Specification and Refinment in an
Integrated Database Application Environment*

Ingrid Wetzel, Klaus-Dieter Schewe, Joachim W. Schmidt
University of Hamburg, FRG

Draft Version, February 12, 1993

Abstract

The DAIDA™* project developed a layered design architecture for data-intensive
applications, in which the transformation of a conceptual design to an efficient im-
plementation is realized by stepwise refinement using Abrial’s framework of Ab-
stract Machines. One of the key contributions of DAIDA is the development of
a mapping technology from an extended object-oriented, constraint-based specifi-
cation language to an integrated, efficient database programming language based
on sets and first-order predicates. This paper reviews the experiences made with
this approach and derives requirements for formal specification languages tailored
to data-intensive applications.

1 Introduction

The specification of data-intensive information systems is dominated by the attempt to
model application domains that can be viewed in terms of objects and their relation-
ships developing over time and restricted by numerous constraints. The complexity of
the programs (transactions) may be small but the data upon which they act are very
large, long lived, sharable by many programs, and subject to numerous rules of consis-
tency. These requirements result directly from the fact that databases serve as (partial)
representations of some organizational unit or physical structure that exist in their own
constraining context and on their own time-scale independent of any computer system.
Hence, in contrast to applications like numerics or graphics, the emphasis is on consis-
tency preservation.

The DAIDA project developed a three-layer architecture that relates knowledge-based
requirements modeling, conceptual software design and efficient database application
programming. The highest layer handles requirements modeling followed by a layer for
conceptual design an an implementation layer.

For each of these layers we used a specific language:

*This work has been supported in part by research grants from the E.E.C. Basic Research Action
3070 FIDE: “Formally Integrated Data Environments”.
**DAIDA (“Development of Advanced Interactive Data-intensive Applications”) is an ESPRIT project
funded by the E.E.C under research contract 892.

o the knowledge representation language TELOS [BKMS89] for requirements mod-
eling,

e the semantic data and transaction language TDL [BMS87] for conceptual design
and

e the database programming language DBPL [SEM88] for implementation.

After the elaboration of a satisfiable requirements model, the task is to map those
parts that shall be implemented down to a conceptual design. In DAIDA this is done via
a goal-driven, dependency-based mapping assistent [CKM*89]. This conceptual design
must be the object of further refinements that lead to an efficient database implementa-
tion. In DAIDA we used a second mapping assistant based on formal specifications and
stepwise refinement in Abstract Machines [BMSW89]. It was the explicit specification of
states space and transitions that led us to the decision to use Abstract Machines. The
main focus of this paper is to review this mapping from conceptual design to implemen-
tation.

In section 2 we give a short summary of the languages used by DAIDA. In section
3 we describe in detail our formal specification approach based on Abrial’s Abstract
Machines. Section 4 illustrates standard refinement steps that were used in DAIDA and
that are based on a computational model tailored to data-intensive applications. We
conclude with an outline of the experiences we made in the project with formal method
application.

2 The DAIDA Languages

We present an object oriented way of describing the design of a database application by
using the language TDL [BMS87] and the main aspects of the implementation language
DBPL [SEMSS3].

2.1 The Conceptual Design Language TDL

TDL is alanguage that describes data as classes of objects related by attributes. Database
states correspond to the extent of these data classes. A variety of different data classes
is supported: Basic Classes, Enumerated Classes, Aggregate Classes and Entity Classes.
Basic Classes and Enumerated Classes are used to model simple value sets. In general
however, the structure of values in TDL can be complex. Values denoting tuples of other
values are modelled by AggregateClasses. Entities in the application domain are mod-
elled by EntityClasses. Specific integrity constraints may be assigned to the attributes
of Entity Classes such as attribute categories, range constraints, initial/final conditions
and general invariants.

Attribute categories can be used to characterize the values of an object to be (un)changing
during the object’s lifetime or unique within the class. Range restrictions require the
values of the attribute to belong to some other class. Initial/final conditions specify
conditions on new objects or on objects to be deleted.

Atomic state transitions are modelled as instances of TransactionClasses, where the
input/output of a transaction and its actions is described by appropriate attributes and

logical formulas. The body of a transaction is specified using the familiar precondi-
tion/postcondition and used also in the formal specification language "Z’ [Spi88] [Spi8Y]
[ScPi87]. Preconditions are given via the keyword GIV EN, whereas postconditions re-
quire the keyword GOALS. In opposite to Z only those changes are expressed that are
caused by the transaction, it is implicitly assured that everything else remains unchanged
— the “frame assuption”.

Inheritance is supported for data classes as well as for transaction classes, allowing
the organization of objects and the reuse of transaction specifications.

