (TF-IDF). The inverse document
frequency diminishes the siginificance given to words occuring very frequently through-
out the entire corpus while increasing the weight assigned to those occuring rarely. This
information is combined with the frequency with which a term occurs in a particular doc-
ument [18].

The TF-IDF is thus calculated as follows:

TF − IDF = TF (d, t) ∗ log(N

df(t)
) (4.1)

15

4. Background

with

• TF (d, t) being the frequency of term t in document d,

• N being the number of documents in the corpus,

• and df(t) beeing the number of documents in which the term t occurs [18].

4.2.2. Word Embeddings

Word embeddings describe methods in which the vocabulary, the set of words making up
the entire corpus, are represented by N-dimensional vectors [18]. A distributed seman-
tic model is trained on a natural language corpus in order to represent each word by a
numerical vector [2]. Word embeddings are then able to represent the lexical semantic re-
lationship between words by the geometric proximity of their vectors [14].

Examples of commonly used word embedding frameworks are GloVe [28], Word2Vec [32]
or FastText [6].

4.3. Machine Learning Algorithms

4.3.1. Support Vector Machines

The Support Vector Machine (SVM) was originally thought of in 1964 by Chervonekis and
Vapnik [36] as a class of algorithms for pattern recognition tasks but has since been success-
fully applied in a number of different contexts for both regression as well as classification
purposes [11].

An SVM classifier attempts to separate the data points by a hyperplane in a way that
maximizes the distance or so called ’margin’ between it and the data points of the two
classes on either side of it [17]. If the data is separated linearly, the classification of a data
point is determined by the equation

f(x) = sgn(wTx+ b) (4.2)

with sgn(wTx+ b) ≥ 1, ∀x ∈ P (4.3)

and sgn(wTx+ b) ≤ 1, ∀x ∈ N [17]. (4.4)

The original design of the SVM used a linear separation which has since been further
enhanced to a non-linear one [18]. In case of data that cannot be completely separated by
any hyperplane, one solution is to essentially transform the input data into a higher di-
mensional space. The thus created transformed feature space is hence linearly separated by a
hyperplane which is equivalent to a non-linear separation in the initial input space [17].

16

4.3. Machine Learning Algorithms

The higher dimensional space into which the data is mapped is created by a so-called ker-
nel function. Kernel functions allow to make the necessary calculations during the training
process directly in the feature space without actually having to transform the data. Novel
data points are thereafter mapped into the higher dimensional feature space by using the
kernel function and can then be classified by the previously obtained hyperplane [17]. Ex-
amples of commonly used kernel functions are the RBF kernel or the Gaussian kernel [17].

The training process results in a global optimum rather than a local one as may be the case
in other learning algorithms [17].

The SVM was originally designed as a binary classifier [18]. One way to adapt the algo-
rithm to a multi-class problem, which is used throughout this project, is the one-vs-the-rest
or also called All-vs-One approach. The one-vs-the-rest approach is based on training mul-
tiple classifiers with each one being trained to distinguish instances of one class from the
remaining ones [5].

4.3.2. Logistic Regression

Logistic Regression (LR) is a way to assign probabilities to a data point being in either of
the classes rather than directly predicting the class it belongs to [18]. It is a linear classifier
that was initially conceived by David Cox in as early as 1958 [18].

LR is a binary classifier with the probability of a data point x belonging to the class of in-
terest given as

p(y = 1|x, θ) = sigmoid(xθ) (4.5)

with the sigmoid function defined as:

sigmoid(xθ) =
1

1 + e−(xθ)
(4.6)

The parameter vector θ can either be determined by Maximum Likelihood estimation and
thus the maximation of

n∏
i=1

p(yi|xi, θ)

or by use of a numerical optimization algorithm such as gradient descent [10].

As discussed above for SVMs, the one-vs-the-rest or also called All-vs-One approach is
used to adapt the binary classifier to a multi-class problem.

4.3.3. k-Nearest Neighbors

The k-nearest neighbors classification algorithm (kNN) is a non-parametric algorithm [18]
that assigns a label to a previously unknown data point according to the k data points of

17

4. Background

xi

Class 1 Class 2 Class 3

Feature 1

Feature 2

Figure 4.1.: k-Nearest Neighbors (based on [18])

the training set which are most similar to it, according to a predefined metric. The classifi-
cation is then, for instance, performed by identifying the label that occurs most frequently
among those k examples [17]. The performance of kNN, however, depends to a large de-
gree on the choice of the parameter k which is determined beforehand. If the chosen k is
too small the algorithm is more likely to produce less meaningful results since fewer exam-
ples are considered to infer the label of a new data point. If the chosen k is too large on the
other hand, classes with fewer data points assigned to them will be dominated by those
having a large number of representatives in the training set [21]. kNN is an example of an
instance-based learning technique which requires more time to classify new data points
but performs fewer computations during the training process [17].

The k nearest neighbors to a new data point are determined by calculating the relative dis-
tance to the instances of the training data set. If the data is characterized by n features, it is
regarded as points in an n-dimensional space (see Figure 4.1.) [17]. Examples for distance
metrics frequently used in the algorithm are the Euclidian or the Manhattan distance [17].

There are multiple functions by which a new data point x can be classified after the k near-
est data points have been determined. Two commonly used decision functions are the
following:

y(d1) = arg maxk
∑

xj∈kNN
y(xj , ck) (4.7)

18

4.3. Machine Learning Algorithms

y(d1) = arg maxk
∑

xj∈kNN
Sim(di, xj)y(xj , ck) (4.8)

with

• di being the data point to be classified,

• xj being a data point in the training set,

• y(xj , ck) ∈ {0, 1} being 1 if xj belongs to the class ck

• and Sim(dj , xj) being the function calculating the chosen similarity metric [21].

In the first case, x is being assigned the same label as the majority of its k nearest data
points whereas in the second case, x is assigned the label for which the sum of the similar-
ity measures is the largest [21]. The implementation chosen for this project uses Bayesian
inference to select the assigned labels in order to accommodate the multi-label nature of
the classification problem.

4.3.4. Multilayered Perceptron

The Multilayered Perceptron (MLP) was developed in order to classify data which cannot
be separated linearly into different classes [17]. A Multilayered Perceptron, also termed
Artificial Neural Network (ANN), is made of an input layer, an output layer and the so-
called hidden layers located between the two. The individual units or neurons of each
layer are connected to the ones of preceding and following layers, thus creating the archi-
tecture of the particular model (see Figure 4.2.) [17]. In a feed-forward ANN, the input
only passes from one direction to the output layer by performing a number of calculations
under the use of the weights assigned to the connections between the units as parameters
[17].

In the first step of the classification, M linear combinations are formed out of the input
variables xi, weights wij and biases wj0 as is shown in equation 4.9 with i ∈ [1, D] and
j ∈ [1,M].

aj =

D∑
i=1

w
(1)
ij xi + w

(1)
j0 (4.9)

In a second step, a non-linear activation function is applied to the result aj , the so-called
activation.

zj = h(aj) (4.10)

The resulting values zj are then again used to construct linear combinations in the manner
shown in equation 3.11. The described steps are repeated for every hidden layer of the

19

4. Background

inputs outputs

hidden units

x0

xD

z0

x1
z1

y1

yK

zM
w(1)

MD w(2)
KM

w(2)
10

Figure 4.2.: Multilayered Perceptron (based on [5])

particular network until, lastly, the output activation units ak, with k ∈ [1,K] and K being
the number of output values, are calculated.

ak =
M∑
j=1

w
(2)
kj zj + w

(2)
k0 (4.11)

An activation function like the sigmoid function (see equation 4.6) is applied to the output
activation units in order to create the output values yk.

yk = sigmoid(ak) [5] (4.12)

One commonly used algorithm to train the model and determine the weights assigned to
the connections between the units is the Back Propagation (BP) algorithm [17]. During the
training of the model, the ANN is continuously used to classify data points of the training
set. In each iteration, the model’s output for the particular training example is compared
to its actual label. For every neuron, the weights are adjusted in the direction needed
to produce the desired output. This local error, the difference between a neuron’s actual
and desired output, is then passed on to the neurons of previous layers in relation to the
strength of their connection. The error is thus propagated back through the entire ANN
and the weights of each layer are adjusted accordingly [17].

4.3.5. Convolutional Neural Network

Convolutional Neural Networks (CNN) are deep learning algorithms similar to the Multi-
layered Perceptron that were originally designed for Computer Vision and the processing

20

4.3. Machine Learning Algorithms

Text Text Text
Text Text Text
Text Text Text
Text Text Text
Text Text Text
Text Text Text
Text Text Text
Text Text Text
Text Text Text
Text Text Text
Text Text Text
Text Text Text
Text Text Text

Input Embedding
Layer

Conv 1D

Pooling 1D

Flatten

Output

Figure 4.3.: CNN for text classification (based on [18])

of image data [18]. Figure 4.3. shows an exemplary architecture of a Convolutional Neural
Network for the classification of text [5]. CNNs intent to leverage the fact that pixels of an
image tent to be more strongly correlated the closer they are to each other. Different subre-
gions of an image are, thus, individually processed and the resulting information merged
at a later point of the algorithm [5].

In a convolutional layer, neurons are grouped into so-called feature maps, each of which
processes a subset of the input data. Each feature map, therefore, provides a filter on the
input data and is characterized by its individual set of weights and biases [5].

The outputs of the convolutional layers are pooled, e.g. by using max pooling and se-
lecting the largest element of the particular window, in order to reduce the number of
parameters passed on to the next layer and thereby reduce the computational complexity
of the algorithm [18]. Additionally, a flatten layer is used to reduce the output of multiple
stacked feature maps to one column in order to be processed by the following layer [18].

Commonly, the final layers in a CNN architecture are fully connected and result in a soft-
max output nonlinearity for multi-class problems [5].

4.3.6. Long Short-Term Memory

A Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN) [18].
Figure 4.4. shows an example of a LSTM architecture. RNNs are neural networks used to
process sequential data such as text and were designed to consider early data points of a
series more than other architectures do [18]. The training of the original RNN, however,

21

4. Background

LSTM

LSTM

LSTM

LSTMLSTMLSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Input
layer

output
layer

hidden
layer

Figure 4.4.: Long Short-Term Memory Architecture (based on [18])

can be significantly impeded by a vanishing or exploding gradient [18]. LSTMs were, thus,
introduced to address these issues by regulating the information that is passed on through
their chain-like architecture by incorporating multiple gates in its units [18]. Those gates
are called the input, output and forget gates [15].

One layer of the model consists of multiple LSTM cells [15] each of which performs the
following calculations:

• The input gate is defined as

it = σ(Wi[xt, ht−1] + bi) (4.13)

• The candid memory cell is defined as

C̃t = tanh(Wc[xt, ht−1 + bc]) (4.14)

• The forget-gate activation is calculated as

ft = σ(Wf [xt, ht−1] + bf) (4.15)

• The new value of the memory cell is defined as

Ct = it ∗ C̃t + ftCt−1 (4.16)

22

4.3. Machine Learning Algorithms

σ σ tanh σ

tanh

++

+
+

C t-1

h t-1

C t-1

h t-1

xt

Figure 4.5.: Long Short-Term Memory Cell (based on [18])

• The resulting value of the output is derived by the following calculations

ot = σ(Wo[xt, ht−1] + bo) (4.17)

ht = ot tanh(Ct) [18] (4.18)

The described calculations are performed in every iteration and can be thought of as write,
read and reset operations for the particular cell [15]. Figure 4.5. illustrates the design of an
LSTM cell and the calculations described above.

