Business Conversations
A High-Level System Model for Agent Coordination

Florian Matthes

AB 4-022 Softwaresysteme
Technical University Hamburg-Harburg
D-21071 Hamburg, Germany
f.matthes@tu-harburg.de

Abstract

In this paper we introduce Business Conversations as a high-level software structuring
concept for distributed systems where multiple autonomous agents (possibly in different or-
ganizational units) have to coordinate their long-term activities towards the fulfillment of a
cooperative task. We first motivate Business Conversations as a system model suitable for the
description of human-human, human-software as well as software-software cooperation. We
then explain why we consider this model be more suitable for the description o organizational
cooperative work than software-centered object models. The core concepts of the Business
Conversation model are described using an object-oriented model. Finally, we report on our
experience gained building a prototypical agent programming framework with Business Con-
versations for agent coordination based on mobile and persistent threads as provided by the
persistent programming language Tycoon.

1 Motivation and Background

Following [De Michelis et al. 97] a cooperative information system (COOPIS) can be described
using three complementary facets: A system integration facet which addresses data transfer as
well as semantic and control integration, a group collaboration facet which is concerned with how
people working on a common business process can coordinate their activities, and an organizational
facet which views cooperation from a formal organizational perspective, regardless by whom or
with what technology it is carried out.

In this paper we propose a high-level system model for the system integration facet where
distributed autonomous (human or software) agents coordinate their long-term activities towards
the fulfillment of a cooperative task via structured Business Conversations. In our prototypical
implementation of this model agents and conversations are treated as first-class entities: They
can be named, classified, specialized, made persistent and they can migrate across heterogeneous
execution and communication platforms.

As should become clear in the remainder of this paper, this system integration model fits well
with modern models for the group collaboration facet (business process modeling, workflow man-
agement, groupware support systems) and the organizational facet (virtual enterprises, electronic
commerce, radically decentralized information processing). Our model therefore has the potential
to simplify the central task of change propagation between the facets of a larger-scale COOPIS.

To our understanding, any model developed for the system facet should allow system builders
to abstract from the details of

1. cooperation over time: Agents and artifacts should exist as long as required by the business
processes they support, independently of the underlying language and system concepts, e.g.
the lifetime of operating system processes or of database schema revisions.

2. cooperation within space: Agents and artifacts should be able to migrate freely within
a physically distributed environment, independently of the particular system platforms or
organizational structures (e.g. business units) involved in the cooperative work.

3. cooperation in multiple modalities: Artifacts should be accessible uniformly for agents
that cooperate in different modalities (simple overnight batch processing, online transaction
processing, direct manipulation by human agents via form-based or graphical user interfaces,
computer-supported cooperative work by humans, computer-assisted workflow management,
automatic information processing by mobile software agents) and using different media (email
messages, EDI-messages, HTTP requests, CORBA object requests, RPC invocations).

As a consequence, a system builder can focus on the “what” and “how” of the particular problem
at hand (e.g. compilation of an insurance offer) without worrying about the “when” (batch pro-
cessing, interactive session, long-term conversation with a human customer), the “where” (on a
centralized host, on a server within sales department, on a mobile laptop of a salesperson) and the
“who” (customer via letter, salesperson, workflow management system, visit of an Internet agent).
Moreover, applications are not cluttered with unnecessary data movement, synchronization and
conversion details and can absorb much better changes in time, platform and modality than it is
the case today.

Our research work of the past three years has focused on the issues (1) and (2) by providing
full persistence and mobility abstraction in the platform-independent Tycoon system [Matthes,
Schmidt 94; Mathiske et al. 95] culminating in the development of persistent migrating threads
[Mathiske et al. 96] which can be used to implement software agents similar to Telescript agents
[Mathiske 96; Johannisson 97]. In this paper, we describe Business Conversations as a contribution
to the third issue, cooperation in multiple modalities. Even though Business Conversations are
implemented in the Tycoon environment, this high-level system model has a much wider applica-
bility since it makes little assumptions about the underlying agent infrastructure and (persistent)
programming model.

This paper is organized as follows: In Section 2 we position our activity-oriented approach to
system cooperation relative to other, more traditional, data-oriented and object-oriented models.
In Section 3 we give a high-level overview of our Business Conversation model using examples
from the insurance sector. Details of this model are then given in Section 3 which also discusses
our prototypical implementation of the model. The paper ends with a comparison with related
work and an outlook on future work.