We give the TDL description for a small database example dealing with project
management:

TDLDESIGN ResearchCompanies IS
ENUMERATED CLASS Agencies = {‘ESPRIT, ‘DFG, ‘NSF, ...};

ENTITY CLASS Companies WITH
UNIQUE, UNCHANGING name : Strings;
CHANGING engagedIn : SetOf Projects;

END Companies;

ENTITY CLASS Employees WITH
UNCHANGING name : Strings;
CHANGING belongsTo : Companies; worksOn : SetOf Projects;
INVARIANTS onEmpProj: True IS
(THIS.worksOn C THIS.belongsTo.engagedIn);
END Employees;

ENTITY CLASS Projects WITH
UNIQUE, UNCHANGING name : Strings; getsGrantFrom : Agencies;
CHANGING consortium : SetOf Companies;
INVARIANTS onProjComp: True Is
(THIS.consortium = { EACH x € Companies : THIS € x.engagedIn});
END Projects;

TRANSACTION CLASS HireEmployee WITH
IN name : Strings; belongs : Companies; works : SetOf Project;
OUT, PRODUCES e: Employees;
GOALS (e’.name = name) AND (e’.worksOn = works) AND
(e’.belongsTo = belongs);
END HireEmployee;
END ResearchCompanies;

Briefly summarized, TDL is a language for describing the management of data main-
tained as classes of objects related by atiributes. The state of the database is reflected
by the extents of the classes, and the values of objects’ attributes, which are subject to
certain integrity constraints. 7Transactions are atomic state changes. TDL also intro-
duces functions to aid in the expression of assertions, scripts to aid the description of
global control constraints and communication facilities to support the frequent needs of
Information Systems for message passing, coordination and timing constraints.

2.2 The Implementation Language DBPL

The database programming language DBPL [SEMS88] integrates a set- and predicate-
oriented view of database modelling into the system programming language Modula-2.
Based on integrated programming language and database technology, it offers a uniform
framework for the efficiency-oriented implementation of data-intensive applications.

A central design issue of DBPL was the development of abstraction mechanisms for
database application programming. DBPL’s bulk data types are based on the notion
of (nested) sets and first-order predicates are provided for set evaluation and program
control. Particular emphasis had been put on the interaction between these extensions
and the type system of Modula-2.

The main extensions of DBPL with respect to Modula-2 are the following;:

e DBPL provides a new data type relation which allows to introduce relational
database modelling to be coupled with the expressiveness of the programming lan-

guage.

e The new datatype is orthogonal to the existing types of Modula-2, hence sets of
arrays, arrays of relations, records of relations, etc. can be modelled.

e Complex access expressions as usual in relational databases allow to abstract from
iteration.

e All modules can be qualified to be database modules, which tunes the variables in
them to be persistent and shared.

e Specific procedures are characterized to be transactions denoting atomic state
change on persistent data. Therefore, DBPL provides mechanisms for controlled
concurrent access to such data and for redovery.

Let us now illustrate the simple TDL-example above in DBPL notation:

DEFINITION MODULE ResearchCompaniesModule;
IMPORT Identifier,String;

TYPE
Agencies = (ESPRIT, DFG, NSF, ..);
CompNames, EmpNames, ProjNames = String. Type;
Emplds = Identifier. Type;
ProjldRecType = RECORD projName : ProjNames; getsGrantFrom : Agencies END;
ProjIdRelType = RELATION OF ProjldRecType;

CompRelType = RELATION compName OF
RECORD compName : CompNames; engagedIn : ProjldRelType END;
EmpRelType = RELATION employee OF
RECORD employee : Emplds; empName : EmpNames;
belongsTo : CompNames; worksOn : ProjldRelType END;
ProjRelType = RELATION projld OF
RECORD projld : ProjldRecType; consortium : RELATION OF CompNames END;

END ResearchCompaniesModule.
TRANSACTION hireEmployee(empName:EmpNames;belongs:CompNames; works:ProjIldRelType) : Emp!

END ResearchCompaniesModule.

DATABASE IMPLEMENTATION MODULE ResearchCompaniesModule;
IMPORT Identifier;

VAR compRel : CompRelType;
empRel : EmpRelType;
projRel : ProjRelType;
TRANSACTION hireEmployee (name:EmpNames;belongs:CompNames; works:ProjIldRel Type)
VAR tEmpld : Emplds;
BEGIN
IF SOME ¢ IN compRel (c.compName = belongs) AND
ALL w IN works (SOME p IN compRel[belongs].engagedIn (w = p))
THEN tEmpld := Identifier. New;
empRel :+ EmpRelType{{tEmpld,name,belongs,works}};
RETURN tEmpld
ELSE RETURN Identifier.Nil
END
END hireEmployee;

END ResearchCompaniesOps.

Fig. 1: DBPL implementation of the ResearchCompanies example

3 The Formal Basis of the Mapping Assistant

Within the DAIDA project the major effort concentrated on the production of high-
quality database application systems. This comprises to guide users in mapping TDL-
designs to DBPL-implementations:

o for a given TDL-design there are many substantially different DBPL-implementations,
and it needs human interaction to make and justify decisions that lead to efficient
implementations;

e the decisions are too complex to be made all at once; it needs a series of refinement
steps referring to both data and procedural objects;

e the objects and decisions relevant for the refinement process need to have formally
assured properties that should be recorded to support overall product consistency
and evolution.

To meet the above requirements requires formal methods. In DAIDA we have chosen
Abrial’s Abstract Machines [Ab89] as a formal basis for the mapping and the B-Tool for
the verification of proof obligations.

3.1 The Abstract Machine Formalism

An Abstract Machine specification consists of two components, namely its state space
specification, and its state transition specification.

: Emplds;

3.1.1 The Static Component of an Abstract Machine

The specification of a state space is given by a list of variable names, called the state
variables and by a list of well-founded formulas of a many-sorted first-order language
L called the invariant and denoted by Z. Free variables occurring in Z must be state
variables. Fach state variable belongs to a unique basic set which has to be declared in
some context. Hence, in order to complete the state space specification we must give a
list of Contexts that can be seen by the machine.

