
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Masterarbeit in Informatik

Analysis and design of a semantic modeling
language to describe public data sources

Branislav Vidojevic

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Masterarbeit in Informatik

Analysis and design of a semantic modeling language to
describe public data sources

Analyse und Design einer semantischen
Modellierungssprache zur Beschreibung öffentlicher

Datensätze

Author: Branislav Vidojevic
Supervisor: Prof. Dr. Florian Matthes
Advisor: M.Sc. Patrick Holl
Date: March 15, 2019

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, March 15, 2019 Branislav Vidojevic

Acknowledgments

First and foremost, I am genuinely grateful to M.Sc. Patrick Holl, my advisor at the Tech-
nical University of Munich, for providing me the opportunity to work on my thesis under
his supervision. Also, I would like to thank him for his guidance, discussions, mentoring,
and continuous support throughout the writing of this thesis.

Next, I would like to thank Prof. Dr. Florian Matthes, my supervisor at the Techni-
cal University of Munich, for his valuable research guidelines and quick responses to my
queries. His supervision was of great help in completing this thesis.

Finally, I want to thank the chair for Software Engineering for Business Information
Systems (SEBIS) for organizing Advanced Seminar and providing other students and me
with appreciated feedback and research guidance.

Finally, I want to thank my family and friends who supported me continuously.

iv

Abstract

Ever since Tim Berners-Lee introduced the Semantic Web term, the research community,
and afterward also the companies, have changed the way how they perceive data on the
Internet. As the Internet expands rapidly, a need arose to organize and interconnect exist-
ing data with the new data that is coming into the Internet. Semantic Web has a significant
influence in this area as it comes in the form of an add-on onto the World Wide Web and
provides a set of standards and protocols for data sharing and reusing across the Internet.
Since utilizing the benefits of Semantic Web could not be as fast as harvesting the benefits
of data sharing, data integration, and remote data access, solutions that use the power of
the Semantic Web are not as widely in use as other solutions. What will be given in this
Master Thesis is an overview of state-of-the-art solutions in the area of data integration
with the emphasis on the handling of semantic metadata. Based on that analysis, we give
a recommendation on how to semantically annotate data that resides in multiple disparate
open data sources. Afterward, we describe the process of implementation of a library,
which can help in solving problems as such. In the end, we utilize the developed solution
in the existing platform for data integration where we describe benefits and downfalls of
solutions that use the Semantic Web.

Keywords

Semantic Web, Data Integration, Data Engineering, Linked Data, Open Data, Web of Data,
JSON, JSON-LD, REST, MIDAS

v

Contents

Acknowledgements iv

Abstract v

Outline of the Thesis viii

1. Introduction 1
1.1. Motivation . 1
1.2. Research Questions . 2
1.3. Research Method . 3

2. Fundamentals 5
2.1. Open Data . 5
2.2. RESTful services . 6
2.3. JSON . 8
2.4. Linked Data . 9
2.5. JSON for Linked Data (JSON-LD) . 11
2.6. Schema.org . 13
2.7. Metadata . 14

2.7.1. Semantic Metadata . 17

3. Related Work 18
3.1. State-of-the-art Solutions in the area of Data Integration 18

3.1.1. Wolfram Data Platform . 19
3.1.2. RapidMiner . 23
3.1.3. Google BigQuery . 25

3.2. State-of-the-art Initiatives in the Open Data community 29
3.2.1. Open Data Initiative . 29
3.2.2. Data Transfer Project . 31

3.3. Key Points . 33

4. Midas Platform 36
4.1. Architecture . 36
4.2. Functional Overview . 38

vi

Contents

4.3. User Interface Analysis . 38

5. Implementation 40
5.1. Technology Stack . 41
5.2. Metadata Model . 42
5.3. Feature Overview . 43

5.3.1. From columnar data representation to tree structure (JSON) 43
5.3.2. Search interface for Schema.org entities 45
5.3.3. Create, Read, Update and Delete Metadata Entities 47
5.3.4. Metadata enrichment . 49

5.4. Deployment . 50
5.5. Documentation . 51

6. Evaluation 52
6.1. The 4-level scoring method . 52
6.2. Results . 55

7. Conclusion 58
7.1. Retrospective . 58
7.2. Future Work . 59

List of Figures 61

List of Tables 63

List of Abbreviations 64

Listings 65

Bibliography 66

Appendix 71

A. Evaluation 71
A.1. Additional charts with score distribution per dataset 71

B. Midatas Metadata Module 75
B.1. List of Dependencies and Versions . 75

vii

Contents

Outline of the Thesis

CHAPTER 1: INTRODUCTION

This chapter introduces the topic of the thesis. It presents the thesis motivation, the objec-
tives, the research questions it addresses and research method that will be applied.

CHAPTER 2: FUNDAMENTALS

In this chapter, we provide a short introduction to Web of Data, in particular, Open Data,
Linked Data, RESTful services, JSON, JSON for Linked Data and Metadata. All concepts
are important so we can fully understand how the Web of Data functions today and what
drives Web to expand and transform continuously. We will show where data resides and
how it is transferred on the Internet.

CHAPTER 3: RELATED WORK

In this Chapter, we give an overview of Data Integration platforms that offer functionali-
ties for managing metadata, in addition to data management and integration. Also, we de-
scribe several platforms of interest in details. We also describe initiatives that are founded
with a purpose to tackle the rising amount of structured and unstructured data that needs
to be exchanged between large entities. Finally, we list key points that are important for a
platform that manages metadata.

CHAPTER 4: MIDAS PLATFORM

This Chapter covers the design architecture of the Midas platform with a description of
each module contained in the platform. Also, we give an overview of all features that
Midas platform provides. In the end, we will give a short description of design decisions
that are taken into account for the development of user interface for Midas platform.

CHAPTER 5: IMPLEMENTATION

This chapter presents the technology stack used in the development of the new Midas
platform module - Midas Metadata module. Also, we give an overview of all the features
that the new module provides. We also describe the deployment process and how module
functionalities are documented.

CHAPTER 6: EVALUATION

In this Chapter, we will propose a simple method for measuring the fitness of an entity
from Schema.org vocabulary to describe an unlabeled property of a dataset. Also, we

viii

Contents

will apply that simple method on 22 Open Data datasets that are supported in the Midas
platform and give comments on gathered results.

CHAPTER 7: CONCLUSION

In this last Chapter, we provide a summary of this thesis with a retrospective onto defined
research questions. Finally, we give potential directions for future work.

ix

1. Introduction

This chapter introduces the topic of the thesis. It presents the thesis motivation, the objec-
tives, the research questions it addresses and research method that will be applied.

1.1. Motivation

Since the start of the ubiquitous use of the internet, we are collecting digital data to en-
able business strategies [1]. In addition to that, a vast amount of data is generated and
published online, in many different formats, structure, quality and accessibility [2]. Many
devices are continually producing and distributing data, e.g., sensors in mobile phones,
cars, smart houses and many more. Increasing data volume does not lead to a simulta-
neous increase in understanding of those data, so the exploration of new methods and
processes is necessary [3].

The phenomenon of processing a vast amount of data nowadays is referred to as Big
Data. Big Data is a term describing the storage and analysis of large and or complex data
sets using a series of techniques including, but not limited to NoSQL, MapReduce, and
machine learning [4]. For some time, many had a misconception that Big Data is a black
box where processing of the enormous amount of data takes place and where the result of
processing is data insights [5]. In practice, data scientists are spending a significant amount
of time to prepare their data for analysis and exploration.

In the process of data preparation, data scientists have to load data from various data
sources, transform data in a way that data is suitable for processing by specific tools and
methods [6]. Getting to know the data may be an extensive process and sometimes requires
a domain expert for data interpretation.

Today, we can find many free datasets, in open format and available for reuse, com-
monly known as Open Data datasets [7, 8]. Even though they are publicly accessible, it
takes time to explore datasets and to check the quality of the data. Some data could be
rated five stars using Tim Berners-Lee scale for data quality assessment [9] but most of the
time, data vary in quality, while the recommendation is to have at least data rated three
stars [10].

To minimize the time needed for getting to know the data and data preprocessing, we
will propose a solution that will leverage the Semantic Web. Therefore, in this thesis, we
study the possibility of using vocabulary Schema.org to annotate Open Data datasets that
can be used to enrich ”local” data. Even though there are many benefits of using semantic

1

1. Introduction

annotations, a substantial amount of work remains to be done to improve the current state
of research in the area of supporting semantic web services [11].

Semantically annotated data is more straightforward to query and manage. It enables
matching of semantically equivalent entities from different datasets thus making it possi-
ble to join disparate datasets. Also, semantically annotated data is more straightforward
to query, because machines can understand semantic annotations. Besides that, it makes
it possible to reuse queries, because queries can reference attributes not only by attribute
names but also by their semantic meaning.

1.2. Research Questions

This thesis will give answers to the following research questions (RQ):

• RQ 1 - How are state-of-the-art solutions handling metadata?

Many businesses today are data-driven. Sometimes using only data is not enough,
so enrichment of data with metadata often takes place. Metadata can be used to
improve internal processes or to provide users with more information. We want to
find out how some data enrichment and data handling platforms are using metadata.
We are interested in why they use metadata, how they store it, what are benefits and
downfalls.

• RQ 2 - How to add metadata to existing columnar data?

Having the data without metadata can make it challenging to add metadata at a
later stage. Making the system that can add metadata to data without disrupting the
existing system seems like a great challenge.

• RQ 3 - Where to store metadata?

Once when we know why we use metadata, which metadata is useful and how to
improve processes, we have to think of where to store metadata and how to manage
it.

• RQ 4 - How to leverage public vocabularies in metadata management?

The usual practice for semantic annotation of data on the Internet is to use some pub-
lic vocabulary to describe data. For that purpose, the creation of many vocabularies
took place, where some are domain specific, and others are formalizing the knowl-
edge about general terms. Some public vocabularies, like Schema.org, are supported
and used by companies whose work affects millions of people.

2

1. Introduction

1.3. Research Method

Design Science Research seeks to find answers for questions of a specific problem domain
by deriving knowledge from the inception and evaluation of an innovative artifact that
provides a possible solution [12, 13]. In Information Systems research, typical artifacts are
models, methods, and prototypical systems [13]. This thesis will be based on the Design
Science Research Methodology (DSRM) of Peffers et al. [12].

Its nominal process sequence consists of six process steps [12]:

• Problem identification and motivation

We have explained our motivation in Section 1.1. While using many data integration
tools, we often had doubts about what some specific attribute of a dataset represents.
Usually, the solution to that problem was mitigated by asking someone who already
knows the datasets or by extensive online search. At that time, we were curious to
see if this problem already has a solution.

• Definition of the objectives for a solution

Section 1.2 contains research question we want to tackle in this thesis. We set our
objectives in relation to the problem definition and our knowledge of what is possible
and feasible, based on the analysis of a variety of industry data integration tools.
By analyzing well-established platforms, we can see the benefits and downsides of
different approaches that are used in those platforms.

• Design and development

Enriched with the knowledge about industry platforms and their solutions, and with
fundamental knowledge about related research areas, we can design and develop a
solution that represents an artifact in the form of a computer software library.

• Demonstration

The functionalities of the proposed solution are explained in this thesis. We pro-
vide examples where it is applicable, with appropriate comments. Also, the solution
created in this thesis is used for making of a live demo showcase.

• Evaluation

In this thesis, we evaluate the proposed solution by annotating 22 different Open
Data datasets. To be able to evaluate our research findings, we propose a scoring
method for measuring if a dataset is properly semantically annotated.

• Communication

In the end, we communicate our research findings so others can benefit from it. Our
research findings are documented in this thesis and the presentation, both publicly

3

1. Introduction

available on the official website of the SEBIS chair. Besides that, the programming
code of the solution created as a result of this thesis is well documented, and it is
possible to extend it further.

Figure 1.1.: Design Science Research Methodology Process Model taken from [12]

The methodology can be approached from different research points, as we can see in
Figure 1.1:

• Problem-centered Initiation - We define problems in current Midas platform solu-
tion that we want to solve;

• Objective-centered Initiation - We propose an artifact (solution) than can help in
overcoming defined problems;

• Design and development-centered Initiation - Through iterative and incremental
development, we provide working prototype that can be used as a solution;

• Client-context Initiation - By utilizing created solution, we solve previously defined
problems.

4

2. Fundamentals

In this chapter, we provide a short introduction to Web of Data, in particular, Open Data,
Linked Data, RESTful services, JSON, JSON for Linked Data and Metadata. All concepts
are essential, so we can fully understand how the Web of Data functions today and what
drives Web to expand and transform continuously. We will show where data resides and
how it is transferred on the Internet.

2.1. Open Data

Open data is the idea that some data should be freely available to everyone to use and
republish as they wish, without restrictions from copyright, patents or other mechanisms
of control [7]. It is a long-lasting mission of many government and non-government insti-
tutions to open data by default.

With the growth of the World Wide Web, Open Data initiative also got traction. As more
content is put on the Internet, a need for data sharing was recognized, and with it, Open
Data initiative was identified as an essential aspect of the World Wide Web.

There are several important aspects that we have to consider when we talk about Open
Data. Sir Tim Berners-Lee, the inventor of the World Wide Web, introduced a 5-star de-
ployment scheme for Open Data [14, 9]:

• 1 star - Make your data available on the Web (whatever format) under an open li-
cense;

• 2 star - Make your data available as structured data (e.g. Excel instead of image scan
of a table);

• 3 star - Make your data available in a non-proprietary open format (e.g. CSV or JSON
instead of Excel)

• 4 star - Use Unique Resource Identifiers (URIs) to denote things, so that people can
point at your data;

• 5 star - Link your data to other data to provide context.

From the scale above we can see that it is relatively easy to make data open. The chal-
lenge is actually to open the data to be always available, under an open license, in the

5

2. Fundamentals

right open source format, structured using URIs with provided context. Today, we have
different regulatory bodies that can certify the quality of data and most of them are using
the 5-star scale as a basis for open data quality assessment. One of those is Open Data
Certificate tool1 developed by Open Data Institute. This tool can create a certificate that
can help others to understand the quality of the data [14].

There are many benefits to making data open. One of the most significant movements
in the Open Data initiative is the opening of government data. Every country collects
and processes data from which many stakeholders may benefit - from citizens, startups,
corporations to state institutions. In many countries, Open Data is identified as a great
opportunity which can drive the economy further in the right direction. One of those
countries is Germany. On July 13, 2017, Germany’s first Open Data law came into effect,
finally enabling free access to government data [15]. It was a result of the 4-year long effort
of many stakeholders. As a law, it can be continuously discussed, adjusted and improved
based on the evolving nature of Open Data and the needs of the Open Data consumers.

Open data has no value in itself; it only becomes valuable when used [16]. Data should
be open by default, but in the way that it can be used to give a value to the user. Also,
by 2020, it is forecasted that European Union will have just under 100,000 Open Data jobs,
which represents a 32% growth over five years 2.

2.2. RESTful services

REST stands for Representational State Transfer, a term coined by Roy Fielding in 2000.
REST is a software architectural style that defines a set of best practices and constraints
to be used for creating Web services. Web services that conform to the REST architectural
style termed RESTful Web services provide interoperability between computer systems on
the Internet [17].