2 System Models for Cooperative Business Applications

In this section we motivate the need for a high-level, activity-oriented agent coordination model
and also relate our work to other models for cooperative business applications.

At a certain level of abstraction, the evolution of system models for cooperative business
applications can be classified roughly into three stages. Within each of these “historic” stages, the
primary focus of research and development has been on a certain aspect of business applications,
namely data, behavior and activity. As a consequence, one can distinguish roughly between data-
oriented, object-oriented and agent-oriented approaches for the construction of distributed business
applications.

2.1 Distributed Business Data

The sharing of business data between multiple applications of an enterprises has been the first
approach to the construction of large cooperative information systems (banking systems, airline
reservation systems, management information systems, CIM systems). A cooperation of multiple
applications is supported by persistence and distribution abstraction as provided, for example, by
modern relational database systems. Due to the failure of distributed database technology, most

existing cooperative IS are based on centralized data servers, as exemplified by integrated business
application systems like SAP R/3, Baan or Oracle Financials.

In a nutshell, such cooperative information systems are viewed as collections of shared database
servers and distributed database clients (application programs or ad-hoc human users).

2.2 Distributed Business Objects

The promise of distributed object management is to arrive at more flexible, scaleable and maintain-
able system architectures by building cooperative information systems using distributed business
objects [Orfali et al. 96]. A business object encapsulates business data and achieves a higher de-
gree of autonomy by restricting access to the business data through well-defined method interfaces.
Clients of a business object not only can abstract from the internal representation of the business
information but they can also rely on an open communication platform (middleware) that achieves
full distribution and platform transparency, possibly also across organizational boundaries. More-
over, it is expected that there exists a refinement relationship between business objects (e.g., a car
insurance contract is a refinement of a general insurance contract which is in turn a refinement of a
generic customer contract) which can be exploited to develop generic domain-specific application
models or to define standardizable business APIs.

In the Distributed Business Object model, a cooperative information system is viewed as a
collection of distributed objects which exchange messages that are dispatched by an “ubiquitous”
object request broker infrastructure.

In our view, Distributed Business Objects are a promising software structuring concept for
rather tightly integrated business applications, e.g. in-house desktop clients accessing corporate
business object servers. However, we believe that it does not scale well for more advanced patterns
of cooperative work involving truly autonomous “profit centers” within an organization or involving
several departments of independent enterprises which are unlikely to agree on a common business
object model and a shared object infrastructure which may be expensive to maintain.

The interaction between business objects and the coordination of their behavior is “hard-coded”
and often distributed in a complex way over the methods of multiple objects. This is to be seen in
contrast with the need for multiple modalities for cooperative work quoted in the introduction of
this paper and the flexibility requirements imposed by business process reengineering [De Michelis
et al. 97].

2.3 Distributed Business Agents

In recent years, activity-oriented models centered around the notion of “agents” have attracted
a lot of interest in the research community. Despite significant differences in detail, all of these
models suggest to view cooperative systems as being composed of largely autonomous agents, each
with a well-defined “responsibility”, “independent activity”, private “knowledge”, “memory” and
“capabilities”. Moreover, agents are to be regarded as a unit of persistence and mobility.

Agents provide a system structuring concept appropriate for the decomposition of cooperative
systems into smaller subsystems responsible for well-defined short-term or long-term tasks (claims
processing, order management, shopping, information retrieval) which can be carried out either
by a human or a software agent (demon, robot, script invocation, etc.) at a single site or involving
a migration from site to site.

In order to avoid the deficiencies of business objects described at the end of the previous
section, the notion of a business agent should not simply expand the notion of a business object
(consisting of encapsulated state and behavior) by adding autonomous activity (active objects)
and platform-independent mobility as suggested by some software agent models.

Instead of this, our proposal de-emphasizes the importance of agents themselves (how they
are created, classified, duplicated, etc.) and concentrates on their externally observable behavior,
namely their ability to sustain long-term, goal-directed conversations with other agents which is
also an important mechanism to coordinate agents (synchronization, delegation, replication, ...).