Such a context is defined by

e a list of basic sets,
e a list of constant names,

e and a list of closed formulas over the language £ called properties.

A basic set may be either the set of natural numbers, an abstract set given only by
its name, a set given by the enumeration of its elements or a constructed set, where
cartesian product, powerset and partial function space are the only allowed constructors.
We may then assume to have a fixed preinterpretation of these sorts by sets.

The Language of States The language £ associated with an Abstract Machine can
then easily be formalized.

The basic sorts of £ are NAT and the other non-constructed basic sorts. The set of
sorts is recursively defined using the basic sorts and the sort constructors pow, x, —
denoting powerset construction, cartesian products and partial functions.

Since we use a fixed preinterpretation of the sorts as sets, one may regard the elements
of these sets as constant symbols in £ of the corresponding sort. Other function symbols
are given by the usual functions +, * on NAT, U, N, \ on powersets or by the constant
declarations in some context. The terms and formulas in £ are defined in the usual way.
The semantics of £ is given by an interpretation (A, o), where A is a structure extending
the preinterpretation on sorts and o is a variable binding.

We assume A to be fixed and write =, R, iff R is true under the interpretation
(A, o).

Then the state space of an Abstract Machine with state variables x1, ..., z, is seman-
tically denoted by the set

Y = {o:{z1,..,2,} =D |o(x;) € Dy, for all i},

where each s; is the sort of the variable z; and D denotes the union of the sets D;.
A wif R of £ such that the free variables of R are state variables denotes a subset of
¥, namely

YR = {o|E.R}.

Hence the invariant serves as a means to distinguish legal states in ¥; from others.

Preinterpretation A of Sorts Since natural numbers and arbitrary denumerable sets
are unique (up to isomorphism) there is no loss of generality to assume this preinterpre-
tation A of sorts being fixed.

Now let .A be a preinterpretation of the sorts. A assigns to each sort s a set A(s) = D;
in the following way:

o A(NAT) is the usual set of natural numbers,

o for each basic sort s A(s) is some denumerable set such that the sets assigned to
basic sorts are mutually disjoint, and

e constructed sorts are carried over canonically to the corresponding set construction.

The semantics of £ is given by an interpretation (A, o) consisting of a struc-
ture .4 and a variable binding . The structure A gives a denotation of the sorts of
the language and of the other language parameters, i.e. the predicate-, function- and
constant-symbols. A structure consists of the following:

(i) A assigns to each sort s the set D;. Moreover, it assigns each constant symbol ¢*
to itself.

(ii) The sort-constructors pow, x and — are assigned their usual set-theoretic meaning
of powersets, cartesian products and partial functions.

(iii) The same holds for the functions U, N and \ on pow(s). The function +, *, \ are
assigned their usual meaning on NAT.

(iv) Each function symbol f of sort (sg,..., sy) is assigned to a function

fA Dy, x...x D, _, — D .

Spn—1
(v) A assigns to the predicate symbols €, C their usual set-theoretic meaning, and =
denotes equality.

In order to define the truth of a well-formed formula we have to introduce the concept
of variable-assignment. A typed variable-assignment o in a structure A4 is defined as
follows: For each sort s a function o on the variable set V is defined assigning for each
v® € V; a domain element in D,: o, : V; — D,. Then o is the collection of all o;,. A
structure .4 together with a variable-assignment o is called an interpretation (A,o) of
the language £. Given an interpretation (A, o), we may extend o in the usual way to
terms and well-formed formulas. We write =4 ,) R, iff the formula R is true in the
interpretation (A, o).

3.1.2 The Dynamic Component of an Abstract Machine

The specification of state transitions is given through substitutions over the language .
We distinguish two kinds of transitions:

e The initialization assigns initial values to each of the state variables.

e Transactions update the state space.

Both kinds of state transitions are specified using the substitutions introduced by
Dijkstra [Dij76] [DiSc89] with the additional possiblity of unbounded choice:

@ze(P — S) used as an abbreviation for an IF with an infinite list of guarded
commands of the form P(z) — S(z), i.e. select any value for z such that P
is true and execute the operation S’ resulting from S by replacement of all
free occurrences of z in S by the selected value. Clearly, if such a value for z
does not exist, the @-substitution fails to terminate.

The semantics of substitutions S is given by means of two specific predicate transformers’

wlp(S) and wp(S)?, which satisfy the pairing condition, i.e. for all predicates R
wp(S)(R) = wip(S)(R) A wp(S)(true)

and the conjunctivity condition, which states for any family (Ri)iel of predicates

wlp(S)(Vz el Rz) =Viel wlp(S)(RZ) .

These conditions imply the conjunctivity of wp(S) over non-empty families of pred-
icates. As usual wlp(S) will be called the weakest liberal precondition of S, and
wp(S) will be called the weakest precondition of S. The notation f*, which we shall
use later, denotes the conjugate predicate transformer of f. It is defined by

ff(R) = =f(-R).

The definitions of wlp(S) and wp(S) for all the substitutions that we allow are given
in [DiSc89] or can be easily derived from there. For more details see [?].
In addition to the properties stated above we have for any substitution S

wp(S)(false) = false .

This is the hard discussed Law of Excluded Miracles. The related work by the
PRG group [MRG88] and by J.-R. Abrial dispenses with this law. The main reason not
to follow them is that we do not see any need for miracles. A more detailed discussion
on the consequences implied by the introduction of miracles can be found in [?].

