A concept for the visual and interactive impact analysis and simulation of data changes to enterprise metrics

Final Presentation

29.07.2014

Master Thesis Matti Maier
Index

• Motivation
• Research Questions
• Literature Review
• Market Overview
• Solution Approach
• Architecture
• Demo
• Byproducts
• Outlook
• References
Motivation

- Understanding the system
- Solving what-if questions
- Visualization of change impact
- based on KPIs and their Visualization

Industry-driven Problem
Research Questions

1) What is an appropriate concept to visualize the impact of data changes to enterprise metrics?

→ appropriate: theoretically profound, technically viable

2) How can interaction on this visualization help to improve the user’s understanding of the calculation system?
Literature Review: KPI Visualization

• Common visualization technique: **Dashboard** [1]
 – Each KPI, one graphical component
 – Supportive diagrams (charts, graphs, tables)

• Generic adequate visualization technique: **2-dimensional graph-based layouts** [2]

• Equations well represented by *node+link graphs* [3]

\[
\begin{align*}
a &= b + c \\
c &= d + e
\end{align*}
\]
Literature Review: Impact Visualization

- **Impact of influencing factors on processes** evaluated by Hao et al. [4]
 - Hyperbolic graph layout
 - Different colors and line weights show impact of each factor

- **Display delta** between an original value and a new value with size of node [3]

- Enable the user to **interact with the model** and **compare scenarios** [5]
Market Overview

Simulation tools
e.g. Simio, SimuLink/MathWorks, Simul8, OptQuest, OpenSim, OpenModelica

- Targeted at engineers and scientists
- Usability for user group,
 e.g. console view only, complex languages
- Not suitable for the problem

Microsoft Excel

- Insufficient visualization of impact
- Understanding the system difficult
 if formulas are hidden

Powersim Studio 10

- No comparison between original and deviated values
- No support for “Virtual Data”
Solution Approach: Basics

(1) \[d \ast \Delta + c = s \quad \text{with} \quad \Delta = 0 \quad \text{for} \quad c \neq 0 \]

d: original value
\Delta: simulated delta
c: value replacement / constant
s: simulated value

(2) \[D \cup V = S \]

D: original data
V: virtual data
S: simulated data
Solution Approach: Visualization

KPIs based on **Formula**
Visualization of Formula based on Spence [3]

Different **weights and colors** [4]

Interaction with scenario [5]
Modular Architecture
Demo

<table>
<thead>
<tr>
<th>Renter</th>
<th>Building</th>
</tr>
</thead>
<tbody>
<tr>
<td>- id: String</td>
<td>- id: String</td>
</tr>
<tr>
<td>- name: String</td>
<td>- name: String</td>
</tr>
<tr>
<td>- age: int</td>
<td>- street: String</td>
</tr>
<tr>
<td>- rent: float</td>
<td>- city: String</td>
</tr>
<tr>
<td>- utilities: float</td>
<td></td>
</tr>
<tr>
<td>- extra: float</td>
<td></td>
</tr>
</tbody>
</table>

1..* building 1
Research Questions Answered

1) What is an appropriate concept to visualize the impact of data changes to enterprise metrics?
 → Visualization of KPIs with 2-dimensional graphs
 → Visualization of data changes with size and color

2) How can interaction on this visualization help to improve the user’s understanding of the calculation system?
 → Compare scenarios
 → See where impact originates
Byproducts

MxLDriver for Java
CRUD operations, authentication, meta information, static/dynamic graph generation

Documentation in Swagger [6]
Interactive and static documentation

Modelling Patterns
Aggregation, Condition, Implicit Join and more
Outlook

User Validation Needed (Industry Partner) Usability Validation Needed (User Tests) Data Source Integration (e.g. SAP HANA)
References

A concept for the visual and interactive impact analysis and simulation of data changes to enterprise metrics

by Matti Maier
Additional Information

BACKUP
Examples within this Thesis

1. **Hotel Business**
 - On SQL Database and T39
 - Generated Data
 - Goal: Easy example for presentation

2. **EAM**
 - On T39
 - E.g. simulating the impact of additional applications in domains

Other areas of application include gross margin calculations, financial portfolio analysis, risk management evaluation and more.
Research Methodology

Design Science (Hevner et al. 2004)

- **Design as an Artifact:**
 - Models (e.g. architecture) and a prototype (application)
- **Problem relevance:**
 - Problem is to visualize impact of influencing factors --> solve with an application
- **Design evaluation:**
 - Descriptive Evaluation -> Scenario to demonstrate the utility
 - Testing -> Black- and Whitebox with Unit tests
 - Analytical -> fit of architecture into application landscape
 - SQL databases as common data stores, CSV for Excel as a common tool, etc.

- **Research Contributions:**
 - Visualization technique
 - Application design, e.g. data source interface

- **Research Rigor:**
 - Construction methods: patterns (e.g. composite, singleton, client/server)
 - Evaluation methods: (see above)

- **Design as a Search Process:**
 - evolution of the architecture --> refinement, extension
 - Different model storages to proof the portability and improve the interface design

- **Communication of Research:**
 - Presentations
 - Final paper
 - Swagger UI

Systematic Literature Review (Kitchenham/Charters 2007)

- **Review Protocol**
 - Questions
 - Resources
 - Search Terms
 - Selection Criteria
Challenges in Implementation

• **Connecting T39**
 – Result: MxL Driver
 – Specialty: Data retrieval over MxL

• **Generating Queries**
 – Different operations
 – Different data sets
 – Recursive dependencies

• **Finding the right frameworks**
 – D3.js vs. Gephi vs. GraphStream vs. ...
 – Tempo.js for JavaScript/JSON Templates
 – Validation frameworks
Performance

• **Parallelization**
 – Calculation is performed in parallel as much as possible

• **Code to Data**
 – Computation is pushed to data as far as possible

• **Connection Pooling**
 – JDBC Data Sources are connected using connection pools

• **Lightweight JSON REST Interfaces**
 – Reuse of JSON where possible
 – Thus little conversion necessary
Security

• **Input Validation**
 – from User
 – from external systems, e.g. T39
 – Counter measure against XSS

• **Session Reinitialization**
 – Prevent Session Fixation

• **Forced HTTPS Connections**
 – Forward from HTTP to HTTPS connections

• **Custom Error Pages**
 – No presence of version and server
Modelling Patterns

• Column Aggregation
e.g. sum of a column in a table

• Calculating the Average
i.e. sum / count

• Copying Node
How to copy and reuse a node?

• Condition
How to model conditions?

• Implicit Join
How to implicitly join tables?
Migration on T39

Why was this application not migrated on T39?

• Industry-driven Topic
 – Various data sources, e.g. SAP HANA

• Integration of T39 earlier this year
 – Could have lead to a delay of the thesis

• Incompatible libraries in T39
 – e.g. D3.js requires other jQuery(s)
 – When DataWidgets are completed, then integration in DW Infrastructure