

Project Paper

Simple Object Access Protocol

(SOAP)

by: Jack Koftikian

SuperVision from:
Prof. Dr. Joachim W. Schmidt

 2

Table of Contents

1. Abstract 4
2. Motivation 5
3. Introduction 6
4. What is SOAP 7

4.1. Idea behind SOAP 7
4.2. Formal Specification 9

4.2.1. Goals of SOAP 9
4.2.2. SOAP messages 10
4.2.3. SOAP messages with attachments 11
4.2.4. 2 Worlds: IBM vs MSFT 11

4.3. Comparison against other remote access techniques 12

5. Typical properties of a SOAP application 15
5.1. What happens on the Client side 15
5.2. What happens on the Server side 18
5.3. Data exchanged between Client / Server 19

5.3.1. Service Deployment Information 19
5.4. Building blocks of a SOAP application 21
5.5. Functionalities provided by SOAP Libraries 23
5.6. SOAP Security 26

6. Practical demos 28

6.1. Samples provided by SOAP 29
6.1.1. Actual SOAP requests and replies 31

6.1.1.1. Address Book example 31
6.2. Our test samples 33

6.2.1. TaminoServer 34
6.2.1.1. Deployment Diagram of our system 35
6.2.1.2. Class Diagram of TaminoServer 36

6.2.2. Tamino Server Methods 37
6.2.3. TaminoClient 38

6.2.3.1. Comparison of calls to Tamino 39
6.2.3.2. The SOAP Call 40
6.2.3.3. Sequence Diagram 41

7. Results 42
7.1. Where can SOAP be used 42
7.2. Future research 43

8. Summary & Conclusion 44
9. Technical Details 45
10. References 46

 3

Figures

Figure 1 Soap Messages 10

Figure 2 SOAP vs DCOM 12

Figure 3 SOAP Envelope 15

Figure 4 Building blocks of a SOAP application 21

Figure 5 Package dependencies of Tamino Client and Server 23

Figure 6 Request to Address Book 31

Figure 7 Reply from Address Book SOAP server 32

Figure 8 General Diagram of the system 34

Figure 9 Deployment PCs in STS 35

Figure 10 Class Diagram of Tamino Server 36

Figure 11 Activity diagram for a SOAP Call (Tamino Client) 40

Figure 12 Sequence Diagram for a typical SOAP call 41

 4

1 - Abstract:

 This paper focuses on the SOAP protocol which was developed
concurrently by IBM and Microsoft to facilitate client / server communication
using mainly the well-known HTTP protocol to invoke remote objects. SOAP
Stands for: “Simple Object Access Protocol”. SOAP has gained popularity in
this final year.
 The task was to analyze and test SOAP for its functionalities and usage
and try to develop a couple of simple demonstration programs to see SOAP
live. We also tested the supplied sample applications, which proved to be
useful in our research.
 According to the research it is appropriate to give SOAP the following
summarized definition: “an XML / HTTP based protocol for accessing
services, objects and servers in a platform independent manner”.

 5

2 – Motivation:

 The main motivation for this project is the fact that SOAP (Simple
Object Access Protocol) is a new and promising protocol just released by IBM
and Microsoft. At the start of this project there existed only little
documentation on SOAP beyond the specification [SOAP]. A book dealing
with SOAP was released from SAMS publishing. This book dealt mainly with
Microsoft technology and it was not of that importance to the project, since we
were concerned with Java and APACHE-SOAP for Java.

 As it is announced, soon there will be available books for different
topics on SOAP, especially dealing with the Java programming language and
the web.

 The main goal of this project is to further discover SOAP and to find the
ways that we can exploit this technology and make use out of it. Also to test it
and to see it functioning as promised and to find the possible practical
applications that can stem from it.

 We needed to explore the possibilities of SOAP on our own by
examining sample implementations of the protocol [APACHE]. Also we
wanted to test SOAP on a known system like Tamino(1) and to extend the
capabilities of it by SOAP as:

- To create a Tamino Service that can be accessed with SOAP.
- Offer services that are not realized by Tamino (ex: update feature).
- Offer an interface to Tamino which clearly separated the invocation

protocol from the communication protocol (which is not the case for
the original Tamino release).

(1) Tamino: An XML based database created by Software-AG (www.tamino.com). It
comes with a simple Internet browser interface to do the simple main tasks by using
XQL (XML Query Language).

 6

3 – Introduction:

 In this paper, we will try to first introduce the SOAP (Simple Object
Access Protocol) protocol, its origins, specifications and current versions, and
then we will speak about the different ways that we can use SOAP to fulfill our
demands on a heterogeneous network. We will also try to compare SOAP to
other similar remote access protocols (like CORBA and COM).

We will show how the sample applications and our demos worked and
functioned and what we expected from them and what was the outcome.

Finally we will be talking about the possible next steps that research

should be done in, especially in the STS department.

This report is divided into sections. The descriptions of the main ones

are: In section 4 we introduce SOAP generally and theoretically. We also
compare it to other remote access techniques. In section 5 we go deeper into
the SOAP protocol and try to find out how a SOAP client talks to a SOAP
server and what is needed on both ends. Section 6 explains the practical part of
SOAP. We demonstrate here how we tested SOAP and what kind of extra
functionalities we could add to existing applications using SOAP. In section 7
we talk about our results and what can be done in the future to research more
the SOAP protocol.

Note: Paragraphs in italics in this report indicate that they were copied exactly

from the given reference or resource (citations).

 7

4 -What is SOAP ?

SOAP stands for “Simple Object Access Protocol”, a relatively new

protocol for distributed applications developed by Microsoft, IBM,

DevelopMentor, and UserLand.

SOAP is highly “flexible“ and can support different applications;

however, the most important one is to enable remote procedure calls (RPC)

over HTTP using XML.

SOAP is an XML-based object invocation protocol and was originally

developed for distributed applications to communicate over HTTP and through

corporate firewalls and it was meant to access services, objects and servers in a

platform-independent manner.

The original SOAP specification (1.0) outlines two major design goals

1- Provide a standard object invocation protocol built on Internet standards,

using HTTP as the transport and XML for data encoding.

