

Leveraging TLS/SSL-based Identity Assertion and Verification Systems for on-chain authentication of real-world entities

Jan-Niklas Strugala, 21.07.2020, Advanced Seminar

sebis

Chair of Software Engineering for Business Information Systems (sebis) Faculty of Informatics Technische Universität München wwwmatthes.in.tum.de

1. Motivation

2. Background

3. Research Objective & Questions

4. Roadmap

Motivation

Goal of Authentication

Identify an individual that wants to sign into a restricted application

Web 2.0 Many standards as OpenID Connect

Motivation

Goal of Authentication

Identify an individual that wants to sign into a restricted application

Web 2.0 Many standards as OpenID Connect

...but who endows the application the user is authenticating at with trust

Web 2.0 TLS/SSL certificate infrastructure

Blockchain No trust endowment

Problem

Statement

Motivation

Goal of Authentication

Identify an individual that wants to sign into a restricted application

Web 2.0 Many standards as OpenID Connect

...but who endows the application the user is authenticating at with trust

Web 2.0 TLS/SSL certificate infrastructure

No sophisticated standard for authenticating third parties on the blockchain

TLS/SSL certificate were not developed to actively authenticate entities

No authentication standards

Blockchain

1. Motivation

2. Background

3. Research Objective & Questions

4. Roadmap

Authentication

ПП

Authentication:

"The act of proofing who you are"

Authorization: "The act of granting someone access"

Secure connections with TLS, X.509 Certificates and PKI

- Browser requests identification
- 2 Server provides TLS/SSL certificate + public key
- **3** Browser checks certificate
 - Root Cert on list of trusted Root Certs?
 - Matching domains?
 - Current date < Expiry date?</p>
 - Certificate not revoked?
 - Responds with encrypted session key by public key

Server decrypts message + responds with message encrypted by the session key

5 Encrypted session

1. Motivation

2. Background

3. Research Objective & Questions

4. Roadmap

Research Objectives

Improve the TLS/SSL-based Identity Assertion and Verification System by adding trustless authentication

- A. Exploration and analysis of the Web 2.0 and Blockchain authentication protocols and applications
- **B.** Development of a system which allows:
 - registration of identities at SC endorsed by TLS/SSL certificates
 - authentication of identities at App SC, which is related to the Registry SC
 - trustless, on-chain authentication

C. Evaluation of System

R1 Which are the major authentication practices and technologies?

R2 How can a TLS/SSL-based identity assertion and verification system contribute trust to authentication?

R3 How can we achieve on-chain authentication of real-world identities considering the constraints of Blockchain?

Research Questions

- **R1** Which are the major authentication practices and technologies?
- R1.1 Which authentication practices and technologies are relevant in the Web 2.0?
 - Login with username and password
 - Application of tokens for user sessions
 - Federated solutions enabled by OAuth 2.0 and OpenID Connect (e.g. "Login with Google")
 - Centralization of user data at "trusted" 3rd parties
 - Enhanced security through multi-factor authentication
- R 1.2 Which authentication practices and technologies are relevant in Blockchain?
 - Login with Username and password
 - Whitelisting of accounts
 - Few attempts to trustless authentication

Research Questions

- R2 How can a TLS/SSL-based identity assertion and verification system contribute trust to authentication?
- R2.1 How do existing systems which apply TLS/SSL-based identity assertion execute authentication?

- R2.2 Which of its properties endow a TLS/SSL certificate with an increased level of trust?
 Link to a chain of trust?
- R2.3 What are challenges of bootstrapping a TLS/SSL-based identity assertion and verification system?

Research Questions

- **R3** How can we achieve on-chain authentication of real-world identities considering the constraints of Blockchain?
- R3.1 What is the application life-cycle of a potential on-chain authentication solution?
- R3.2 Which are the constrains of Blockchain that affect the development of our solution?

 Limited transaction throughput?
 - Transaction costs?
- R3.3 What are potential system designs for an on-chain authentication solution?
- R3.4 What are the advantages and disadvantages of the different system designs?

1. Motivation

2. Background

3. Research Objective & Questions

4. Roadmap

Methodology

Literature Review with focus on Web 2.0 authentication protocols, considering emergent developments in the Blockchain environment

Analysis of authentication environment and definition of system requirements

System Design

System Implementation

Timeline

TLM sebis

Prof. Dr. Florian Matthes

Technische Universität München Faculty of Informatics Chair of Software Engineering for Business Information Systems

Boltzmannstraße 3 85748 Garching bei München

Tel +49.89.289. 17132 Fax +49.89.289.17136

matthes@in.tum.de wwwmatthes.in.tum.de

ТЛП

Motivation

Web 2.0

Problem Statement

No sophisticated standard for authenticating third parties at smart contracts

No registration and authentication of third parties in the current system

The developers of the TLS/SSL certificate infrastructure did not have our use-case in mind