Acceptance

Request Commit
Customer Performer
Feedback Report Performance
Completion

Figure 1: The four phases of a Business Converation

Another view on the evolution of cooperation models is to regard it as a gradual generalization
process, since each of the newer models subsumes concepts of its predecessors and puts them
into a larger context which tends to be more stable over the lifetime of a cooperative information
systems.

e Data-centered modeling: Which data structures are maintained by the system? What are
their attributes and relationships? Which integrity constraints exist on these data structures?

e Object-centered modeling: Which operations can be applied to these data structures? What
are legal state transitions on these objects?

e Activity-centered modeling: How does the system interact with its environment over time?
Are there subsystems with restricted communication links to other subsystems? What is the
long-term goal to be achieved by a sequence of communication steps between subsystems?

3 Concepts of the Business Conversation Model

The leitmotiv of the Business Conversation model are speech acts between customers and perform-
ers. The model is inspired by the work of Terry Winograd and Fernando Flores in the domain of
computer-supported cooperative work [Winograd 87; Flores et al. 88; Medina-Mora et al. 92] which
introduce the concept of “conversations for action” based on linguistic studies and the speech act
theory developed by Austin and Searle [Austin 62; Searle 69]. However, our goals are different
from the more descriptive work of Winograd and Flores in that we intend to develop a system
model and system design techniques which can be used during system analysis, system design and
system implementation (similar to the work on distributed object models).

3.1 Business Conversations of an Enterprise

In the Business Conversation model, an enterprise or a business unit is viewed as an agent that
is involved in a number of (long-term) business conversations with other agents like customers,
suppliers or government agencies. Within each of these conversations, each agent has a fixed role
(either customer or performer). For example, an insurance broker is a performer for its customers
and at the same time a customer for several insurance agencies.

The main purpose of a business conversation is to coordinate the otherwise autonomous ac-
tivities of both agents towards a common goal which is typically specified in the course of the
conversation. A business conversation can be decomposed into an ordered sequence of speech acts
which can be classified into four phases that occur in the following order (see also Figure 1):

e Request Phase: During this conversation phase, the customer identifies himself to the per-
former and states its (business) goal to be achieved during the conversation. The main

purpose with respect to the customer is to check whether the performer is ready to start
such a conversation or not. (“I want to insure my car”).

e Negotiation Phase: A sequence of negotiation speech acts may be necessary to align the
specific customer needs and the available performer services. Only if both partners (as au-
tonomous agents) agree on the (refined) common goal, a commit of the performer is reached
which can be understood as a “promise” about its future activity. During the negotiation
phase, exception handling and recovery policies (or more general “quality of service” pa-
rameters) for the remainder of the conversation can be specified. (“Here are our insurance
policies”, “Your insurance contract number is 12345”).

e Performance Phase: The performer reports on the progress of and/or the completion of the
requested activity to the customer. This may also involve requests for additional information
or actions from the customer to take place under the already committed QoS conditions.
(““We covered your last accident”, ...)

e Feedback Phase: This phase gives the customer the opportunity to declare its satisfaction
with the service provided and may comprise the obligation for payment. During the feedback
phase, no further services have to be provided by the performer.

If required by a specific real-world cooperative activity, some of these phases may be skipped.
For example, a simple atomic client/server transaction (money bank transfer) involves neither a
negotiation nor a feedback phase.

3.2 Cooperation in Multiple Modalities

The utterances of customers and performers quoted in the preceding section are deliberately chosen
to resemble natural language statements of human actors. However the Business Conversation
model and the system infrastructure described in Section 3 are intended to cover uniformly human
as well as software agents. Given a formal conversation specification for a specific business task
such as claims handling, it can be utilized directly to support agent cooperation in four modalities

Application Linking: Customer and performer are realized as two autonomous applications
that synchronize via asynchronous message exchange.

GUI Management: A human user interacts with a software system. Legal interaction patterns
are described by the Business Conversation specification which are interpreted by a software
system called “generic customer”.

Workflow Management: A software system (as a customer) requests actions from a human
user who is guided by a software system called “generic performer”.

Structured Message Handling: The cooperative work of two human users can also profit from
tool-supported message handling ensuring the adherence to pre-defined business rules.

An interesting technical implication of this unification of human and software agents is the
ability to first develop a stand-alone information system based on its externally observable inter-
action patterns (similar to Visual Basic or Visual Age) and then to scale this application to a
richer distributed environment where it is necessary to cooperate with other information systems
without modifying the application logic of the individual systems.

Moreover, we are currently building generic application wrappers for legacy applications (Windows-
95 applications and SAP R/3) which translate automatically conversation specifications and dialog
steps to support the integration of such applications (without access to their source code) as agents
into an open cooperation environment.