2- Create an extensible protocol and payload format that can evolve. [SOAP]

A later 1.1 specification states: “A major design goal for SOAP is simplicity

and extensibility”. [MSFT]

4.1 – Idea Behind SOAP:

The world-wide-web is evolving from Web sites that simply serve up

Web pages into dynamic Web services that interactively perform tasks

involving multiple steps executed on a user's behalf. These tasks may require

one Web service to call on other Web services, coordinating the steps much

like a traditional software program executes commands. The problem today

is that integrating with other services and touching different devices remains

difficult, because tools (like CORBA or COM) and common conventions for

their interconnection are relatively difficult to manage. What the Web needs

is a common way to tie all these services together.

 8

Historically, the solution for creating this kind of rich application-to-

application communication has been to employ an object model such as

Microsoft's DCOM or the Object Management Group's Internet Inter-ORB

Protocol (IIOP) which is part of the Common Object Request Broker

Architecture (CORBA). But these technologies have some limitations when

it comes to creating Web services. In particular, DCOM and IIOP/CORBA

are rich environments, which means that implementations and applications

that use them tend to be complex and symmetrical. In other words, to build a

distributed application using them, we typically need the same distributed

object model running at both ends of the connection. But, the Internet

doesn't guarantee what specific kind of client or server software is running at

the other end of the connection; often the only common kind of

communication channel available is just an HTTP-connection.

The problem with HTTP alone is that it is mainly a mechanism for

passing files from server to client. To create more ambitious Web services, it

is needed to extend HTTP. SOAP does exactly that: it adds a set of HTTP

headers and a rich XML payload to enable complex application-to-

application communication over the Internet. [MSFT]

The main idea behind SOAP was to:

- Improve Internet interoperability

- Integrate various business systems

DCOM and CORBA are considered as being too complex especially on

the client side. SOAP will do better because it is simple, easy to use on top of

existing communication protocols, based on XML and is implementation-

independent.

SOAP is a very simple protocol that relegates most of the "real" work to

an underlying service or component model. It is not a replacement for COM or

 9

Enterprise JavaBeans or even CORBA components--it is simply a wrapper

technology to make those services more accessible over the Internet. [CNET]

Since SOAP is based on XML, it's compatible with many programming

models and allows businesses to easily exchange data with each other over the

Internet. In practice, most companies build and run a mix of applications and

distribution technologies built using COM, CORBA, Java RMI, and other

technologies. A protocol that gives companies greater freedom to link systems

both internally and across the Net with other companies is expected to be

welcomed warmly. [CNET]

4.2 - Formal Specification:

(From IBM and Microsoft website) [MSFT]

SOAP doesn’t care about:

o Operating System

o Programming Language

o Object Model

SOAP extends HTTP with:

o Headers: to identify that it’s a SOAP message

o XML payload: that contains the actual data

This is to enable complex app-app communication over the net. The HTTP

header describes the object to be activated.

- HTTP only supported in SOAP version 1.0.

- SMTP support in SOAP version 1.1.

4.2.1 Goals of SOAP:

- Provide a standard object invocation protocol built on Internet

Standards using HTTP as the transport & XML for data encoding.

- Create an extensible protocol & payload format that can evolve over

time.

- No distributed garbage collection, type safety or versioning.

- No bi-directional HTTP communication.

 10

- No message box-caring or pipeline processing.

- No Object by reference.

- No Object activation.

(The last five goals or objectives are programmer specific that go unnoticed

from most users. For more information check the reference [SOAP])

- SOAP works on existing Internet Infrastructure. (Routers, firewalls,

proxy servers)

- A program needs only to know how to format a SOAP request.

- A programmer should be able to implement SOAP in a couple of

days in any programming language as long as the client sends a valid

SOAP request.

- Cost of implementing SOAP will be a small price to pay for

universal interoperability.

4.2.2 SOAP Messages:

SOAP defines 2 kinds of messages: CALL & RESPONSE.

A typical scenario is shown in the following figure 1:

Figure 1: SOAP Messages

Because SOAP requires No Object Model à SOAP can be implemented in any

language, as long as the client sends a valid SOAP request (that is, passing

along the appropriate parameters to an actual remote endpoint on the server).

 11

4.2.3 SOAP Messages with Attachments:

Summary: Binding a SOAP message to be carried within a MIME

(multipart/related) message.

Idea: Send a SOAP message with attached binary data (images) using

MIME.

Rules: -The primary SOAP message must be carried in the root body

part of the Multipart/Related structure.

- MIME parts must contain either:

§ A content-ID

§ A content-Location

Objective: - Extending SOAP capabilities to be applied in new

applications.

4.2.4 Two Worlds: IBM vs Microsoft:

 The main creators and drivers of the SOAP specification are IBM and

Microsoft, and as usual, each industry tries to focus on its tools to develop

SOAP applications. The main tools that both companies created are:

- MS SOAP SDK and IBM's SOAP4J toolkit.

They are both compliant with the SOAP specification. When comparing both

tools, users have found the following:

- On stability & compatibility IBM proved superior, but Microsoft’s

tool is easier to use and to program with.

IBM donated its code to APACHE and hence it is public now and can be

further improved more quickly as user support increases for it.

 Some examples on the net for working interoperable systems include:

• Microsoft-based SOAP client talking to Apache-based SOAP server.

• Microsoft-based SOAP client talking to Perl-based SOAP server.

• Java clients talking to Microsoft-based SOAP servers.

• Java clients talking to Perl-based SOAP servers.

And they all worked, as claimed by the authors!! [DEVX]

 12

 In the project work we used the APACHE / IBM SOAP 4 JAVA

libraries to test our Client and Server SOAP applications. We will talk about

them more later in the report.

