

Query and Bulk Type Extensions
in Higher-Order Polymorphic Languages

Datenbankerweiterungen

von polymorphen Sprachen hoherer Ordnung

Diplomarbeit

vorgelegt
von
Dominic M. Juhész

Marz 1994

Betreuer:
Prof. Dr. Joachim W. Schmidt
Prof. Dr. Heinz Zillinghoven

Fachbereich Informatik
Universitat Hamburg
Vogt-Kolln-Str. 30
22527 Hamburg

Contents

1 Introduction and Motivation

1.1 Design Goals e
1.1.1 Extensibility oo
1.1.2 Uniformity e
1.1.3 Flexibility o e
1.1.4 Optimizability

1.2 Outline of the Text

2 Query Languages and Bulk Types

2.1 Comprehensions: Origins and Applications
2.1.1 Introducing the Comprehension Notation
2.1.2 A Translation Scheme L L oo
2.1.3 Comprehensions as Query Language

2.2 Bulk Types e e e e e
2.2.1 Monads and Monadic Bulk Types
2.2.2 Monadic Bulk Types and Comprehensions
2.2.3 An Initial Algebra Approach L.

3 Language Technology

3.1 Introduction into the Tycoon Language
3.1.1 Naming and Binding oo oL
3.1.2 Functions e e e
3.1.3 Value and Type Construction
3.1.4 Subtyping
3.1.5 Parametric Polymorphism o000
3.1.6 Imperative Programming

10
11
12
13
14
17
19

3.1.7 Modules, Interfaces, and Libraries 38

3.2 Syntax Extension in the Tycoon Environment 39
A Typed Comprehension-Based Query Language 43
4.1 Introduction of the Syntax L 45
4.1.1 The Building Blocks of a Queryo, 46
4.1.2 Grammar of the Query Language 50
4.2 Typing and Scoping in a Comprehension 52
4.3 Comprehensions in Different Contexts 53
4.3.1 A Classification of Contexts 54
4.3.2 An Extensible Framework for Contexts 55
4.3.3 A Set of Representative Contexts 57
4.3.4 Typing Aspects of Contexts 61
4.4 Tteration Abstraction and Bulk-Morphisms 63
4.5 Naming, Parameterization, and Recursion 66
4.5.1 Naming of Queries L 66
4.5.2 Parameterization of Querieso Lo 67
4.5.3 Recursive Querieso 68
4.6 Expressive Powero 71
The Operational Semantics of the Query Language 73
5.1 An Extensible Environment for Query Languages 74
5.2 A Functional Approach 75
5.2.1 The Environment: Iteration and Bulk Types 76
5.2.2 A Generic Function Reduce o o 00000 80
5.2.3 The Implementation of Comprehensions 81
5.2.4 The Implementation of Different Contexts 84
5.3 An Imperative Implementation oo 87
5.3.1 The Environment: Iteration and Bulk Types 90
5.3.2 A Context-Independent Implementation 91
5.3.3 Comprehension Threads (Binding Sequences) 94
5.3.4 An Extensible Library of Contexts 100
5.4 Realization by Syntax Extension 0oL, 106
54.1 A LL(1l) Grammar 106

i

5.4.2 Rules for the Syntax Extension Tool
6 Conclusions and Further Research
6.1 Summaryo e
6.2 Efficiency and Optimization
6.3 Requirements towards the Technology
6.3.1 Language Technology
6.3.2 The Syntax Extension Tool
6.4 Further Research
A Contexts in other Query Languages
Al DBPL . . e
A2 COOL . . . e
A3 Fibonacci e
A4 OSQL . . o e
B Grammar of the Language TL*
B.1 Productions e e
B.1.1 Compilation Units
B.1.2 Bindings
B.1.3 Values e
B.1.4 Signatures
B.1.5 Types . . . o o o e e
B.1.6 Identifier
References

iii

111
111
112
114
114
115
116

119
119
120
121
121

123
123
123
123
124
125
125
125

127

v

Chapter 1

Introduction and Motivation

A database system supports a database language consisting of a data definition language
(DDL) for the definition of schemata and a data manipulation language (DML) for the access
and manipulation of data stored in the database [Lockemann, Schmidt 87; Ullman 88a).
This scenario is sufficient for the formulation of ad-hoc queries since the DML includes a
query language. Examples of database languages are SQL [Chamberlin, et al. 76], QUEL
[Stonebraker et al. 76], POSTQUEL [Stonebraker, Rowe 86], and QBE [Zloof 77]. In order
to enable a further processing of query results, an embedding of the query language into a
programming language is necessary. The embedding of query languages into host languages
is indivisible coupled with the embedding of the bulk types representing the database.