Finally, it should be noted that the modality may change dynamically during an ongoing con-
versation. For example, similar to an automated telephone call center, standard requests could be
handled by a software agent which transfers its conversation (i.e. a simple trace of past communi-
cation steps) to a human performer as soon as more complex or exceptional requests occur.

Delegation Performer 1

Customer Broker @
@ @ Performer 2

©

Coordination

Customer 1

i Coordinator Performer

Customer 2 @ @

Figure 2: Interactions between conversations: delegation and coordination

3.3 Refinement and Abstraction

An externally observable “customer-oriented” business conversation (primary business conver-
sation) of an enterprise may lead to other internal business conversations (secondary business
conversations) between autonomous business units of an enterprise.

A secondary business conversation follows the same communication pattern described for pri-
mary conversations. For example, a performer in a primary conversation may become a customer
in multiple secondary conversations to coordinate the cooperative work of multiple subordinate
agents towards the common goal requested by the external customer in the primary conversation.

Such a situation is displayed in the upper part of Figure 2, where the external customer es-
tablishes a conversation with a performer which delegates the customers requests transparently
to the respective subordinate performer specialized on this particular kind of task (claims pro-
cessing, assessment of damage) and reports their utterances back to the customer of the primary
conversation.

An agent can also take the performer role in multiple conversations simultaneously (see the
lower part of Figure 2), hiding coordination details (planning, prioritizing, ...) in cases where the
customers request activities on shared resources.

Similarly, an “external” customer may consist of a collection of cooperating subordinate agents
(secretary, deputy) which cooperate through (externally invisible) means like peer to peer business
conversations or simple authority chains (from boss to employee).!

To summarize, the iterated decomposition of a binary customer/performer conversation into
secondary conversations or subordinate agents ultimately terminates with a collection of human or
software agents which carry out their work tasks in total autonomy but which are linked by a tree
of speech acts (requests, commitments and task completion dependencies) and by an authority
hierarchy.

'In the remainder of this paper we ignore the implications of the concept of subordinate agents which participate
in business conversations on behalf of their authority (security, addressing, mobility, ...).

3.4 Structured Dialogs and Conversation Specifications

In our model, the speech acts (protocols) between customer and performer are constrained to be
structured dialogs and they have to adhere to explicit conversation specifications.

Two adjacent speech acts of a business conversation are grouped together and form a dialog step
which involves the exchange of a dialog understood as a document with a hierarchically structured
content according to the following basic pattern: The performer sends a dialog with an initial
content, for example, a list of insurance offers with a partially filled-out contract that contains
placeholders to prompt the customer for additional information. (3.) The customer updates its
copy of the dialog (i.e., “fills out the form”) and returns it to the performer with a request from
a set of possible requests available in this particular dialog step (e.g. “Please revise the offer” or
“I accept the offer”).

A conversation is initiated by the customer with an initial request consisting of a description
of the conversation specification (protocol) the customer will utilize for the remainder of the
conversation. This description is represented as a structured dialog itself.

The conversation terminates successfully only when both agents agree that the conversation is
completed. In each dialog step, a time-out can be regarded as an implicit request (of the customer)
or as an implicit reply (of the performer), respectively.

Each structured document exchanged between customer and performer is required to contain
a document header that permits the receiving agent to uniquely identify the context of the dialog
(i.e. the enclosing conversation). As a consequence, the very first request in a conversation uttered
by the customer (“I want to start a new conversation conforming to specification X”) has to be
different from all its subsequent requests which are shipped together with the revised content of
its previous dialog step and a reference to an already existing conversation.

The advantage of imposing additional structure onto conversations and of constraining con-
versations by structured meta data (conversation specifications) can be best understood by the
analogy with the concept of data and object types which also provide a stable basis for formal
reasoning, for tool support (consistency checking) and for system analysis (classification, general-
ization, parameterization).

Moreover, this meta information (protocol information) is readily available (business rules,
workflow specifications, object interaction diagrams) at system design time and is essential for the
understanding of large reactive agent systems. 2

4 Implementing Business Conversations

This section gives an overview of our prototypical implementation of the business conversation
model sketched in the previous section. This implementation consists of a polymorphically-typed
framework written in the Tycoon persistent and distributed programming environment [Matthes
et al. 97], exploiting mobile persistent threads described in [Mathiske et al. 96]. The framework
components are replicated at each agent-enabled network site and are therefore viewed as an
“ubiquitous” infrastructure.