23

4. Background

24

5. Implementation

Since a clause of a terms of service agreement may address a variety of topics at once, the
problem at hand is an instance of multi-label classification. Multi-label classification de-
scribes a classification problem in which multiple labels can be assigned to a data point
simultaneously [7].

One possible way to address a multi-label classification problem is the so-called Label Pow-
erset (LP) approach. The LP method transforms the multi-label problem into a multi-class
problem by treating every combination of labels as a distinct class [33]. This would, how-
ever, result in a large number of classes with relatively few training examples being asso-
ciated with each of them. Rather than transforming the problem into a multi-class clas-
sification, the approach chosen for this project, therefore, attempts to arrive at a ranking
or probability estimate for each label being associated to a particular data point. The data
point is then assigned every label whose score or probability estimate is above a prede-
termined threshold [30]. In a first step, the classifier is trained on the training set. In a
second step, the classifier is evaluated on a validation set in combination with a range of
different thresholds. The threshold for which the highest F1-score (see Section 6.1.4.) on
the validation set can be achieved is then selected.

The python libraries Keras1 and scikit-learn2 are used to implement the project.

5.1. Data Preprocessing

In a first step after loading the data, the clauses are lemmatized (see Section 4.1.2.) and
stopwords (see Section 4.1.1.) are removed from the corpus. Additionally, special charac-
ters such as numbers and punctuation marks are removed from the words of the vocabu-
lary. Certain characters such as § or e are, however, intentionally not removed inorder to
retain potential references to a currency or legal code.

Moreover, a multi-label binarizer is used to encode the labels assigned to the clauses.
Lastly, a test set (20% of the corpus) is split of the corpus while the remaining examples are
either entirely used as the training set (the implementation of the multi-label kNN does
not require a validation set) or divided again into a training (68% of the corpus) and a val-
idation set (12% of the corpus).

1https://keras.io
2https://scikit-learn.org/stable/

25

https://keras.io
https://scikit-learn.org/stable/

5. Implementation

5.2. Feature Engineering

The TF-IDF vectors (see Section 4.2.1.) of the corpus are created with scikit-learn’s Tfid-
fVectorizer 3 functionality. The TF-IDF scores are calculated on a word level and the num-
ber of features derived from the corpus is limited to the 10.000 most relevant ones. Ad-
ditionally, 2-grams are also considered. Rather than only examining single words, the
n-gram technique also takes sequences of n consecutive words into account [18]. The Tfid-
fVectorizer also includes tokenization and preprocessing functionality. Since the data has
already been tokenized and preprocessed, however, a dummy function that leaves the in-
put unchanged is created and passed as a keyword argument.

1

2 def tf_idf_vector(X_train, X_val, X_test, val=True):
3

4 tfidf_vectorizer = TfidfVectorizer(analyzer=’word’, tokenizer=dummy,
preprocessor=dummy, token_pattern=None,max_features=10000, ngram_range=(1,2)
)

5

6 xtrain_vec = tfidf_vectorizer.fit_transform(X_train)
7

8 if val:
9 xval_vec = tfidf_vectorizer.transform(X_val)

10 else:
11 xval_vec = []
12

13 xtest_vec = tfidf_vectorizer.transform(X_test)
14

15 return xtrain_vec, xval_vec, xtest_vec

Listing 5.1.: TF-IDF Vectors

Word Embeddings are implemented by the use of embedding layers4 of Keras’ Sequential
model5.

5.3. Machine Learning Algorithms

5.3.1. Support Vector Machines

Scikit-learn’s SVM6 functionality is used to implement a Support Vector Classifier (SVC)
for text classification. The default kernel function (see Section 4.3.1.) used by the SVC is an
RBF-Kernel. SVM’s are designed as decision functions and thus do not yield a probabil-
ity distribution for a data point being in either of the classes [5]. By passing the keyword
argument probability, however, scikit-learn’s SVC implementation can be enabled to cre-
ate posterior probability estimates. Although such estimates can be inconsistent with the
decision that would have been otherwise derived at by the SVC, probability estimates are
nonetheless used to account for the multi-label nature of the classification problem. As

3https://scikit-learn.org/stable/modules/generated/sklearn.feature extraction.text.TfidfVectorizer.html
4https://keras.io/api/layers/core layers/embedding/
5https://keras.io/guides/sequential model/
6https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

26

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://keras.io/api/layers/core_layers/embedding/
https://keras.io/guides/sequential_model/
https://keras.io/guides/sequential_model/
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

5.3. Machine Learning Algorithms

described in Section 4.3.1., a one-vs-the-rest approach is used to adapt the binary classifier
to multiple classes7. After training the model, the validation set is used to derive a suitable
probability threshold.

1

2 # support vector classifier allowing for probability estimates
3 svc_classifier = SVC(probability=True)
4

5 # One vs Rest approach to extend binary classifier to multiple classes
6 svc_classifier = OneVsRestClassifier(svc_classifier)
7

8 # Model training
9 svc_classifier.fit(xtrain_vec,y_train)

10

11 # Evaluation of thresholds
12 print("Evaluation of thresholds")
13 threshold = find_th(svc_classifier,xval_vec,y_val,p=True)
14

15 # Evaluation of model performance
16 eval(svc_classifier, model_name, xtrain_vec, y_train,xtest_vec,y_test,xval_vec,

y_val,threshold,p=False)

Listing 5.2.: Support Vector Classifier

Additionally, scikit-learn’s pipeline8 functionality is used to create an SVC that receives
multiple inputs in order to classify the topic of a particular clause. A pipeline performs
several sequential steps which must be so-called transforms, i.e. steps performing either fit
or transform methods. The preprocessed data is passed to the pipeline which then creates
the TF-IDF vectors (see Section 5.2.), uses a pre-trained SVC to derive an estimate of the
level 1 labels assigned to a clause and determines the length of the clause. Scikit-learn’s
MinMaxScaler9 is used to scale the lengths of the clauses to the range between zero and
one. Those features are then passed to an SVC in order to predict the level 2 labels of a
given clause.

1

2 # Pipeline handing the TF-IDF weights, level1 prediction
3 # of a trained SVC classifier, and the clause length to a SVC classifier
4

5 svc_classifier_minput = Pipeline([
6 (’features’, FeatureUnion([
7 (’text’, Pipeline([
8 (’clean’, FunctionTransformer(data_prep.clean, validate=False)),
9 (’tfidf’, TfidfVectorizer(analyzer=’word’, tokenizer=dummy, preprocessor=

dummy, token_pattern=None,max_features=10000, ngram_range=(1,2))),
10])),
11 (’level1’, Pipeline([
12 (’clean’, FunctionTransformer(data_prep.clean, validate=False)),
13 (’tfidf’, TfidfVectorizer(analyzer=’word’, tokenizer=dummy, preprocessor=

dummy, token_pattern=None,max_features=10000, ngram_range=(1,2))),

7https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html
8https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
9https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

27

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

5. Implementation

14 (’predict’, FunctionTransformer(predict_level1, validate=False)),
15])),
16 (’length’, Pipeline([
17 (’count’, FunctionTransformer(get_text_length, validate=False)),
18 (’scaling’, preprocessing.MinMaxScaler())
19]))
20])),
21 (’clf’, OneVsRestClassifier(SVC(probability=True)))])
22

23 # Training the model
24 svc_classifier_minput.fit(X_train, y_train)
25

26 # Evaluation of thresholds
27 print("Evaluation of thresholds")
28 threshold = find_th(svc_classifier_minput,X_val,y_val,p=True)
29

30 # Evaluation of model performance
31 eval(svc_classifier_minput, model_name, X_train, y_train,X_test,y_test,X_val,

y_val,threshold,p=False)

Listing 5.3.: Multi-input Support Vector Classifier

5.3.2. Logistic Regression

LR is implemented under the use of scikit-learn’s LogisticRegression10 functionality and is
adapted to multiple classes with a one-vs-the-rest approach11 similar to the one used in the
implementation of the SVC (Section 5.3.1.). LR naturally results in a posterior probability
distribution for a clause being in either of the potential classes (Section 4.3.2.). To account
for the multi-label classification problem considered here, each label whose probability es-
timate lies above a certain threshold is assigned to a given clause. The validation set is
used to derive an appropriate probability threshold.

1

2 # logistic regression classifier
3 logistic_reg = LogisticRegression()
4

5 # One vs Rest approach to extend binary classifier to multiple classes
6 logistic_reg = OneVsRestClassifier(logistic_reg)
7

8 # Model training
9 logistic_reg.fit(xtrain_vec,y_train)

10

11 # Evaluation of treshold on validation set
12 print("Evaluation of thresholds")
13 threshold = find_th(logistic_reg,xval_vec,y_val)
14

15 # Evaluation of model performance
16 eval(logistic_reg, model_name, xtrain_vec, y_train,xtest_vec,y_test,xval_vec,

y_val,threshold,p=False)

Listing 5.4.: Logistic Regression Classifier

10https://scikit-learn.org/stable/modules/generated/sklearn.linear model.LogisticRegression.html
11https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html

28

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

5.3. Machine Learning Algorithms

5.3.3. k-Nearest Neighbors

The kNN algorithm is implemented by using scikit-learn’s Multilabel kNN12 functional-
ity which is inherently designed for multi-label classification problems and uses Bayesian
inference to assign a set of labels to a data point after the k nearest neighbors have been
determined. Scikit-learn’s GridSearchCV13 is used to determine the values for the param-
eters k and s that maximize the F1-score for the given data set. The parameter k defines the
number of neighbors that need to be considered in classifying a data point. The parameter
s is a smoothing parameter. After the best k and s have been determined, the model is
initialized and trained with those values.

1

2 parameters = {’k’: range(1,6), ’s’: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1.0]}

3

4 #Multilabel knn using GridSearch to find the best parameters for s and k
5 mlknn_clf = GridSearchCV(MLkNN(), parameters, scoring=’f1_micro’)
6

7 #Finding best parameters
8 mlknn_clf.fit(xtrain_vec, y_train)
9

10 #Best parameters
11 k = mlknn_clf.best_params_[’k’]
12 s = mlknn_clf.best_params_[’s’]
13

14 #Initializing classifier with best parameters
15 mlknn_classifier = MLkNN(k=k,s=s)
16

17 #Model training
18 mlknn_classifier.fit(xtrain_vec,y_train)

Listing 5.5.: Multi-label k-Nearest Neighbors

5.3.4. Multilayered Perceptron

Scikit-learn’s MLPClassifier14 functionality is used to implement a Multilayered Percep-
tron. The keyword argument max iter defines the number of iterations to be performed by
the solver. The process stops either when it converges, or the maximum number of iter-
ations is reached. After training the model, the probability threshold that maximizes the
F1-score for predictions on the validation set is determined.