REST service can be called via the Internet by initiating a standardized HTTP method
request with or without payload. It will provide a response in the desired or available
format. HTTP methods that can be used in REST context are[17] 3:

• GET - The GET method means retrieve whatever information (in the form of an
entity) is identified by the Request Unique Resource Identifier (URI);

• HEAD - The HEAD method is identical to GET except that the server MUST NOT
return a message-body in the response;

• POST - Usually used to create a new resource on the remote server. The new resource
is included as a part of the request - request payload;

1https://certificates.theodi.org/en/about/badgelevels (31.01.2019.)
2https://www.europeandataportal.eu/en/highlights/creating-value-through-open-data

(02.02.2019)
3https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html (15.01.2019)

6

https://certificates.theodi.org/en/about/badgelevels
https://www.europeandataportal.eu/en/highlights/creating-value-through-open-data
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

2. Fundamentals

• PUT - Usually used to update existing resource on the remote server by creating a
new version of it;

• PATCH - Used to partially update remote resource;

• DELETE - Used to delete remote resource. It should not have a request payload;

• OPTIONS - This method allows the client to determine the options or requirements
associated with a resource, or the capabilities of a server, without implying a resource
action or initiating a resource retrieval.

By leveraging existing HTTP methods, it makes REST services more accessible to con-
sume and adapt to the current Internet protocols. The list above represents only a rec-
ommendation and desired behavior by following the REST architectural style. This style
helps developers/consumers to interact with remote resources easily.

Several constraints should be taken into account when developing software and using
REST services4:

• Uniform interface - A resource in the system should have only one logical URI, and
that should provide a way to fetch related or additional data;

• Client-server - This means that client application and server application MUST be
able to evolve separately without any dependency on each other. A client should
know only resource URIs;

• Stateless - Server will not store anything about latest HTTP request client made. It
will treat every request as new;

• Cacheable - Caching shall be applied to resources when applicable, and then these
resources MUST declare themselves cacheable. Caching can be implemented on the
server or client side;

• Layered system - REST architecture allows usage of a layered system architecture
where, e.g., organizations deploy the APIs on server A, and store data on server B
and authenticate requests in Server C.

All constraints serve as a guideline to make an extensible and maintainable system that
will be easy to use.

4https://restfulapi.net/rest-architectural-constraints/ (13.01.2019.)

7

https://restfulapi.net/rest-architectural-constraints/

2. Fundamentals

2.3. JSON

JSON stands for JavaScript Object Notation (JSON) and it represents an open-standard file
format5. JSON format is actually a text format and it is completely platform independent.

JSON structure makes it perfect for data interchange. It is a tree-like structure of key-
value pairs. JSON is built on two structures:

• Collection of name/value pairs - In various languages, this is realized as an object,
record, struct, dictionary, hash table, keyed list, or associative array;

• List of values - In most languages, this is realized as an array, vector, list, or sequence.

A value in JSON attribute can be 6:

• Object - It is wrapped in curly brackets; key and a value are separated by a colon, as
you can see in the Figure 2.1;

Figure 2.1.: JSON object structure - taken from https://www.json.org/ (02.02.2019)

• Array - It is wrapped in regular brackets. It represents an array of JSON objects
separated by semicolon, as you can see in the Figure 2.2;

Figure 2.2.: JSON Array structure - taken from https://www.json.org/ (02.02.2019)

• Value - A JSON attribute can also take a primitive value: string, number, boolean or
null.

5https://www.json.org/ (02.02.2019.)
6See 5

8

https://www.json.org/
https://www.json.org/
https://www.json.org/

2. Fundamentals

Figure 2.3.: JSON value options - taken from https://www.json.org/ (02.02.2019)

We can say that today, JSON is a standard data format for data interchange. Almost all,
if not all, programming languages support working with JSON natively or through library
support.

There are many advantages of working with JSON compared to other data format that
is often used as Extensible Markup Language (XML) or Comma Separated Values (CSV).
Compared to XML, JSON has a smaller footprint - there are no closing tags, which makes
JSON almost as twice as lighter, and it also makes it more readable as there are no repeat-
able opening and closing tags. CSV only supports data in a columnar format which makes
it difficult to work with more complicated data structures - e.g., nested data structures,
which JSON supports.

2.4. Linked Data

The concept of Linked Data is based on the idea of linking publicly available data ”silos”
on the Internet utilizing semantic methods and networks [3]. Semantic Web technology
has established a framework for creating a ”web of data” where the nodes correspond to
resources of interest in a domain and the edges correspond to logical statements that link
these resources using binary relations of interest in the domain [18].

Linked Data as a concept emerged when interned stated to increase at a considerable
pace. Many scientists noticed that many data on the Internet are repetitive and that there
should be a way to somehow link one resource to another. It refers to a recommended best
practice for exposing, sharing, and connecting pieces of data, information, and knowledge
on the Semantic Web using URIs [18].

9

https://www.json.org/

2. Fundamentals

“Linked Open Data (LOD) is Linked Data which is released under an open
licence, which does not impede its reuse for free. - Tim Berners-Lee [9]”

If Linked Data is open to everyone, then it represents Linked Open Data. One of the
most significant efforts to create open linked datasets is the DBpedia project [19]. DBpedia
is made of structured information extracted from Wikipedia. The English version of the
DBpedia knowledge base currently describes 4.58 million things 7. Also, there is a Linked
Open Data cloud that consists of datasets published in Linked Data format. There is an
excellent visualization of Linked Open Data cloud that can also be used to explore datasets
by domains8.

The reasoning behind creating Linked Data is not only to reuse existing resources but
also to enable users that are exploring Linked Data to quickly ”jump” from one resource
to another, only by following the hyperlinks. The advantage of the Linked Open Data
approach relies on the possibilities of retrieving and subsequently analyzing data that have
been related through associative links [3]. Another power of Linked Data principles is
that it aligns well with REST architectural style (e.g., one URI point to one and only one
resource), but in practice, those two are not that well-connected [20].

Figure 2.4.: Linked Data Graph [20]

In Figure 2.4 we can see that in the Linked Data graph we have Nodes and Edges. Nodes
7https://wiki.dbpedia.org/about/facts-figures (03.02.2019.)
8https://lod-cloud.net (05.02.2019.)

10

https://wiki.dbpedia.org/about/facts-figures
https://lod-cloud.net

2. Fundamentals

represent subjects or objects and Edges represent properties. A subject is a node with at least
one outgoing edge and object is a node with at least one incoming edge. Graph structure
perfectly suits the structure of Linked Data as we should be able to explore data going
from one Subject/Object to another thus exploring Linked Data.

A critical property of Linked Data format is that all data contained in Linked Data is
well-structured and annotated in a way that Actors (machine systems) when processing
data from Linked Data can interpret data semantically based on connections and prop-
erties - all of which means that machines can understand data without the need for hu-
man interference. Before, computers were passing data around without knowing what
data represents. Machine before could not know what, e.g., ”name” means, but now with
proper annotation in Linked Data machines can understand that ”name” is an attribute of
a Person and that data is textual.

2.5. JSON for Linked Data (JSON-LD)

JSON for Linked Dat (JSON-LD) is a lightweight data format for Linked Data represen-
tation9. It is based on the JSON data format that we have explained in Section 2.3. That
makes it an ideal data format for rich REST web services and data interchange. JSON-LD
is an attempt to create a simple method not only to express Linked Data in JSON but also
to add semantics to existing JSON documents [20].

JSON-LD is designed around an idea of enriching the existing data by providing the
”context” to it. Adding context means that data can be described semantically with pro-
vided relationships with other entities. Many developers are familiar with JSON format,
but not so many developers are familiar with the Semantic Web technologies. Because of
that, massive efforts have been put into JSON-LD so that developers do not have to be
knowledgeable about other semantic Web technologies[20].

To be able to transform JSON into JSON-LD, at least two additional attributes have to be
used [20]:

• @context - It is used to provide a common understanding of unknown terms. It
helps in connecting the JSON attribute with the definition (semantics) from some
vocabulary.

• @id - It serves as an identifier of a Node (Entity). For nodes to be truly linked, the
concept of a unique identifier is essential - dereferencing the @id of a Node, should
result in the entity representation of that Node. Attribute @id is in Internationalized
Resource Identifier (IRI) format, which is a complement to the Uniform Resource
Identifier (URI)10.

9https://json-old.org/ (06.02.2019.)
10https://tools.ietf.org/html/rfc3987 (07.02.2019.)

11

https://json-old.org/
https://tools.ietf.org/html/rfc3987

2. Fundamentals

1 {
2 ” @context ” : ” ht tps ://schema . org/Person . j s o n l d ” ,
3 ”@id” : ” ht tp :// dbpedia . org/resource/John Lennon” ,
4 ”name” : ” John Lennon” ,
5 ”born” : ”1940−10−09” ,
6 ”spouse” : ” ht tp :// dbpedia . org/resource/Cynthia Lennon”
7 }

Listing 2.1: Example of JSON-LD document - modified and taken and from https://

json-ld.org/ (07.02.2019.)

In the Listing 2.1 we can see that this JSON object looks like a regular JSON object,
except the two new attributes, @id and @context. Looking at the @context, we know that the
definition of all attributes will be looked up in the definition of a Person that is contained in
Schema.org vocabulary. Also, we can see that dereferencing the value of the @id attribute
gives all data about Jonh Lennon entity that is contained in DBpedia. Even with the usage
of Linked Data attributes, this JSON-LD object can be treated as a regular JSON object.

JSON-LD can represent Linked Data in several forms:

• Compact - Information about the attributes is contained in the context of the JSON-
LD document. This improves readability, but increases complexity for processing.

1 {
2 ” @context ” : ” ht tps ://schema . org/Person . j s o n l d ” ,
3 ”@id” : ” ht tp :// dbpedia . org/resource/John Lennon” ,
4 ”givenName” : ” John” ,
5 ”lastName” : ”Lennon” ,
6 ”born” : ”1940−10−09”
7 }

Listing 2.2: Compact form of JSON-LD

• Expanded - Information about the attribute is contained in the attribute name. It
makes JSON-LD be in a uniform structure which can help to process the JSON-LD
document, but it decreases readability.

1 [{
2 ” ht tps :// schema . org/givenName” : [
3 {”@value” : ” John”}
4] ,
5 ” ht tps :// schema . org/familyName” : [
6 {”@value” : ”Lennon”}
7] ,
8 ” ht tps :// schema . org/bir thDate ” : [
9 {”@value” : ”1940−10−09”}

10]
11 }]

Listing 2.3: Expandend form of JSON-LD

12

https://json-ld.org/
https://json-ld.org/

2. Fundamentals

Those forms are giving great flexibility of JSON-LD so a user can pick the one that suits
their use case the best. Many libraries can be used for processing JSON-LD, and most of
them support compaction and expansion of JSON-LD documents.

2.6. Schema.org

Schema.org is a community activity with a mission to create, maintain, and promote schemas
for structured data on the Internet, on web pages, in email messages, and beyond [21].

Schema.org became an essential part of the Internet when big companies like Google,
Yahoo, Bing, and Yandex decided to create and maintain a standard set of schemas for
structured data in the Internet [22]. Those well defined and structured schemas together
make a vocabulary, which is used to describe data semantically. It is extensively used for
Search Engine Optimization (SEO). If data in web pages are annotated adequately with in-
formation from Schema.org, it will help search engine to understand better (semantically)
what is the page about. If it is correctly done, it can lead to a better position in search
engine results and also to the more comfortable showing of structured information from
the website in the search engine.

1 {
2 ” @context ” : {
3 ” dct ” : ” ht tp :// purl . org/dc/terms/” ,
4 ”owl” : ” ht tp ://www. w3 . org /2002/07/owl#” ,
5 ” rdf ” : ” ht tp ://www. w3 . org/1999/02/22− rdf−syntax−ns#” ,
6 ” rdfa ” : ” ht tp ://www. w3 . org/ns/rdfa #” ,
7 ” r d f s ” : ” ht tp ://www. w3 . org /2000/01/ rdf−schema#” ,
8 ”schema” : ” ht tp ://schema . org/” ,
9 ”xsd” : ” ht tp ://www. w3 . org /2001/XMLSchema#”

10 } ,
11 ”@id” : ”schema : givenName” ,
12 ”@type” : ” rdf : Property ” ,
13 ” r d f s : comment” : ”Given name . In the U. S . , the f i r s t name of a Person . This

can be used along with familyName ins tead of the name property . ” ,
14 ” r d f s : l a b e l ” : ”givenName” ,
15 ”schema : domainIncludes ” : {
16 ”@id” : ”schema : Person ”
17 } ,
18 ”schema : rangeIncludes ” : {
19 ”@id” : ”schema : Text ”
20 } ,
21 ”schema : sameAs” : {
22 ”@id” : ” ht tps ://schema . org/givenName”
23 }
24 }

Listing 2.4: Schema of givenName property from Schema.org

13

2. Fundamentals

The introduction of Schema.org was a significant step forward for Semantic Web as it
allows a broad range of data, ranging from events and recipes to products and people, to be
annotated with a shared vocabulary which is understood by all major search engines[20].
In the Listing 2.4 we can see scheme for a property givenName from Schema.org. We can
see that it is in the JSON-LD format and that it contains several contexts. Based on several
properties of the givenName schema definition we can see:

• @id - givenName is defined in the context of schema (http://schema.org/);

• @type - It shows that, by rdf context, givenName entity represents a property of some
other entity;

• rdsf:comment - Descriptive information about the givenName entity;

• rdfs:label - Short and easy to read name of the entity;

• schema:domainIncludes - It shows that this property can be found in entities of the
type Person;

• schema:rangeIncludes - It shows that the value of this property should be in the Text
format.

The number of schemas in Schema.org is continually growing. Schema.org as a project
is open-source, and everyone can contribute. The project is hosted in Github11 and new
schemas can be proposed/submitted by creating a pull request. A new schema can be
added to the Schema.org release only if it is a general schema that represents some com-
monly used terms and definitions. The whole project is extensible, and developers can
extract existing schema and extend it to suit their needs.

2.7. Metadata

Metadata is data that describes other data. Meta is a prefix that in most information tech-
nology usages means ”an underlying definition or description” [23]. Metadata was used
even before the phenomenon called the Internet. Organizations who were managing large
amounts of data had to keep registers of data about data for easier finding and processing,
like in libraries. With the development of Internet technologies and increased volume of
data stored online, metadata handling had to be implemented in the online world.

There are various ways to associate metadata with resources [24]:

• Embedded metadata - Resides within the markup of the resource. Digital documents
often have this type of metadata [25]. It can help with struggling to track rapidly
expanding collections of digital media assets such as photos and video clips. One
example is sorting images based on size, type, date taken or some other metadata.

11https://github.com/schemaorg/schemaorg (12.02.2019)

14

https://github.com/schemaorg/schemaorg

2. Fundamentals

• Associated metadata - Maintained in files tightly coupled to the resources they de-
scribe. It gives a possibility to edit metadata without changing the actual resource. It
also increases the complexity of metadata management because some changes may
occur in both data and metadata. It is like having a document filled with informa-
tion when each of the pictures on the computer is taken. That document is easy to
update, but in case of deletion of a picture, information about that picture should be
deleted from the document.

• Third-Party metadata - Maintained in a separate repository by an organization that
may or may not have direct control over or access to the content of the resource.
When some pictures are stored on a computer, some computer program may gen-
erate metadata for easier search or sorting of those pictures. Users of the computer
cannot access to those metadata, but that metadata exists and enables that program
to provide better functionalities. It is a usual practice that some vendors store and
maintain metadata in proprietary file formats and repositories [26].

Depending on the nature of data, infrastructure that handles data and intended usage,
one, or even all three methods, can be used to associate metadata with data resources.