The three layers of this library framework are depicted in Figure 3:

Application system layer: This layer contains the application-specific agent definitions (” domain-
specific business logic”) consisting of Business Conversation specifications with attached
event specifications which in turn are bound to statically scoped and typed Tycoon applica-
tion code.

Agent system layer: The API provided by the agent system layer is used by the agents to
interact with their environment. This layer is responsible for the coordination of concurrent

2«An object-oriented program’s run-time structure often bears little resemblance to its code structure. The code
is frozen at compile-time, it consists of classes of fixed inheritance relationships. A program’s run-time structure
consists of rapidly changing networks of communicating objects. Trying to understand one from the other is like
trying to understand the dynamism of living ecosystems from the static taxonomy of plants and animals, and vice
versa”. [Gamma et al. 95]

Application Application
Systems Systems
Agent Agent
System System

Message Handling
System

Message Handling
System

Communication Infrastructure

Figure 3: Layers of the Business Conversations library framework

conversations and the tracing of conversation instances. Furthermore, agent mobility and
persistence services are localized in this layer.

Message handling layer: This layer provides a programming abstraction from local and re-
mote communication implementing a store-and-forward messaging scheme. Message queues
ensure the correct transmission of a message even in cases where the receiver is temporarily
unavailable [MSMQ95 95].

All interactions between agents at higher layers are carried out via this component. Further-
more, the message handling system provides an abstraction of the underlying communication
infrastructure. As of today, simple (secure) Internet socket connections are used to transfer
linearized typed Tycoon objects. We are currently experimenting with software components
for automatic forms processing (FAX communication channel) and with SGML (in partic-
ular HTML) converters as commercially-relevant alternatives for communication in open
networks with legacy applications.

In the following sections we focus on the object types and services provided by the agent system
layer to the application systems.

4.1 Conversation Specifications as First-Class Objects

A conversation specification is a contract between two agents since it constrains the behavior of
the performer and provides a promise to the customer. A conversation specification can express
type constraints (the structure of the documents sent and received) but also as state-dependent
constraints on the conversation history (e.g., claims can only be settled after a contract has been
signed and the first payment has been received). A more software-oriented example is the state-
dependent specification that a customer will never execute a pop operation on an empty stack.

In contrast to earlier models based on the speech act model like the Coordinator Tool [Flores et
al. 88], a conversation specification is not given as part of the business conversations model. Instead
of this, a conversation specification is a dynamically-created structured object which describes the
set, of all possible conversations between a customer and a performer in a given application domain
expressed in the syntax of the business conversation model.

The object model in Figure 4 defines the abstract elements of conversation specifications using
the Mainstream Objects Model as a meta model notation [?] (IH = inheritance, A = aggregation.
Circle = cardinality zero, double line = optional, crow foot = cardinality n).

ConversationSpec InitialDialogSpec

name: Sting]
'—.-H—H-A

o)

[AbstractDialogSpec]
name: String

replies with

references

ubConvSpec DialogSpec

L o4 name :String

Modifier RequestSpec

|
o hame: Sting

ellipses :Bool

contains
ontentSpec

SingleChoiceSpec AtomicSpec RecordSpec
type :Int, Real, String,
Date, Spec

MultipleChoiceSpec SequenceSpec Vanantspec

name: String

+

Figure 4: Class diagram for content, dialog and conversation specifications

Technically speaking, conversation specifications are typed, persistent and mobile objects that
are created bottom up using constructors of their respective classes (compare Figure 4), for ex-
ample:

let contract = RecordContentSpec.new()
.add(“name” AtomicContentSpec.new(String))
.add(“first” AtomicContentSpec.new(String))
.add(“birthday” AtomicContentSpec.new(Date))
.add(“method of payment” MultipleChoiceSpec.new().add(...))
let contractDialog = DialogSpec.new(contract)
.addPossibleRequest(” Accept” #(confirmationDialog))
.addPossibleRequest(” Reject” #(negotiationSubConversation, noAgreementDialog))
let carInsuranceConversationSpec = ConversationSpec.new(”carInsurance”)
.add(“Welcome” welcomeDialog)
.add(“Contract” contractDialog)

It is also possible to generate a conversation specification from a textual or graphical repre-
sentation of the dialog graph or to receive it from a remote agent, for example, a “conversation
broker”.