Semantics of Substitutions Now we may associate a set-theoretic meaning to the
substitutions of an Abstract Machine in terms of the state space.
For this purpose we introduce the characteristic predicate P, of a state o € X as

P, = z1=0(xs) NNy = o(zy).
Characteristic predicates have only one model, i.e.
EP, = {0’}
1By abuse of notation, wifs in £ are simply called predicates.
?Note that we use different interpretations than J.-R. Abrial, P. Gardiner and C. Morgan [Ab89]

[MRG88] for the pure guarded command and for the @-substitution, since we do not want to dispense
with Dijkstra’s Law of excluded miracles [DiSc89].

Then we may associate with a substitution S the following set of state pairs
A(S) = {(o1,02) €T x X [l=o, wlp(S) * (Fy,)}-

Since wip(S) * (Poy) characterizes the states oy such that there exists a computation of
S in o1 leading to o2, A(S) describes the set of possible state transitions on ¥ under
control of S.

In addition, we need to know the subset of ¥ that allows some computation of S not
to terminate, this is given by

Y(S) = {oeX|E, wp(S)*(false)}.

Summarizing, the set-theoretic semantics for substitutions is captured by a pair of
assignement functions (A, X,), with signature

A S—pow(X xX) and
Yy S — pow(X).
Then the global semantics of an Abstract Machine can be given in terms of traces on

¥, i.e. a set of finite of infinite sequences o = ¢,, 01, 09, - - of states o; € ¥ such that
the following conditions are satisfied:

(i) for all o1 € ¥ we have (0_1,00) € A(Sp), where Sp is the initialization,
(ii) for each i > 0 there is a transaction in S with (o;_1, 03) € A(S),

(iii) if t = 0g, 01, -, oy is finite, then there is a transaction S with o, € Tg(5).

3.2 Verification

In the following we describe which properties must be verified to assure thransaction
consistency and correct refinement. Then we indicate how to use a mechanical theorem
proving assistant to guide the proofs.

3.2.1 Transaction Consistency Proof Obligation

The invariant component of an Abstract Machine states properties defining the set of
legal states. Therefore, it is necessary to check that the transactions of the Abstract
Machine always preserve the invariant.

In fact, if S is a transaction, it should be sufficient to require each terminating exe-
cution starting from a state satisfying the invariant 7 to result also in a state satisfying
Z. As to the initialization Sy, we should require that any computation results in a state
satisfying 7 no matter which was the initial state. Hence the following formal definition.

Definition 3.1 (Consistency) Let M be an Abstract Machine with invariant T.
(i) A substitution S in M is consistent 7 iff T = wlp(S)(Z)

(ii) M is consistent iff all transactions S in M are consistent with respect to T and
the initialization Sy satisfies wp(So)(T).

3.2.2 Refinement

Refinement is used as a means to map specifications down to implementations. This
includes refining the operations as well as transforming the state space into a more
suitable form. We shall first address operational refinement.

The intention behind refinement of an operation S'is to eliminate step by step all non-
terminating computations under control of S and to cancel some of the non-deterministic
computations. Moreover, the remaining computations of S should establish at least the
same final states.

These considerations lead to the following formal definition:

Definition 3.2 (Operational Refinement) Let S and T be two substitutions on the
same state variables. Then T refines S iff the following three conditions hold for all
predicates R:

(i) wlp(S)* (true) = wlp(T)*(true)

(i) wip(S)* (true) = (wip(S)(R) = wip(T)(R))

(iii) wp(S)(R) = wp(T)(R)

We shall now give another form of these proof obligations that do not require a
universal quantification over predicates.

Proposition 3.1 (Normal Form Proof Obligation) Let S and T be substitutions
with state vartables x1,...,x,. Let zq1,...,2, be another bunch of variable names such
that the x; and the z; are mutually different. Let x and z be the usual abbreviations for
these bunches of variables. Then T refines S iff:

(i) (z =) A wlp(S)*(true) = wip(T)*(true) A wlp({z/z}.T)(wlp(S)*(z = z)) and
(ii) (z =) A wp(S)(true) = wp(T)(true)

As to data refinement, the usual approach taken by [Ab89] [MRG88] is to use an
abstract predicate .4 involving the state variables of both the substitutions of S and 7.
Assume that these state variables are mutually different. According to proposition 3.1
we define in this spirit:

Definition 3.3 Let M, N be Abstract Machines with mutually different state variables
z and z. Let A be some predicate on © and z. Then N refines M iff there is a bijection
o from the transactions of M to those of N such that for all pairs S, T = o(S) of
transactions we have:

(i) A A wlp(S)*(true) = wlp(T)*(true) A wip(T)(wlp(S)*(A)) and

(ii) A A wp(S)(true) = wp(T)(true).

Syntactically, the abstraction predicate .4 is used in data refinement is added to the
specification of the refined machine N using the additional keyword CHANGE.

3.2.3 The B Proof Assistent

The B-Tool is a general proof assistant and uses a goal-oriented proof technique based
on Gentzen’s calculi. The built-in logic performs simple and multiple substitution and is
designed to suit best the calculus of substitutions.