4.3 – Comparison Against Other Remote Access Techniques:

DCOM and CORBA provide rich application-to-application

communication. This is usually complex and symmetrical (need same

platform...etc.). SOAP promises to overcome these problems. The following

(figure 2) shows the interaction between the server and a client for both DCOM

and SOAP. The structures look similar, but SOAP gives us greater platform

and location independence. This is due to the fact that SOAP uses HTTP as

transport protocol and the data carried is in XML format, which is human-

readable, whereas DCOM or CORBA use their own binary format to transport

data which is much more complicated to debug or understand. This also means

that they need special infrastructure: [DEVX]

Figure 2: SOAP vs DCOM

In the above figure NDR stands for Network Data representation, which is a

DCOM specific binary data exchange format.

The following table 1 shows the differences between SOAP and DCOM

but also is a good source to understand more about SOAP and its advantages:

[DEVX]

 13

Feature SOAP DCOM

Ease of use HTTP and XML make for easy implementation and
debugging. Text-based representation of
information allows for easy deciphering of method
calls and return results.

Creating COM objects for Windows
using ATL, MFC, or VB is fairly
easy using the Visual Studio tools.
Enabling those objects to be called
remotely through DCOM requires
additional, difficult administration
tasks.

Cross-

platform

support

Being based on Internet specifications allows
SOAP to be supported on any computer platform.
Interoperability between different SOAP-enabled
computer systems is a definite reality.

Although DCOM has been ported to
other platforms and has been
submitted to the W3C for standards
approval, it has been used only for
Windows applications. Cross-
platform communication using
DCOM is not a common sight.

Binary Data XML has not addressed embedding binary data
within an XML document. Some proposed
approaches: (1) encode binary data as text using
something like binhex, (2) reference the binary data
as an attachment, or (3) encode the data as an array
of simple types. Option 1 would increase the size
of transmitted data by more than 33 percent, option
2 would run into problems with cross-platform
endian differences, and option 3 would be large to
transmit.

DCOM allows for the transmission
of binary data and handles the
ordering of the bytes for endian
correctness using standard
marshaling. Custom marshaling
adds an additional mechanism by
which the DCOM object and its
proxy can exchange data in a
custom, proprietary format. Custom
marshaling is advantageous when
the object designer wishes to expose
an interface that would be easy to
use but would suffer performance
penalties when remoted over a
network.

Object

Identity and

lifetime

SOAP itself does not mandate any object
identity other than a URL endpoint. This
means the SOAP objects must be stateless or
the SOAP server must maintain state for the
client using cookies, special object identities
within the SOAP calls, or identifiers in the
URL string. Lifetime of SOAP objects on the
server becomes an issue if the server is
maintaining state. The server, with no means
to determine if the client process has gone
away, will need to timeout the object to
reclaim its resources.

DCOM inherently employs
object identity through the use
of CLSIDs and server names
using CoCreateInstanceEx.
Object lifetime is also directly
controlled by the client using
AddRef and Release calls on the
object, and indirectly by the
server with a pinging and
timeout mechanism.

Pointers to

objects

SOAP has an identity mechanism to
embedded subobjects of other objects. The
downside of this approach: The entire
contents of the subobject need to be passed
instead of merely a pointer to the object. A
SOAP method that wants to pass a pointer to
an object would need to pass the URL of the
object as a string. The receiving application
would need to understand that the string
actually represents a pointer to another SOAP
object.

Interface methods for a DCOM
object can return pointers to
other interfaces. This pointer
passing is fully supported by
DCOM as long as the interface
pointer being passed can also be
remoted.

Protocol

Transports

Although SOAP defines HTTP as the protocol
for transmitting method calls, the SOAP
specification hints that using other transports
such as SMTP or MSMQ is not inconceivable.
Using an asynchronous protocol such as
SMTP or MSMQ would require the SOAP
method calls to be unidirectional.

DCOM is inflexible in its
transport and encoding rules.

Table 1

 14

The main drawbacks of CORBA and DCOM are the configuration

complexity and the relatively complicated security model that render them

tough to get to work within a LAN, and nearly impossible to deploy over

firewalls. This is what SOAP promises to solve and does it excellently. It mixes

the power of remote procedure calls (RPCs) with the flexibility of XML, using

HTTP as the underlying protocol that can be used from almost anywhere.

DCOM is highly efficient and flexible, but also highly complicated. One

of the primary benefits of SOAP, on the other hand, is that its power does not

come at the expense of simplicity.

The main first drawback of SOAP is the relative high footprint and

parsing overhead involved in processing SOAP request compared to an

equivalent DCOM or JAVA RMI method invocation. This is the result of using

a hierarchical textual language as XML. This parsing overhead affects

processor requirements and not call execution time, but the fact that SOAP was

meant to be used on the internet brings the good news, since message

transmission time over a WAN surpasses the amount of time it takes to parse

the XML (sometimes this is a disadvantage also!).

 15

5 - Typical Properties of a SOAP Application:

 In the following we will be describing about how to implement a SOAP

client/server system according to our project work, which was mainly using

Apache SOAP for Java. So the clients and servers were written in JAVA.

5.1 - What happens on the Client side?

 The main idea in SOAP for a client is to formulate the right SOAP

message and to send this message in a CALL to the Server. Client needs to

write an appropriate SOAP Envelope and put in it an optional Header and

mandatory Body. The actual message is encoded in XML format. Figure 3

shows how a SOAP call is formatted:

Figure 3: SOAP Envelope

The following is a sample HTTP CALL message with SOAP:
Example 1:

POST /StockPrice HTTP/1.1 // HTTP HEADER
Host: www.stockpriceserver.com //This is the header part which
Content-Type: text/xml //states the content type and
Content-Length: nnnn //length. Also the server URL

<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema/instance/"
xmlns:xsd="http://www.w3.org/1999/XMLSchema/"> //Envelope & Headers
 <SOAP-ENV:Body> //Start of SOAP Body

<ns1:getAddressFromName xmlns:ns1="urn:AddressFetcher" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <nameToLookup xsi:type="xsd:string">John B. Good</nameToLookup>
 </ns1:getAddressFromName>
 </SOAP-ENV:Body> //End of SOAP Body
</SOAP-ENV:Envelope> //End of SOAP Envelope

The <symbol> element contains the actual parameter that is being passed.