1

2 # Multilayered Perceptron
3 mlp_classifier = MLPClassifier(max_iter=400,random_state=1)
4

5 # Model training
6 mlp_classifier.fit(xtrain_vec,y_train)

12http://scikit.ml/api/skmultilearn.adapt.mlknn.html
13https://scikit-learn.org/stable/modules/generated/sklearn.model selection.GridSearchCV.html
14https://scikit-learn.org/stable/modules/generated/sklearn.neural network.MLPClassifier.html

29

http://scikit.ml/api/skmultilearn.adapt.mlknn.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html

5. Implementation

7

8 # Evaluation of treshold on validation set
9 print("Evaluation of thresholds")

10 threshold = find_th(mlp_classifier,xval_vec,y_val)
11

12 # Evaluation of model performance
13 eval(mlp_classifier,model_name,xtrain_vec, y_train,xtest_vec,y_test,xval_vec,

y_val,threshold,p=False)

Listing 5.6.: Multilayered Perceptron

Apart from that, an MLP which receives as features both a clause’s length as well as the
prediction of a pretrained SVC for its level 1 label in addition to its TF-IDF scores is im-
plemented. The implementation is performed analogue to the one of the multi-input SVC
(Section 5.3.1.).

5.3.5. Convolutional Neural Network

Keras’ Sequential model15 is used to implement several different architectures of CNNs
for text classification.

In a first step, a model which receives the TF-IDF vectors of training examples and consists
of three one dimensional convolutional layers16, one dropout layer17, one flatten18 and one
dense layer19 is implemented. The first convolutional layer has been implemented with 64
filters while 48 where chosen for the subsequent two. A kernel size of five was chosen for
all three convolutional layers. Dropout is a technique that is used to prevent the model
from overfitting to the training data. A subset of neurons and the connections between
them is randomly chosen and excluded from training during each iteration [34]. The sig-
moid function (equation 4.6) is chosen as the model’s activation function. The model’s
architecture is visualized in Figure 5.1.

In a second step, the model described above has been extended by an embedding layer20

and thus receives the preprocessed data rather than the clauses’ TF-IDF vectors as input.
For more information on word embeddings see Section 4.2.2. The model’s architecture is
visualized in Figure 5.2.

Lastly, the model displayed in Figure 5.1. has been extended to receive both a clause’s TF-
IDF vector as well as a pretrained SVC’s estimate of its assigned level 1 labels as inputs.
The model’s architecture is visualized in Figure 5.3.

15https://keras.io/guides/sequential model/
16https://keras.io/api/layers/convolution layers/convolution1d/
17https://keras.io/api/layers/regularization layers/dropout/
18https://keras.io/api/layers/reshaping layers/flatten/
19https://keras.io/api/layers/core layers/dense/
20https://keras.io/api/layers/core layers/embedding/

30

https://keras.io/guides/sequential_model/
https://keras.io/api/layers/convolution_layers/convolution1d/
https://keras.io/api/layers/regularization_layers/dropout/
https://keras.io/api/layers/reshaping_layers/flatten/
https://keras.io/api/layers/core_layers/dense/
https://keras.io/api/layers/core_layers/embedding/

5.3. Machine Learning Algorithms

Figure 5.1.: CNN architecture

31

5. Implementation

Figure 5.2.: CNN with embedding Layer architecture

32

5.3. Machine Learning Algorithms

Figure 5.3.: Multi-input CNN architecture

33

5. Implementation

Figure 5.4.: LSTM with ambedding layer architecture

5.3.6. Long Short-Term Memory

A LSTM model is implemented with Keras’ Sequential model21. The model consists of
an embedding layer22, a bidirectional LSTM layer23, a dropout layer24 and finally a dense
layer25. A bidirectional RNN passes each data example to two separate RNNs. One of
them receives the sequence as it is while the other receives the same information back-
wards. Both then pass the information on to the same output layer. The overarching archi-
tecture is thereby aware of information that lays before and after the current data point in
a given sequence [15]. The model’s architecture is visualized in Figure 5.4.

21https://keras.io/guides/sequential model/
22https://keras.io/api/layers/core layers/embedding/
23https://keras.io/api/layers/recurrent layers/bidirectional/
24https://keras.io/api/layers/regularization layers/dropout/
25https://keras.io/api/layers/core layers/dense/

34

https://keras.io/guides/sequential_model/
https://keras.io/api/layers/core_layers/embedding/
https://keras.io/api/layers/recurrent_layers/bidirectional/
https://keras.io/api/layers/regularization_layers/dropout/
https://keras.io/api/layers/core_layers/dense/
https://keras.io/api/layers/core_layers/dense/

6. Results

6.1. Evaluation Metrics

In evaluating the results of different classification algorithms, it is vital to consider the
various available metrics, their expressiveness and possible shortcomings. The evaluation
metrics are calculated from

• true positives, i.e. the data points that were correctly assigned to a given class,

• true negatives, i.e. the data points that were correctly not assigned to a given class,

• false positives, i.e. the data points that were falsely assigned to a given class

• and false negatives, i.e. the data points that were not assigned to a given class they
actually belong to [20].

Figure 6.1. illustrates true positives (TP), true negatives (TN), false positives (FP) and
false negatives (FN) in a so-called confusion matrix. In order to account for the fact that
the classification problem considered in this project is characterized by multiple classes,
micro-averaging of the evaluation metrics is used. In contrast to macro-averaging which
results in an average over classes, micro-averaging results in an average per data point by
considering the decisions made for the particular clause over all classes [18].

6.1.1. Accuracy

The accuracy of a classification is a simple metric that considers the share of correctly
classified data points in the entire data set (equation 6.1). Altough a classifier’s accuracy is
easy to interpret, its expressiveness is severely impaired in case of an unbalanced data set
[20].

accuracy =
(TP + TN)

(TP + FP + FN + TN)
(6.1)

6.1.2. Recall

The recall of a classification is defined as the share of data points that were correctly as-
signed to a class of all data points in the particular class (equation 6.2) [18]. A classifier’s
recall can offer useful insights if the particular class has few representatives in the data
set. A classifier simply assigning no data point to the class would achieve a high accuracy
but might be of little use. Yet, assigning every data point to the given class would result
in a high recall since the metric does not capture any information about TNs or FPs [20].
Additional information is therefore required.

35

6. Results

TP FN

FP TN

Actual

Predicted
+ -

+

-

Figure 6.1.: Confusion Matrix
Source: own illustration based on [20]

recall =
TP

(TP + FN)
(6.2)

6.1.3. Precision

Precision describes the share of data points that were correctly assigned to a class of all
data points assigned to the given class (equation 6.3) [18]. The precision metric, however,
is characterized by a shortcoming similar to the one of the recall metric. Since it does not
consider TNs or FNs in any way, a classifier that assigns only few examples with high
certainty to the particular class would also achieve a high precision [20].

precision =
TP

(TP + FP)
(6.3)

6.1.4. F1-Score

The F1-score tries to make up for the shortcomings described above by taking both the
recall as well as the precision of a classification algorithm into account and balancing the
two metrics. It is defined by equation 6.4 [20].

F1 − score =
2TP

(2TP + FP + FN)
(6.4)

36

6.2. Discussion and Evaluation of Results

6.2. Discussion and Evaluation of Results

In order to establish a baseline, four classifiers, an SVC, an LR, an MLkNN and an MLP
classifier, were trained on a first version of the corpus containing 3011 clauses (corpus ver-
sion 1 hereafter) to predict their level 1 labels. Initially, the models only received a clause’s
information, i.e. its title and text, as input. The models were subsequently again trained
with both a clause’s information as well as the information of the paragraph to which it
belongs. All four classifiers are performing remarkably well even when receiving only the
clauses’ information for training and prediction (results shown in Table 6.1.). However, the
results can be severely improved by using the particular paragraph’s information as addi-
tional input (results shown in Table 6.2.). While providing the paragraph’s information has
little impact on the SVC’s precision, it significantly improves its recall which indicates that
it more confidently assigns additional labels to a clause. Moreover, the larger input causes
a rapid reduction in the MLkNN’s false positives, evident in its increase in precision. The
F1-scores of all classifiers achieved on the test set improve by between 1.7 to 3.4 percentage
points. One possible explanation might be that a proportion of the clauses implicitly refer
to the ones coming before it in the particular paragraph. A clause may thus not mention
terms that are key for identifying its topic explicitly. This can be remedied by providing
the required context in form of the paragraph’s information. Both a clause’s as well as the
corresponding paragraph’s information are therefore used as input for the remainder of
the project.

Classifier F1-Score Accuracy Precision Recall
SVC 0.879 0.794 0.905 0.853
Logistic Regression 0.729 0.534 0.649 0.832
MLkNN 0.821 0.75 0.858 0.787
MLP 0.872 0.794 0.922 0.826

Table 6.1.: Classifiers trained on version 1 corpus using clause information as input to pre-
dict level 1 labels - results on test set

Classifier F1-Score Accuracy Precision Recall
SVC 0.903 0.837 0.908 0.897
Logistic Regression 0.763 0.572 0.687 0.858
MLkNN 0.852 0.779 0.926 0.79
MLP 0.889 0.826 0.932 0.85

Table 6.2.: Classifiers trained on version 1 corpus using clause and paragraph information
as input to predict level 1 labels - results on test set

The results obtained on the test set by the SVC are characterized by a high precision as
well as recall resulting in an equally high F1-score.
The LR classifier, however, performs poorly in terms of precision compared to its recall
which indicates a larger number of false positives and thus misclassified clauses. The

37

6. Results

result is a comparably low F1-score. The classifier appears to correctly identify a large
proportion of the classes a particular clause belongs to as is indicated by its recall. It may,
however, assign too many labels to a given clause. The LR classifier, thus, correctly identi-
fies the majority of labels but also assigns a large number of incorrect labels in the process.
The MLkNN classifier’s results show the opposite dynamic: precision scores that are con-
siderably higher than its recall. The classifier, thus, appears to assign fewer labels resulting
in fewer false positives but also fewer correctly identified classes.
Similar to the SVC, the MLP classifier performs equally well in terms of both precision and
recall. Its results are, however, slightly less balanced as its precision is significantly higher
than its recall resulting in a moderately lower F1-score.