For the practical work with the B-Tool it is essential that proofs can be organized
such that any unreducable goals (e.g., in lack of appropriate theories or in case of not
provable predicates) are generated as lemmata. The proof of a lemma can be postponed,
and the initial proof can go on. Typical examples of such delayed proof obligations refer
to lemmata that express type assertions or arithmetic properties. Therefore, as a result
of a proof, some lemmata may be left over which, in a further step, may be proven by
the tool using additional theories (or by a less formal but convincing argument).

In DAIDA the B-tool has been used for two purposes:

o We used the built-in rewriting capability for a purely syntactical transformation of
the TDL design into a first Abstract Machine. By this we exploited the fact that
pre-post-specifications as they are used in TDL are equivalent to substitutions.

e We used B’s capability as a theorem prover in order to prove the consistency of a
machine and the refinement relation between two machines.

4 Refinement in DAIDA

The purpose of designs is the exact representation of application semantics without taking
care of efficiency criteria. For this purpose the DAIDA project used the design language
TDL.

The purpose of implementations is to represent applications such that they can be
executed efficiently. DBPL is a database programming language satisfying this require-
ment. The goal of the mapping process is to close the conceptual gap between these two
layers by the exploitation of standard refinement steps.

In order to use the Abstract Machines for this purpose we have to address three
problems:

e represent designs in Abstract Machines, i.e. transform a TDL-description into an
Abstract Machine,

e identify final specifications in Abstract Machines that can be transformed auto-
matically into DBPL-programs, and

e identify standard refinement steps within Abstract Machines that are directed to-
wards such final specifications.

4.1 Standard Refinement Steps

Let us now describe a bunch of different standard refinement steps that turned out to be
sufficient for the mapping task from TDL to DBPL.

4.1.1 Data Identification

The first refinement step in our example addresses the basic issues of data identification.
In our example it is a rather specific decision to utilize the uniqueness constraints on
properties for companies and projects for data identification. For employees, where the
application does not provide such a constraint, we introduce an additional property,
empld, for which the implementation assures uniqueness. The specification of the source
for empld is left open, however its type predicate guarantees already a new value each
time the operation is invoked.

For our refined Abstract Machine, the above decisions imply an additional basic set,
Emplds, and an extended

CONTEXT
Companies = CompNames; Employees = Emplds; Projects = ProjNames x Agencies; . ..

The following definitions contribute to the refinement predicate and relate the refined
representations to the previous ones:

DEFINITIONS compName = Ax. (x € companies | x); empld = Ax. (x € employees | x); ...

These definitions determine the function compName to be the identity function over
the new representation of companies and the newly defined function, empld, to be rep-
resented by the elements in employees.

In general, data identification implies the introduction of identifiers, the replacement
of id-based references with value-based references, and the introduction of referential
integrity constraints as preconditions of the operations.

4.1.2 Operational Refinement

Due to the change in the data representation, the operation hire Employee, becomes
less non-deterministic: the arbitrary ANY-substitution is replaced by some operation
newkmpld, that provides a new Empld-value, which is then associated with the required
properties by means of function extension:

OPERATIONS hireEmployee (name, belongs, works) =
PRE name € EmpNames A belongs € companies A works € pow (engagedIn(belongs))
THEN
(empName(newEmpld),worksOn(newEmpld),belongsTo(newEmpld)) |— (name,works,belongs) ||
employees |«— employees U {newEmpld} || hireEmployees |— newEmpld
END hireEmployee;

OTHER newEmpld € (— Emplds - employees);

Our refined data and procedure representation can be proven to meet all the invariants
layed down within the initial Abstract Machine.

4.1.3 Data Reification

Having decided upon the identification, we are now ready for another step that designs the
central data structures of our implementation. While our previous Abstract Machines
have a purely functional view of the data. We now refine to a representation that is

based on Cartesian products. The newly introduced variable, e.g., empClass, becomes a
total function that associates employees with structured data defined over EmpNames,
companies, and sets of projects.

INVARIANTS empClass € (employees — EmpNames x companies x pow (projects)); ...

The following definitions determine the three functions from above to be represented
by the three corresponding components returned by the single function empClass.

DEFINITIONS (empName, belongsTo, worksOn) = Ax. (x € employees | empClass(x)); ...

Another change of the representation comes from the introduction of a variable, tEm-
pld, that allows us to replace the parallel substitutions in the operation hire Employee by
serial ones.

An alternative refinement could introduce “flat variables”:

VARIABLES flatCompClass, latEmpClass, flatProjClass, empProjClass, .. .;
with constraints like

INVARIANTS flatEmpClass € (employees — EmpNames x companies); . ..
empProjClass € (employees «— projects); .. .;

The flat representation has, of course, consequences for the operation, hire Employee,
which has to contain substitutions on both variables, flatEmpClass and empProjClass:

OPERATIONS hireEmployee(name,belongs,works) = ... ;
flatEmpClass |— flatEmpClass & {(tEmpld, name, belongs)} ||
empProjClass |— empProjClass @ inverse(Ax.(x € works | (tEmpld))) ...

The decisions for value-based identification and for sets and Cartesian products as
basic data structures were motivated by a relational implementation language.