Different types of metadata can be used [27]:

• Descriptive metadata - For finding and/or understanding a resource. It can include
elements such as title, abstract, author, keywords, description etc.

• Administrative metadata

Technical metadata - For decoding and rendering files;

Preservation metadata - For long-term management of files;

Rights metadata - For attaching intellectual property rights to content.

• Structural metadata - Relationship of parts of resources to one another;

• Markup languages - Integrates metadata and flags for other structural or semantic
features within content.

15

2. Fundamentals

Metadata Type Example Properties Primary Uses

Descriptive metadata

Title
Author
Subject
Genre

Publication Date

Discovery
Display

Interoperability

Technical metadata

File type
File size

Creation date/time
Compression scheme

Interoperability
Digital object management

Preservation

Preservation metadata
Checksum

Preservation event

Interoperability
Digital object management

Preservation

Rights metadata
Copyright status

License terms
Rights holder

Interoperability
Digital object management

Structural metadata
Sequence

Place in hierarchy
Data format

Navigation

Markup languages

Paragraph
Heading

List
Name
Date

Navigation
Interoperability

Table 2.1.: Example of properties for different types of metadata and their primary usage -
modified and taken from [27]

Table 2.1 shows example properties and primary uses for various metadata types. List
of properties is extensive, and for the sake of brevity, this Figure shows only a couple of
example properties. Most of the time, we have to combine those types of metadata so we
can adequately provide meta information about the dataset and processes that are using
that dataset. It is essential to make sure that there is a common understanding between
all interested parties of how, when and where metadata is used. There are standards like
ISO/IEC 1117912 that gives the specification of how to implement metadata registry and
apply best practices for metadata exchange with various stakeholders.

12http://metadata-standards.org/11179/ (27.02.2019.)

16

http://metadata-standards.org/11179/

2. Fundamentals

2.7.1. Semantic Metadata

Richly interlinked, machine-understandable data constitutes the basis for the Semantic
Web. Annotating web documents is one of the major techniques for creating metadata on
the Web [28].

As we have seen in the previous section, there are various types of metadata. We use se-
mantic metadata - a combination of technical and structural metadata that uses definitions
from some digital vocabulary in order to describe the semantic nature of the entity that it
is attached to.

The term Self-annotating Web was introduced by Cimano et al. [29]. The idea of the self-
annotating Web is that it uses globally available Web data and structures to semantically
annotate, or at least facilitate annotation of, local resources. Adapting that concept in our
case means that we will use entities from some public vocabulary (globally available Web
data and structures) to semantically annotate our local datasets or annotated Open Data
datasets (local resources in combination with public data resources).

There are various challenges in the semantical annotation of data. Egyedi et al. [30]
describe the process of annotation of data with semantically rich metadata as the mixture
of Web-based acquisition forms and a population of spreadsheets. They also have pointed
out that annotation often requires manual effort and that is based on the process of trials
and errors.

Schema mappings are widely used in all data management applications that involve
data sharing or data transformation; in particular, schema mappings are essential building
blocks in information integration, data exchange, metadata management, and peer-to-peer
data management systems [31]. In our case, we leverage existing, well-established schema
mappings instead of creating new schemas that are not publicly available.

Nagarajan Meenakshi describes the process of metadata enhancement [32]: In the pro-
cess of identifying entities in the document, it is possible to find values for attributes or
relationships that were not previously present in the knowledge base. Enhancing the ex-
isting metadata could be as simple as entering values for attributes, in which case they
could be automated; or as complex as modifying the underlying schema, in which case
some user involvement might be required. In Chapter 5 we will describe a semi-automated
process for vocabulary entity discovery.

17

3. Related Work

In this Chapter, we will give an overview of Data Integration platforms that manage meta-
data in some form. Also, we will describe in details several platforms of interest. In Section
3.2 we will describe initiatives that are founded with a purpose to tackle the rising amount
of structured and unstructured data that needs to be exchanged between large entities. Fi-
nally, we will list key points that will help us in the development of a solution based on
the analysis documented in this Chapter.

3.1. State-of-the-art Solutions in the area of Data Integration

Many platforms provide ETL solutions in many different processes. We will focus on plat-
forms that provide solutions in the area of data integration, data enrichment and metadata
management. By analyzing those solutions, we will be able to design and implement a
module for metadata management that leverages Semantic Web.

In table 3.1 we can see seven different platforms with high level overview of their basic
characteristics:

• Year of foundation - Metric that shows how long the platform is on the market;

• Business model - Gives insights into platform monetization and features delivery;

• User Interface - It gives an overview in which direction platform will develop and
what is their focus; e.g., Platforms with versatile CLI commands and under-developed
Web application can lead us to conclude that platform will be used maybe as a part
of the pipeline and not as a standalone application with rich user interface features;

• Export and Import capabilities - It shows versatility of the solution; platforms that
support more import and export formats are covering wider audience while highly
specialized platforms provide only several specific data formats;

• Extensibility - Platforms that are intended to be used as end-to-end solutions or
to provide a great number of features that are usually extensible. Sometimes basic
solutions are offered for free, while extensions with special features are sold and used
for gaining profit;

18

3. Related Work

• Deployment - Cloud-based or on-premise solution; It can help in estimating cost
calculation, effort and for utilizing specific platform. It also plays a role in data gov-
ernance planing.

• Metadata handling - Meta information plays important roles in data integration. It
can help in providing specific custom processes, integrating with other platforms
and exploring data conveniently.

Platform Founded Business Model User
Interface

Export/Import Extensibility Deployment Metadata

Wolfram Data
Framework

2009 Proprietary;
Offers free web

applications;
Pro version

available

Web and
mobile

applications;
program-

ming
libraries

Multiple data
formats supported;

Most
functionalities
supported for
WDF format

Usually offered
as a service

Cloud;
Possible to

have
Wolfram
engine

on-premise

Generated;
arbitrary metadata

also supported

RapidMiner 2006 Proprietary;
Based on open
core solution

Rapid Miner
studio

desktop
application

Multiple data
formats/data

sources supported

RapidMiner
extensions

marketplace

Cloud and
on-premise

Linked Open Data
extension

Google
BigQuery

2010 Offered as a
paid service;

Free trials

Web
application;

CLI

Cloud Storage,
Excel, Various data

connectors

Offered as a
service;

Extensible with
other Google

cloud solutions

Cloud Generated;
provides

mechanism for
adding dataset

labels
Dremio 2017 Open Source;

Enterprise
edition for large

organizations

Web
application

Various data
connectors

Provides many
integrations
(Amazon S3,

ADLS, RDBMS,
NoSQL,

Hadoop, and
more)

On-premise;
deployable

to cloud

Technical and
descriptive

metadata on
dataset and node

level

Deeper [33] 2017 Open Source;
Used in lectures

at SFU

Web
application

CSV DBLP, Yelp,
Aminer / Not
out of the box

On-premise Entity resolution
based on Schema

matching
IBM

InfoSphere
2008 Proprietary;

Server,
Enterprise,

MVS Edition

Desktop
applications;

Web
application

DBMS, big data
sources, messaging

queues, ERP and
other packaged

applications,
industry formats
and mainframe

systems

Many IBM and
third party
modules

Cloud and
on-premise

IBM InfoSphere
Metadata

Workbench;
Business,
Technical,

Operational

Talend 2005 Free Open
Source;User-

based
subscription

Web
application

Any database,
Excel or CSV,

Parquet, AVRO
files etc.

Cloud, RDBMS,
SaaS etc.

Cloud and
on-premise

Talend Data
Catalog

Table 3.1.: Overview of Data integration/enrichment platforms

3.1.1. Wolfram Data Platform

Wolfram Research company was founded in 1987 by Stephen Wolfram. Since then, many
tools and solutions were built, and they have millions of active users - in schools, academia,
and industry. Their first and longstanding flagship product is Mathematica (first released
in 1988). It is very popular, and they have an active community around it. In 2009 they
introduced Wolfram Alpha subsidiary which shaped Wolfram Language as we know it
today. Wolfram Data Framework is a platform invented by engineers from Wolfram Al-

19

3. Related Work

pha company, and it is based on Wolfram Mathematica, Wolfram language and Wolfram
Knowledgebase.

Platform Description

The primary purpose of the Wolfram Data Framework is to help users to take data and
make it meaningful. They want to provide a standardized representation of real-world
construct and data which is computable.

Wolfram Data Framework exposes ontology which is defined in Wolfram Alpha. Wol-
fram Alpha can compute answers using algorithms, knowledge bases and AI technology.
They support a variety of topics mainly divided into four groups:

• Mathematics (Algebra, Calculus, Geometry, etc.)

• Science and Technology (Physics, Chemistry, Transportation, etc.)

• Society and Culture (People, Arts, Dates, History, etc.)

• Everyday Life (Health, Finance, Hobbies, etc.)

Wolfram Alpha is a knowledge inference engine that computes answers to queries from
a structured knowledge base about the world, rather than providing a list of documents
[34].

A user can even input arbitrary data, and Wolfram Data Framework will try to pro-
cess it. It will also suggest what kind of data the input might be. The main strength of
Wolfram Data Framework lies in the newly developed format WDF - a human-readable
plain text format that can be rendered in JSON, XML, and other data formats. WDF is not
just a language for representing real-world data but also defines canonical forms based on
knowledge on millions of entities.

Figure 3.1.: WDF Workflow

As we can see in figure 3.1, WDF workflow is divided into three stages. In the first
stage, unstructured data is converted into WDF format so it can be used across Wolfram
ecosystem. In the second stage, they describe the process of storing the data as WDF in a
file, database or even Wolfram Cloud. In the last step, WDF data can be computed directly
into Wolfram Language which would enable exploration of the data using all the features
that Wolfram Language provides.

Wolfram Data Framework is considered to be ideal for:

20

3. Related Work

• Multidomain organizations - Different parts of an organization understand data the
same way;

• Long-term data storage - Enables storing of the data without the need for additional
metadata management; everything needed is already included in WDF, which is also
human-readable data format;

• Data repositories - WDF internally manages metadata and it also connects data to
their Knowledgebase for providing interactive data exploration;

• Research publishing - For data-backed publications, where data can be immediately
used and computed;

• Smart input fields - Semantically smart input fields in which WDF can automatically
recognize many input types;

• Internet of Things - WDF provides a connection between real-world data and ab-
stract computations.

Implementation Details

Wolfram Language is considered to be a programming language but more than that. In
addition to built-in operation and constructs, it has substantial built-in computational ca-
pabilities and knowledge. It is interpreted line by line where the result of interpretation
of the line can be immediately seen. Wolfram Language provides many built-in functions
which makes use of third-party libraries unnecessary in contrast to other languages like
Java or Python. In addition to formulas, constructs, and data, Wolfram language can pro-
cess other entities like files and pictures - everything in the Wolfram Language is a sym-
bolic expression. That means for example that a file can be used as an input argument in a
function.

Wolfram Knowledgebase is one of the most extensive knowledge bases ever made. It
provides trillions of elements, and it is continuously growing. Most of the data contained
in the Knowledgebase is curated from primary sources, but they also use data derived
from many websites, data streams, and experts knowledge. They use many automated
and manual methods to check the quality of the data. Data is updated regularly depending
on the data nature - some data are updated by consuming data streams, while others are
updated daily, weekly, monthly, yearly or when data become available.

Wolfram Data Framework relies on capabilities of the Wolfram Language and Wolfram
Knowledgebase. It gives an overview of the functions used over the data where knowl-
edge about the data is stored directly in the WDF - explicitly written or left to Wolfram
Data Framework to automatically process the data. The primary purpose of Wolfram Data
Framework is to convert unstructured data into correct canonical WDF format which is

21

3. Related Work

later expressed in Wolfram Language and reuses knowledge from Wolfram Knowledge-
base to give an expressive and rich overview of the data.

One of the design decisions was to provide a way for both machines and humans to
understand the data. It makes use of additional documents to describe data completely
obsolete. Another design decision was to enable users to attach arbitrary metadata thus
allowing additional information about the data that are being processed. In addition to
representing WDF as a Wolfram Language, it is possible to convert WDF into JSON or
XML representation so WDF can be treated and parsed by various data-parsing tools.

Metadata Handling

There is a way to import a file and to convert it into a WDF using SemanticImport func-
tion. The most straightforward function call is SemanticImport[”fileName.csv”] where
fileName.csv represents a file in comma-separated values (CSV) format. Wolfram Data
Framework will automatically try to process each column and interpret it as an Entity. As
a result, the user can extract automatically attached properties of those entities and further
explore the data.

For example, we have a comma-separated values file visits.csv which contains date and
city. It has only two rows.

1 Jan 2018 Munich
25 Feb 2018 New York

Table 3.2.: CSV Example data

By executing visits = SemanticImport[”visits.csv”] we will convert our CSV example
data showed in table 3.2 into WDF. As canonical entity types support dates and cities,
Wolfram Data Framework will automatically interpret them as entity type Date and entity
type City. Because of this feature commands like visits[2, ”City”][”Population”] can be
used to extract population details from large Wolfram Knowledgebase.

That is an elementary example, but it illustrates the power of such a simple statement.
There is a lot of different options which can be used in SemanticImport function. A user
can explicitly assign EntityType to an arbitrary number of columns, skip lines, add missing
values, set a specific delimiter, change the orientation of data from column to row and
more.

Another function worth mentioning is Interpreter. In essence, SemanticImport uses Inter-
preter function to convert data into specific entity type. It can also be used to test if the that
entity is of the specific entity type. This function supports a large variety of entity types
from primitive data types to complex ones like City, Country, Sound and many more.

MetaInformation is a function that enables adding arbitrary metadata to any object. Meta-
data that is added is in the form of key-value pairs, where the key should be a String literal

22

3. Related Work

and value can be any WDF expression. That is an essential feature as it allows adding
custom information about the data and enables storing additional knowledge in the data.

Extensive documentation can be found on the official website for Wolfram Data Frame-
work [35].

3.1.2. RapidMiner

RapidMiner builds a software platform for data science teams that unites data prepara-
tion, machine learning, and predictive model deployment. Formerly knows as YALE (Yet
Another Learning Environment) was developed in 2001 by Ralf Klinkenberg, Ingo Mier-
swa, and Simon Fischer at the Artificial Intelligence Unit of the Technical University of
Dortmund. In 2007, the name of the software was changed from YALE to RapidMiner.

RapidMiner provides data mining and machine learning procedures in addition to data
loading and transformation (ETL - extract, transform, load), data preprocessing and visu-
alization, predictive analytics and statistical modeling, evaluation and deployment.

Platform Description

RapidMiner Studio is a visual workflow designer that enables the entire analytics team
to easily use data science and machine learning solutions. By using visual workflow, a
need for writing code is brought down to a minimum. It also enables connecting mul-
tiple data sources by using different extensions for specific vendors. Extensions can be
downloaded via their Marketplace. It is possible to run data preparation and ETL pro-
cesses directly in the database (for vendors they are supporting - MySQL, PostgreSQL,
and Google BigQuery). All data can be explored through many visualizations which can
help in identifying data quality flaws. Flaws like missing values or outliers can be miti-
gated using RapidMiner Studio built-in features. Processes created in RapidMiner Studio
are expressive, and they can be used to communicate machine learning models. It also sup-
ports validation of machine learning models so only proper models can reach production.
RapidMiner Studio is offered for free usage with a limited number of features.