Classifier F1-Score Accuracy Precision Recall
SVC 0.904 0.839 0.921 0.889
Logistic Regression 0.815 0.655 0.745 0.899
MLkNN 0.844 0.768 0.873 0.817
MLP 0.895 0.82 0.91 0.881
CNN 0.867 0.773 0.908 0.83
CNN Embedding Layer 0.568 0.468 0.583 0.553
LSTM 0.861 0.791 0.882 0.84

Table 6.3.: Classifiers trained on version 2 corpus using clause and paragraph information
as input to predict level 1 labels - results on test set

After the labeling process has been completed, the above-mentioned classifiers as well
as a CNN, a CNN with an embedding layer and a LSTM (see Sections 5.3.5. and 5.3.6.
for details on the models’ architectures) were trained and examined on the final corpus
containing 5020 clauses (version 2 corpus hereafter) and their level 1 labels. The results
(shown in Table 6.3.) display the same characteristics as the ones described above.
The performance of the MLP classifier, however, appears to be more balanced after pre-
senting it the additional data. Despite its slightly decreasing precision, its F1-score is con-
sequently improving.
Although the MLkNN’s recall slightly improves, its precision severely decreases despite it
being trained on a significantly larger data set, resulting in a lower F1-score.
While the results of the LR classifier show a significant improvement through the addi-
tional data, the ones of the remaining three change only marginally. This may indicate
that the majority of the clauses within a class is rather homogeneous in regard to their
wording. Firstly, since a terms of service agreement regulates the general conditions of a
sales contract, the majority of its paragraphs explicitly mention certain words indicating
their topic, where against their semantic meaning can be ambiguous. A clause stipulat-
ing a customer’s right to withdraw from the contract, for instance, most likely contains the
word withdrawal. Secondly, the TF-IDF technique used to create the features the models are
trained with disregards semantic meaning and only considers the set of words occurring
in the particular clause. A comparably small amount of data points may thus be enough
to sufficiently train the described algorithms to identify a clause’s topic.
Both the CNN and the LSTM perform rather well as is indicated by their similarly high

38

6.2. Discussion and Evaluation of Results

0 20 40 60 80 100
epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

lo
ss

model loss
train
val

Figure 6.2.: CNN embedding layer trained on corpus version 2 to predict level 1 labels -
loss during training process

F1-scores. The CNN that receives the preprocessed clauses as inputs and then passes them
through an embedding layer, however, produces extremely poor results despite being able
to accurately classify the greater share of the training data (0.993 F1-score). This suggests
that the model overfits to the training data and fails to generalize its results to previously
unknown clauses, in spite of the use of a substantial dropout. Figure 6.2. illustrates the
model’s loss on the training as well as the validation data during the training process. The
loss on the training data is steadily declining while the one received for the validation
set is quickly increasing again which is as another indicator for a model overfitting to the
training data [12].

The models were subsequently trained on the version 2 corpus in order to predict their
level 2 labels (results shown in Table 6.4.). The LR classifier’s performance for level 2 pre-
dictions appears to be significantly more balanced than the one for level 1 predictions.
While its recall is severely lower, it exhibits a slightly higher precision. As was the case
described above, the MLkNN classifier’s performance is characterized by a considerably
higher precision than recall. Moreover, it shows comparably little ability to correctly clas-
sify the clauses in the training set (0.856 F1-score). One explanation may lie in the fact
that kNN is generally sensitive to noise in the data and thus prone to overestimate irrel-
evant features [17]. The SVC performs well in predicting a clause’s level 2 label which is
indicated by its F1-score. Its results are, however, severely more unbalanced than was the
case for the level 1 prediction. The same is true for the MLP as its precision is significantly
higher than its recall.
Additionally, both the CNN as well as the LSTM also show a severe discrepancy betweeen
their precision and recall. The LSTM offers the starkest contrast with a precision that is 16.6
percentage points higher than its recall. Table 6.7. shows the LSTM’s average results per

39

6. Results

0 20 40 60 80 100
epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

lo
ss

model loss
train
val

Figure 6.3.: CNN embedding layer trained on corpus version 2 to predict level 2 labels -
loss during training process

level 2 class. The sharp difference between its precision and recall is even more apparent
in its results for individual classes. Its precision for classes such as delivery:acceptance, pay-
ment:nettingAndWithholding, userAccount, withdrawal:exclusion and withdrawal:form is 1.0,
meaning that there have been no false positives for any of those classes. The recall achieved
for them, however, was between 37.5 and 72.7 percentage points lower. Apart from that,
the LSTM appears to perform rather poorly in terms of both precision as well as recall
for some frequently occurring classes such as delivery:costs or dataProtectionAndProcessing.
LSTMs were found to work less well in classification tasks where the decision hinges on
the recognition of some key phrases [38]. This may explain the results shown here since
the correct classification of a clause potentially relies less on the structure of a sentence
but rather the occurrence of some key terms. Yet, the LSTM was able to correctly classify
the vast majority of training examples (0.967 F1-score) which may also be an indicator of
overfitting. For the model’s loss during training see Appendix A.2. As was the case in
the prediction of level 1 labels, the CNN whose architecture includes an embedding layer
seems to yield a rather mediocre performance despite being able to correctly classify the
examples of the training set to a large degree (0.982 F1-score). It appears that it, too, is
overfitting to the training data which is also indicated by its loss during the training pro-
cess (Figure 6.3.).

Furthermore, to take advantage of the hierarchy of the classes the data was divided into,
an SVC, an MLP and a CNN also received a previously trained SVC’s prediction for a
clause’s level 1 label as input. For the multi-input SVC as well as the multi-input MLP,
the clause’s length was also used as a feature. A level 1 estimation would provide helpful
information if a model were to regularly place clauses in another level 1 class instead of
merely selecting the wrong level 2 label within the correct level 1 class. A classifier might,
for instance, mistake a clause labeled payment:costs for one belonging to delivery:costs rather

40

6.2. Discussion and Evaluation of Results

Classifier F1-Score Accuracy Precision Recall
SVC 0.834 0.706 0.805 0.866
Multi-input SVC 0.842 0.727 0.865 0.82
Logistic Regression 0.783 0.601 0.769 0.798
MLkNN 0.775 0.652 0.83 0.727
MLP 0.827 0.704 0.861 0.794
Multi-input MLP 0.837 0.708 0.863 0.812
CNN 0.791 0.643 0.854 0.736
CNN Embedding Layer 0.47 0.352 0.635 0.373
Multi-input CNN 0.82 0.695 0.878 0.769
LSTM 0.768 0.642 0.86 0.694

Table 6.4.: Classifiers trained on version 2 corpus using clause and paragraph information
as input to predict level 2 labels - results on test set

than say one belonging to payment:method. Moreover, a clause’s length may help to distin-
guish between classes but also indicate when a clause received multiple labels.
Training sperate classifiers at each node of the classification hierarchy is another commonly
used method for hierarchical text classification. A chain of models classifies a document
in a top-down manner. So-called subtree classifiers form a decision about the document at
every node of the category tree until a so-called local classifier at one of the tree’s leaves
performs the final classification [35]. Due to the limited size of the corpus as well as the
multi-label nature of the given classification problem, this approach has not been imple-
mented in this project.
While providing multiple inputs had little effect on the MLP classifier’s precision and ac-
curacy, it did slightly improve its recall. This may indicate that providing a clause’s length
led the classifier to assign more labels and thus correctly identify more class representa-
tives. Contradicting that argument, however, is the opposite development shown by the
multi-input SVC. Its precision is considerably higher than the one of the SVC receiving
only a clause’s TF-IDF scores. Its recall on the other hand is lower by almost the same
magnitude. Both the SVC’s as well as the MLP’s F1-score slightly improves by providing
multiple inputs. It is, nevertheless, not possible to clearly ascertain which additional fea-
ture is responsible or why. Comparing the classifiers’ result per level 2 class (shown in
Tables 6.5. and 6.6.) does not allow for a clear conclusion either. While the results for a
vast number of classes only change marginally, some show a significant alteration through
the provision of multiple inputs. The results for some classes, for instance payment:costs,
improve drastically. The ones for others, however, are significantly worse. The F1-scores
for the classes payment:creditRating and userAccount for example, fell from 0.786 and 0.588
to 0.692 and 0.308 respectively.
The multi-input CNN which receives a prediction for a clause’s level 1 label apart from
a clause’s TF-IDF scores is somewhat better performing than the CNN only trained on a
clause’s TF-IDF scores. For a detailed listing of the remaining classifier’s performances on
each level 2 class see Appendix A.1.

As a concluding remark, it can be noted that the SVC and the MLP and its variations consis-

41

6. Results

tently show the best results of the evaluated algorithms. Neural Networks and SVMs gen-
erally appear to perform especially well when the input-output relationship of the given
problem is a non-linear one and the input features are highly correlated [17]. Both the
CNN as well as the LSTM show promising results in both level 1 as well as level 2 pre-
dictions but perform considerably worse than the SVC and the MLP classifiers do. The
CNN containing an embedding layer and also the LSTM, though to a much lesser degree,
appear to overfit to the training data. The performance of such deep learning models may,
thus, considerably improve if further measures to prevent overfitting are taken. Addi-
tionally, optimizing their architecture and hyperparameters to the given task could also
significantly enhance their ability to identify a clause’s topic [38].

Class F1-Score Precision Recall Support
batteryElectronicsAndPackaging 1.0 1.0 1.0 9.0
choiceOfLaw 0.96 0.923 1.0 24.0
codeOfConduct 1.0 1.0 1.0 11.0
contractChange 0.286 0.2 0.5 2.0
contractLanguage 0.93 0.87 1.0 20.0
contractObject 0.783 1.0 0.643 14.0
contractStorage 0.977 1.0 0.955 22.0
contractTermination 0.0 0.0 0.0 0.0
customerSupport 0.556 0.5 0.625 8.0
dataProtectionAndProcessing 0.745 0.679 0.826 23.0
definition:consumer 0.97 0.941 1.0 16.0
definition:customer 0.0 0.0 0.0 3.0
definition:entrepreneur 0.97 0.941 1.0 16.0
definition:other 0.0 0.0 0.0 3.0
definition:workday 0.0 0.0 0.0 0.0
delivery:acceptance 0.727 1.0 0.571 7.0
delivery:collection 0.88 0.786 1.0 11.0
delivery:costs 0.769 0.667 0.909 44.0
delivery:destination 0.809 0.731 0.905 21.0
delivery:inspectionAndDamages 0.889 0.96 0.828 29.0
delivery:liability 0.941 0.941 0.941 17.0
delivery:method 0.629 0.917 0.478 23.0
delivery:partialDeliveries 0.615 0.5 0.8 5.0
delivery:productAvailability 0.732 0.6 0.938 16.0
delivery:time 0.758 0.735 0.781 32.0
disputeResolution 0.971 0.971 0.971 35.0
intellectualProperty 0.778 0.636 1.0 7.0
liabilityScope 0.84 0.778 0.913 46.0
orderRestrictions 0.4 0.4 0.4 5.0
party 0.769 0.714 0.833 36.0
payment:costs 0.533 0.8 0.4 10.0
payment:creditRating 0.786 0.688 0.917 12.0
payment:default 0.75 0.706 0.8 15.0

42

6.2. Discussion and Evaluation of Results

payment:invoice 0.222 0.125 1.0 1.0
payment:method 0.821 0.744 0.914 70.0
payment:nettingAndWithholding 0.941 1.0 0.889 9.0
payment:time 0.737 0.724 0.75 28.0
placeOfFulfillment 0.75 0.75 0.75 4.0
placeOfJurisdiction 0.941 0.889 1.0 16.0
prices 0.878 0.837 0.923 39.0
realization:offerAndAcceptance 0.916 0.874 0.962 79.0
realization:orderProcess 0.875 0.921 0.833 42.0
retentionOfTitle 0.979 0.979 0.979 47.0
rightToRefuse 0.0 0.0 0.0 1.0
salvatorius 0.947 0.9 1.0 9.0
scope 0.933 0.933 0.933 45.0
sellerWithdrawalRight 0.696 0.615 0.8 10.0
userAccount 0.588 0.833 0.455 11.0
vouchersDiscountsPromotionsGiftcards 0.939 0.982 0.9 60.0
warranty:contractualClaims 0.693 0.614 0.795 44.0
warranty:exclusion 0.533 0.667 0.444 18.0
warranty:lapse 0.868 0.846 0.892 37.0
warranty:legalClaims 0.754 0.657 0.885 26.0
withdrawal:consequences 0.8 0.711 0.914 35.0
withdrawal:exclusion 0.788 0.929 0.684 19.0
withdrawal:form 1.0 1.0 1.0 8.0
withdrawal:right 0.889 0.889 0.889 45.0