4.1.4 Data Typing

On our way down to a relational implementation there is another step left that deals
with data typing. Since DBPL is a strongly and statically typed database programming
language we want to refine the variables to become partial functions over the Basic Sets
instead of total functions over other variables of time-varying cardinality. This refinement
step leads to a machine with the following context, variables and invariants:

CONTEXT
ProjldRecType = ProjNames x Agencies;
ProjIdRelType = pow (ProjIdRecType);
CompRelType = (CompNames +— ProjIdRelType);
EmpRelType = (Emplds +— EmpNames x CompNames x ProjIdRelType);
ProjRelType = (ProjIdRecType +— pow (CompNames));. ..
VARIABLES
compRel, empRel, projRel
INVARIANTS
compRel € CompRelType; compRel = compClass ;
empRel € EmpRelType; empRel = empClass ;
projRel € ProjRelType; projRel = projClass ; ...

In the subsequent section we will see how the context information can be transformed
into the type definitions (or schema) of a DBPL database module.

Similarly, the precondition of the hire operation is weakened to a static constraint
that will finally become the parameter types of the hire Employee transaction. However,
in order to imply the inherited specification we have to strengthen our constraints by a
conditional substitution:

IF belongs € companies A works € pow (engagedIn(belongs)) THEN ...ELSE ...

Due to the semantics of the generalized substitution, the condition will finally result
in a first-order predicate on the variables that represent database states and transaction
parameters.

Our example also demonstrates that a refined version may have a weaker precondition
than the initial one: hire Employee is now defined in all cases in which the static type
predicate holds (a condition which can already be verified at compile time). Tt either
performs the required state transition or it returns a specific value, nilEmpld, as an
exception.

Invariants and definitions of the Abstract Machine variable empRel translate one-to-
one into the type definitions of the corresponding DBPL variable empRel.

4.1.5 Adding Run-Time Semantics

In the final refinement step of hire Employee, the state-dependent precondition is trans-
formed into a static one plus a conditional substitution. The static condition is trans-
formed into DBPL parameter types, and the conditional substitution results in a database
update statement controlled by the following first-order database query expression:

IF SOME ¢ IN compRel (c.name = belongs) AND
ALL w IN works (SOME p IN compRel[belongs].engagedIn (w = p))
THEN tEmpld := Identifier.New;
empRel :+ EmpRelType{{tEmpId,name,belongs,works}};
RETURN tEmpld;
ELSE RETURN Identifier.Nil END

We can see how the DBPL query expressions based on first-order predicates nicely
corresponds with substitutions.

5 Conclusion

Within the layered DAIDA architecture formal specification and verification come into
play as a means for mapping step-by-step from conceptual designs down to implemen-
tations. We use the formalism of Abstract Machines, since they allow to capture at the
same time the semantics of TDL-designs and to introduce via refinement the procedu-
rality required by efficiency-oriented database programs.

Database applications require the conceptual specification of highly structured and
interrelated data. It is the complexity of data that makes database application develop-
ment a hard task, whereas most operations on the data are rather easy such as simple
insert, delete and update operations. Integrity constraints on the data are normally

expressed by first-order predicates. Thus, the possibility to explicitly represent such con-
straints via invariants makes Abstract Machines a good choice for database application
specification — much more natural than e.g. algebraic specifications.

Moreover, most commercial database systems do not offer any sophisticated mecha-
nism in order to prove consistency. Integrity checking is done at run-time before trans-
action commit. In Abstract Machines, however, we were able to prove the consistency
already at specification time. Transactions are modeled via operations in Abstract Ma-
chines, and consistency is semi-automatically verified using the B proof assistent. In
addition, it can be shown that most lemmata resulting during a B-tool proof can be
classified into only very few classes such that in most proof situations generic proofs may
be reused.

Another positive experience we made with Abstract Machines is the possibility to re-
fine a specification within one and the same language. This poses the strong requirement
on formal specification languages to capture at the same time the semantics of a high-
level conceptual design language and of an efficient implementation language. However,
one big problem arises. Refinement in Abstract Machines as it is usually defined does
only preserve the semantics of the operations, but not of the data, for which it is much
too liberal. This is not better in other specification styles, since database application
have not yet been the focal point of the formal specification community. Most of the
work that has been done follows the line of abstract data types ignoring the fact that in
database application systems the data live longer than the operations on them.

Our current work is built upon the DAIDA experience preserving the style of trans-
action specifications.

Acknowledment

We should like to thank J. R. Abrial and our colleagues in DAIDA, especially Alex
Borgida, Michael Mertikas and the researchers at BP research centre, for many fruitful
discussions and comments. We also want to thank Paul Gardiner from the Programming
Research Group at Oxford University for interesting discussions and his contribution to
the set-theoretic semantics of substitutions.

References

[Ab89] J.R. Abrial: A Formal Approach to Large Software Construction, in J.L.A.
van de Snepscheut (ed.): Mathematics of Program Construction, Interna-
tional Conference Groningen, The Netherlands, June 89, Proceedings, LNCS
375, Springer-Verlag, 1989.