A conversation specification (“car insurance”) is a dictionary of named dialog specifications
with a distinguished initial dialog specification which describes the initial state for both communi-
cation partners. A dialog specification can be are either a concrete dialog specification (“contract”)
or a subconversation specification (“negotiation on contract details”). The latter is obtained by
an incremental modification of an existing conversation specification. This incremental modifica-
tion concept is intended to generalize the concept of inheritance on object classes to conversation
specifications.

T‘-o(Conversation

E— specifes
stage :Int
T Conversation Spec
=+ Q 1%
| Customer 1 f Performer] A
Q
Customer Rule Performer Rule History Element
[H
Abstract Dialog Request Rque-st pec
i
specifies
Dialog SubConversation
H—
inital Value ‘f Dialog Spec
specifies m
=+ w
Content I
Content Spec
pecifi i

L

Figure 5: Class diagram for agents, roles and conversation instances

A concrete dialog specification consists of a record dialog content specification and a (possibly
empty) set of request specifications available for this dialog. A record dialog content specification
aggregates named content specifications (“name”, “birthday”, “method of payment”) which in
turn (and recursively) can be either atomic (integer, string, ...), record, variant, sequence, sin-
gle choice and multiple choice content specifications. In this way, content specifications define a
simple monomorphic type system. More details on the Tycoon implementation can be found in
[Johannisson 97].

A dialog specification can be understood as a labeled state of a non-deterministic finite au-
tomaton. The states of a conversation are connected by directed edges, each labeled by a request
(uttered by the customer, e.g. “reject contract”). In a given dialog, there may be multiple outgo-
ing edges with the same label. This nondeterminism makes it possible for the performer to choose
between multiple follow states (“no agreement possible”, “start with negotiation”).

4.2 Event-Based Software Agent Programming

Once a Business Conversation specification object has been created, performer and customer agents
which adhere to this specification can be defined by rules consisting of an event and a piece of
code. This code typically triggers state transitions, initiates secondary conversations or performs
actions through effectors attached to the agent. The code is parameterized by a conversation de-
scriptor which holds conversation-specific data (identity of the conversation partner, contents and
requests of all preceding dialog steps, etc.). This descriptor can be expanded by agent-specific data
(invisible to other agents) and greatly simplifies the management of concurrent conversations with
multiple customers and performers, respectively. On termination, the code attached to an event
has to return an object that matches the constraints expressed in the corresponding conversation
specification which is then transferred back to the customer.

10

Domain
P

@ @ @ @ Place Guard n

,,,,,,,,,,,,,,, * Migration

o @74@7 {'6)")I&inggtrized
"""" 9 o O S oo
@ ——————— @» X g

Place n

Figure 6: Logical structure of the agent world

An agent can support multiple customer and performer roles (e.g. performer for car insurance,
performer for freight insurance). For each of these roles there exists a set of customer and performer
rules, respectively.

A performer rule is defined for a particular request of a particular dialog specification (con-
tract.accept, to be issued by a an agent in a customer role) and has to return an object of class
dialog while a customer role is defined for a particular dialog specification (e.g., contract, to be
generated by an agent in the performer role) and has to return an object of class request which
has to be one of the requests admissible in this dialog step (e.g., accept, reject, explain).

The matching between dialog and dialog specification is checked by the agent system which
gives a special treatment to the distinguished initial request of a conversation (“I want to start a
new conversation of type X”) and a predefined “breakdown” request which is allowed to occur in
any state of the conversation.

An active conversation links exactly one customer role and one performer role of an agent. It
also implements exactly one conversation specification and aggregates an ordered list of history
elements which record the past dialog steps and requests of this conversation.

Figure 5 summarizes the semantic relationships between the relevant classes, some of which
have already been introduced in Figure 4.

Customer and performer neither share data nor code or thread state. In particular, the con-
versation specification and the conversation trace are duplicated in the address spaces of both
communication partners which ensures a high degree of agent autonomy and mobility.

The generic customer and performer described in Section 3.3 are also implemented using this
event-based execution model and simply transfer incoming and outgoing information to a human
agent via a (HTML-based) user interface.