Table 6.5.: SVC trained on version 2 corpus using clause and paragraph information as
input to predict level 2 labels - results on test set

Class F1-Score Precision Recall Support
batteryElectronicsAndPackaging 1.0 1.0 1.0 9.0
choiceOfLaw 0.98 0.96 1.0 24.0
codeOfConduct 1.0 1.0 1.0 11.0
contractChange 0.5 0.5 0.5 2.0
contractLanguage 0.976 0.952 1.0 20.0
contractObject 0.727 1.0 0.571 14.0
contractStorage 0.952 1.0 0.909 22.0
contractTermination 0.0 0.0 0.0 0.0
customerSupport 0.615 0.8 0.5 8.0
dataProtectionAndProcessing 0.783 0.783 0.783 23.0
definition:consumer 1.0 1.0 1.0 16.0
definition:customer 0.0 0.0 0.0 3.0
definition:entrepreneur 0.97 0.941 1.0 16.0
definition:other 0.0 0.0 0.0 3.0

43

6. Results

definition:workday 0.0 0.0 0.0 0.0
delivery:acceptance 0.727 1.0 0.571 7.0
delivery:collection 0.88 0.786 1.0 11.0
delivery:costs 0.784 0.717 0.864 44.0
delivery:destination 0.762 0.762 0.762 21.0
delivery:inspectionAndDamages 0.889 0.96 0.828 29.0
delivery:liability 0.941 0.941 0.941 17.0
delivery:method 0.588 0.909 0.435 23.0
delivery:partialDeliveries 0.727 0.667 0.8 5.0
delivery:productAvailability 0.75 0.75 0.75 16.0
delivery:time 0.721 0.759 0.688 32.0
disputeResolution 0.957 0.971 0.943 35.0
intellectualProperty 0.8 0.75 0.857 7.0
liabilityScope 0.899 0.93 0.87 46.0
orderRestrictions 0.5 0.667 0.4 5.0
party 0.781 0.893 0.694 36.0
payment:costs 0.706 0.857 0.6 10.0
payment:creditRating 0.692 0.643 0.75 12.0
payment:default 0.741 0.833 0.667 15.0
payment:invoice 0.333 0.2 1.0 1.0
payment:method 0.841 0.813 0.871 70.0
payment:nettingAndWithholding 0.875 1.0 0.778 9.0
payment:time 0.717 0.76 0.679 28.0
placeOfFulfillment 0.857 1.0 0.75 4.0
placeOfJurisdiction 0.941 0.889 1.0 16.0
prices 0.892 0.943 0.846 39.0
realization:offerAndAcceptance 0.942 0.961 0.924 79.0
realization:orderProcess 0.861 0.919 0.81 42.0
retentionOfTitle 0.945 0.977 0.915 47.0
rightToRefuse 0.667 0.5 1.0 1.0
salvatorius 0.947 0.9 1.0 9.0
scope 0.943 0.976 0.911 45.0
sellerWithdrawalRight 0.588 0.714 0.5 10.0
userAccount 0.308 1.0 0.182 11.0
vouchersDiscountsPromotionsGiftcards 0.947 1.0 0.9 60.0
warranty:contractualClaims 0.703 0.681 0.727 44.0
warranty:exclusion 0.533 0.667 0.444 18.0
warranty:lapse 0.853 0.842 0.865 37.0
warranty:legalClaims 0.712 0.636 0.808 26.0
withdrawal:consequences 0.789 0.732 0.857 35.0
withdrawal:exclusion 0.765 0.867 0.684 19.0
withdrawal:form 1.0 1.0 1.0 8.0
withdrawal:right 0.92 0.952 0.889 45.0

44

6.2. Discussion and Evaluation of Results

Table 6.6.: Multi-input SVC trained on version 2 corpus using clause and paragraph infor-
mation as input to predict level 2 labels - results on test set

Class F1-Score Precision Recall Support
batteryElectronicsAndPackaging 0.941 1.0 0.889 9.0
choiceOfLaw 0.941 0.889 1.0 24.0
codeOfConduct 1.0 1.0 1.0 11.0
contractChange 0.0 0.0 0.0 2.0
contractLanguage 0.923 0.947 0.9 20.0
contractObject 0.522 0.667 0.429 14.0
contractStorage 0.909 0.909 0.909 22.0
contractTermination 0.0 0.0 0.0 0.0
customerSupport 0.769 1.0 0.625 8.0
dataProtectionAndProcessing 0.667 0.64 0.696 23.0
definition:consumer 0.968 1.0 0.938 16.0
definition:customer 0.0 0.0 0.0 3.0
definition:entrepreneur 0.828 0.923 0.75 16.0
definition:other 0.0 0.0 0.0 3.0
definition:workday 0.0 0.0 0.0 0.0
delivery:acceptance 0.6 1.0 0.429 7.0
delivery:collection 0.952 1.0 0.909 11.0
delivery:costs 0.605 0.619 0.591 44.0
delivery:destination 0.634 0.65 0.619 21.0
delivery:inspectionAndDamages 0.863 1.0 0.759 29.0
delivery:liability 0.903 1.0 0.824 17.0
delivery:method 0.537 0.611 0.478 23.0
delivery:partialDeliveries 0.333 1.0 0.2 5.0
delivery:productAvailability 0.522 0.857 0.375 16.0
delivery:time 0.596 0.933 0.438 32.0
disputeResolution 0.941 0.97 0.914 35.0
intellectualProperty 0.333 0.4 0.286 7.0
liabilityScope 0.894 0.974 0.826 46.0
orderRestrictions 0.333 1.0 0.2 5.0
party 0.667 0.905 0.528 36.0
payment:costs 0.462 1.0 0.3 10.0
payment:creditRating 0.692 0.643 0.75 12.0
payment:default 0.235 1.0 0.133 15.0
payment:invoice 0.0 0.0 0.0 1.0
payment:method 0.809 0.833 0.786 70.0
payment:nettingAndWithholding 0.714 1.0 0.556 9.0
payment:time 0.667 0.8 0.571 28.0
placeOfFulfillment 0.4 1.0 0.25 4.0

45

6. Results

placeOfJurisdiction 0.839 0.867 0.812 16.0
prices 0.845 0.938 0.769 39.0
realization:offerAndAcceptance 0.826 0.966 0.722 79.0
realization:orderProcess 0.714 0.714 0.714 42.0
retentionOfTitle 0.92 1.0 0.851 47.0
rightToRefuse 0.0 0.0 0.0 1.0
salvatorius 1.0 1.0 1.0 9.0
scope 0.907 0.951 0.867 45.0
sellerWithdrawalRight 0.4 0.6 0.3 10.0
userAccount 0.429 1.0 0.273 11.0
vouchersDiscountsPromotionsGiftcards 0.957 1.0 0.917 60.0
warranty:contractualClaims 0.675 0.75 0.614 44.0
warranty:exclusion 0.357 0.5 0.278 18.0
warranty:lapse 0.677 0.84 0.568 37.0
warranty:legalClaims 0.679 0.667 0.692 26.0
withdrawal:consequences 0.704 0.694 0.714 35.0
withdrawal:exclusion 0.538 1.0 0.368 19.0
withdrawal:form 0.769 1.0 0.625 8.0
withdrawal:right 0.907 0.951 0.867 45.0

Table 6.7.: LSTM trained on version 2 corpus using clause and paragraph information as
input to predict level 2 labels - results on test set

46

7. Conclusion

The SVC as well as the MLP perform remarkably well in identifying a clause’s level 1 class,
even when trained on comparably little data and receiving only the clause’s title and text as
input. The results can, however, still be improved by additionally providing the title and
text of the paragraph a particular clause belongs to. This indicates that the paragraph’s
information can in some cases provide additional context and may contain key terms not
already present in the clause itself.
Increasing the corpus from 3011 to 5020 clauses, nevertheless, had little impact on the per-
formance of the majority of classifiers. This may suggest that the greater proportion of
clauses within a class are fairly homogeneous in terms of their terminology. Both the CNN
as well as the LSTM are to a large degree able to correctly identify the level 1 labels of the
test examples. Their performance in predicting level 2 labels, however, is significantly less
balanced. Their precision is much higher than their recall resulting in a lower F1-score.
The CNN containing an embedding layer appears to overfit to the training data for the
level 1 and level 2 classifications.
Additionally, providing a clause’s length as well as an estimate of its level 1 labels leads to
a slight improvement of the SVC’s and the MLP’s overall results. But it remains unclear
which of the supplementary inputs is responsible and for which reasons. Comparing the
SVC’s and the multi-input SVC’s results per class does not allow for a clear conclusion
either. While its performance for some classes improves, the one for others appears to
worsen through the provision of the additional inputs. The majority of the results, how-
ever, remain unchanged. Although the CNN’s ability to predict a clause’s level 2 labels
also improves by using an estimate of its level 1 label as a supplementary feature, the SVC
and MLP perform significantly better throughout the entire project.

Possible next steps beyond the scope of the current project that could be taken include im-
proving the model’s performance on the text classification, adapting the categorization to
enhance its potential usefulness and making use of the topic classification in other appli-
cations.
One way to potentially improve the classification’s results is to use a pretrained word em-
bedding model during the feature engineering. Fasttext for instance, a commonly used
word embedding framework developed by Facebook’s AI Research lab [6], includes mod-
els trained on Wikipedia1 and Common Crawl2 for 157 different languages3. Since the
CNN which uses an embedding layer to extract features from the corpus appears to over-
fit to the training data in both level 1 as well as level 2 classifications, further measures
to prevent overfitting may be necessary if a pretrained word embedding were to be used.
Apart from that, Deep Neural Networks tend to be sensitive to the choice of hidden sizes

1https://www.wikipedia.org
2https://commoncrawl.org
3https://fasttext.cc/docs/en/crawl-vectors.html

47

https://www.wikipedia.org
https://commoncrawl.org

7. Conclusion

as well as batch sizes [38]. Further optimizing the CNN’s and the LSTM’s hyperparame-
ters and architectures might, therefore, severely increase their performance.
Additionally, very deep model architectures similar to the ones used in Computer Vision,
processing the input on a character rather than word level, seem to also perform extremely
well in text classification applications [8]. Increasing the models’ complexity, however,
bears the risk of overfitting with a comparably small corpus such as the one being used in
this project [12]. It might, thus, also be beneficial to further enlarge the corpus which may
also enable the use of more elaborate deep learning model architectures.
Another way to possibly improve performance is to address the potentially negative ef-
fects of the severely unbalanced corpus of the classification problem at hand, e.g. by over-
sampling classes with fewer representatives. This may in turn, however, also increase the
model’s propensity to overfit [13].
Moreover, further approaches to hierarchical text classification could be investigated to
make full use of the classes’ hierarchical structure.
Apart from improving the model’s performance, the corpus could also be adapted to make
an even more granular differentiation between clauses depending on the particular use
case. The scope of the classification could also be enhanced by including terms of service
agreements in languages other than German in the corpus.
Lastly, the topic classification’s results obtained during the project could be used in more
advanced applications, possibly after the steps described above have been investigated,
for instance to make some sort of further qualitative assessment of a clause that goes be-
yond its topic.