 16

And here is the response to it:

HTTP/1.1 200 OK //
Content-Type: text/xml // HEADER
Content-Length: nnnn //

<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema/instance/"
xmlns:xsd="http://www.w3.org/1999/XMLSchema/">
 <SOAP-ENV:Body> //Start of SOAP Body
 <ns1:getAddressFromNameResponse xmlns:ns1="urn:AddressFetcher"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <return xmlns:ns2="urn:ibm-soap-address-demo"
xsi:type="ns2:address"> //Return Element
 <city xsi:type="xsd:string">Anytown</city>
 <state xsi:type="xsd:string">NY</state>
 <phoneNumber xsi:type="ns2:phone">
 <areaCode xsi:type="xsd:int">123</areaCode>
 <number xsi:type="xsd:string">7890</number>
 <exchange xsi:type="xsd:string">456</exchange>
 </phoneNumber>
 <streetName xsi:type="xsd:string">Main Street</streetName>
 <zip xsi:type="xsd:int">12345</zip>
 <streetNum xsi:type="xsd:int">123</streetNum>
 </return>
 </ns1:getAddressFromNameResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

An example using Apache Java for SOAP is the following:

1. Build the CALL:
Example 2:

 Call call = new Call();
 call.setTargetObjectURI("urn:test");
 call.setMethodName("calcTest");
 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);
 URL url = new URL
("http://localhost:8080/soap/rpcrouter.jsp");

 //send the parameters
 Vector params = new Vector();
 params.addElement(new Parameter("value1", String.class,
first, null)); //first contains a string (“Hello”)
 call.setParams (params);

 So basically we create a new instance from the CALL class and then

specify our target method name, the target object URI (which acts like an

identifier, which we will talk about more later in the report). We also set the

Encoding Style URI, here it is set to: “NS_URI_SOAP_ENC” which is the

 17

default for common simple types (here the parameter is: the Java Type

STRING). We add all the parameters to a vector and invoke the Call. xxx

 This Java interface hides away the complexities of writing the actual

Call although one can still make mistakes that can only be found out during the

actual call invocation. How the call is routed and reaches its destination is

another question that we will deal in the “Data exchange between Client and

Server” section later on. The Apache SOAP API provides lots of other useful

classes for SOAP calls and requests which are discussed in the “Functionalities

Provided by SOAP Libraries” section.

2. Send the Call and get the Response:
//invoke the call by specifying the url of the router
//server(rpcrouter in our case).
 Response resp = call.invoke(url, "");
 Parameter result = resp.getReturnValue ();

//print the response to standard output
System.out.println (result.getValue ());

Of course this code is stripped of Try and Catch keywords and other checking
statements for simplicity reasons here.

 18

5.2 -What happens on the Server side?

When we send our Call it is “somehow” routed to the server, which is in

our case, basically a Java object that is waiting for its method to be invoked. It

doesn’t care if this invocation comes locally or remotely, it will function in the

same way. For the above Example 2 where we made our call, an appropriate

Test Server class would be the following:
class addTest
{
private String result;

 //method that returns the result

 public String calcTest(String a)
 {
 result = a + " SOAPworked";
 return(result);
 }
}

 As we notice that the target method name is calcTest as we indicated in

our call. Also the return is of type String, which is a simple SOAP type. Our

server class looks like a normal Java class, no special keywords or methods are

added to show the fact that this is a SOAP server! But still a main question

remains which is:

 “How the Client Call finds the Server which is located somewhere on

the internet and who is routing this method calls?” This will be answered in the

next section.

 19

5.3 - Data exchanged between Client and Server:

 The actual data that is exchanged between the client and server in SOAP

is in XML format, but as we are using Apache SOAP for Java, this means that

Java raps up the data in an object to be able to forward it between its methods

and this object is of type “Parameter”.

 For the Apache/IBM implementation, every time we create a SOAP

service that will act like a server for any SOAP requests, we have to deploy it

as a service using the supplied Deployment Manager (which is also considered

an XML-SOAP administrative tool). The Deployment Manager takes care of

all the deployed services and it is installed in the web server. This is done to

assure the proper routing of calls since the Depolyment Manager makes sure

that each identifier uniquely identifies a service with its different parameters

(ex: Java Class, Method names, encoding types…etc.)

With the IBM-SOAP Administration Tools it is possible to use a Web
browser to deploy and un-deploy services and to review the list and the
definitions of the services deployed on a given SOAP server.

The options are:

• Deploy to deploy a new service.
• Un-deploy to remove a deployed service.
• List shows the list of services currently deployed in the server.

5.3.1 Service Deployment Information:

We review here the information that defines a deployed service. This
information must be provided when using the Deploy function, and can be
browsed using the List function. It is refered to this information as "properties"
of the service.

• ID. An URN uniquely identifies the service to clients. It must be unique
among the deployed services, and be encoded as a URI. We commonly
use the format: urn:UniqueServiceID . It corresponds to the target
object ID, in the terminology of the SOAP specification.

• Scope. Defines the lifetime of the object serving the invocation request.
This corresponds scope attribute of the <jsp:useBean> tag in the
JavaServer Pages. It may thus have the following possible values:

 20

o page: the object is available until the target JSP page (in this
case the rpcrouter.jsp) sends a response back or the request is
forwarded to another page

o request: the object is available for the complete duration of the
request, regardless of forwarding.

o session: the object is available for the complete duration of the
current Java session.

o application: any page within the application may access the
object. In particular, successive service invocations belonging to
different sessions will share the same instance of the object.

It is important to observe that the value of this attribute can have
important security implications. The page and request scopes assure
the isolation of successive calls. On the other extreme, application
scope implies that all service objects are shared among different
users of the SOAP server.

• Method list. Defines the names of the methods that can be invoked on
this service object.

• Provider type. Indicates whether the service is implemented using Java
or a scripting language.

• For Java services, Provider class. Fully specified class name of the
target object servicing the request.

• For Java services, Use static class. If set to "Yes" the class method that
is made available is a static method, and thus no object will be
instantiated. When static invocation is used, the "scope" property is not
applicable.

• For script services, Script language. Indicates the scripting language
used to implement the service.