RapidMiner platform offers other products in addition to RapidMiner Studio:

• RapidMiner Server - For sharing and re-using predictive models, automating pro-
cesses and deploying models into production;

• RapidMiner Turbo Prep - For ETL processing via web based user interface;

• RapidMiner Auto Model - For creating predictive models using automated machine
learning and data science best practices;

• RapidMiner Radoop - It exposes Hadoop and Spark functionalities for code free ma-
chine learning;

23

3. Related Work

The core of the RapidMiner platform is open-source, and contribution is welcomed. It is
also possible to develop a custom extension which can be used inside RapidMiner Studio.

Implementation Details

RapidMiner is written in the Java programming language, and it provides a graphical user
interface to design and execute analytical workflows. Those workflows are called Processes
and they consist of multiple Operators which are connected through Ports. Each operator
performs a single task within the process, and its output represents an input of the next
one. Also, each operator can be modified by changing its Parameters. Those Operators are
used e.g. for data extraction, transformation, processing etc. Alternatively, the engine can
be called from other programs or used as an API (Application Programming Interface).
Individual functions can be called using the CLI (Command Line Interface).

Figure 3.2.: Simple RapidMiner Process - taken from official documentation

In figure 3.2 we can see a straightforward process with two operators - Read Excel and
Store. It shows reading an excel file content, storing it and displaying the result of the
process. That is how a process looks like in RapidMiner Studio. Most processes can be
made by using only wizards and visual workflow designer - with no programming.

Metadata Handling

The RapidMiner Linked Open Data Extension is an extension which was developed for
RapidMiner platform. It allows using data from Linked Open Data both as an input for
data mining as well as for enriching existing datasets with background knowledge. The
RapidMiner Linked Open Data Extension is based on the earlier FeGeLOD (Feature Gen-
eration from Linked Open Data) framework (which is discontinued). It was developed at
the University of Mannheim in 2014. The same year it won a first prize award at Semantic
Web Challenge at the International Semantic Web Conference held in Italy.

While many domain-specific applications use Linked Open Data, general-purpose ap-
plications rarely go beyond displaying the small data and provide little means of deriving
additional knowledge from the data [36].

24

3. Related Work

This extension provides additional Operators which are useful for Linked Data handling
- data import, data linking, feature generation, schema matching, and feature subset selec-
tion [36]. They are divided into three main categories:

• Data importers that load data from Linked Open Data into RapidMiner for further
processing

• Linkers that create links from a given dataset to a dataset in Linked Open Data

• Generators that gather data from Linked Open Data and add it as attributes in the
dataset at hand. Some data type value is guessed so, e.g., integer values would be
stored as integers after importing.

The code base for this extension is open source and published on GitHub 1. Unfortu-
nately, the latest supported version of RapidMiner Studio is version 5. It also can be used
with version 6, but all version afterward are not supported (at the moment of writing the
latest version was 9.1). Also, the code is not well documented, and it is not maintained for
more than two years. There is an old user manual2 which provides all information needed
to use this extension.

3.1.3. Google BigQuery

Google BigQuery is a fast, scalable, cost-effective, and managed cloud data warehouse for
analytics, with built-in machine learning. It is Google’s serverless enterprise data ware-
house that can be paid per usage (usage-based pricing). Because there is no infrastructure
to manage, the focus is on analyzing data to find meaningful insights using SQL queries
without the need for a database administrator 3.

Platform Description

Google handles Big Data to provide services like Search, YouTube, Gmail, and Google
Docs. Google is a company that has hundreds of millions of customers and providing real-
time analytics on such scale is a challenging task. There are many features that BigQuery
can provide 4 [37]:

• Serverless - There are no servers to manage, everything is in the cloud and automat-
ically provisioned if there is a need for more computational and storage resources;

1https://github.com/petarR/RapidMiner-LOD-extension (27.12.2018.)
2https://dws.informatik.uni-mannheim.de/fileadmin/lehrstuehle/ki/research/

RapidMinerLODExtension/RapidMinerLODExtensionManual.pdf (27.12.2018.)
3https://cloud.google.com/bigquery/ (28.02.2019.)
4Same as 3

25

https://github.com/petarR/RapidMiner-LOD-extension
https://dws.informatik.uni-mannheim.de/fileadmin/lehrstuehle/ki/research/RapidMinerLODExtension/RapidMinerLODExtensionManual.pdf
https://dws.informatik.uni-mannheim.de/fileadmin/lehrstuehle/ki/research/RapidMinerLODExtension/RapidMinerLODExtensionManual.pdf
https://cloud.google.com/bigquery/

3. Related Work

• Petabyte scale - BigQuery can provide enough resources for users so they can make
queries over Petabytes of data and get results in a matter of seconds;

• Real-time analytics - There is a possibility to analyze new data in real-time when
data is imported by using high-speed streaming insertion API;

• Flexible pricing models - BigQuery can be used with on-demand (usage-based) pric-
ing or flat-rate pricing;

• Automatic high availability - Replication of data is offered for free which means
users can expect high availability even in case of failures in some data centers;

• Data encryption and security - BigQuery can be set up with fine-grained access con-
trols by using Identity and Access Management. Also, all data is encrypted - in data
silos and in transit;

• Standard SQL - BigQuery supports a standard SQL dialect which is ANSI:2011 com-
pliant. That would make easier migration for systems that are already using SQL.
Also, in practice, it has been shown that business users are able to use SQL and that
they are using it in their regular job [38];

• Data locality - Users can control in which region they want to store their data, e.g. to
be able to comply with specific regulations;

• Federated query and logical data warehousing - BigQuery can abstract disparate
data sources like Cloud Storage, Cloud Bigtable or spreadsheets in Google Drive.
That means that users do not have to take care of source and format of their data and
that they can query all of them at the same time;

• Foundation for artificial intelligence (AI) - BigQuery ML provides a possibility to
apply machine learning methods on top of the data that is used in BigQuery. Also,
data can be transformed and analyzed in BigQuery and made ready for analysis by
leveraging machine learning methods;

• Storage and compute separation - Storage does not mean compute. Users can only
pay for storage, and they will pay for computing their data only when they are using
those data in computational purposes;

• Foundation for business intelligence - BigQuery enables data integration, transfor-
mation, analysis, visualization, and reporting by using tools from Google or third-
party solutions;

• Automatic backup and easy restore - BigQuery automatically replicates data and
keeps a seven-day history of changes;

26

3. Related Work

• Flexible data ingestion - BigQuery supports importing data from different third-
party data sources like Informatica or Talend;

• Geospatial datatypes and functions - BigQuery supports arbitrary points, lines,
polygons, and multi-polygons in WKT and GeoJSON format, which can simplify
geospatial analyses;

• Data governance - Fine-grained Cloud Identity and Access Management control
data access. That means that data will not be available to non-authorized users;

• Data transfer services - The BigQuery Data Transfer Service automatically transfers
data from external data sources, like Google Marketing Platform, Google Ads, and
YouTube, to BigQuery on a scheduled and fully managed basis;

• Programmatic interaction - BigQuery provides a REST API for easy programmatic
access and application integration. Also, business users can use Google Apps Script
to access BigQuery from Google Sheets;

• Big Data ecosystem integration - BigQuery provides integration with the Apache
Big Data ecosystem, allowing existing Hadoop/Spark and Beam workloads to read
or write data directly from BigQuery;

• Rich monitoring and logging with Stackdriver - BigQuery provides rich monitor-
ing, logging, and alerting through Stackdriver Audit Logs;

• Cost control - Costs can be limited per user basis, daily limit, amount limit and many
more.

In Figure 3.3 we can see that BigQuery can be used as an Analytics engine that supports
streaming and batch pipeline. Results from BigQuery can be exported to many already
well-established platforms like Qlik or Tableu, Google Sheets or some database.

Implementation Details

Google had a big problem with data analysis because they have an enormous amount of
data. They were using MapReduce to analyze big data, but even then they could not query
data interactively without waiting for the query to finish. That is why they have developed
an internal tool called Dremel which enables running extremely fast SQL queries on large
datasets [38].

Dremel is based on two core technologies which give Dremel unprecedented perfor-
mance [37]:

1. Columnar Storage - Data is stored in a columnar storage fashion which makes possi-
ble to achieve a very high compression ratio and scan throughput. It is mainly used

27

3. Related Work

Figure 3.3.: Data warehousing solution architecture that can be utilized using BigQuery -
taken from https://cloud.google.com/bigquery/ (28.02.2019.)

in a read-only type of usage because update operations are expensive when using
columnar storage.

2. Tree Architecture - Used for dispatching queries and aggregating results across high
number of distributed machines in a mater of seconds.

BigQuery provides the core set of features available in Dremel to third-party developers.
It does so via a REST API, command line interface, Web UI, access control, data schema
management and the integration with Google Cloud Storage [37].

BigQuery and Dremel share the same underlying architecture and performance charac-
teristics, which means that users can fully utilize the power of Dremel by using BigQuery
to take advantage of Google’s computational infrastructure [37].

Metadata Handling

By using BigQuery, users are able to store following information about their dataset 5:

• Description

• Default expiration time for new tables

• Default partition expiration for new partitioned tables

• Access controls
5https://cloud.google.com/bigquery/docs/updating-datasets (28.02.2019.)

28

https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/docs/updating-datasets

3. Related Work

• Labels

Big Query uses key-value pairs to represent labels for data resources. When a resource
is created in BigQuery, labels are optional. There are several limitations to using labels 6:

• Each resource can have multiple labels, up to a maximum of 64;

• Each label must be a key-value pair;

• Keys have a minimum length of 1 character and a maximum length of 63 characters,
and cannot be empty;

• Values can be empty, and have a maximum length of 63 characters;

• Keys and values can contain only lowercase letters, numeric characters, underscores,
and dashes. All characters must use UTF-8 encoding, and international characters
are allowed;

• The key portion of a label must be unique. However, that label can be reused on
multiple resources;

• Keys must start with a lowercase letter or international character.

As labels are usually used per resource, they can be used to add custom properties to
a resource. Later those labels can be used for querying resources, grouping expenses,
checking computational resources on specific resources, and more.

3.2. State-of-the-art Initiatives in the Open Data community

Open Data as a concept emerged and gained traction as a community effort. The com-
munity often has members that can be considered to be influencers; innovative members,
members who push the community forward, and the ones who are showing an excellent
example to the rest of the community members. In this Section, we describe two initia-
tives, the Open Data Initiative and Data Transfer Project, backed by some of the biggest
and most innovative companies on the market.

3.2.1. Open Data Initiative

Open Data Initiative is an initiative announced by chief executive officers of three large
companies - Microsoft, SAP, and Adobe. It addresses common problems in customer ex-
perience management, and it creates new opportunities to extract more value from the
data and to provide better customer experience in a shorter time.

6https://cloud.google.com/bigquery/docs/adding-using-labels (28.02.2019.)

29

https://cloud.google.com/bigquery/docs/adding-using-labels

3. Related Work

In today’s world, the main asset of a business is the data they possess. The user interacts
with a company through many different services and channels, and they leave their data
print in the process. All those data are stored in separate silos that most of the time are not
connected. It is challenging for a company to get a holistic view of the customer which has
his data stored in disconnected data silos. All that makes integration with other business
solutions quite troublesome because it makes data governance complex and challenging.

This initiative represents the first step to provide a standard for how to store customers
data and how to interact with it. Also, it will provide a framework to seamlessly connect
other solutions over the existing data and provide better services for customers. Microsoft,
SAP, and Adobe as three large global companies can provide an architecture and a frame-
work for other players in the industry to follow this initiative so everyone can benefit from
it.

Platform Description

Open Data Initiative is based on three guiding principles[39]:

• Every organization owns and maintains complete, direct control of all their data;

• Customers can enable AI-driven business processes to derive insights and intelli-
gence from unified behavioral and operational data;

• A broad partner ecosystem should be able to easily leverage an open and extensible
data model to extend the solution.

In the Figure 3.4 we can see that in the core of the idea is that all stakeholders share the
same view of the data models thus enabling businesses not to worry about disconnected
data silos. In addition to Microsoft, SAP, and Adobe, other participants will be welcomed
to participate. The collaboration will be easier for all participants because they will share
a common understanding of the data.

This initiative will also give more control to users - they will be able to control who and
when can use their data, all from one place because users will also be able to see all their
data as a whole.

Implementation Details

There are no concrete implementation details as the whole initiative is in the conceptual
phase. One of the most significant obstacles will be how to define data models that will be
appropriate for all participants that are already using their specific models. Governance of
the data is also one of the essential topics that need to be addressed.

30

3. Related Work

Figure 3.4.: Open Data Initiative concept [39]

3.2.2. Data Transfer Project

The Data Transfer Project (DTP) extends data portability beyond a user’s ability to down-
load a copy of their data from their service provider, to provide the user the ability to
initiate a direct transfer of their data into and out of any participating provider [40].

The Data Transfer Project is an open source initiative formed in 2017 by Google, Face-
book, Microsoft, and Twitter to enable data transfer from service to service thus allowing
faster data portability while eliminating the need for users to download data they want to
transfer directly.

Platform Description

https://www.overleaf.com/project/5b96c5b0b433cc55a87bb922 Whole Data Transfer Project
is based on the following principles [40]:

• Build for users - Data portability tools should be easy to find, intuitive to use, and
readily available for anyone;

• Privacy and security - Providers on each side of the portability transaction should
have strong privacy and security measures, and the user should be notified about
those measures;

• Reciprocity - A user’s decision to move data to another service should not result in
any loss of transparency or control over that data;

31

3. Related Work

• Focus on user’s data - Portability should not extend to data that may negatively
impact the privacy of other users, or data collected to improve service, including data
generated to improve system performance or train models that may be commercially
sensitive or proprietary;

• Respect everyone - Data portability tools should focus only on providing data that is
directly tied to the person requesting the transfer.

An ecosystem of Adapters powers The DTP (Data Transfer Project). They convert a range
of proprietary formats into a small number of canonical forms (Data Models) useful for
transferring data. That allows data transfer between any two Providers using the provider’s
existing authorization mechanism, and allows each provider to maintain control over the
security of their service [40]. The main advantage of this platform lies in power to eliminate
the need for users to download their data and then re-upload into a different ecosystem.
That also opens new opportunities if providers collaborate - users will be able to move
between different platforms easily which can give better exposure to new customers for
all participants.

Implementation Details

As we already mentioned, DTP is open source and hosted on Google’s GitHub account 7.
It is mostly developed using JAVA programming language and at the moment of writing
engineers actively developed it from Google, Microsoft, and others.

The system comprises three main components [40]:

• Data Models are the canonical formats that establish a common understanding of how
to transfer data;

• Adapters provide a method for converting each provider’s proprietary data and au-
thentication formats into a form that is usable by the system;

• Task Management Library provides the plumbing to power the system.

Data Models are crucial for this project to be successful. All Adapters will serve to convert
proprietary (provider specific) data models from/to Data Models. The effort in the devel-
opment of those Adapters should not be too high. Participants should see the benefits of
creating their data models to be aligned with DTP data models. In the long run, collabo-
ration and common understanding of data models should be better, so the effort put into
new collaborations can be lower.

in Figure 3.5 arrows represents collaboration between two participants. They have to
cooperate tightly, so they share the knowledge about data models both parties are using.

7https://github.com/google/data-transfer-project

32

https://github.com/google/data-transfer-project

3. Related Work

Figure 3.5.: Portability without and with utilizing DTP [40]

We can see that the graph is much simpler and there is a significant decrease in the number
of specific connections. If all participants use the same data model as a reference, collab-
oration is seemingly easier as participants do not have to disclose internal data models.
That is how a common understanding of data models can make collaboration easier for all
participants.

