

27.05.2019

Master's Thesis – Kick-off presentation

Assessing the cost and benefit of a microservice landscape discovery method in the automotive industry

Advisor: Martin Kleehaus Student: Nektarios Machner

Chair of Software Engineering for Business Information Systems (sebis) Faculty of Informatics Technische Universität München wwwmatthes.in.tum.de

2. Research problem

3. Research questions

4. Solution proposal

5. Evaluation

6. Timeline

7. Discussion

(1) 1

- EAM aims to document and manage the complexity of the business IT landscape in relation to business requirements
- conveys holistic view of entire organization
- define current state in an EA model and derive future planned states heading towards an optimized EA
- improve business and IT alignment
- realize cost saving potentials

CODE DEPLOY independently loosely coupled deployable RELIES OPERATE DevOps Lifecycle organized highly maintainable Microservice around architecture business and testable capabilities MONITOR TEST

source:

www.microservices.io

https://openwt.com

Dimensional Research: Global Microservices Trends: A survey of development professionals (April 2018)

(2)

- rising adoption of agile methodologies and microservice-based architectures
- rising number of code deployments
- decrease in time-to-market
- EA landscape is in constant change
- EAM Tools provide support, but require manual input
- high degree of manual work with very little automation
- widely distributed responsibilities
- EA documentation often incomplete or outdated and mostly very costly to maintain
- research on holistic models/tools to facilitate EAD scarce

Mapping between TOGAF ADM and ArchiMate language

(3)

in previous work source entities of the ArchiMate metamodel could be covered with

- 20% on the business layer,
- 75% on the application layer and up to
- 50% on the technology layer

automation of EAD faces various challenges:

- overload of productive systems due to large volume of transactions for automated data collection
- selection of the right productive systems as information sources for EAD
- detection of changes and propagation
- insufficient data quality at source
- transformational challenges due to missing standards
- abstraction gap

source:

https://www.opengroup.org/togaf

M. Buschle, M. Ekstedt, S. Grunow, M. Hauder, F. Matthes, and S. Roth. Automated Enterprise Architecture Documentation using an Enterprise Service Bus. 2012. Hauder, M., Matthes, F., Roth, S.: Challenges for Automated Enterprise Architecture Documentation - In the 7th Workshop on Trends in Enterprise Architecture Research (TEAR 2012), Barcelona, Spain, 2012.

2. Research problem

80 76 72 68 70 **59%** 63 55% 59 58 51% 60 55 54 **48**% <mark>47%</mark> 51 <mark>45%</mark> <mark>44</mark>% 50 **41%** 39 40 33 33 <mark>32</mark>% 27% 27% 30 25 20% 20 15 12 11 12% 7 7 10 10% 9% 6% 6% 0 Network CMDB PPM ESB License Change Scanners and Management Management Monitors Tool Tool Relevant Info for EA? Usage of Tool I don't know

Fig.: Usage and relevance as EA information sources (n=123).

- majority of organizations have no dedicated process for EA documentation defined
- only 23 participants (18.7%) stated that they have implemented some form of automated EA documentation mechanisms for their EA tool (mostly limited to simple file import mechanisms that are manually triggered)
- direct data integration between other information systems and the EA tool only considered by few organizations

source:

Farwick, M., Hauder, M., Roth, S., Matthes, F., Breu, R.: Enterprise Architecture Documentation: Empirical Analysis of Information Sources for Automation - In the Hawaii International Conference on System Sciences (HICSS 46), Maui, Hawaii, 2013

(1)

2. Research problem

\square 3rd quartile \square 2nd quartile \blacklozenge median \square avg. Completeness Correctness Actuality Granularity -

Fig.: Information source quality attributes of Network Scanners (n=54)

- used to monitor infrastructure and its performance (APM)

(2)

- high actuality and correctness
- scope of monitoring tools is too granular
- main problem:
 bridging the abstraction gap between existing information silos and EA tools

source:

Farwick, M., Hauder, M., Roth, S., Matthes, F., Breu, R.: Enterprise Architecture Documentation: Empirical Analysis of Information Sources for Automation - In the Hawaii International Conference on System Sciences (HICSS 46), Maui, Hawaii, 2013

2. Research problem

(3)

Smartscape topology

Microservice architecture example

3. Research Questions

4. Solution proposal

source (logos):

www.bmwgroup.com, www.dynatrace.com, www.nodejs.org, www.graphql.org, www.mongodb.com, www.reactjs.org, www.cytoscape.org

5. Evaluation

	Requirements analysis	Literature researchInterviews with stakeholders	relevant requirements desired outcome
	Evaluation design	 Definition of relevant case study parameters (assessment criteria, stakeholders, methods of information gathering) 	case study design
	As-Is-Evaluation	 Analysis of as-is situation Data collection from relevant sources 	as-is meta-model
N	On-Site experience	 Implementation of prototype Feedback from stakeholders Refinement of prototype 	final prototype version
	Case Study	 Semi-structured interviews with stakeholders Gap analysis 	updated meta-model relevant research data
	Final Assessment	 Critical assessment of benefits and limitations Final evaluation of research questions 	answers to research questions thesis write-up

6. Timeline

27.05.2019

Thank you for your attention!

Discussion

Advisor: Martin Kleehaus Student: Nektarios Machner

Chair of Software Engineering for Business Information Systems (sebis) Faculty of Informatics Technische Universität München wwwmatthes.in.tum.de

TLM sebis

Nektarios Machner

Technische Universität München Faculty of Informatics Chair of Software Engineering for Business Information Systems

Boltzmannstraße 3 85748 Garching bei München

Tel +49.89.289. Fax +49.89.289.17136

nektarios.machner@in.tum.de wwwmatthes.in.tum.de