[BMS87] A. Borgida, J. Mylopoulos, J. W. Schmidt: Final Version on TDL Design,
DAIDA deliverable

[BKMS89] A. Borgida, M. Koubarakis, J. Mylopoulos, M. Stanley: TELOS: A Knowl-
edge Representation Language for Requirements Modeling, Technical Report
KRR-TR-89-4, Dept. of Comp. Sci., University of Toronto, 1989

[BMSW89] A. Borgida, J. Mylopoulos, J. W. Schmidt, I. Wetzel: Support for Data-

[CKM*89]

[Dij76]

[DiSc89]

[EhMa85]

[Hay87]
[Heh84]
[HGMS6]

[Jon86]

[MRGSS]

[SEMSS]

[ScPi87]

[Spi88]

[Spi89]
[Wir85]

Intensive Applications: Conceptual Design and Software Development, in
Proceedings of the 2nd Workshop on Database Programming Languages, Sal-
tshan Lodge, Oregon, june 1989

L. Chung, P. Katalagarianos, M. Marakakis, M. Mertikas, J. Mylopoulos,
Y. Vassiliou: From Requirements to Design: A Mapping Framework for In-
formation Systems, to appear in Information Systems

E.W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

E.W. Dijkstra, C.S. Scholten. Predicate Calculus and Program Semantics.
Springer-Verlag, 1989.

H. Ehrig und B. Mahr: Fundamentals of Algebraic Specification, vol.l,
Springer 1985

I. Hayes. Specification Case Studies. Prentice Hall, 1987.
E.C.R. Hehner. The Logic of Programming. Prentice Hall, 1984.

E.C.R. Hehner, L.E. Gupta und A.H. Malton, Predicative Methodology. Lec-
ture Outline, Marktoberdorf Summer School, August 1986.

C.B. Jones: Systematic Software Development using VDM, Prentice-Hall In-
ternational, London 1986.

C. Morgan, K. Robinson, P. Gardiner. On the Refinement Calculus, Techni-
cal Monograph PRG-70, Oxford University Computing Labaratory, Oktober
1988.

J. W. Schmidt, H. Eckhardt, F. Matthes: DBPL Report, DBPL-Memo 111-
88, University of Frankfurt, 1988

S.A. Schuman und D.H. Pitt: Object-Oriented Subsystem Specification, in
L. Meertens, (ed.): Program Specifiation and Transformation, The IFIP
TC2/WG2.1 Working Conference, Bad Télz, FRG, April 15-17, 1986, North
Holland Publishing Co, Amsterdam, 1987.

J.M. Spivey. Understanding Z, A Specification language and its Formal Se-
mantics. Cambridge University Press, 1988.

J.M. Spivey. The Z Notation, A Reference Manual, Prentice Hall, 1989.

M. Wirsing: Structured Algebraic Specifications — A Kernel Language, Passau
University Reports, MIP 8511, 1985

A From TDL Designs through Abstract Machines to
DBPL Implementations

TDLDESIGN ResearchCompanies IS

BASIC CLASS CompNames, EmpNames, ProjNames = Strings;
ENUMERATED CLASS Agencies = {‘ESPRIT, ‘DFG, ‘NSF, ...};

ENTITY CLASS Companies WITH
UNIQUE, UNCHANGING compName : CompNames;
CHANGING engagedIn : SetOf Projects;

END Companies;

ENTITY CLASS Employees WITH

UNCHANGING empName : EmpNames;

CHANGING belongsTo : Companies; worksOn : SetOf Projects;

INVARIANTS onEmpProj: True IS (this.worksOn subsetOf this.belongsTo.engagedIn);
END Employees;

ENTITY CLASS Projects WITH
UNIQUE, UNCHANGING projName : ProjNames; getsGrantFrom : Agencies;
CHANGING consortium : SetOf Companies;
INVARIANTS onProjComp: True Is
(this.consortium = {each x in Companies : this isIn x.engagedIn});
END Projects;

TRANSACTION HireEmployee WITH

IN name : EmpNames; belongs : Companies; works : SetOf Projects;

OUT, PRODUCES e: Employee;

GOALS (¢ .empName' = name) and (€ .worksOn' = works) and (¢ .belongsTo' = belongs);
END HireEmployee;

END ResearchCompanies;

Fig. 1: TDL Design of ResearchCompanies Example

MACHINE researchCompanies. 1
BASIC SETS Agencies, Companies, Employees, Projects, CompNames, EmpNames, ProjNames

CONTEXT Agencies = { ESPRIT, DFG, NSF, ... };
CompNames, EmpNames, ProjNames = Strings
VARIABLES companies, compName, engagedin,
employees, empName, belongsTo, worksOn,
projects, projName, getsGrantFrom, consortium
INVARIANTS companies € p(Companies); compName € (companies — CompNames);
engagedIn € (companies — p(projects));
employees € p (Employees); empName € (employees — EmpNames);
belongsTo € (employees — companies); worksOn € (employees — g (projects));
projects € p(Projects); projName € (projects — ProjNames);
getsGrantFrom € (projects — Agencies); consortium € (projects — p(companies));
Vx,y. X,y € companies = (compName(x) = compName(y) = x = y);
Vx. x € employees = (worksOn(x) C engagedIn(belongsTo(x));
Vx,y. X,y € projects =
(projName(x) = projName(y) A getsGrantFrom(x) = getsGrantFrom(y) = x = y);
Vx. x € projects = (consortium(x) = {y | ¥y € companies A x € engagedIn(y)});
OPERATIONS hireEmployee (name, belongs, works) =
PRE name € EmpNames A belongs € companies A works € p (engagedIn(belongs))
THEN ANY e IN (e € (Employees - employees))
THEN (empName(e), worksOn(e), belongsTo(e)) k— (name, works, belongs) ||
employees — employees U {e} || hireEmployee — e
END
END hireEmployee;

End researchCompanies.1;

Fig. 2: Initial Abstract Machine

MACHINE researchCompanies.2
IMPLY researchCompanies.1
BASIC SETS Emplds
CONTEXT Companies = CompNames; Employees = Emplds; Projects = ProjNames x Agencies
VARIABLES empld, projld, tEmpld, ...
INVARIANTS empld € (employees — Emplds); tEmpld € Emplds; . ..