• For script services, Script filename. Name of file containing the script,
or

• For script services, Script. The actual script to run.
• Type mappings. In order to control the serialization and deserialization

of specific Java types to and from XML in a particular encoding style, it
may be necessary to provide serialization and deserialization classes
that know how to perform the correct conversions for those types. The
XML-SOAP server already includes serialization classes for most basic
types in the SOAP encoding style, as well as a Bean encoding class that
can provide a generic serialization of a bean in terms of its properties. It
also includes XMI serializer/deserializer classes to support the XMI
encoding style. Since different types may require additional support for
correct serialization, the XML-SOAP maintains a registry of Serializers
and Deserializers. The registry is accessible to service administrators
through the XML-SOAP administration tool, as well as through a
program API. In order to register a (de)serializer class, the class must
implement the Serializer or Deserializer interfaces. [SOAP]

 21

 After the service is deployed all its information is in place, then it is

logical to store this information so that it can be retrieved next time the Server

is initiated. Here Apache uses a JSP page that calls the appropriate SOAP

methods to do the job. This is the rpcrouter.jsp file found in the Webapps

directory under SOAP. It calls the Pluggable Configuration Manager that is

responsible for saving the current list of deployed services so that when the

SOAP server is restarted the services will not need to be redeployed again.

 Rpcrouter creates an instance of the SOAP class ServiceManager. Then

adds all the deployed services to an Array that can be retrieved using the List()

method or can be used for undeployment using the undeploy() method. So

when a client invokes a SOAP Call, this call is handeled by the Rpcrouter and

its ID is checked to find the appropriate service in the ServiceManager, and

when the Target Method exists then the Call is made and result is returned to

the calling client.

5.4 - Building blocks of a SOAP application:

 The following figure would illustrate what is the complete cycle of a

SOAP message request, also, which SOAP building blocks it passes through

(Figure 4):

Figure 4: Building blocks of a SOAP applicaiton

 22

In figure 4 some blocks are not necessary as the “FireWalls”. They are

there just to demonstrate that SOAP can go through proxies and firewalls.

 The “Smart Proxy” is actually the set of classes, which you use to create

a request. In our sample application this is the CALL and PARAMETER

classes as is described in 6.2.3.2.

 The “URL connection point” is the RPC Router in our case, which we

talked about previously.

Also there exists an XML parser on both ends of the communicating

parties, which indicates that the SOAP envelope is in XML format and parsers

are needed to translate it into the DOM tree.

 As it is obvious from the figure that SOAP is using only HTTP and

doesn’t need any other protocols to help the message go through.

5.5 - Functionalities provided by SOAP Libraries:

The actual functionalities that the SOAP Apache Libraries provide are numerous, we will just present some of them. In the

following figure we show the dependencies of our Tamino Server and client on SOAP classes: [SOAP DOC]

Figure 5: Package dependencies of Tamino Client and Server

 24

CLASSES & FUNCTIONALITIES:

The most important ones, that one can use almost often, or the ones that

introduce interesting functionality to the SOAP protocol are [SOAP DOC]:

Call: this class provides the main functionality for calling a remote

method. It helps to construct the call, set the encoding style, set the SOAP

mapping registry if need be. Finally it invokes the Call. A Call object

represents an RPC call.

DeploymentDescriptor: This class represents the deployment

information about a SOAP service.

DOM2Writer: This class is a utility to serialize a DOM node as XML-

string.

 HTTPUtils: Provides the HTTP post method.

 Parameter: A Parameter represents an argument to an RPC call.
Parameter objects are used by both the client and the server.

 Response: A Response object represents an RPC response. Both the
client and the server use Response objects to represent the result of a method
invocation.

 RPCMessage: An RPCMessage is the base class that Call and
Response extend from. Any work that is common to both Call and
Response is done here.

 ServiceManager: This class takes care of deploying, listing and

undeploying the SOAP services. Also it keeps the associating deployment

descriptors.

 SMTP2HTTPBridge: This class can be used as a bridge to relay SOAP
messages received via email to an HTTP SOAP listener. This is basically a
polling POP3 client that keeps looking for new messages to work on. When it
gets one, it forwards it to a SOAP HTTP listener and forwards the response via
SMTP to the original requestor (to either the ReplyTo: or From: address).

 TCPTunnel: A TcpTunnel object listens on the given port, and once
Start is pressed, will forward all bytes to the given host and port.

 25

TypeConverter: A TypeConverter is used to convert an object of one
type to one of another type. The converter is invoked with the class of the from
object, the desired class, and the from object itself. The converter must return a
new object of the desired class.

 TypeMapping: This class keeps all the info about a type mapping: the
encoding style, the XML element type, the Java type that's supposed to map to,
and the names of the Java classes that implement the mapping between XML
and Java.

 XMLParserLiaison: An interface between a client and an XML-parser.

 XMIParameterSerializer: A ParameterSerializer is used to
serialize and deserialize parameters using the XMI encoding style.

 XMLParameterSerializer: An XMLParameterSerializer is
used to serialize and deserialize parameters using the literal xml
encoding style. This class is only capable of serializing/deserializing
parameters of type org.w3c.dom.Element

 26

5.6 - SOAP Security:

SOAP is a new protocol that for cross-platform communication that

can bypass firewall defenses and could leave companies open to what experts

describe as a fresh class of security vulnerabilities.

Currently, developers struggle to make their distributed applications

work across the Internet when firewalls get in the way. Since most firewalls

block all but a few ports, such as the standard HTTP port 80, all of today's

distributed object protocols like DCOM & CORBA suffer because they rely on

dynamically assigned ports for remote method invocations.

SOAP uses HTTP so it can bypass all these firewalls and this is what

causes the worry that SOAP may pose threat to companies, but SOAP traffic

could be filtered even though firewalls are not Soap-aware, since SOAP

messages have a unique HTTP Header field that can be used for this purpose.

The argument against this is that since SOAP doesn’t enforce any kind

of security of its own, people will overlook this problem while programming

and lots of security holes will be left uncovered. [VENU]

A reply to all these claims came from Microsoft and IBM in the

beginning of February 2001, when they submitted an extension to SOAP

called: SOAP Security Extensions: Digital Signature. They proposed a

standard way to use the XML Digital Signature syntax [XML-Signature] to

sign SOAP 1.1 messages. They defined a SOAP header entry <SOAP-

SEC:Signature> for this purpose. XML Encryption and Authentication are

necessary also.