DTP will be mostly developed using other open-source tools and existing technologies
so other stakeholders can easily contribute and improve. Currently, all DTP defined all
models in JSON format. Preferred authentication mechanism to be used is OAuth.

DTP project welcomes and supports all contributors. Besides that, the participation of
big players like Google, Microsoft, Facebook, and Twitter encourages others to invest their
time into this project.

3.3. Key Points

After analyzing the state-of-the-art data enrichment platform and open data initiatives, we
can derive several key points that can help in developing the Midas platform:

• User oriented vs. Business oriented - Solutions like Talend, IBM InfoSphere, Dremio
and, to some extent, BigQuery is more Business oriented than User-oriented. Most of
those services are not free, and it requires some time to start exploring their function-
alities. Solutions like Wolfram Data Framework, RapidMiner, and Deeper, are more
oriented to users and it is easier to set them up and start using them out of the box.

• Modularity - Platforms like Talend, IBM InfoSphere and RapidMiner have a sep-
arate module for more specific metadata management. Wolfram Data Framework

33

3. Related Work

uses highly coupled metadata management which enables users to discover enriched
datasets automatically. BigQuery and Dremio have metadata attached directly to
their resources and provide limited functionalities.

• Interface - Most of the solutions provide Web applications, Desktop applications and
CLI tools for communicating with the system. Depending on the granularity of user
access rights, also the complexity of the system varies.

• Data formats - Some platform like Wolfram Data Framework and RapidMiner are
using platform-specific data formats in addition to standard open formats. In that
way, they can offer rich user experience, but the learning curve for using those sys-
tems is steeper because of that.

• Data connectors - Most of the enterprise solutions like Google BigQuery, Dremio,
IBM InfoSphere, and Talend are providing data connectors for integration with third-
party solutions. For some platforms like Deeper, or in some cases RapidMiner, it
requires some custom development to make it possible to interact with data from
outside systems.

• Semantic Metadata - Of all solutions, only RapidMiner was providing a solution
which was utilizing Semantic Web. Unfortunate is that latest version of RapidMiner
does not support Linked Open Data extension. Other solutions like Deeper could be
adapted to utilize Semantic Web. In most cases, enterprise solutions could leverage
the Semantic Web but with great development effort.

• Not a single solution provides Open Data catalogs for exploration out-of-the-box.

Based on all that, we can decide on some design decision that could help in positioning
the Midas platform:

• Midas metadata module should be pluggable into Midas platform without interfer-
ing with regular workflows;

• Store metadata in open format like JSON;

• Midas metadata module should provide well-organized REST API interface for meta-
data management;

• Metadata format should be extensible;

• Midas Metadata module should provide support for storing metadata on dataset and
attribute level for better user experience;

• Midas Metadata module should be able to leverage Semantic Web and well-established
vocabularies like Schema.org;

34

3. Related Work

• Metadata format should provide a possibility to store arbitrary metadata to prevent
limiting specific user needs.

All those key points can help in positioning Midas platform and Midas Metadata mod-
ule as a modular solution that leverage Semantic Web while providing industry standard
interface for integration with third-party systems using open format technologies that pre-
vent vendor lock-in and steep learning curve and offer natural on-boarding process.

35

4. Midas Platform

Data scientists are continually searching for more data to improve their machine learning
models. There are numerous sources of data which differ in quality, structure, availability,
price. That is why an increasing number of them uses publicly available data such as open
data for their analysis. Data which is open and free to use is considered to be the Open
Data. Integrating this data into the organizations’ analytics environment, however, often
requires the involvement of skilled data engineers. By Tim Berners-Lee’s scale for rating
the quality of Open Data, we know that the quality of open data varies tremendously,
where most of the available data can be considered lower to medium quality.

Midas is a distributed system that helps scientists to integrate open data interactively. It
is a generic solution that can suit the needs of many data scientists and organizations. In
the Midas, we have a novel approach to integrating open data to existing internal datasets.
By using Midas platform, data scientists can join external Open Data datasets or REST
APIs (open and closed) with internal datasets. It is based on the SQL execution engine
similar to Google’s Dremel but extended with special notations for linked open datasets
and REST APIs. Midas platform can execute all the necessary network requests and to
process the response of the request in columnar format. Because of that, the platform
can use hash-based request hashing for increased performance when data scientists are
executing queries interactively by reducing the number of network requests.

4.1. Architecture

Midas platform is built in a distributed manner. Because of that, it is possible to scale
the platform based on usage. Also, it increases reliability as unavailable components can
be easily replaced. It is worth mentioning that the Midas platform is implemented in a
modular fashion to it is relatively easy to extend the functionalities of the platform.

This platform consists of the following modules:

1. Client application - Web application implemented in React.js javascript framework.
It is used as an interface for data scientists to manage their data.

2. Server application - Application implemented in Node.js server-side programming
language. Business logic is implemented in that layer. In addition to business logic,
communication with cache and data layer as well as with query execution engine is
implemented.

36

4. Midas Platform

3. Arango.DB data storage - NoSQL database engine in which metadata and executed
queries are stored.

4. MySQL data storage - MySQL database which contains internal data. Other types of
data storage can be used (e.g., MongoDB)

5. Redis in-memory cache - It is used for hash-based query cashing, so h number of net-
work requests to external data sources can be minimized. It increases performance
and user experience for end users.

6. Apache Drill query engine - Schema-free SQL Query Engine for Hadoop, NoSQL
and Cloud Storage. It is used to execute the same queries on different types of data
storage. Also, it can scale to support a large number of queries.

Figure 4.1.: Midas architecture

37

4. Midas Platform

4.2. Functional Overview

Midas platform is a generic tool for data enrichment. It offers a wide range of functionali-
ties that can help data annalists and other interested parties to enrich their data with open
data, to query newly created datasets, to explore open data in addition to existing data.

First of all, Midas platform can be connected to multiple different data sources. Even
though those sources can be different (e.g., MySQL, Mongo.Db, etc.), Midas platform gives
one single overview of those data in a columnar form. By providing data from various
sources in a unified interface, users can explore their data faster. It is worth mentioning
that configuration of connection to every data source can be configured directly in the
Midas platform.

Data in the Midas platform can be explored by executing SQL-like queries. The result of
the query is immediately available. That gives users a possibility to change their query, run
it and see the results, all in a single application and a single view. What is also important to
mention is that all the queries are cached. By executing queries, multiple users can make a
large number of network requests. Also, queries can be run over large datasets with they
can provide results that can have a significant impact of data transfer over the network.
For all those reasons, all queries are cached, so real-time performance is not affected by a
large number of query executions. As we already mentioned, Redis is used as a hash-based
cache engine.

In Midas web application, there is an overview of open data sources that are connected
with the Midas platform. Each dataset is provided with a description of the data and a
description of the source. Also, users can see an example of open data dataset for every
open data source that is provided. In that way, users can see the data even before extracting
the data itself from remote open data dataset.

All queries can be saved for later use. The main benefit of saving queries is that the orig-
inal dataset is never changed. Midas creates a virtual dataset that can be saved or exported
for future analysis. This gives freedom to users to explore their data, to preprocess their
data without worrying about modifying their original dataset. If a saved query is opened
at a later time, it will execute itself again, and the user will be presented with the same
result as at a time when the query was initially created.

Currently, Midas platform supports exporting data in Tableau format - a data format
which can be imported into Tableau software for further analysis.

4.3. User Interface Analysis

Midas client web application is implemented in React.js framework. React.js is used for
development of Single Page Applications (SPA). That means that once web application
is loaded in the browser, users can use the app as if they are using a program on their
computer - navigation through the web application is not triggering page refreshes - all

38

4. Midas Platform

data is fetched dynamically by using Ajax requests for consuming REST APIs.

Figure 4.2.: Midas homepage design

In Figure 4.2 we can see that all the essential features are already shown on the home-
page. Navigation is simple with nested navigation. Datasets and data sources are grouped
in left sidebar while main navigation is attached to the top of the page. And as we have
already mentioned, all actions in Midas web application is done without page reloading.

As Midas platform is in the development phase, user interface and user experience will
be improved through continuous feedback and development.

39

5. Implementation

The Midas platform added one module to its portfolio - Midas metadata. The sole purpose
of this module is to take care of all metadata and to accommodate the needs of users so
that they can understand data easily and faster.

Figure 5.1.: Midas architecture with Midas metadata module

In the Figure 5.1, compared to the Figure 4.1, we can see a completely new module
named Metadata. The client application communicates directly with the Metadata mod-
ule, while the Metadata module communicates directly with Arango.db instance.

There are several design decisions that, in the context of metadata management, led to
leaving current Server implementation out:

• There is an intention to re-implement existing server implemented in Node.js to be

40

5. Implementation

implemented in Java technologies - typed programming language where better inte-
gration modules exist and with better support;

• To decrease coupling and to increase modularity; whole metadata management was
left to reside in a single module;

• In the future, there may be other modules that can be interested in metadata in the
Midas platform, which this architecture enables other stakeholders to communicate
with the Midas Metadata module directly.

5.1. Technology Stack

Midas Metadata module was implemented using Java technologies. It is based on RESTfull
architecture - all functionalities are exposed via RESTfull services - services that can be
called using well-established interfaces and network protocols, as described in Chapter
2. It is possible to make full, industry standard, applications using only a small number
of dependencies. By keeping the number of dependencies short, maintainability of the
whole module increases significantly. Following frameworks and libraries are used in the
development of the Midas Metadata module:

• Spring framework1 - an end-to-end solution for servlet API based applications on
Java Virtual Machine. Spring MVC framework provides all needed functionalities
to implement RESTfull based services that are maintainable and implemented by
following best industry practices;

• Arango.DB Java connector2 - used for executing Arango.db queries on a remote
Arango.db server by using wrapped methods implemented in Java;

• Docker3 - a tool designed to make it easier to create, deploy, and run applications
by using containers. It automates Building and running of the module inside of a
container, so it is easier to manage the module and its lifecycle;

• Maven4 - a build automation tool used primarily for Java projects and it addresses
two aspects of building software: how software is built, and it describes software
project dependencies;

• Swagger5 - a tool used for documenting API on-the-fly. Most APIs today use Swag-
ger to create interactive documentation automatically.

List of all dependencies and respective versions is given in Appendix B.
1https://spring.io/ (05.02.2019)
2https://github.com/arangodb/arangodb-java-driver (05.02.2019)
3https://www.docker.com/ (05.02.2019)
4https://maven.apache.org/what-is-maven.html (05.02.2019)
5https://swagger.io/ (05.02.2019)

41

https://spring.io/
https://github.com/arangodb/arangodb-java-driver
https://www.docker.com/
https://maven.apache.org/what-is-maven.html
https://swagger.io/

5. Implementation

5.2. Metadata Model

In the inception phase, we have to consider the needs of users of the Midas platform,
extensibility, maintainability, and also all key points defined in Section 3.3. The core of the
Midas metadata module should be generic in a way that it can suit a variety of different
metadata. Besides that, it should also provide intuitive and easy to understand interfaces
for easier adoption and usage.

Figure 5.2.: UML diagram of relationship between Dataset and Metadata

UML diagram from Figure 5.2 represents a data model of Metadata, which is the core
entity from Midas metadata module. To be able to understand design decisions, firstly
we have to take a look into the Dataset data model. As data in the Midas platform is
columnar, Dataset is composed of a list of attributes. Besides, Dataset also has a datasetId
which uniquely defines that Dataset.

Each Dataset can be described with maximum one Metadata instance. That is why
Metadata has an attribute dataSourceId which should have the same value as the attribute
datasetId of the Dataset. Also, Metadata has two additional properties, AttributesMetatada
and DatasetMetadata. They will hold metadata information for Dataset attributes and the
Dataset itself, respectively. AttributesMetadata contains list of AttributeMetadata, which
contains property key. That property has the same value as the key property of Attribute
from the Dataset. Because of that, it is possible to easily find metadata for specific At-
tribute. Each AttributeMetadata may contain list of MetadataEntry-s. MetadataEntry
serves as a placeholder for one metadata pair - key represents metadata property name,
while value represents metadata property value. In the similar manner, DatasetMetadata

42

5. Implementation

contains list of MetadataEntry-s that describe the Dataset better.
Dotted vertical line in Figure 5.2 divides Dataset and Metadata. Metadata is managed

in in the Midas metadata module. Also, Midas metadata module does not take care of data
stored in Datasets, nor it needs that data to provide its functionalities.

5.3. Feature Overview

In this Section, we give an overview of the most important features that we have imple-
mented in the Midas metadata module. Also, we describe the deployment process of the
module and how to explore provided services.

5.3.1. From columnar data representation to tree structure (JSON)

As we described in Chapter 4, all data in the Midas platform is shown in tabular format.
That helps users to have a view over different data sources. But sometimes that tabular
format is challenging to read as some columns are logically related, and some are not.

1 {
2 ”name” : ” John” ,
3 lastName” : ”Doe” ,
4 ” address ” : ” S t r a s s e 12” ,
5 ” postalCode ” : ” 12345 ” ,
6 ” c i t y ” : ”Munich”
7 }

Listing 5.1: Columnar data example

In the Listing 5.1 we can see a small example of columnar data which we can call flat data
- all data is represented as key-value where key is an attribute name and value represents
attribute value. In addition we can see that some attributes are semantically closer; we can
see two grups e.g. name and lastName of a person, and address, postalCode and city of some
location.

1 {
2 ” person ” : {
3 ”name” : ” John” ,
4 ”lastName” : ”Doe”
5 } ,
6 ” l o c a t i o n ” : {
7 ” address ” : ” S t r a s s e 12” ,
8 ” postalCode ” : ” 12345 ” ,
9 ” c i t y ” : ”Munich”

10 }
11 }

Listing 5.2: JSON data example

43

5. Implementation

In the Listing 5.2 we can see that it is now easier to see attributes that are members of the
same logical group. For grouping attributes from flat data into logical groups, JSON format
is a natural choice. As JSON is a tree-like structure, we only need a piece of information
which node is the parent node.

To provide the information of the parent node of an attribute, we can use metadata
attribute parent. Some rules should be followed:

• If parent metadata has no value, the attribute is a first level attribute;

• If parent value is another existing node, convert that parent node into a JSON object
and put its value as a first attribute (name of that attribute will be previous attribute
name + value string, e.g., address will become address-value);

• If parent value is non-existing in the tree, create a new node.

1 {
2 ” data ” : {
3 ”name” : ” John” ,
4 ”lastName” : ”Doe” ,
5 ” address ” : ” S t r a s s e 12” ,
6 postalCode : ” 12345 ” ,
7 c i t y : ”Munich”
8 } ,
9 ”metadata” : {

10 ” dataSourceId ” : ” t e s t S o u r c e I d ” ,
11 ” datasetMetadata ” :{
12 } ,
13 ” a t t r ib u t es M e ta d a ta ” : {
14 ”name” : {
15 ” parent ” : ” person ”
16 } ,
17 ”lastName” : {
18 ” parent ” : ” person ”
19 } ,
20 ” address ” : {
21 ” parent ” : ” l o c a t i o n ”
22 } ,
23 ” postalCode ” : {
24 ” parent ” : ” l o c a t i o n ”
25 } ,
26 ” c i t y ” : {
27 ” parent ” : ” l o c a t i o n ”
28 }
29 }
30 }
31 }

Listing 5.3: An example of data to pass to the REST service

44

5. Implementation

In the Listing 5.3 we can see an example of data payload for calling the REST service
that is implemented in Midas metadata application. The whole payload is divided into
two sections:

1. data - contains flat data that we want to represent in tree-like JSON format

2. metadata - contains a reference if existing metadata (not mandatory) and actual meta-
data to be used in the process.