48

A. Appendix

A.1. Detailed Results Level 2 Predictions

Class F1-Score Precision Recall Support
batteryElectronicsAndPackaging 0.941 1.0 0.889 9.0
choiceOfLaw 0.98 0.96 1.0 24.0
codeOfConduct 1.0 1.0 1.0 11.0
contractChange 0.0 0.0 0.0 2.0
contractLanguage 0.976 0.952 1.0 20.0
contractObject 0.696 0.889 0.571 14.0
contractStorage 0.977 1.0 0.955 22.0
contractTermination 0.0 0.0 0.0 0.0
customerSupport 0.667 1.0 0.5 8.0
dataProtectionAndProcessing 0.681 0.667 0.696 23.0
definition:consumer 0.968 1.0 0.938 16.0
definition:customer 0.4 0.5 0.333 3.0
definition:entrepreneur 0.97 0.941 1.0 16.0
definition:other 0.0 0.0 0.0 3.0
definition:workday 0.0 0.0 0.0 0.0
delivery:acceptance 0.667 0.8 0.571 7.0
delivery:collection 0.909 0.909 0.909 11.0
delivery:costs 0.755 0.685 0.841 44.0
delivery:destination 0.737 0.824 0.667 21.0
delivery:inspectionAndDamages 0.868 0.958 0.793 29.0
delivery:liability 0.857 0.833 0.882 17.0
delivery:method 0.615 0.75 0.522 23.0
delivery:partialDeliveries 0.571 1.0 0.4 5.0
delivery:productAvailability 0.765 0.722 0.812 16.0
delivery:time 0.741 0.909 0.625 32.0
disputeResolution 0.957 0.971 0.943 35.0
intellectualProperty 0.714 0.714 0.714 7.0
liabilityScope 0.891 0.891 0.891 46.0
orderRestrictions 0.222 0.25 0.2 5.0
party 0.769 0.862 0.694 36.0
payment:costs 0.421 0.444 0.4 10.0
payment:creditRating 0.8 0.769 0.833 12.0
payment:default 0.609 0.875 0.467 15.0
payment:invoice 0.0 0.0 0.0 1.0

49

A. Appendix

payment:method 0.811 0.795 0.829 70.0
payment:nettingAndWithholding 0.875 1.0 0.778 9.0
payment:time 0.654 0.708 0.607 28.0
placeOfFulfillment 0.75 0.75 0.75 4.0
placeOfJurisdiction 0.909 0.882 0.938 16.0
prices 0.861 0.939 0.795 39.0
realization:offerAndAcceptance 0.942 0.961 0.924 79.0
realization:orderProcess 0.819 0.829 0.81 42.0
retentionOfTitle 0.968 0.978 0.957 47.0
rightToRefuse 0.0 0.0 0.0 1.0
salvatorius 0.947 0.9 1.0 9.0
scope 0.918 0.975 0.867 45.0
sellerWithdrawalRight 0.667 0.636 0.7 10.0
userAccount 0.706 1.0 0.545 11.0
vouchersDiscountsPromotionsGiftcards 0.931 0.964 0.9 60.0
warranty:contractualClaims 0.659 0.711 0.614 44.0
warranty:exclusion 0.545 0.6 0.5 18.0
warranty:lapse 0.824 0.903 0.757 37.0
warranty:legalClaims 0.731 0.731 0.731 26.0
withdrawal:consequences 0.845 0.833 0.857 35.0
withdrawal:exclusion 0.765 0.867 0.684 19.0
withdrawal:form 1.0 1.0 1.0 8.0
withdrawal:right 0.871 0.925 0.822 45.0

Table A.1.: MLP trained on version 2 corpus using clause and paragraph information as
input to predict level 2 labels - results on test set

Class F1-Score Precision Recall Support
batteryElectronicsAndPackaging 1.0 1.0 1.0 9.0
choiceOfLaw 0.98 0.96 1.0 24.0
codeOfConduct 1.0 1.0 1.0 11.0
contractChange 0.667 1.0 0.5 2.0
contractLanguage 0.976 0.952 1.0 20.0
contractObject 0.667 0.8 0.571 14.0
contractStorage 0.952 1.0 0.909 22.0
contractTermination 0.0 0.0 0.0 0.0
customerSupport 0.615 0.8 0.5 8.0
dataProtectionAndProcessing 0.756 0.773 0.739 23.0
definition:consumer 0.968 1.0 0.938 16.0
definition:customer 0.4 0.5 0.333 3.0
definition:entrepreneur 0.97 0.941 1.0 16.0
definition:other 0.0 0.0 0.0 3.0
definition:workday 0.0 0.0 0.0 0.0

50

A.1. Detailed Results Level 2 Predictions

delivery:acceptance 0.769 0.833 0.714 7.0
delivery:collection 0.909 0.909 0.909 11.0
delivery:costs 0.78 0.696 0.886 44.0
delivery:destination 0.75 0.789 0.714 21.0
delivery:inspectionAndDamages 0.868 0.958 0.793 29.0
delivery:liability 0.857 0.833 0.882 17.0
delivery:method 0.667 0.812 0.565 23.0
delivery:partialDeliveries 0.75 1.0 0.6 5.0
delivery:productAvailability 0.812 0.812 0.812 16.0
delivery:time 0.731 0.95 0.594 32.0
disputeResolution 0.971 0.971 0.971 35.0
intellectualProperty 0.714 0.714 0.714 7.0
liabilityScope 0.882 0.872 0.891 46.0
orderRestrictions 0.364 0.333 0.4 5.0
party 0.769 0.862 0.694 36.0
payment:costs 0.556 0.625 0.5 10.0
payment:creditRating 0.769 0.714 0.833 12.0
payment:default 0.636 1.0 0.467 15.0
payment:invoice 0.0 0.0 0.0 1.0
payment:method 0.803 0.792 0.814 70.0
payment:nettingAndWithholding 0.875 1.0 0.778 9.0
payment:time 0.679 0.72 0.643 28.0
placeOfFulfillment 0.857 1.0 0.75 4.0
placeOfJurisdiction 0.941 0.889 1.0 16.0
prices 0.892 0.943 0.846 39.0
realization:offerAndAcceptance 0.962 0.974 0.949 79.0
realization:orderProcess 0.81 0.81 0.81 42.0
retentionOfTitle 0.957 0.978 0.936 47.0
rightToRefuse 0.0 0.0 0.0 1.0
salvatorius 0.947 0.9 1.0 9.0
scope 0.943 0.976 0.911 45.0
sellerWithdrawalRight 0.625 0.833 0.5 10.0
userAccount 0.706 1.0 0.545 11.0
vouchersDiscountsPromotionsGiftcards 0.939 0.982 0.9 60.0
warranty:contractualClaims 0.636 0.636 0.636 44.0
warranty:exclusion 0.606 0.667 0.556 18.0
warranty:lapse 0.845 0.882 0.811 37.0
warranty:legalClaims 0.746 0.667 0.846 26.0
withdrawal:consequences 0.822 0.789 0.857 35.0
withdrawal:exclusion 0.765 0.867 0.684 19.0
withdrawal:form 1.0 1.0 1.0 8.0
withdrawal:right 0.884 0.927 0.844 45.0

51

A. Appendix

Table A.2.: Multi-input MLP trained on version 2 corpus using clause and paragraph in-
formation as input to predict level 2 labels - results on test set

Class F1-Score Precision Recall Support
batteryElectronicsAndPackaging 0.941 1.0 0.889 9.0
choiceOfLaw 0.936 0.957 0.917 24.0
codeOfConduct 0.9 1.0 0.818 11.0
contractChange 0.0 0.0 0.0 2.0
contractLanguage 0.952 0.909 1.0 20.0
contractObject 0.769 0.833 0.714 14.0
contractStorage 0.875 0.808 0.955 22.0
contractTermination 0.0 0.0 0.0 0.0
customerSupport 0.667 1.0 0.5 8.0
dataProtectionAndProcessing 0.727 0.625 0.87 23.0
definition:consumer 1.0 1.0 1.0 16.0
definition:customer 0.0 0.0 0.0 3.0
definition:entrepreneur 0.97 0.941 1.0 16.0
definition:other 0.0 0.0 0.0 3.0
definition:workday 0.0 0.0 0.0 0.0
delivery:acceptance 0.833 1.0 0.714 7.0
delivery:collection 0.87 0.833 0.909 11.0
delivery:costs 0.605 0.719 0.523 44.0
delivery:destination 0.562 0.818 0.429 21.0
delivery:inspectionAndDamages 0.857 0.889 0.828 29.0
delivery:liability 0.848 0.875 0.824 17.0
delivery:method 0.65 0.765 0.565 23.0
delivery:partialDeliveries 0.889 1.0 0.8 5.0
delivery:productAvailability 0.69 0.769 0.625 16.0
delivery:time 0.586 0.654 0.531 32.0
disputeResolution 0.971 0.971 0.971 35.0
intellectualProperty 0.625 0.556 0.714 7.0
liabilityScope 0.804 0.804 0.804 46.0
orderRestrictions 0.286 0.5 0.2 5.0
party 0.725 0.758 0.694 36.0
payment:costs 0.375 0.5 0.3 10.0
payment:creditRating 0.583 0.583 0.583 12.0
payment:default 0.522 0.75 0.4 15.0
payment:invoice 0.0 0.0 0.0 1.0
payment:method 0.763 0.82 0.714 70.0
payment:nettingAndWithholding 0.824 0.875 0.778 9.0
payment:time 0.706 0.783 0.643 28.0
placeOfFulfillment 0.571 0.667 0.5 4.0

52

A.1. Detailed Results Level 2 Predictions

placeOfJurisdiction 0.914 0.842 1.0 16.0
prices 0.775 0.756 0.795 39.0
realization:offerAndAcceptance 0.882 0.918 0.848 79.0
realization:orderProcess 0.778 0.933 0.667 42.0
retentionOfTitle 0.92 1.0 0.851 47.0
rightToRefuse 0.0 0.0 0.0 1.0
salvatorius 1.0 1.0 1.0 9.0
scope 0.86 0.902 0.822 45.0
sellerWithdrawalRight 0.444 0.5 0.4 10.0
userAccount 0.667 0.857 0.545 11.0
vouchersDiscountsPromotionsGiftcards 0.947 1.0 0.9 60.0
warranty:contractualClaims 0.569 0.5 0.659 44.0
warranty:exclusion 0.444 0.667 0.333 18.0
warranty:lapse 0.644 0.864 0.514 37.0
warranty:legalClaims 0.65 0.929 0.5 26.0
withdrawal:consequences 0.806 0.844 0.771 35.0
withdrawal:exclusion 0.571 0.889 0.421 19.0
withdrawal:form 0.857 1.0 0.75 8.0
withdrawal:right 0.833 0.897 0.778 45.0

Table A.3.: MLkNN trained on version 2 corpus using clause and paragraph information
as input to predict level 2 labels - results on test set