This specification defines the use of XML Signature in SOAP 1.1

headers. As one of building blocks for securing SOAP messages, it is intended

to be used in conjunction with other security techniques. Digital signatures

need to be understood in the context of other security mechanisms and the

threats to an entity.

Digital signatures are, according to the IETF RFC 2828[DIGSIG]: “A

value computed with a cryptographic algorithm and appended to a data object

 27

in such a way that any recipient of the data can use the signature to verify the

data's origin and integrity.”

For example, digital signatures alone do not provide message

authentication. One can record a signed message and resend it (replay attack).

To prevent this type of attack, digital signatures must be combined with an

appropriate means to ensure the uniqueness of the message, such as time

stamps. One way to add this information is to place an extra <ds:Object>

element that is a child of the <ds:Signature>.[SOAP-Security]

 28

6 - Practical Demos:

During the project work we tried to find and test how SOAP will work

with our sample test programs and needs. To start with the installation of

APACHE-SOAP first you need a Web application server that supports servlets

and JSPs. Some of the common choices for a web application server includes:

• Apache Tomcat v3.1
• BEA - WebLogic Application Server v5.1
• IBM WebSphere v3.5
• JRun 3.0
• Microsoft Internet Information Server

SOAP supports all of the above, but for convenience we used Apache

Tomcat v3.1 (see technical details in the end of the report for more

information).

 29

6.1 - Samples provided by SOAP

The SOAP version that we tested had three different samples programs

that show the capabilities of SOAP. It took lots of effort and time to make the

first program run over our system, since this included the complete

understanding of how the whole system works, and which parameters and

server setups are needed, but after that, running the rest of the samples was

relatively easy.

The main sample provided is called: “Address Book”. This program

consists of the server: Address Book, which provided different methods to

access an address book.

Users can:

1- PutAddress(): insert a new address into the address book. It takes as

arguments: the complete address (streetNum streetName city

state zip areaCode) with the name of a person. Then it instantiates

an object of type Address and puts this info in it. It sends this

Address instance with the SOAP Call. Another parameter that it

sends is the name of the owner of this address (which is of type

String).

2- PutListing(): insert a complete XML document into the address

book. It takes as an argument an XML file and it passes it to the

XML parser liason which reads it and puts it as a parameter in the

SOAP Call.

3- GetAddress(): specify a query name and return the matching

address. The name is sent as the SOAP Call parameter. It is of

simple Type String.

4- GetAllListing(): return the whole address book in XML format. No

arguments sent. Just call the right method on the server.

The Address Book is maintained in XML format and saved in a file

called “sample_listings.xml”. All addresses should conform to a certain format,

 30

which is enforced by constructing these addresses from a class called Address.

Also phone numbers in the address book have a separate class called “Phone

Number”, that dictates how a phone number should look like.

Another sample is the “Get Quotes” sample, which can retrieve stock

market quotes. By providing a ticker symbol, the SOAP call is constructed and

sent to the SOAP server, which contacts a predefined server on the internet to

retrieve the information back to the client.

An interesting variant of this Stock service is to send the request to an

SMTP server, which will reply to the provided email address in the SOAP Call.

This functionality of SOAP may open the opportunity into new applications

that may take advantage of this. An example would be serving clients which

are not always connected to a network and it is not critical to get a response

instantly, so they can check the response whenever they want , from wherever

they want !

A third sample is of the “Calculator”. The main idea here is to show

how to make a server do all the calculations and return just a result to the

client. In this case it is a simple task, but this can be extended to more laborious

tasks that can be sent over the Internet to powerful servers to do the job for

slow clients. Here the arguments are of Java type Double, they are 2 arguments

that are sent with the Call, the server does the calculation (plus, minus, multiply

or divide) and returns the result also as a Double value. The server-side object

is a Jave Script file. The client is Java and the server Java script à this is an

example of independence of programming language for SOAP services.

 31

6.1.1 - Actual SOAP requests and replies:

To have a feeling about how the actual data looks like in a SOAP

request and response and also to identify the building blocks of such activities

we present here some sample requests and responses done on the sample data

provided by SOAP1.1.

6.1.1.1. Address Book example:

REQUEST:

The following image shows the request sent to the Address Book server

with a parameter of type String. The request is to “Look Up a Name”. Figure 6

shows the complete request in XML format.

Figure 6: Request to Address Book (XMLSPY)

 The request starts with a declaration that it is of type XML, and then

followed by the SOAP-ENV element to indicate that what follows is an

envelope of a SOAP request. This is followed by declaration of 3 namespaces:

One for the envelope, one for the xsi type and one for the xsd (xsi and xsd are

for XML schemas).

 Then comes the second block which is the SOAP Body. It contains the

name of the remote method (getAddressFromName). The namespace:

urn:AddressFetcher is for the use of RPCRouter. It uses this namespace as a

unique ID to know where to route this request and where the target server

resides also it contains the info for type-mapping. The encodingStyle indicates

how to encode the actual parameters.

 32

 Here the parameter is of type String and the name to lookup its address

is “John B. Good”.

REPLY:

Figure 7 shows the reply to the above request from the address book:

Figure 7: Reply from Address Book SOAP server (xmlspy)

As shown in the figure, the SOAP reply is very much similar to the

request. It also contains the same 3 namespace declarations. It is followed by

the Body where it is obvious that this SOAP message is a response since now

the ns1 field has a value of “getAddressFromNameResponse” and the SOAP

body has a return element.

 33

Then there is the return element, which contains the whole returned

values; in this case it is a complete address composed from (City, State,

PhoneNumber (areaCode, number, exchange), streetName, zip, StreetNum).