A widely utilized approach for embedding a query language into a given host language is
the use of language preprocessors [Lorie, Wade 79]. Commands of the DML are syntactically
more or less smoothly integrated into programs written in the host language. A preprocessor
extracts these commands of the DML and processes them separately. Examples of database
systems with this form of embedding are System/R (SQL into PL/I and Cobol) [Astrahan et
al. 76], Ingres (QUEL into PL/I, Fortran, Cobol, Basic, and C) [Zook et al. 77; Ingres 89],
and Oracle (SQL into Fortran, Cobol, and C) [Oracle 91].

Database programming languages represent an alternative approach to embedding. A conven-
tional, Turing complete programming language is extended with bulk types for the persistent
storage of the bulk data and database functionality as, for example, declarative constructs
for the access of data and for iteration over data elements, and a transaction concept. The
syntax, semantics, and implementation of the bulk type and the support for the database
functionality are built into the language processor and the run-time system support. Database
programming languages achieve a real integration of a database language into a programming
language by eliminating the conceptual difference between the constructs of the database lan-
guage and the programming language. An early representative of those languages is Pascal/R
[Schmidt 77] extending Pascal [Wirth 71] and later evolved to Modula/R [Reimer, Diener 83;
Koch et al. 83] and DBPL [Schmidt, Matthes 92] on the basis of Modula-2 [ModISO 91].
Other examples are Adaplex [Smith et al. 83], extending Ada [Ichbiah 83] with a data model
DAPLEX [Adrion, Branstad 81], and Galileo [Albano et al. 85].

The development of programming languages as Quest [Cardelli 89], Tr [Matthes 92b], ML
[Paulson 91], Modula-3 [Nelson 91], and Eiffel [Meyer 92] supporting modern programming

concepts as parametric polymorphism and higher-order functions discloses new opportunities.
Bulk types are definable by the user employing parameterized type constructors; there is no
need for built-in bulk types. If the language also supports an orthogonal persistency concept,
the user-defined bulk types may be employed for data-intensive applications. In such an envi-
ronment support for declarative access constructs for bulk types allowing iteration abstraction
and the formulation of queries is desirable for all user-defined bulk types.

A possible solution is a library-based approach (add-on approach). The database functionality
is supported by libraries as proposed in [Matthes, Schmidt 92; Niederée 92]. Query support
and iteration abstraction are realized by higher-order functions. This approach is very flexible
and easy to extend, but it lacks declarativity and a user-friendly syntax as found in systems
following a built-in approach.

It is the aim of this work to combine the user-friendly syntax and declarativity of a built-in
approach with the flexibility and extensibility of an add-on approach.

This thesis is concerned with the development of an extensible framework for a typed query
language. In order to retain the flexibility of an add-on approach, the query language should
not be built into a host language. It is attempted to support the syntax of the query language
by syntax extension technology [Kohlbecker 86], i.e., by translating syntax specific to the
query language into expressions of a host language. This work examines the feasibility of such
an approach in a typed environment and investigates its flexibility and its extensibility to
arbitrary bulk types.

1.1 Design Goals

It is the aim of this thesis to design a framework for a query language in a typed environment.
The design of the query language and the choice of the supporting technology are driven by
the goal to achieve extensibility, uniformity, flexibility, and optimizability. Comprehensions
are chosen to form the basis of the query language. They promise to help achieving the four
design goals [Trinder 92].