Parent attribute in metadata is not mandatory; if it does not exist, an attribute will be
considered to be a first level attribute in the new JSON.

The newly implemented service can be called by sending a POST request to /flat2json
endpoint. As a response, you will get data in JSON format as in the Listing 5.2.

5.3.2. Search interface for Schema.org entities

One of the drawbacks using Schema.org entities to enrich the metadata is that, at the mo-
ment of writing of this thesis, no service was implemented to search for entities that are
described in Schema.org.

We have decided to implement a custom implementation of a service that will go through
Schema.org and search for the desired entity. Whole Schema.org is described and saved as
a single file in JSON-LD format. For each release, Schema.org is saved and stored in open
source repository in GitHub6. At the moment of writing of this thesis, the latest released
version was 3.4.

As we already know from Section 2, JSON-LD format is a valid JSON. Because of that
fact, we have downloaded the latest release of Schema.org, and we have created a collec-
tion in our Arango.db server and we have put that JSON in our new collection.

We have provided a REST endpoint where users can pass a query parameter by which
we will search for entities. Users are also able to specify the number of top results that they
would like to get as a response. All results are ranked by a score property which represents
a numerical value of similarity between an entity name and query parameter.

1 http : //${hostname}/ e n t i t i e s ? query=name&l i m i t =2

Listing 5.4: An example URL used for searching for top 2 entities by query ”name”

We can see in the Listing 5.4 that endpoint /entities accepts two query parameters, query
and limit. By tweaking these two parameters, we can provide the desired number of
search results. That tweaking mimics familiar behavior of search input fields (e.g., typing
the query in an input field and providing several top results on every query change). Going
through endless web pages of Schema.org can be tiresome and time-consuming. That is
why this search feature represents an important part of the Midas metadata module that
can significantly increase the usability of the system.

6https://github.com/schemaorg/schemaorg/tree/master/data/releases

45

https://github.com/schemaorg/schemaorg/tree/master/data/releases

5. Implementation

1 [
2 {
3 ” r e f e r e n t ” : {
4 ” p r o p e r t i e s ” : {
5 ” http ://www. w3 . org /2002/07/owl# equivalentProperty ” : {
6 ”@id” : ” ht tp :// purl . org/dc/terms/ t i t l e ”
7 } ,
8 ” r d f s : l a b e l ” : ”name” ,
9 ”@type” : ” rdf : Property ” ,

10 ” http ://schema . org/rangeIncludes ” : {
11 ”@id” : ” ht tp ://schema . org/Text ”
12 } ,
13 ” r d f s : comment” : ”The name of the item . ” ,
14 ” r d f s : subPropertyOf ” : {
15 ”@id” : ” r d f s : l a b e l ”
16 } ,
17 ” http ://schema . org/domainIncludes ” : {
18 ”@id” : ” ht tp ://schema . org/Thing”
19 } ,
20 ”@id” : ” ht tp ://schema . org/name”
21 }
22 } ,
23 ” s t r i n g ” : ”name” ,
24 ” score ” : 100 ,
25 ” index ” : 370
26 } ,
27 {
28 ” r e f e r e n t ” : {
29 ” p r o p e r t i e s ” : {
30 ” r d f s : l a b e l ” : ” alternateName ” ,
31 ”@type” : ” rdf : Property ” ,
32 ” http ://schema . org/rangeIncludes ” : {
33 ”@id” : ” ht tp ://schema . org/Text ”
34 } ,
35 ” r d f s : comment” : ”An a l i a s f o r the item . ” ,
36 ” http ://schema . org/domainIncludes ” : {
37 ”@id” : ” ht tp ://schema . org/Thing”
38 } ,
39 ”@id” : ” ht tp ://schema . org/alternateName ”
40 }
41 } ,
42 ” s t r i n g ” : ” alternateName ” ,
43 ” score ” : 90 ,
44 ” index ” : 278
45 }
46]

Listing 5.5: An example response for query from Listing 5.4

We can see in the Listing 5.5 that a response from the service comes in a format of a

46

5. Implementation

sorted JSON array. Attributes of the individual elements in the response are:

• string - contains entity name;

• score - numerical value of confidence that an entity is an entity that we are searching
for;

• referent.properties - represents the actual Schema.org entity extracted from Schema.org
stored in our Arango.db collection. It is in an unaltered form in case the information
is needed in a JSON-LD format that is defined by Schema.org.

Core functionality is provided by using FuzzyWuzzy7 java library which is a Java ver-
sion of popular and well-maintained python library for String similarity calculation. It
compares query string against entity name and calculates the score which represents a nu-
merical value of confidence that two strings are similar. The algorithm uses Levenshtein
distance 8 to calculate similarity between strings.

5.3.3. Create, Read, Update and Delete Metadata Entities

To be able to manage metadata that is stored in Arango properly.db we have created full
CRUD services for Metadata entities. When we use term Metadata entity we are thinking
of whole metadata for one dataset.

1 {
2 ” dataSourceId ” : ” d a t a s e t i d ” ,
3 ” datasetMetadata ” :{
4 ” meta 1 ” : ” meta 1 value ” ,
5 ” meta 2 ” : ” meta 2 value ” ,
6 ” meta 3 ” : ” meta 3 value ”
7 } ,
8 ” a t t r ib u t es M e ta d a ta ” : {
9 ” a t t r i b u t e 1 ” : {

10 ” meta 1 ” : ” meta 1 value ” ,
11 ” meta 2 ” : ” meta 2 value ” ,
12 ” meta 3 ” : ” meta 3 value ”
13 } ,
14 ” a t t r i b u t e 2 ” : {
15 ” meta 1 ” : ” meta 1 value ” ,
16 ” meta 2 ” : ” meta 2 value ” ,
17 ” meta 3 ” : ” meta 3 value ”
18 }
19 }
20 }

Listing 5.6: Metadata model template

7https://github.com/xdrop/fuzzywuzzy (15.01.2019)
8https://www.cuelogic.com/blog/the-levenshtein-algorithm (15.01.2019)

47

https://github.com/xdrop/fuzzywuzzy
https://www.cuelogic.com/blog/the-levenshtein-algorithm

5. Implementation

In the Listing 5.6 we can see a model of Metadata entity. It is descriptive and extensive
enough to support many use cases. Only one attribute is mandatory - dataSourceId. That
attribute is uniquely used to identify a dataset for which this metadata is stored. Every
other first level attribute has the same name as a column in a dataset referenced by data-
SourceId. Each attribute can have from zero to many attributes which represent actual
metadata for that specific column. In addition to metadata on attribute level, it is possible
to add metadata on the dataset level. Some metadata are applicable for all attributes, and
some metadata are only concerning the dataset, e.g., creation date, owner, etc.

All CRUD operations are supported only on Metadata entity level. Updating Metadata
on an attribute level would increase the number of network requests, the complexity of
Arango.db queries and in the end maintainability of those services. The payload for trans-
ferring metadata by network request is today considered as a small payload. Metadata
model similar to the one that we have shown in Listing 5.6 but with 20 attributes and each
with three metadata properties takes around 3KB in an uncompressed JSON file.

1 http : //${hostname}/metadata/{dataSourceId}

Listing 5.7: An endpoint used for CRUD operations for Metadata entities

Supported operations are:

• Create - /metadata

Request Type: POST

Payload: Metadata entity

Response: Newly created Metadata entity

• Read - /metadata/{dataSourceId}

Request Type: GET

Response: Metadata entity with provided dataSourceId

• Update - /metadata/{dataSourceId}

Request Type: PUT

Payload: Metadata entity

Response: Newly updated Metadata entity

• Delete - /metadata/{dataSourceId}

Request Type: DELETE

Response: Old deleted Metadata entity

By using this structure of requests, we are following well-known intuitive RESTfull prin-
ciples. This structure also enables us to extend service offerings in case of future develop-
ment easily.

48

5. Implementation

5.3.4. Metadata enrichment

In addition to CRUD operations on Metadata entity, it is possible to enrich Metadata entity
by calling one specific service.

1 http : //${hostname}/metadata/enr ich

Listing 5.8: An endpoint used for enrichment of Metadata entity

Service for Metadata enrichment expects a POST request with Metadata entity as a pay-
load.

Enrichment of a Metadata entity works in a manner that it checks if an attribute has a
metadata property type.label which should contain the name of the entity in Schema.org
specification. Based on that label, service finds the appropriate entity in Schema.org, and
it converts each attribute of that entity and attaches it as metadata to the original attribute.

1 {
2 ” dataSourceId ” : ” t e s t S o u r c e I d ” ,
3 ” datasetMetadata ” :{
4 } ,
5 ” a t t r ib u t es M e ta d a ta ” : {
6 ”name” : {
7 ” type . l a b e l ” : ”givenName”
8 }
9 }

10 }

Listing 5.9: Example payload for enrichment

1 {
2 ” dataSourceId ” : ” t e s t S o u r c e I d ” ,
3 ” datasetMetadata ” :{
4 } ,
5 ” a t t r ib u t es M e ta d a ta ” : {
6 ”name” : {
7 ” parent ” : null ,
8 ” type . l a b e l ” : ”givenName” ,
9 ” r d f s : l a b e l ” : ”givenName” ,

10 ”@type” : ” rdf : Property ” ,
11 ” http ://schema . org/rangeIncludes ” : ”{@id=http ://schema . org/Text}” ,
12 ” r d f s : comment” : ”Given name . In the U. S . , the f i r s t name of a Person

. This can be used along with familyName ins tead of the name property . ” ,
13 ” http ://schema . org/domainIncludes ” : ”{@id=http :// schema . org/Person}”

,
14 ”@id” : ” ht tp ://schema . org/givenName”
15 }
16 }
17 }

Listing 5.10: Example response for enrichment of the payload from Listing 5.9

49

5. Implementation

In addition to this service that returns enriched Metadata entity without saving it, it is
possible to do this enrichment on entity creation mentioned in Section 5.3.3. To trigger this
enrichment, you only have to provide a query parameter enrich=true. The result will be
saved in Arango.db for later usage.

1 http : //${hostname}/metadata ? enr ich=true

Listing 5.11: Metadata enrichment on creation

5.4. Deployment

The configuration of the application is stored in a separate file under name config.properties.

1 get . e n t i t y =FOR d IN s c h e m a e n t i t i e s FOR p IN d . @graph FOR t IN p . @graph FILTER t
. ‘ r d f s : l a b e l ‘ == @label RETURN t

2 get . e n t i t i e s =FOR d IN s c h e m a e n t i t i e s FOR p IN d . @graph FOR t IN p . @graph RETURN
t

3 get . metadata=FOR m IN metadata FILTER m. dataSourceId == @dataSourceId RETURN m
4 get . metadata . key=FOR m IN metadata FILTER m. dataSourceId == @dataSourceId RETURN

m. key
5 d e l e t e . metadata=FOR m IN metadata FILTER m. dataSourceId == @dataSourceId REMOVE

m IN metadata LET removed=OLD RETURN removed
6

7 //Arango .DB c o n f i g u r a t i o n
8 host = 1 2 7 . 0 . 0 . 1
9 port =32768

10 password =123456789
11 c o l l e c t i o n . metadata . name=metadata

Listing 5.12: Midas Metadata configuration

What we can configure are queries that we are using for CRUD operations on Metadata
entities. Important part is the configuration of Arango.Db connection parameters. We can
configure host, port and password. Property collection.metadata.name represents name of the
collection where all metadata will be stored.

This application was developed using Maven as a build tool. Maven enables us to pack
our project as a Web Application Archive (WAR file) which is deployable on Java Servlet
Container servers like Tomcat. WAR is equivalent to Java archives (JAR), but it is used for
applications that are meant to be used on the web.

To generate the WAR file, you have to navigate to the root of the project and to execute
mvn package. WAR file will be stored in folder target under name midas-metadata.war.

To make it easier for someone to start this project after generating the WAR file, we have
provided a Dockerfile script which will deploy generated Application to a Tomcat server.

1 FROM tomcat :9 . 0 .16 − j r e 8
2 COPY / t a r g e t /midas−metadata . war /usr/ l o c a l /tomcat/webapps/

Listing 5.13: Simple Dockerfile for Midas metadata application

50

5. Implementation

In the Listing 5.13 we can see that we can quickly start Tomcat web-server and deploy
our Midas metadata application. It uses Docker image tomcat:9.0.16-jre8 and copies the
Midas metadata WAR file into its folder webapps. That means that when we run the image
created using this docker file, our application will automatically start.

1 docker bui ld −t midas metadata .
2 docker run −d −p 8080 :8080 −−name midas metadata midas metadata

Listing 5.14: Docker commands for Midas metadata module deployment

5.5. Documentation

All REST services were documented using a tool named Swagger, which helps to maintain
up-to-date documentation of provided REST services while enforcing best practices for
writing those services. If the REST services development is done by following the best
practices, Swagger can generate documentation automatically.

Documentation can be provided as an interactive web application in which users can test
provided services. It also includes sample input for requests and sample output for service
responses. In Figure 5.3 we can see nodes in the web page that are generated automatically.
By opening a specific node, it makes it possible to explore the provided service.

Figure 5.3.: REST Api documentation generated by Swagger in web application form

51

6. Evaluation

First, in Section 6.1, we are going to propose an approach for measuring the fitness of
a semantic label for an unlabeled attribute of the dataset. In Section 6.2, we are going
to apply a method proposed in Section 6.1 on Open Data datasets offered by the Midas
platform and discuss the results that we have obtained.

6.1. The 4-level scoring method

As it is difficult to find a perfect semantic match from Schema.org, we are proposing a
simple method for rating the fitness of semantic annotation to annotate an unlabeled entity.

Name Last Name Address Postcode Group Name Result Result Percentile
John Doe Wonderland 10b 11000 B3 45 20
Alice Ranger Moonstreet 21 99123 C1 55 3

Table 6.1.: Exam results

In Table 6.1 we can see an example table with exam results for two students. Domain
expert who created that data can add metadata so that other colleagues can better under-
stand what dataset represents.

Tim Berners-Lee’s 5-star open data rating system [9] is an inspiration for defining this
new scoring method. We are proposing a scoring mechanism with a four-level scale that
rates if an entity from Schema.org is a good fit to annotate an unlabeled attribute of a
dataset:

• 0 - There was no entity defined in Schema.org vocabulary that could describe an
attribute. (e.g., a percentage of any kind);

• 1 - Entity could be described only by its data type (e.g. Number or Text);

• 2 - There is an entity that semantically describes an unlabeled entity, but it does not
describe it unambiguously (e.g., Branch Code can is a property of both City and
Country entities);

• 3 -There is an entity in Schema.org vocabulary that fully describes an unlabeled at-
tribute in the dataset.

52

6. Evaluation

Attribute Score Schema.org Entity URL
Name 3 https://schema.org/givenName

Last Name 3 https://schema.org/familyName

Address 3 https://schema.org/address

Postcode 3 https://schema.org/postalCode

Group Name 2 https://schema.org/name

Result 1 https://schema.org/Number

Result Percentile 0 -

Table 6.2.: Semantic annotations from Schema.org and score values for data from Table 6.1

In Table 6.2 we show scores based on the proposed scoring method and entity mappings
from Schema.org vocabulary:

• Name - It represents the first name of the student. There is an entity in Schema.org
vocabulary that is used to describe the first name of a person - givenName; thus it
achieves the maximum score of three.