6.2- Our Test Samples:

First we tried to make a simple SOAP call, which was to send a simple

Java type, namely a String and on the server side to append another String and

return it back to the Client. The code is the Example 2 in section 5.2. The main

functionalities and building blocks that we had to fix were:

1- Client class: where we had to construct the Call and put the

parameters in it and invoke the right method on the Server

side. xxxx

2- Server class: where the proper class & method had to be

written so that they would return the expected result (in String

format for our case).

3- Run Tomcat.

4- Deploy the service, using the provided server side tool from

Apache. This will enlist the service in the Service-Manager

along with its Deployment Description. By pointing the

browser to http://localhost:8080/soap one can deploy services,

list current ones, or undeploy old ones.

5- Run the Client program and wait for the response…
This trial worked successfully and we got the returned String in the correct

format.

 34

6.2.1 TaminoServer:

 We tried to test SOAP with the Tamino database which is an XML

based database developed by Software AG (www.tamino.com). We used

SOAP to find out if we can query this XML based database, delete some

entries, add entries, or implement new features into it, like updating the

database.

Note: It should be noted that we use the term TaminoServer for our SOAP

service. Technically there exists a default Tamino Server in the Tamino

database that has nothing to do with SOAP and shouldn’t be confused with our

TaminoServer(SOAP service) mentioned in this paper.

The following figure 8 shows all the clients and server that we needed

for the job to be done.

As it is shown in the above figure, data exchanged between the main 2

parties is in XML. Also the TaminoServer uses native XQL to communicate to

the Tamino Database.

•TaminoClientDel

•TaminoClientDelId

•TaminoClientQ

•TaminoClientQSt

Tamino Clients

Methods
-delEntry
-delEntryId
-callTamino
-callTaminoSt
-insertEntry
-updateEntry

RPC –
ROUTER
(jsprouter)

Tamino Server

Tamino
XML
Database

XQL

Soap: Call &
Response

Figure 8: General Diagram of the system

Java Call

 35

 The most important concept above is that, the 4 main entities can reside

anywhere on the Internet and still they should be able to communicate to each

other since they are using SOAP as a protocol.

6.2.1.1 - Deployment Diagram of our system:

 In the STS department we deployed the system as showed in Figure 9:

Figure 9: Deployment PCs in
STS

 36

6.2.1.2 - Class Diagram of TaminoServer:

The following is a Class Diagram (Figure 10) for the TaminoServer:

As we can see from the diagram, that the Server has six methods that

can be performed on Tamino. UpdateEntryId is the new functionality that

Tamino doesn’t have originally. It uses insertEntry and delEntryId to complete

the functionality.

Figure 10: Server Class

TaminoServer

elm:NodeList
nothing:String
value:String

+delEntry(String CollectionName):String

+delEntryId(String CollectionName, Int Id):String

+callTamino(String XQL):NodeList

+callTaminoSt(String XQL):String

+insertEntryId(String XML, String CollectionName, int

Tamino Id):String

+updateEntryId(String XML, TaminoId):String

database:String

 37

6.2.2 - Tamino Server Methods:

- delEntry (String collectionName): This method takes the String

argument collectionName, then opens an URLconnection with the

Tamino database and tries to delete the whole collection. It returns to

the client the Tamino message returned by the database itself, which

shows if the deletion was successful or not.

- delEntryId (String CollectionName, int TaminoId): This method does

the same thing as the above one, but this time it takes the TaminoId

as an argument too. So it tries to find a specific entry in a specific

collection in the Tamino Database. It also returns to the client the

Tamino message in a String format.

- CallTamino (String XQL): this method takes a String argument

which is the XQL query, then forms the appropriate Tamino query

and sends it to Tamino using a URL connection. It gets the result in

XML format from Tamino. It creates a NodeList from this result and

sends it back to the client.

- CallTaminoSt (String XQL): this method does the same as the above

one, but instead of creating a NodeList to return to the client, it

appends all the result in a StringBuffer, converts it to string and

sends it back to the client. We only implemented this method for

testing purposes.

- InsertEntry(String XML): This method would send an XML string to

be entered into the Tamino database. It would return a success string

to let the client know of the result

- UpdateEntryId(String XML, TaminoId): This method uses

InsertEntry and delEntryId to fulfil its task. First it retrieves and

deletes the entry in question, then inserts the new and updated one

back into Tamino. This functionality was not available without using

SOAP.

 38

Note: The Tamino Database URL is a local variable in the server that

can be accessed using the methods setDatabase(string DB) and

getDatabase. It is by default set to the Test database that we have. This

setting will stay for the life of the current session.

6.2.3 - Tamino Client:

 To call the TaminoServer methods using SOAP, we write the

following clients:

- TaminoClientDel: this client needs a CollectionName as a parameter

to incorporate it in the SOAP call and try to delete the whole

collection. It calls delEntry, its counterpart, on the server side to do

the job.

- TaminoClientDelId: This client requires from the user 2 arguments,

the Collection name and the tamino id. It calls delEntryID on the

server side.

- TaminoClientQ: takes an XQL string as the input from the user and

calls callTamino on the server side. It accepts return of type

NodeList. So the return is completely in XML format to be processed

by the client later for other uses.

- TaminoClientQSt: Same as TaminoClientQ. It calls callTaminoSt

that returns the result in a whole string that can be displayed easily.

This client was constructed for testing reasons to see Tamino

working. An XML return is of more use than String one.

Note: Actually we can combine the whole of the above clients into one client

that can have a nice user-interface which can make type checking and prevent

errors and be user friendly. The unified client would enable us to: Query,

Delete, Update or insert elements directly into Tamino.

The current Tamino Interface supplied by Software AG ™ can’t do all

those operations. Users must type directly XQL queries into it and should know

how to format their queries to perform right. Using Java and SOAP enables us

 39

to hide away the complexities from the user and ensure a correct working of the

system.

6.2.3.1 - Comparison of calls to Tamino:

1- Direct Call: if we use the Tamino Interactive Interface then

one can invoke a query on Tamino from a normal browser

using the following XQL(our Tamino server is on PC 23 in

STS): http://pc23.sts.tu-harburg.de/tamino/test?_XQL=test.

2- Local Call: If a user that reside on the same machine as the

TaminoServer class then he would invoke it as a normal Java

call. Ex: callTamino(test).