4.3 Agents, Places and Place Guards

Our prototypical execution environment for Business Conversation agents incorporates a rich
spatial world metaphor for the “agent world” which is similar to the one of Telescript based on the
concepts of domain and place (see Figure 6). A domain is associated with a node in a network and
has its own communication end point on the network. A domain is uniquely addressable in the
network and consists of at least one place which constitutes the root of the local place hierarchy of
this domain. A place can host an arbitrary number of other places and agents for which it provides
a dynamic name space. Each place is represented by a specialized agent, a so-called place guard.
This guard can selectively grant access to agents which request to enter its place through agent
migration.

An agent can establish conversations with agents at its own place. A place (resp. its place guard)
can be accessed from within its place as well as from other places and it is therefore positioned on
the borderline of its place in Figure 6. Agent migration is controlled by a path consisting of the

11

network domain of the destination domain and of the names of all places on the way to the target
place. Local migration can be controlled by relative path names.

By treating agents and places (via their place guards) uniformly, both utilize the business
conversation model for cooperative work. In particular, a migration conversation consists of a
migration request of an agent, followed by a negotiation with its place guard, a subconversation
with the target place guard(s) carried out by the place guard, a completion report and finally a
declaration of satisfaction of the agent as soon as it resumes execution at the receiver side.

Similarly, the core model makes very little assumptions about the mechanisms through which
a customer localizes a matching performer in a wide-area network. This well-known problem of
trading or brokering in client/server programming can be solved above the core agent system layer
by transmitting conversation specifications as part of ordinary trading conversations.

4.4 Comparison with Related Work

Dialog-oriented cooperation based on the Business Conversation model has several advantages over
cooperation based on direct object interaction (message passing) which underlies popular agent
system like Telescript [General Magic 95], Mole [Hohl 95], Facile [Knabe 95], COSY [Haddadi 95],
Tcl/MIME agents [Rose 93] and Obliq [Cardelli 94]:

¢ Conversations do not impair agent autonomy. By exchanging well-defined dialog content
with copy semantics only, no private object bindings become available to the communication
partner. Therefore, it is not necessary to introduce new binding mechanisms like the ill-
defined concept of “object references” described in [White 94; GMI95 95] which attempts to
distinguish objects belonging to the customer and the performer, respectively.

¢ Conversations do not restrict agent mobility since local and remote agents are treated uni-
formly. Therefore, it is possible for an agent to migrate between address spaces while sus-
taining long-term conversations, e.g. with its human “owner”.

e The agent system already provides a well-defined concurrent execution model. Contrary to
direct object interactions, the coordination of multiple agents and conversations is encapsu-
lated in the agent system layer and there is no necessity for application-level synchroniza-
tion in cases where shared resources are manipulated. The application programmer is thus
shielded from much of the complexity that arises in highly concurrent agent systems

e The details of the information exchange between agents are to a large degree independent
of the underlying communication infrastructure. In particular, it is possible to translate
existing object-based distribution mechanisms (e.g., CORBA [Otte et al. 96]) systematically
into Business Conversations.

e Conversations are based on static process descriptions (conversation specifications) which
are first-class run-time objects available to both communication partners as soon as a con-
versation is initiated. This makes it possible to detect mismatches between the customer and
performer view early.

4.5 Concluding Remarks

We have presented a high-level coordination model for autonomous agents which is tailored to
the needs of (cross-enterprise) business information systems and which is excelled by its uniform
treatment of human and software agents. The model exhibits several advantages over other agent
models and can be implemented with limited effort in modern platform-independent, distributed
and persistent programming languages like Tycoon, Napier and P-Java.

Open issues include a formalization of the refinement relationship between conversation speci-
fications (subtyping) and of their incremental modification by overriding (inheritance). Moreover,
we plan to investigate whether it is possible to build a static type checker that guarantees that a

12

software agent generates (at run-time) only conversation traces which conform to a given static
conversation specification.

References

Austin 62: Austin, J. How to do things with words. Technical report, Oxford University Press, Oxford,
1962.

Cardelli 94: Cardelli, L. Obliq: A Language with Distributed Scope. Technical report, Digital Equipment
Corporation, Systems Research Center, Palo Alto, California, Juni 1994.

De Michelis et al. 97: De Michelis, Giorgio, Dubois, Eric, Jarke, Matthias, Matthes, Florian, Mylopoulos,
John, Papazoglou, Mike, Pohl, Klaus, Schmidt, Joachim, Woo, Carson, and Yu, Eric. Cooperative
Information Systems: A Manifesto. In: Papazoglou, Mike P. and Schlageter, Gunther (Eds.). Cooperative
Information System: Trends and Directions. Academic Press, 1997.