• Last Name - It represents the last name of the student. There is an entity in Schema.org
vocabulary that is used to describe the last name of a person - familyName; thus it
achieves the maximum score of three.

• Address - It represents the address of the student. There is an entity in Schema.org
vocabulary that is used to describe address - address; thus it achieves the maximum
score of three.

• Postcode - It represents the postal code of the students residence. There is an entity
in Schema.org vocabulary that is used to describe the postal code - postalCode; thus it
achieves the maximum score of three.

• Group Name - It represents the name of the group in which student belongs. There
is no entity in Schema.org vocabulary that is used to describe the group name fully.
That is why we have to search for a broader semantic definition that can semantically
describe Group Name - name; thus it achieves the score of two.

• Result - It represents the result that the student has achieved in the exam. As there
are no entities in Schema.org vocabulary to describe Exam result, or result, the only
piece of information we can attach is that Result attribute represents a number; thus
it achieves the score of one.

• Result Percentile - It represents the percentile in which the student’s exam results
fit in comparison to all exam results. As there is no entity in Schema.org vocabulary
to describe percentiles, we could not find any entity to describe Result Percentile
property semantically; thus it achieves the score of zero.

53

https://schema.org/givenName
https://schema.org/familyName
https://schema.org/address
https://schema.org/postalCode
https://schema.org/name
https://schema.org/Number

6. Evaluation

By using the proposed method, we can understand better if the dataset is annotated
correctly or not. A binary comparison between cases of there is an entity in Schema.org and
there is no entity in Schema.org, cannot provide us with information if annotations are the
appropriate fit for the labeled entity.

We could have also annotated only attributes that have rating three by the proposed
scoring method, but that approach would have several downsides. First of all, that would
leave us with a high number of unlabeled attributes, which would not make sense if some-
one wants to get to know the dataset by reading about those attributes. Also, we would
miss the opportunity to provide at least a piece of information about the attribute that can
define that attribute better (e.g., deaths - it is valuable to know if that attribute represents
a Number of deaths or if that attribute is an Enumeration that could represent the type of
death).

As all attributes have a score, we can use them to calculate a dataset score. It is a number
on a scale from zero to one hundred that represent how well semantic annotations describe
attributes of that dataset. We calculate dataset score by using formula from Figure 6.1.

x′ =
x−min(x)

max(x)−min(x)
∗ 100

Figure 6.1.: min-max normalization [41] on a scale from 0 to 100

We calculate a maximum possible score by multiplying the number of attributes with
number three, which is the best score that represents a good fit. So the maximum possible
score contains two information - the number of attributes and the maximum achievable
score by labeling those attributes. In the same manner, by multiplying the number of
attributes with zero, which is the minimum possible attribute score, we can calculate the
minimum score. Also, we multiply the normalized score with one hundred to represent
normalized score on a scale from zero to one hundred.

Based on data that we have in Table 6.2, we have:

x = 3 + 3 + 3 + 3 + 2 + 1 + 0 = 15

max(x) = 7 ∗ 3 = 21

min(x) = 7 ∗ 0 = 0

x′ =
15− 0

21− 0
∗ 100 = 71

Figure 6.2.: Dataset score calculation based on the data provided in Table 6.2

Dataset score calculated like that can show the quality of annotations of its attributes - a
higher score means that dataset is more correctly (semantically) annotated.

54

6. Evaluation

6.2. Results

Currently, Midas platform is offering 22 different Open Data datasets for exploration. All
datasets had no semantic annotations, which made those datasets difficult to explore if the
user is not familiar with the data. We have manually mapped all attributes from those
22 datasets to some entity from Schema.org with a purpose of describing those attributes
better.

Figure 6.3.: Normalized score per dataset

In Figure 6.3 we can see the scores for all of the 22 Open Data datasets from Midas plat-
form. Datesets are sorted by number of attributes. Figure 6.3 shows on y-axis names of
datasets and their number of attributes. On x-axis it shows score range from zero to one
hundred. We can see the tendency that datasets with a higher number of attributes do
not have such a good score. Usually, datasets with a large number of attributes combine

55

6. Evaluation

several closely connected entities into one single dataset. That makes it difficult to find
proper entities for describing the dataset because Schema.org represents general vocabu-
lary with a small number of specific definitions that usually do not have a large number of
attributes. Average dataset score is 62, while median dataset score is 57.

Results shows that full semantic annotation of a dataset is hard to achieve using single
vocabulary. Usage of industry specific vocabularies could increase overall dataset score.

Figure 6.4.: Comparison between Average attribute score and Median attribute score per
dataset

In Figure 6.4 we can see an average score per dataset. We can see that most datasets
have an average score of around 1.5, which does not say a lot if we only have scores of 0
and scores of 3. That is why it makes sense to look at the average score together with the

56

6. Evaluation

median score. We can see that some datasets have an average score of more than 1, but the
median is 0, which means that most attributes are unlabeled, while only some may have a
good score.

Distribution of attribute scores per dataset can be found in Appendix A.
We can see that scores vary in quality. To be able to benefit fully from this approach, it is

necessary to model data based on the existing schema entity. Another approach would be
to create a custom vocabulary, similar to Schema.org vocabulary, for describing the data.

57

7. Conclusion

The following chapter provides a conclusion about the research results, gained in this the-
sis. First, the key findings for each Research Question are summarized. Furthermore,
possible limitations for this research are presented. Finally, a short insight into possible
future work is given.

7.1. Retrospective

In the end, we can have a retrospective about research questions defined in the Introduc-
tion of this thesis:

• RQ 1 - How are state-of-the-art solutions handling metadata?

We have shown and described several data-driven platforms. What we can conclude
here is that the management of metadata is not an exact science. Every vendor mod-
els metadata based on their specific needs. Besides, we find that vendors did not
identify semantic metadata as a key feature that could drive their business strate-
gies. Initiatives like Open Data Initiative and Data Transfer Project show us that
some big players in industry recognized the need for model consolidation, and with
it, metadata handling will consolidate and Open Data initiative will be able to evolve
further.

We can also conclude that platforms do not want to bother end users with complex
data or metadata management solutions. The focus is always on fast result delivery,
whether that is analytics, pipeline processing or something else. Modularity is also
an important aspect, not only from software engineering best practices but also from
a business perspective. Every model can be seen as a new business opportunity to
provide additional features to your client.

• RQ 2 - How to add metadata to existing columnar data?

By analyzing well-established industry platforms, we can conclude that there is no
best practice on how to approach this problem. It heavily depends on processes that
specific vendor is using. We could derive enough knowledge from our analysis to
define our own design decisions. We have decided to add metadata on a dataset
level. In addition to that, we wanted to increase granularity and add metadata on

58

7. Conclusion

attribute level. With that, we can gain better flexibility for end users to store specific
knowledge about their data.

We have also concluded that defining specific metadata properties can close some
opportunities for the end users. That is why we decided to design our solution in
a way that is possible to add arbitrary metadata properties (keys and values). In
that way, users can leverage our solution concerning their already defined and well-
known metadata.

• RQ 3 - Where to store metadata?

In our analysis, we have seen different approaches to this problem. We have also
discovered systematic classification for metadata location concerning where we store
data. We have decided to externalize our metadata in a system that manages meta-
data separately concerning the system where we store data. We believe that this de-
sign decision can bring added value to the whole Midas platform. Now, the Midas
platform manages metadata by leveraging REST APIs, open formats and fast Doc-
ument based storage. That gives us an opportunity to enrich metadata separately
from our data management. Also, we can decide if we want to use metadata in our
solution, we can store different version, and at some point we will be able to provide
some background processing that could improve our processes without interfering
with end users - caching metadata, enriching of metadata in background, different
entry point into metadata management system etc..

• RQ 4 - How to leverage public vocabularies in metadata management?

We wanted to focus on Semantic Web as we strongly believe that the Internet is de-
veloping in that direction. Actions of big players in the IT world are evidence for our
conclusion. Schema.org vocabulary is extensively used, mainly in search engines and
for providing structured data on web pages. We wanted to leverage global knowl-
edge, and that is why we have decided to evaluate possible usage of Schema.org
vocabulary in our system. We have concluded that if the dataset contains general
terms from everyday life, leveraging Schema.org entities can help us to describe our
data faster semantically. The problem is that many datasets contain specific attributes
(e.g., specific industry, research field, etc.). We have designed our solution in a way
that it can similarly support other vocabularies. The downside to this approach that
it will require some development effort to fully accommodate new features because
the structure of vocabularies can slightly vary in structure.

7.2. Future Work

All of the design decisions are giving us the opportunity to work on the provided solution
continuously. Based on the industry feedback, we can improve functionalities and expose

59

7. Conclusion

new ones via the REST API.
It would also be nice to have a web application that could be used explicitly for meta-

data management. It could be used for adding new metadata, editing existing metadata,
managing of supported vocabularies and many more. It can be used by end users, or by
back-office users who are managing data.

The interesting approach can be explored - matching datasets based on their metadata.
With background processing of all metadata for different datasets, we can provide infor-
mation which datasets are compatible for merge. We can also recommend how to get the
largest dataset available based on steps for joining one dataset with other datasets.

Also, support for other formats can be added. In particular, we already can provide
enough information for generating JSON-LD data. The problem that has to be solved is
the feasibility and usability of such a feature for general use cases. Also, even though XML
is considered old concerning JSON data format, many systems are still using XML in their
internal system. XML is very powerful, and many specification and tools are created to
support various business strategies.

Finally, by following industry best practices for software development, a newly devel-
oped system can provide the needed level of agility to support the evolving nature of data
integration and data enrichment ecosystem.

60

List of Figures

1.1. Design Science Research Methodology Process Model taken from [12] . . . 4

2.1. JSON object structure - taken from https://www.json.org/ (02.02.2019) 8
2.2. JSON Array structure - taken from https://www.json.org/ (02.02.2019) 8
2.3. JSON value options - taken from https://www.json.org/ (02.02.2019) . 9
2.4. Linked Data Graph [20] . 10

3.1. WDF Workflow . 20
3.2. Simple RapidMiner Process - taken from official documentation 24
3.3. Data warehousing solution architecture that can be utilized using BigQuery

- taken from https://cloud.google.com/bigquery/ (28.02.2019.) . . 28
3.4. Open Data Initiative concept [39] . 31
3.5. Portability without and with utilizing DTP [40] 33

4.1. Midas architecture . 37
4.2. Midas homepage design . 39

5.1. Midas architecture with Midas metadata module 40
5.2. UML diagram of relationship between Dataset and Metadata 42
5.3. REST Api documentation generated by Swagger in web application form . 51

6.1. min-max normalization [41] on a scale from 0 to 100 54
6.2. Dataset score calculation based on the data provided in Table 6.2 54
6.3. Normalized score per dataset . 55
6.4. Comparison between Average attribute score and Median attribute score

per dataset . 56

A.1. Score distribution 1 . 71
A.2. Score distribution 2 . 71
A.3. Score distribution 3 . 71
A.4. Score distribution 4 . 71
A.5. Score distribution 5 . 72
A.6. Score distribution 6 . 72
A.7. Score distribution 7 . 72

61

https://www.json.org/
https://www.json.org/
https://www.json.org/
https://cloud.google.com/bigquery/

List of Figures

A.8. Score distribution 8 . 72
A.9. Score distribution 9 . 72
A.10.Score distribution 10 . 72
A.11.Score distribution 11 . 72
A.12.Score distribution 12 . 72
A.13.Score distribution 13 . 73
A.14.Score distribution 14 . 73
A.15.Score distribution 15 . 73
A.16.Score distribution 16 . 73
A.17.Score distribution 17 . 73
A.18.Score distribution 18 . 73
A.19.Score distribution 19 . 73
A.20.Score distribution 20 . 73
A.21.Score distribution 21 . 74
A.22.Score distribution 22 . 74

62

List of Tables

2.1. Example of properties for different types of metadata and their primary us-
age - modified and taken from [27] . 16

3.1. Overview of Data integration/enrichment platforms 19
3.2. CSV Example data . 22

6.1. Exam results . 52
6.2. Semantic annotations from Schema.org and score values for data from Table

6.1 . 53

63

List of Abbreviations

JSON-LD Javascript Object Notation for Linked Data

URI Unique Resource Identifier

CRUD Create Read Update Delete

REST Representational State Transfer

JSON Javascript Object Notation

WAR Web Application Archive

JAR Java Archive

XML Extensible Markup Language

CSV Comma Separated Values

IRI Internationalized Resource Identifier

URI Uniform Resource Identifier

SEO Search Engine Optimization

AI Artificial Intelligence

CLI Command Line Interface

ETL Extract Transform Load

64

Listings

2.1. Example of JSON-LD document - modified and taken and from https:

//json-ld.org/ (07.02.2019.) . 12
2.2. Compact form of JSON-LD . 12
2.3. Expandend form of JSON-LD . 12
2.4. Schema of givenName property from Schema.org 13

5.1. Columnar data example . 43
5.2. JSON data example . 43
5.3. An example of data to pass to the REST service 44
5.4. An example URL used for searching for top 2 entities by query ”name” . . . 45
5.5. An example response for query from Listing 5.4 46
5.6. Metadata model template . 47
5.7. An endpoint used for CRUD operations for Metadata entities 48
5.8. An endpoint used for enrichment of Metadata entity 49
5.9. Example payload for enrichment . 49
5.10. Example response for enrichment of the payload from Listing 5.9 49
5.11. Metadata enrichment on creation . 50
5.12. Midas Metadata configuration . 50
5.13. Simple Dockerfile for Midas metadata application 50
5.14. Docker commands for Midas metadata module deployment 51

65

https://json-ld.org/
https://json-ld.org/

Bibliography

[1] “Data integration reaches inflection point: Survey results,” IBM, 2018, accessed
12-11-2018. [Online]. Available: https://www-01.ibm.com/common/ssi/cgi-bin/
ssialias?htmlfid=78013078USEN

[2] A. Basu, “Semantic web, ontology, and linked data,” 01 2017.

[3] A. Lausch, A. Schmidt, and L. Tischendorf, “Data mining and linked open data -
new perspectives for data analysis in environmental research,” Ecological Modelling,
vol. 295, pp. 5 – 17, 2015, use of ecological indicators in models. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0304380014004335

[4] J. S. Ward and A. Barker, “Undefined by data: A survey of big data definitions.”
CoRR, vol. abs/1309.5821, 2013. [Online]. Available: http://dblp.uni-trier.de/db/
journals/corr/corr1309.html#WardB13a

[5] G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and R. Rosati, “Using
ontologies for semantic data integration,” pp. 187–202, 05 2018. [Online]. Available:
https://rd.springer.com/chapter/10.1007/978-3-319-61893-7 11

[6] M. Lenzerini, “Data integration: A theoretical perspective,” in Proceedings of the
Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, ser. PODS ’02. New York, NY, USA: ACM, 2002, pp. 233–246. [Online].
Available: http://doi.acm.org/10.1145/543613.543644

[7] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, “Dbpedia: A
nucleus for a web of open data,” in The Semantic Web, K. Aberer, K.-S. Choi, N. Noy,
D. Allemang, K.-I. Lee, L. Nixon, J. Golbeck, P. Mika, D. Maynard, R. Mizoguchi,
G. Schreiber, and P. Cudré-Mauroux, Eds. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2007, pp. 722–735.