Class F1-Score Precision Recall Support
batteryElectronicsAndPackaging 0.8 1.0 0.667 9.0
choiceOfLaw 0.939 0.92 0.958 24.0
codeOfConduct 0.9 1.0 0.818 11.0
contractChange 0.0 0.0 0.0 2.0
contractLanguage 0.976 0.952 1.0 20.0
contractObject 0.64 0.727 0.571 14.0
contractStorage 0.952 1.0 0.909 22.0
contractTermination 0.0 0.0 0.0 0.0
customerSupport 0.545 1.0 0.375 8.0
dataProtectionAndProcessing 0.8 0.741 0.87 23.0
definition:consumer 0.941 0.889 1.0 16.0
definition:customer 0.0 0.0 0.0 3.0
definition:entrepreneur 0.97 0.941 1.0 16.0
definition:other 0.0 0.0 0.0 3.0
definition:workday 0.0 0.0 0.0 0.0
delivery:acceptance 0.727 1.0 0.571 7.0
delivery:collection 0.9 1.0 0.818 11.0
delivery:costs 0.757 0.627 0.955 44.0
delivery:destination 0.684 0.765 0.619 21.0

53

A. Appendix

delivery:inspectionAndDamages 0.889 0.96 0.828 29.0
delivery:liability 0.895 0.81 1.0 17.0
delivery:method 0.629 0.917 0.478 23.0
delivery:partialDeliveries 0.571 1.0 0.4 5.0
delivery:productAvailability 0.815 1.0 0.688 16.0
delivery:time 0.618 0.739 0.531 32.0
disputeResolution 0.971 0.971 0.971 35.0
intellectualProperty 0.25 1.0 0.143 7.0
liabilityScope 0.845 0.804 0.891 46.0
orderRestrictions 0.333 1.0 0.2 5.0
party 0.698 0.815 0.611 36.0
payment:costs 0.5 0.667 0.4 10.0
payment:creditRating 0.69 0.588 0.833 12.0
payment:default 0.125 1.0 0.067 15.0
payment:invoice 0.0 0.0 0.0 1.0
payment:method 0.793 0.677 0.957 70.0
payment:nettingAndWithholding 0.875 1.0 0.778 9.0
payment:time 0.645 0.588 0.714 28.0
placeOfFulfillment 0.4 1.0 0.25 4.0
placeOfJurisdiction 0.882 0.833 0.938 16.0
prices 0.829 0.791 0.872 39.0
realization:offerAndAcceptance 0.837 0.733 0.975 79.0
realization:orderProcess 0.795 0.761 0.833 42.0
retentionOfTitle 0.968 0.978 0.957 47.0
rightToRefuse 0.0 0.0 0.0 1.0
salvatorius 0.947 0.9 1.0 9.0
scope 0.891 0.872 0.911 45.0
sellerWithdrawalRight 0.533 0.8 0.4 10.0
userAccount 0.0 0.0 0.0 11.0
vouchersDiscountsPromotionsGiftcards 0.929 1.0 0.867 60.0
warranty:contractualClaims 0.569 0.458 0.75 44.0
warranty:exclusion 0.467 0.583 0.389 18.0
warranty:lapse 0.771 0.696 0.865 37.0
warranty:legalClaims 0.625 0.526 0.769 26.0
withdrawal:consequences 0.741 0.652 0.857 35.0
withdrawal:exclusion 0.7 0.667 0.737 19.0
withdrawal:form 1.0 1.0 1.0 8.0
withdrawal:right 0.787 0.755 0.822 45.0

Table A.4.: Logistic Regression trained on version 2 corpus using clause and paragraph
information as input to predict level 2 labels - results on test set

Class F1-Score Precision Recall Support

54

A.1. Detailed Results Level 2 Predictions

batteryElectronicsAndPackaging 0.714 1.0 0.556 9.0
choiceOfLaw 0.829 1.0 0.708 24.0
codeOfConduct 0.957 0.917 1.0 11.0
contractChange 1.0 1.0 1.0 2.0
contractLanguage 0.952 0.909 1.0 20.0
contractObject 0.133 1.0 0.071 14.0
contractStorage 0.706 1.0 0.545 22.0
contractTermination 0.0 0.0 0.0 0.0
customerSupport 0.545 1.0 0.375 8.0
dataProtectionAndProcessing 0.76 0.704 0.826 23.0
definition:consumer 0.968 1.0 0.938 16.0
definition:customer 0.0 0.0 0.0 3.0
definition:entrepreneur 0.97 0.941 1.0 16.0
definition:other 0.0 0.0 0.0 3.0
definition:workday 0.0 0.0 0.0 0.0
delivery:acceptance 0.833 1.0 0.714 7.0
delivery:collection 0.909 0.909 0.909 11.0
delivery:costs 0.727 0.655 0.818 44.0
delivery:destination 0.174 1.0 0.095 21.0
delivery:inspectionAndDamages 0.929 0.963 0.897 29.0
delivery:liability 0.909 0.938 0.882 17.0
delivery:method 0.545 0.9 0.391 23.0
delivery:partialDeliveries 0.571 1.0 0.4 5.0
delivery:productAvailability 0.839 0.867 0.812 16.0
delivery:time 0.745 1.0 0.594 32.0
disputeResolution 0.957 0.971 0.943 35.0
intellectualProperty 0.778 0.636 1.0 7.0
liabilityScope 0.835 1.0 0.717 46.0
orderRestrictions 0.286 0.5 0.2 5.0
party 0.458 0.917 0.306 36.0
payment:costs 0.526 0.556 0.5 10.0
payment:creditRating 0.588 1.0 0.417 12.0
payment:default 0.636 1.0 0.467 15.0
payment:invoice 0.0 0.0 0.0 1.0
payment:method 0.785 0.85 0.729 70.0
payment:nettingAndWithholding 0.875 1.0 0.778 9.0
payment:time 0.739 0.944 0.607 28.0
placeOfFulfillment 0.667 1.0 0.5 4.0
placeOfJurisdiction 0.839 0.867 0.812 16.0
prices 0.847 0.783 0.923 39.0
realization:offerAndAcceptance 0.926 0.986 0.873 79.0
realization:orderProcess 0.864 0.826 0.905 42.0
retentionOfTitle 0.967 1.0 0.936 47.0

55

A. Appendix

rightToRefuse 0.0 0.0 0.0 1.0
salvatorius 0.947 0.9 1.0 9.0
scope 0.864 0.972 0.778 45.0
sellerWithdrawalRight 0.333 1.0 0.2 10.0
userAccount 0.308 1.0 0.182 11.0
vouchersDiscountsPromotionsGiftcards 0.932 0.948 0.917 60.0
warranty:contractualClaims 0.714 0.962 0.568 44.0
warranty:exclusion 0.384 0.255 0.778 18.0
warranty:lapse 0.8 0.744 0.865 37.0
warranty:legalClaims 0.607 0.567 0.654 26.0
withdrawal:consequences 0.825 0.929 0.743 35.0
withdrawal:exclusion 0.813 1.0 0.684 19.0
withdrawal:form 1.0 1.0 1.0 8.0
withdrawal:right 0.911 0.911 0.911 45.0

Table A.5.: CNN trained on version 2 corpus using clause and paragraph information as
input to predict level 2 labels - results on test set

Class F1-Score Precision Recall Support
batteryElectronicsAndPackaging 0.2 1.0 0.111 9.0
choiceOfLaw 0.619 0.722 0.542 24.0
codeOfConduct 0.7 0.778 0.636 11.0
contractChange 0.0 0.0 0.0 2.0
contractLanguage 0.78 0.762 0.8 20.0
contractObject 0.571 0.857 0.429 14.0
contractStorage 0.5 0.556 0.455 22.0
contractTermination 0.0 0.0 0.0 0.0
customerSupport 0.182 0.333 0.125 8.0
dataProtectionAndProcessing 0.05 0.059 0.043 23.0
definition:consumer 0.72 1.0 0.562 16.0
definition:customer 0.0 0.0 0.0 3.0
definition:entrepreneur 0.64 0.889 0.5 16.0
definition:other 0.0 0.0 0.0 3.0
definition:workday 0.0 0.0 0.0 0.0
delivery:acceptance 0.6 1.0 0.429 7.0
delivery:collection 0.667 0.857 0.545 11.0
delivery:costs 0.405 0.5 0.341 44.0
delivery:destination 0.0 0.0 0.0 21.0
delivery:inspectionAndDamages 0.565 0.765 0.448 29.0
delivery:liability 0.625 0.667 0.588 17.0
delivery:method 0.276 0.667 0.174 23.0
delivery:partialDeliveries 0.333 1.0 0.2 5.0
delivery:productAvailability 0.182 0.333 0.125 16.0

56

A.1. Detailed Results Level 2 Predictions

delivery:time 0.213 0.333 0.156 32.0
disputeResolution 0.727 0.774 0.686 35.0
intellectualProperty 0.0 0.0 0.0 7.0
liabilityScope 0.5 0.588 0.435 46.0
orderRestrictions 0.0 0.0 0.0 5.0
party 0.17 0.364 0.111 36.0
payment:costs 0.375 0.5 0.3 10.0
payment:creditRating 0.25 0.5 0.167 12.0
payment:default 0.0 0.0 0.0 15.0
payment:invoice 0.0 0.0 0.0 1.0
payment:method 0.505 0.683 0.4 70.0
payment:nettingAndWithholding 0.364 1.0 0.222 9.0
payment:time 0.308 0.545 0.214 28.0
placeOfFulfillment 0.5 0.5 0.5 4.0
placeOfJurisdiction 0.417 0.625 0.312 16.0
prices 0.296 0.533 0.205 39.0
realization:offerAndAcceptance 0.571 0.656 0.506 79.0
realization:orderProcess 0.694 0.833 0.595 42.0
retentionOfTitle 0.658 0.923 0.511 47.0
rightToRefuse 0.0 0.0 0.0 1.0
salvatorius 0.462 0.75 0.333 9.0
scope 0.525 0.6 0.467 45.0
sellerWithdrawalRight 0.267 0.4 0.2 10.0
userAccount 0.154 0.5 0.091 11.0
vouchersDiscountsPromotionsGiftcards 0.796 0.896 0.717 60.0
warranty:contractualClaims 0.31 0.407 0.25 44.0
warranty:exclusion 0.222 0.333 0.167 18.0
warranty:lapse 0.4 0.611 0.297 37.0
warranty:legalClaims 0.465 0.588 0.385 26.0
withdrawal:consequences 0.377 0.556 0.286 35.0
withdrawal:exclusion 0.214 0.333 0.158 19.0
withdrawal:form 0.5 0.75 0.375 8.0
withdrawal:right 0.559 0.826 0.422 45.0

Table A.6.: CNN with embedding layer trained on version 2 corpus using clause and para-
graph information as input to predict level 2 labels - results on test set

Class F1-Score Precision Recall Support
batteryElectronicsAndPackaging 1.0 1.0 1.0 9.0
choiceOfLaw 0.96 0.923 1.0 24.0
codeOfConduct 1.0 1.0 1.0 11.0
contractChange 0.5 0.5 0.5 2.0
contractLanguage 0.976 0.952 1.0 20.0