Flores et al. 88: Flores, F., Graves, M., Hartfield, B., and Winograd, T. Computer Systems and the
Design of Organizational Interaction. ACM Transactions on Office Information Systems, Jg. 6, 1988, Nr.
2, S. 1563-172.

Gamma et al. 95: Gamma, E., Helm, R.; Johnson, R., and Vlissades, J. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Publishing Company, 1995.

General Magic 95: General Magic’s Telescript home page .
http://www.genmagic.com/Telescript/, 1995.

GMI95 95: General Magic, Inc. Telescript Devloper Environment, Version 1.0 alpha, Oktober 1995.
Internet WordWideWeb, see General Magic homepage.

Haddadi 95: Haddadi, Afsaneh. Communication and Cooperation in Agent Systems. Springer-Verlag,
1995.

Hohl 95: Hohl, Fritz. Konzeption eines einfachen Agentensystems und Implementation eines Prototyps.
Diplomarbeit, Universitaet Stuttgart, Abteilung Verteilte Systeme, August 1995.

Johannisson 97: Johannisson, Nico. An environment for mobile agents: agent-oriented distributed
databases. Diplomarbeit, Fachbereich Informatik, Universitit Hamburg, Germany, April 1997. (In Ger-
man).

Knabe 95: Knabe, Frederick Colville. Language Support for Mobile Agents. Dissertation, Carnegie Mellon
University, Pittsburgh, PA 15213, Oktober 1995.

Mathiske et al. 95: Mathiske, B., Matthes, F., and Schmidt, JJZW. Scaling Database Languages to Higher-
Order Distributed Programming. In: Proceedings of the Fifth International Workshop on Database
Programming Languages, Gubbio, Italy. Springer-Verlag, September 1995. (Also appeared as TR
FIDE/95/137).

Mathiske et al. 96: Mathiske, B., Matthes, F., and Schmidt, J.W. On Migrating Threads. Jg. 8, 1996,
Nr. 2. Journal of Intelligent Information Systems.

Mathiske 96: Mathiske, B. Mobility in Persistent Object Systems. Dissertation, Fachbereich Informatik,
Universitdt Hamburg, Germany, Mai 1996. (in German).

Maithes et al. 97: Matthes, F., Schroder, G., and Schmidt, JJW. Tycoon: A Scalable and Interoperable
Persistent System Environment. In: Atkinson, M.P. (Ed.). Fully Integrated Data Environments. Springer-
Verlag (to appear), 1997.

Matthes, Schmidt 94: Matthes, F. and Schmidt, J.W. Persistent Threads. In: Proceedings of the Twen-
tieth International Conference on Very Large Data Bases, VLDB, Santiago, Chile, September 1994, S.
403-414.

Medina-Mora et al. 92: Medina-Mora, R., Winograd, T., Flores, R., and Flores, F. The Action Workflow
Approach to Workflow Management Technology. In: Turner, J. and Kraut, R. (Eds.). Proceedings of the
Fourth Conference on Computer-Supported Cooperative Work. ACM Press, 1992, S. 281-288.

MSMQ95 95: Microsoft Message Queue Server (MSMQ@). A White Paper from the Busi-
ness Systems Technologie Series. Technical report, Microsoft Corporation, 1995.
http://www.microsoft.com/msmq/overview.htm.

13

Orfali et al. 96: Orfali, Robert, Harkey, Dan, and Edwards, Jeri. The Essential Distributed Objects Sur-
vival Guide. John Wiley & Sons, 1996.

Otte et al. 96: Otte, R., Patrick, P., and Roy, M. Understanding CORBA: the Common Object Request
Broker Architecture. Prentice Hall, Englewood Cliffs, New Jersey, 1996.

Rose 93: Rose, Marshall T. MIME Eatensions for Mail-Enabled Applications: application/Safe-Tecl and
multipart/enabled-mail . Internet WWW, 1993. working draft.

Searle 69: Searle, J. Speech Acts. Technical report, Cambridge University Press, Cambridge, 1969.

White 94: White, J.E. Telescript Technology: The Foundation for the Electronic Marketplace. White
paper, General Magic Inc., Mountain View, California, USA, 1994.

Winograd 87: Winograd, T.A. A Language/Action Perspective on the Design of Cooperative Work. Tech-
nical Report Report No. STAN-CS-87-1158, Stanford University, Mai 1987.

14