3- SOAP Call: For SOAP first we would need to deploy the

service as we described in section 5.3.1. Then from a SOAP

client we need to format the Call as in section 5.1. Then we

make a Java Remote method invocation and get the result

back. An Activity diagram for constructing the call is in Figure

11 and the whole system in the sequence diagram in figure 12.

The main idea in the SOAP call is that it separates the invocation

procedure (Call) from the communication protocol. With the SOAP server, we

can access Tamino from any point on the network. We don’t need to install

special Tamino client software on our side. All we need is to know how to

format the SOAP call and to invoke the right methods, which should be

published from the server side anyway to be usable.

 40

6.2.3.2 - The SOAP Call:

 The following activity diagram shows the steps to construct a Call for a

SOAP service:

Figure 11: Activity diagram for creating a SOAP Call (Tamino Client case)

 41

6.2.3.2 - Sequence Diagram for the system:

The following Sequence diagram shows another view for how a

message is passed from a client to the SOAP server, especially in our

TaminoClient case.

The JSP page or the RPCRouter routes the SOAP calls to the

appropriate SOAP service using the namespace identifier that was assigned

during deployment.

Figure 12: Sequence Diagram for a typical SOAP call

 42

7- Results:

7.1 - Where can SOAP be used:

As it is obvious, SOAP should be used when interoperability is of

importance. Currently the execution time of SOAP requests takes longer than

of a DCOM or a CORBA one. This is due to the fact that parsing of the XML

data requests with current parsers take time. This is overshadowed by the fact

that transmission times on the Internet in particular and networks in general

take time.

SOAP is the key to connecting different type of platforms and networks

together. This will prove important in lots of fields like:

- Databases: where different databases will be able to talk to each

other and exchange information in a known and common format:

namely XML.

- E-Commerce systems: currently there are lots of different vendors

for e-commerce packages, specially the B2B ones. Each use their

own programming ideology to implement the system. SOAP will

certainly help these different systems and companies to exchange

information more easily.

- InterNetworking: Connecting different networks, which are behind

firewalls will be much more easier than before, since SOAP uses

HTTP or SMTP as the transport protocol, which both can bypass

firewalls. Most firewalls have their HTTP port open which is the one

that enables a network to access the Internet, but still for security

reasons they may filter out SOAP packets if needed by scanning for

special header fields.

- Operating Systems: SOAP will prove important in this field also,

since an application written in one OS will be able to invoke methods

in another application in another OS, which may be implemented

 43

totally in a different programming language. As long as both systems

talk HTTP and use XML this is feasible.

7.2 - Future Research:

From our research in STS and from what have been already the trend in the

programming world we would expect SOAP to be researched and used in the

following fields.

1- ebXML: Lots of e-commerce companies are already integrating SOAP

into the next Messaging Services Specification, ebXML. This development

by ebXML will result in an open, widely adopted global standard for reliably

transporting electronic business messages over the Internet.

The ebXML Messaging Specification encompasses a set of services and

protocols that allow an electronic business client to request services from

electronic business servers over any application-level transport protocol,

including SMTP, HTTP and others. ebXML defines a general-purpose

message, with a header that supports multiple payloads, while allowing digital

signatures within and among related messages. Although the header is XML,

the body of the message may be XML, MIME or virtually anything digital.

It would be of interest to see how this will be done by the industry and how

one can use it and take advantage of it.

[http://lists.w3.org/Archives/Public/xml-dist-app/]

2- pocketSOAP: This is the specification for SOAP to be used on pocket

PC’s. This is a SOAP client COM component for the Windows family. This

would be an intresting field if it develops to be used with the other OS’s also,

like PALM OS or LINUX for hand-held PC’s.[MSFT]

3- SOAP/EJB/CORBA interoperability: This should be an interesting

field to research in. Since CORBA and EJBs are the current hype and they are

very interesting technologies themselves and it would be of use to know how

SOAP will interoperate and function with them.

 44

7- Summary & Conclusion:

From our research we would conclude that SOAP will be a major

player on the networking field. Lots of companies are already adopting

it and trying to create tools for it and integrating it with current systems.

Still some work needs to be done concerning security issues and

compatibility issues. SOAP will allow different and foreign machines to

talk to each other in their own native language. This will increase

interoperability between different vendors and systems.

As a result SOAP seems to be a promising protocol that is currently

growing up and soon will be the focus of lots of people.

This research project allowed us to further gain understanding of

how this protocol works and how it can be used for our different

projects and needs. It may be the important link or bridge we were

searching for most of our software system problems. It may prove to be

an important tool to narrow the gap between different database systems

or e-commerce applications.

Still a lot needs to be done to research it more in detail and see how

it will develop more and which technologies will be supporting it next.

 45

8- Technical details:

An Important comment for configuring Tomcat is the following:

Tomcat comes with an XML parser (lib/xml.jar) which has the DOM

level 1 interfaces. Even if you put Xerces 1.1.2's xerces.jar in your

classpath, the wrong interfaces are found by any Java code running in

Tomcat because the shell script / batch file that runs Tomcat puts the user's

classpath at the end. So, you must edit tomcat.sh or tomcat.bin in the bin/

directory and put xerces.jar at the BEGINNING of the classpath the script

builds.

NOTE: For more information consult online documentations at:

http://jakarta.apache.org/tomcat/index.html

 46

10 - References:

1- CNET: http://news.cnet.com/news/

2- SOAP-WRC: http://www.soap-wrc.com/webservices

3- SOAP-Security: http://www.w3.org/TR/SOAP-dsig/

4- MSFT: http://msdn.microsoft.com/soap/default.asp

5- DEVX: http://www.devx.com

6- SOAP: http://www.w3.org/TR/SOAP/ (Submission to W3C)

7- SAMS: Understanding SOAP, The Authoritative Solution, by

Kennard Scribner and Mark C. Stiver. 2000, by SAMS publishing.

8- VENU: http://www.vnunet.com/News

9- Apache: http://xml.apache.org/soap

10- SOAP DOC: http://localhost/soap/docs/apiDocs/index.html