57

A. Appendix

contractObject 0.727 1.0 0.571 14.0
contractStorage 0.952 1.0 0.909 22.0
contractTermination 0.0 0.0 0.0 0.0
customerSupport 0.615 0.8 0.5 8.0
dataProtectionAndProcessing 0.809 0.792 0.826 23.0
definition:consumer 0.968 1.0 0.938 16.0
definition:customer 0.0 0.0 0.0 3.0
definition:entrepreneur 0.97 0.941 1.0 16.0
definition:other 0.0 0.0 0.0 3.0
definition:workday 0.0 0.0 0.0 0.0
delivery:acceptance 0.0 0.0 0.0 7.0
delivery:collection 0.952 1.0 0.909 11.0
delivery:costs 0.675 0.788 0.591 44.0
delivery:destination 0.444 1.0 0.286 21.0
delivery:inspectionAndDamages 0.462 0.9 0.31 29.0
delivery:liability 0.919 0.85 1.0 17.0
delivery:method 0.545 0.9 0.391 23.0
delivery:partialDeliveries 0.8 0.8 0.8 5.0
delivery:productAvailability 0.812 0.812 0.812 16.0
delivery:time 0.69 0.769 0.625 32.0
disputeResolution 0.971 0.971 0.971 35.0
intellectualProperty 0.8 0.75 0.857 7.0
liabilityScope 0.901 0.911 0.891 46.0
orderRestrictions 0.5 0.667 0.4 5.0
party 0.781 0.893 0.694 36.0
payment:costs 0.588 0.714 0.5 10.0
payment:creditRating 0.783 0.818 0.75 12.0
payment:default 0.571 1.0 0.4 15.0
payment:invoice 0.0 0.0 0.0 1.0
payment:method 0.829 0.768 0.9 70.0
payment:nettingAndWithholding 0.615 1.0 0.444 9.0
payment:time 0.766 0.947 0.643 28.0
placeOfFulfillment 0.857 1.0 0.75 4.0
placeOfJurisdiction 0.941 0.889 1.0 16.0
prices 0.892 0.943 0.846 39.0
realization:offerAndAcceptance 0.936 0.948 0.924 79.0
realization:orderProcess 0.881 0.881 0.881 42.0
retentionOfTitle 0.945 0.977 0.915 47.0
rightToRefuse 0.0 0.0 0.0 1.0
salvatorius 0.947 0.9 1.0 9.0
scope 0.943 0.976 0.911 45.0
sellerWithdrawalRight 0.588 0.714 0.5 10.0
userAccount 0.308 1.0 0.182 11.0

58

A.2. Training Process

vouchersDiscountsPromotionsGiftcards 0.947 1.0 0.9 60.0
warranty:contractualClaims 0.659 0.638 0.682 44.0
warranty:exclusion 0.5 0.7 0.389 18.0
warranty:lapse 0.754 0.812 0.703 37.0
warranty:legalClaims 0.7 0.618 0.808 26.0
withdrawal:consequences 0.833 0.811 0.857 35.0
withdrawal:exclusion 0.733 1.0 0.579 19.0
withdrawal:form 1.0 1.0 1.0 8.0
withdrawal:right 0.875 1.0 0.778 45.0

Table A.7.: Multi-input CNN trained on version 2 corpus using clause and paragraph in-
formation as input to predict level 2 labels - results on test set

A.2. Training Process

0 20 40 60 80 100
epoch

0.02

0.04

0.06

0.08

0.10

lo
ss

model loss
train
val

Figure A.1.: CNN trained on corpus version 2 to predict level 1 labels - loss during training
process

59

A. Appendix

0 20 40 60 80 100
epoch

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

lo
ss

model loss
train
val

Figure A.2.: Multi-input CNN trained on corpus version 2 to predict level 1 labels - loss
during training process

0 20 40 60 80 100
epoch

0.02

0.04

0.06

0.08

0.10

lo
ss

model loss
train
val

Figure A.3.: LSTM trained on corpus version 2 to predict level 1 labels - loss during training
process

60

Bibliography

[1] N. Aletras, D. Tsarapatsanis, D. Preoţiuc-Pietro, and V. Lampos. Predicting judicial
decisions of the european court of human rights: A natural language processing per-
spective. PeerJ Computer Science, 2:e93, 2016.

[2] A. Bakarov. A survey of word embeddings evaluation methods. arXiv preprint
arXiv:1801.09536, 2018.

[3] Y. Bakos, F. Marotta-Wurgler, and D. R. Trossen. Does anyone read the fine print?
consumer attention to standard-form contracts. The Journal of Legal Studies, 43(1):1–
35, 2014.

[4] V. Balakrishnan and E. Lloyd-Yemoh. Stemming and lemmatization: a comparison of
retrieval performances. Lecture Notes on Software Engineering, 2(3):262–267, 2014.

[5] C. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New York, 2006.

[6] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with sub-
word information. Transactions of the Association for Computational Linguistics, 5:135–
146, 2017.

[7] W. Cheng and E. Hüllermeier. Combining instance-based learning and logistic re-
gression for multilabel classification. Machine Learning, 76(2-3):211–225, 2009.

[8] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun. Very deep convolutional net-
works for text classification. arXiv preprint arXiv:1606.01781, 2016.

[9] G. Contissa, K. Docter, F. Lagioia, M. Lippi, H.-W. Micklitz, P. Pałka, G. Sartor, and
P. Torroni. Claudette meets gdpr: Automating the evaluation of privacy policies using
artificial intelligence. Available at SSRN 3208596, 2018.

[10] S. Dreiseitl and L. Ohno-Machado. Logistic regression and artificial neural network
classification models: a methodology review. Journal of Biomedical Informatics, 35:352–
359, 2002.

[11] T. Evgeniou and M. Pontil. Support vector machines: Theory and applications. In
Advanced Course on Artificial Intelligence, pages 249–257. Springer, 1999.

[12] M. Fenner. Machine Learning with Python for Everyone. Addison-Wesley Professional,
2019.

[13] V. Ganganwar. An overview of classification algorithms for imbalanced datasets. In-
ternational Journal of Emerging Technology and Advanced Engineering, 2(4):42–47, 2012.

61

Bibliography

[14] N. Garg, L. Schiebinger, D. Jurafsky, and J. Zou. Word embeddings quantify 100
years of gender and ethnic stereotypes. Proceedings of the National Academy of Sciences,
115(16):E3635–E3644, 2018.

[15] A. Graves and J. Schmidhuber. Framewise phoneme classification with bidirectional
lstm and other neural network architectures. Neural networks, 18(5-6):602–610, 2005.

[16] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

[17] S. B. Kotsiantis. Supervised machine learning: A review of classification techniques.
Informatica, 31(4):249–268, 2007.

[18] K. Kowsari, K. J. Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, and D. Brown. Text
classification algorithms: A survey. Information, 10:150, 2019.

[19] F. Lagioia, F. Ruggeri, K. Drazewski, M. Lippi, H.-W. Micklitz, P. Torroni, and G. Sar-
tor. Deep learning for detecting and explaining unfairness in consumer contracts. In
JURIX, pages 43–52, 2019.

[20] J. Lever, M. Krzywinski, and N. Altman. Classification evaluation. Nature Methods,
13:603–604, 2016.

[21] B. Li, S. Yu, and Q. Lu. An improved k-nearest neighbor algorithm for text catego-
rization. arXiv preprint cs/0306099, 2003.

[22] M. Lippi, F. Lagioia, G. Contissa, G. Sartor, and P. Torroni. Claim detection in judg-
ments of the eu court of justice. In AI Approaches to the Complexity of Legal Systems,
pages 513–527. Springer, 2015.

[23] M. Lippi, P. Palka, G. Contissa, F. Lagioia, H.-W. Micklitz, Y. Panagis, G. Sartor, and
P. Torroni. Automated detection of unfair clauses in online consumer contracts. In
JURIX, pages 145–154, 2017.

[24] M. Lippi, P. Pałka, G. Contissa, F. Lagioia, H.-W. Micklitz, G. Sartor, and P. Torroni.
Claudette: an automated detector of potentially unfair clauses in online terms of ser-
vice. Artificial Intelligence and Law, 27(2):117–139, 2019.

[25] J. B. Lovins. Development of a stemming algorithm. Mechanical Translation and Com-
putational Linguistics, 11, 1968.

[26] M.-F. Moens, E. Boiy, R. M. Palau, and C. Reed. Automatic detection of arguments in
legal texts. In Proceedings of the 11th international conference on Artificial intelligence and
law, pages 225–230, 2007.

[27] J. A. Obar and A. Oeldorf-Hirsch. The biggest lie on the internet: Ignoring the pri-
vacy policies and terms of service policies of social networking services. Information,
Communication & Society, 23(1):128–147, 2020.

[28] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word repre-
sentation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pages 1532–1543, 2014.

62

Bibliography

[29] J. Plisson, N. Lavrac, and D. Mladenic. A rule based approach to word lemmatization.
In Proceedings of IS, volume 3, pages 83–86, 2004.

[30] J. R. Quevedo, O. Luaces, and A. Bahamonde. Multilabel classifiers with a probabilis-
tic thresholding strategy. Pattern Recognition, 45(2):876–883, 2012.

[31] G. Rebala, A. Ravi, and S. Churiwala. An Introduction to Machine Learning. Springer
International Publishing, 2019.

[32] X. Rong. word2vec parameter learning explained. arXiv preprint arXiv:1411.2738,
2014.

[33] N. SpolaôR, E. A. Cherman, M. C. Monard, and H. D. Lee. A comparison of multi-
label feature selection methods using the problem transformation approach. Electronic
Notes in Theoretical Computer Science, 292:135–151, 2013.

[34] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

[35] A. Sun, E. P. Lim, W. K. Ng, and J. Srivastava. Blocking reduction strategies in hi-
erarchical text classification. IEEE Transactions on Knowledge and Data Engineering,
16(10):1305–1308, 2004.

[36] V.N. Vapnik and A.Y. Chervonenkis. A class of algorithms for pattern recognition
learning. Avtomat. i Telemekh., 25:937 – 945, 1964.

[37] J. Weston, S. Chopra, and A. Bordes. Memory networks. arXiv preprint
arXiv:1410.3916, 2014.

[38] W. Yin, K. Kann, M. Yu, and H. Schütze. Comparative study of cnn and rnn for natural
language processing. arXiv preprint arXiv:1702.01923, 2017.

63

	Acknowledgements
	Abstract
	Introduction
	Related Work
	The Corpus
	Description of Classes
	Distribution of Clauses Among Classes

	Background
	Data Preprocessing
	Tokenization and Stopwords
	Lemmatization and Stemming

	Feature Engineering
	Term Frequency-Inverse Document Frequency
	Word Embeddings

	Machine Learning Algorithms
	Support Vector Machines
	Logistic Regression
	k-Nearest Neighbors
	Multilayered Perceptron
	Convolutional Neural Network
	Long Short-Term Memory

	Implementation
	Data Preprocessing
	Feature Engineering
	Machine Learning Algorithms
	Support Vector Machines
	Logistic Regression
	k-Nearest Neighbors
	Multilayered Perceptron
	Convolutional Neural Network
	Long Short-Term Memory

	Results
	Evaluation Metrics
	Accuracy
	Recall
	Precision
	F1-Score

	Discussion and Evaluation of Results

	Conclusion
	Appendix
	Appendix
	Detailed Results Level 2 Predictions
	Training Process

	Bibliography