DEFINITIONS compName = Ax.(x € companies | x);

empld = Ax.(x € employees | x);

(projName, getsGrantFrom) = projld = Ax.(x € projects | x); . ..
OPERATIONS hireEmployee (name, belongs, works) =

PRE name € EmpNames A belongs € companies A works € p (engagedIn(belongs))
THEN

tEmpld — newEmpld;
(empName(tEmpld),worksOn(tEmpld),belongsTo(tEmpld)) k— (name,works,belongs) ||
employees k— employees U {tEmpId} || hireEmployees — tEmpld

END hireEmployee;

OTHER newEmpld € (— Emplds - employees);
END researchCompany.2;

Fig. 3: Abstract Machine with Identification Refinement

MACHINE researchCompanies.3
IMPLY researchCompanies.2
VARIABLES compClass, empClass, projClass, tEmpld

INVARIANTS compClass € (companies — g (projects));
empClass € (employees — EmpNames x companies x g (projects));
projClass € (projects — g (companies));
tEmpld € Emplds; . ..

DEFINITIONS engagedIn = Ax. (x € companies | compClass(x));
(empName, belongsTo, worksOn) = Ax. (x € employees | empClass(x));
consortium = Ax. (x € projects | projClass(x));

OPERATIONS hireEmployee (name, belongs, works) =

PRE name € EmpNames A belongs € companies A works € p (engagedIn(belongs))
THEN tEmpld +— newEmpld,;
empClass — empClass U {(tEmpld, name, belongs, works)};
hireEmployee +— tEmpld
END
END hireEmployee;

OTHER newEmpld € (— (Emplds - employees));
END researchCompany.3;

Fig. 4: Abstract Machine with Data Structure Refinement

MACHINE researchCompanies.4
IMPLY researchCompanies.3

CONTEXT ProjldRecType = ProjNames x Agencies; ProjIdRelType = p (ProjIdRecType);
CompRelType = (CompNames +— ProjIdRelType);
EmpRelType = (Emplds +— EmpNames x CompNames x ProjIdRelType);
ProjRelType = (ProjIldRecType +— g (CompNames));. ..

VARIABLES compRel, empRel, projRel

INVARIANTS compRel € CompRelType; compRel = compClass ;
empRel € EmpRelType; empRel = empClass ;
projRel € ProjRelType; projRel = projClass ; ...
OPERATIONS hireEmployee (name, belongs, works) =
PRE name € EmpNames A belongs € CompNames A works € ProjIdRelType
THEN IF belongs € companies A works € g (engagedIn(belongs))
THEN tEmpld |— newEmpld;
empRel |— empRel U {(tEmpld, name, belongs, works)};
hireEmployee |«— tEmpld
ELSE hireEmployee |« nilEmpld
END
END hireEmployee;

OTHER newEmpld € (— (Emplds - employees));

END researchCompany.4;

Fig. 5: Final Abstract Machine with Type Refinement

DEFINITION MODULE ResearchCompaniesTypes;
IMPORT Identifier,String;

TYPE
Agencies = (ESPRIT, DFG, NSF, ..);
CompNames, EmpNames, ProjNames = String. Type;
Emplds = Identifier. Type;
ProjldRecType = RECORD projName : ProjNames; getsGrantFrom : Agencies END;
ProjldRelType = RELATION OF ProjldRecType;

CompRelType = RELATION compName OF
RECORD compName : CompNames; engagedIn : ProjldRelType END;
EmpRelType = RELATION employee OF
RECORD employee : Emplds; empName : EmpNames;
belongsTo : CompNames; worksOn : ProjldRelType END;
ProjRelType = RELATION projld OF
RECORD projld : ProjldRecType; consortium : RELATION OF CompNames END;

END ResearchCompaniesTypes.

DATABASE DEFINITION MODULE ResearchCompaniesOps;
FROM ResearchCompaniesTypes IMPORT EmpNames, CompNames, ProjIldRelType, Emplds;
TRANSACTION hireEmployee(empName:EmpNames;belongs:CompNames; works:ProjIldRelType) : Emp!
END ResearchCompaniesOps.

DATABASE IMPLEMENTATION MODULE ResearchCompaniesOps;
FROM ResearchCompaniesTypes IMPORT CompRelType; EmpRelType; ProjRelType;
IMPORT Identifier;

VAR compRel : CompRelType;
empRel : EmpRelType;
projRel : ProjRelType;
TRANSACTION hireEmployee (name:EmpNames;belongs:CompNames; works:ProjIdRelType) : Emplds;
VAR tEmpld : Emplds;
BEGIN
IF SOME ¢ IN compRel (c.compName = belongs) AND
ALL w IN works (SOME p IN compRel[belongs].engagedIn (w = p))
THEN tEmpld := Identifier. New;
empRel :+ EmpRelType{{tEmpld,name,belongs,works}};
RETURN tEmpld
ELSE RETURN Identifier.Nil
END
END hireEmployee;

END ResearchCompaniesOps.

Fig. 6: DBPL implementation of the ResearchCompanies example