[8] AwesomeData, “Awesome public datasets,” 2014, accessed 28-02-2019. [Online].
Available: https://github.com/awesomedata/awesome-public-datasets

[9] T. Berners-Lee, “Is your linked open data 5 star?” 2009, accessed 26-01-2019. [Online].
Available: https://www.w3.org/DesignIssues/LinkedData.html

66

https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=78013078USEN
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=78013078USEN
http://www.sciencedirect.com/science/article/pii/S0304380014004335
http://dblp.uni-trier.de/db/journals/corr/corr1309.html#WardB13a
http://dblp.uni-trier.de/db/journals/corr/corr1309.html#WardB13a
https://rd.springer.com/chapter/10.1007/978-3-319-61893-7_11
http://doi.acm.org/10.1145/543613.543644
https://github.com/awesomedata/awesome-public-datasets
https://www.w3.org/DesignIssues/LinkedData.html

Bibliography

[10] P. Archer, L. Bargiotti, M. De Keyzer, S. Goedertier, N. Loutas, and F. Van Geel,
“Report on high-value datasets from eu institutions,” 2014, accessed 28-02-
2019. [Online]. Available: https://ec.europa.eu/isa2/sites/isa/files/publications/
report-on-high-value-datasets-from-eu-institutions en.pdf

[11] D. Tosi and S. Morasca, “Supporting the semi-automatic semantic annotation of web
services,” Inf. Softw. Technol., vol. 61, no. C, pp. 16–32, May 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2015.01.007

[12] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A design
science research methodology for information systems research,” Journal of
Management Information Systems, vol. 24, no. 3, 2007. [Online]. Available:
https://doi.org/10.2753/MIS0742-1222240302

[13] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in information
systems research,” MIS Q., vol. 28, no. 1, pp. 75–105, Mar. 2004. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2017212.2017217

[14] 5startdata, “5-star open data deployment scheme,” 2018, accessed 26-12-2018.
[Online]. Available: https://5stardata.info/en/

[15] M. Peters, “Germany finally has an open data law,” 2017, accessed
26-01-2019. [Online]. Available: https://www.opengovpartnership.org/stories/
germany-finally-has-open-data-law

[16] M. Janssen, Y. Charalabidis, and A. Zuiderwijk, “Benefits, adoption barriers and
myths of open data and open government.” Information Systems Management, vol. 29,
no. 4, pp. 258 – 268, 2012. [Online]. Available: http://search.ebscohost.com.eaccess.
ub.tum.de/login.aspx?direct=true&db=bth&AN=82249540&site=ehost-live

[17] E. Wilde, C. Pautasso, and R. Alarcon, REST: Advanced Research Topics and Practical
Applications. Springer, 01 2014.

[18] S. Subhashree, R. Irny, and P. Sreenivasa Kumar, “Review of approaches for linked
data ontology enrichment,” in Distributed Computing and Internet Technology, A. Negi,
R. Bhatnagar, and L. Parida, Eds. Cham: Springer International Publishing, 2018,
pp. 27–49.

[19] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hell-
mann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer, “Dbpedia - a large-scale, multi-
lingual knowledge base extracted from wikipedia,” Semantic Web, vol. 6, pp. 167–195,
2015.

67

https://ec.europa.eu/isa2/sites/isa/files/publications/report-on-high-value-datasets-from-eu-institutions_en.pdf
https://ec.europa.eu/isa2/sites/isa/files/publications/report-on-high-value-datasets-from-eu-institutions_en.pdf
http://dx.doi.org/10.1016/j.infsof.2015.01.007
https://doi.org/10.2753/MIS0742-1222240302
http://dl.acm.org/citation.cfm?id=2017212.2017217
https://5stardata.info/en/
https://www.opengovpartnership.org/stories/germany-finally-has-open-data-law
https://www.opengovpartnership.org/stories/germany-finally-has-open-data-law
http://search.ebscohost.com.eaccess.ub.tum.de/login.aspx?direct=true&db=bth&AN=82249540&site=ehost-live
http://search.ebscohost.com.eaccess.ub.tum.de/login.aspx?direct=true&db=bth&AN=82249540&site=ehost-live

Bibliography

[20] M. Lanthaler and C. Gütl, “On using json-ld to create evolvable restful services,” in
Proceedings of the Third International Workshop on RESTful Design, ser. WS-REST ’12.
New York, NY, USA: ACM, 2012, pp. 25–32, accessed 12-11-2018. [Online]. Available:
http://doi.acm.org/10.1145/2307819.2307827

[21] R. Trypuz, “About schema.org initiative,” 2016, accessed 11-02-
2019. [Online]. Available: https://www.w3.org/community/meat/2016/02/04/
more-about-our-mission/

[22] R. Guha, “Introducing schema.org: Search engines come together for a richer web,”
2011, accessed 11-02-2019. [Online]. Available: https://googleblog.blogspot.com/
2011/06/introducing-schemaorg-search-engines.html

[23] M. Rouse, “Metadata,” 2014, accessed 28-02-2019. [Online]. Available: https:
//whatis.techtarget.com/definition/metadata

[24] E. Duval and W. Hodgins, “Metadata principles and practicalities,” D-Lib Magazine,
vol. 8, p. 2002, 2002.

[25] I. P. M. W. Group, “Embedded metadata manifesto,” 2011, ac-
cessed 01-03-2019. [Online]. Available: http://www.embeddedmetadata.org/
embedded-metatdata-manifesto.php

[26] J. Stander, “Managing data beyond boundaries: Third-
party metadata collection,” 2015, accessed 01-03-2019. [On-
line]. Available: https://blogs.sas.com/content/datamanagement/2015/12/23/
managing-data-beyond-boundaries-third-party-metadata-collection/

[27] NISO, Understanding metadata. 4733 Bethesda Avenue, Suite 300, Bethesda,
MD 20814 USA: NISO, 2004, iSBN: 1880124629. [Online]. Available: http:
//www.niso.org/publications/press/UnderstandingMetadata.pdf

[28] S. Handschuh, S. Staab, and A. Maedche, “Cream: creating relational metadata with a
component-based, ontology-driven annotation framework.” in K-CAP. ACM, 2001,
pp. 76–83. [Online]. Available: http://dblp.uni-trier.de/db/conf/kcap/kcap2001.
html#HandschuhSM01

[29] P. Cimiano, S. Handschuh, and S. Staab, “Towards the self-annotating web,”
in Proceedings of the 13th International Conference on World Wide Web, ser. WWW
’04. New York, NY, USA: ACM, 2004, pp. 462–471. [Online]. Available:
http://doi.acm.org/10.1145/988672.988735

[30] A. L. Egyedi, M. J. O’Connor, M. Martinez-Romero, D. Willrett, J. Hardi,
J. Graybeal, and M. A. Musen, “Using Semantic Technologies to Enhance

68

http://doi.acm.org/10.1145/2307819.2307827
https://www.w3.org/community/meat/2016/02/04/more-about-our-mission/
https://www.w3.org/community/meat/2016/02/04/more-about-our-mission/
https://googleblog.blogspot.com/2011/06/introducing-schemaorg-search-engines.html
https://googleblog.blogspot.com/2011/06/introducing-schemaorg-search-engines.html
https://whatis.techtarget.com/definition/metadata
https://whatis.techtarget.com/definition/metadata
http://www.embeddedmetadata.org/embedded-metatdata-manifesto.php
http://www.embeddedmetadata.org/embedded-metatdata-manifesto.php
https://blogs.sas.com/content/datamanagement/2015/12/23/managing-data-beyond-boundaries-third-party-metadata-collection/
https://blogs.sas.com/content/datamanagement/2015/12/23/managing-data-beyond-boundaries-third-party-metadata-collection/
http://www.niso.org/publications/press/UnderstandingMetadata.pdf
http://www.niso.org/publications/press/UnderstandingMetadata.pdf
http://dblp.uni-trier.de/db/conf/kcap/kcap2001.html#HandschuhSM01
http://dblp.uni-trier.de/db/conf/kcap/kcap2001.html#HandschuhSM01
http://doi.acm.org/10.1145/988672.988735

Bibliography

Metadata Submissions to Public Repositories in Biomedicine,” 12 2018. [Online].
Available: https://swat4hcls.figshare.com/articles/Using Semantic Technologies
to Enhance Metadata Submissions to Public Repositories in Biomedicine/7324175

[31] P. G. Kolaitis, “Schema mappings, data exchange, and metadata management,”
in Proceedings of the Twenty-fourth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, ser. PODS ’05. New York, NY, USA: ACM, 2005, pp.
61–75. [Online]. Available: http://doi.acm.org/10.1145/1065167.1065176

[32] M. Nagarajan, Semantic Annotations in Web Services. Boston, MA: Springer US, 2006,
pp. 35–61. [Online]. Available: https://doi.org/10.1007/978-0-387-34685-4 2

[33] P. Wang, Y. He, R. Shea, J. Wang, and E. Wu, “Deeper: A data enrichment
system powered by deep web,” in Proceedings of the 2018 International Conference
on Management of Data, ser. SIGMOD ’18. New York, NY, USA: ACM, 2018, pp.
1801–1804, accessed 12-11-2018. [Online]. Available: http://doi.acm.org/10.1145/
3183713.3193569

[34] V. Lopez, C. Unger, P. Cimiano, and E. Motta, “Evaluating question answering
over linked data,” Journal of Web Semantics, vol. 21, pp. 3 – 13, 2013,
special Issue on Evaluation of Semantic Technologies. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S157082681300022X

[35] W. Alpha, “Wdf (wolfram data framework),” 2018, accessed 20-12-
2018. [Online]. Available: https://reference.wolfram.com/language/guide/
WDFWolframDataFramework.html

[36] P. Ristoski, C. Bizer, and H. Paulheim, “Mining the web of linked data with
rapidminer,” Web Semant., vol. 35, no. P3, pp. 142–151, Dec. 2015, accessed
23-12-2018. [Online]. Available: http://dx.doi.org/10.1016/j.websem.2015.06.004

[37] K. Sato, “An inside look at google bigquery,” 2012, accessed 28-02-2019. [Online].
Available: https://cloud.google.com/files/BigQueryTechnicalWP.pdf

[38] J. Tigani and S. Naidu, Google BigQuery Analytics, 1st ed. Wiley Publishing, 2014.

[39] Microsoft, “Announcing the open data initiative,” 2018, accessed 26-12-2018.
[Online]. Available: https://www.microsoft.com/en-us/open-data-initiative

[40] “Data transfer project overview and fundamentals,” Data Transfer Project, July
2018, accessed 12-11-2018. [Online]. Available: https://datatransferproject.dev/
dtp-overview.pdf

[41] S. G. K. Patro and K. K. Sahu, “Normalization: A preprocessing stage,” CoRR,
vol. abs/1503.06462, 2015. [Online]. Available: https://www.researchgate.net/
publication/274012376 Normalization A Preprocessing Stage

69

https://swat4hcls.figshare.com/articles/Using_Semantic_Technologies_to_Enhance_Metadata_Submissions_to_Public_Repositories_in_Biomedicine/7324175
https://swat4hcls.figshare.com/articles/Using_Semantic_Technologies_to_Enhance_Metadata_Submissions_to_Public_Repositories_in_Biomedicine/7324175
http://doi.acm.org/10.1145/1065167.1065176
https://doi.org/10.1007/978-0-387-34685-4_2
http://doi.acm.org/10.1145/3183713.3193569
http://doi.acm.org/10.1145/3183713.3193569
http://www.sciencedirect.com/science/article/pii/S157082681300022X
http://www.sciencedirect.com/science/article/pii/S157082681300022X
https://reference.wolfram.com/language/guide/WDFWolframDataFramework.html
https://reference.wolfram.com/language/guide/WDFWolframDataFramework.html
http://dx.doi.org/10.1016/j.websem.2015.06.004
https://cloud.google.com/files/BigQueryTechnicalWP.pdf
https://www.microsoft.com/en-us/open-data-initiative
https://datatransferproject.dev/dtp-overview.pdf
https://datatransferproject.dev/dtp-overview.pdf
https://www.researchgate.net/publication/274012376_Normalization_A_Preprocessing_Stage
https://www.researchgate.net/publication/274012376_Normalization_A_Preprocessing_Stage

Appendix

70

A. Evaluation

A.1. Additional charts with score distribution per dataset

Figure A.1.: Score distribution 1 Figure A.2.: Score distribution 2

Figure A.3.: Score distribution 3 Figure A.4.: Score distribution 4

71

A. Evaluation

Figure A.5.: Score distribution 5 Figure A.6.: Score distribution 6

Figure A.7.: Score distribution 7 Figure A.8.: Score distribution 8

Figure A.9.: Score distribution 9 Figure A.10.: Score distribution 10

Figure A.11.: Score distribution 11 Figure A.12.: Score distribution 12

72

A. Evaluation

Figure A.13.: Score distribution 13 Figure A.14.: Score distribution 14

Figure A.15.: Score distribution 15 Figure A.16.: Score distribution 16

Figure A.17.: Score distribution 17 Figure A.18.: Score distribution 18

Figure A.19.: Score distribution 19 Figure A.20.: Score distribution 20

73

A. Evaluation

Figure A.21.: Score distribution 21

Figure A.22.: Score distribution 22

74

B. Midatas Metadata Module

B.1. List of Dependencies and Versions

• Group ID: org.springframework

• Artifact ID: spring-core

• Version: 5.1.4.RELEASE

• Group ID: org.springframework

• Artifact ID: spring-web

• Version: 5.1.4.RELEASE

• Group ID: org.springframework

• Artifact ID: spring-webmvc

• Version: 5.1.4.RELEASE

• Group ID: javax.servlet

• Artifact ID: javax.servlet-api

• Version: 4.0.1

• Group ID: com.fasterxml.jackson.core

• Artifact ID: jackson-databind

• Version: 2.9.8

75

B. Midatas Metadata Module

• Group ID: com.arangodb

• Artifact ID: arangodb-java-driver

• Version: 5.0.4

• Group ID: me.xdrop

• Artifact ID: fuzzywuzzy

• Version: 1.2.0

• Group ID: org.slf4j

• Artifact ID: slf4j-api

• Version: 1.7.25

• Group ID: org.slf4j

• Artifact ID: slf4j-log4j12

• Version: 1.7.25

• Group ID: io.springfox

• Artifact ID: springfox-swagger2

• Version: 2.9.2

• Group ID: io.springfox

• Artifact ID: springfox-swagger-ui

• Version: 2.9.2

76

	Acknowledgements
	Abstract
	Outline of the Thesis
	Introduction
	Motivation
	Research Questions
	Research Method

	Fundamentals
	Open Data
	RESTful services
	JSON
	Linked Data
	JSON for Linked Data (JSON-LD)
	Schema.org
	Metadata
	Semantic Metadata

	Related Work
	State-of-the-art Solutions in the area of Data Integration
	Wolfram Data Platform
	RapidMiner
	Google BigQuery

	State-of-the-art Initiatives in the Open Data community
	Open Data Initiative
	Data Transfer Project

	Key Points

	Midas Platform
	Architecture
	Functional Overview
	User Interface Analysis

	Implementation
	Technology Stack
	Metadata Model
	Feature Overview
	From columnar data representation to tree structure (JSON)
	Search interface for Schema.org entities
	Create, Read, Update and Delete Metadata Entities
	Metadata enrichment

	Deployment
	Documentation

	Evaluation
	The 4-level scoring method
	Results

	Conclusion
	Retrospective
	Future Work

	List of Figures
	List of Tables
	List of Abbreviations
	Listings
	Bibliography
	Appendix
	Evaluation
	Additional charts with score distribution per dataset

	Midatas Metadata Module
	List of Dependencies and Versions