In order to improve the extensibility and flexibility of the approach, the comprehensions are
augmented by an additional building block, called context. A comprehension together with
a context forms a query. Intuitively speaking, the context defines a last processing step for
the sequence of elements specified by the comprehension. A similar approach is found in
the database programming language DBPL [Schmidt, Matthes 92]. DBPL supports selective
and constructive access expressions allowing declarative formulation of query expressions on
relations. The access expressions of DBPL are typed first-class language constructs that may
be named and parameterized. It is possible to employ the access expressions in different
contexts as in relation constructors, resulting in facilities for the definition of new relations,
subrelations and views, and in for-loops, allowing the iteration over selected elements of a
relation applying an operation to each of the elements. Another application of the access
expressions is the update of selected subrelations.

The main ideas for the realization of the four design goals are summarized in the following
parts of this section.

1.1.1 Extensibility

The proposed query language defines an extensible framework for the formulation of queries.
The kernel of the language is based on comprehensions, a widely accepted notation for list ma-
nipulations in functional programming languages [Turner 82; Bird, Wadler 88; Field, Harrison
88; Peyton-Jones 87; Turner 87]. Rather than using the comprehensions directly as queries,
as proposed in [Trinder 89; Trinder 92], they are augmented by the concept of contexts. Only
a comprehension combined with a context forms a complete query.

Concepts similar to the contexts introduced here are implicitly present in many query lan-
guages. Examples are the application of aggregate functions to the query result [Biiltzingsloe
wen 87] or the choice of one/the only element of the query result supported for example in
Fibonacci [Albano et al. 93], 03SQL [Bancilhon et al. 92], and ADAPLEX [Smith et al. 81].
The specification of these ”contexts” fixes a last processing step to be performed for the ele-
ments of the query result. In absence of special options for the context, the elements of the
query result are collected in a bulk type (e.g., tables in SQL [Date 89]). This may be viewed
as an implicit standard context for queries. The presented query language generalizes these
ideas, and employs the notion of contexts explicitly.

The query language does not support a fixed set of contexts. However it offers an extensible
framework for the definition and use of contexts. Concrete contexts are supported by an exten-
sible library. Thus, special contexts may be defined according to the considered applications.

The designed query language is not restricted to one specific bulk type, as it is the case in most
query languages and query facilities in database programming languages based on a built-in
approach (Pascal/R [Schmidt 77], Plain [Wasserman et al. 81], Modula/R [Reimer, Diener 83;
Koch et al. 83], DBPL [Schmidt, Matthes 92], E [Carey et al. 88], CO, [Lécluse, Richard 89]).
The bulk types are not built-in. They are provided by a library that is extensible by the user.
The query language is applicable to all those bulk types!.

In addition, arbitrary element types are possible for the bulk types. The element types are
not restricted in any way as, for example, to flat tuples in the relational model. The query
language is independent of a specific data model. It is applicable in the context of flat relations
as well as in the presence of complex objects. Support specific to a chosen data model, e.g.,
in the form of special contexts for the comprehensions can be provided by the libraries that
are part of the environment for the query language.

1.1.2 Uniformity

A prerequisite for the implementation of a query language are access primitives for the bulk
types that allow sequential iteration over the elements. A query language for an extensible
set of bulk types requires a uniform protocol for these access primitives in order to enable a
uniform implementation of the query language. In [Matthes, Schmidt 92] a protocol for access
primitives described by an iterator type is proposed. Values of this type represent an iteration
over the elements of a bulk type. The protocol supports three functions: a function empty
to test if the iteration is empty, a function get to yield the first element of the iteration, and
a function rest yielding another value of the iterator type representing the iteration over the

! Assuming they fulfil some implementation-dependent restrictions.

el] L=|=

Syntax Extension Rules
Tool

e L

Figure 1.1: Flexible Language Extension

rest of the elements. The access primitives are supported for each bulk type by mapping it to
a value of the iterator type. Functions for iteration abstraction and the definition of a query
language for arbitrary bulk types may then be based on these access primitives.

A drawback of this approach is that for each step of iteration a set of three new function
closures are produced resulting in unnecessary time and space overhead during the iteration
of a bulk type [Liskov et al. 77]. It is more efficient to model the iterators by an object with
a state. The state keeps track of the progress of the iteration. This approach comes close to
scanning through data known from streams [Landin 64] in data processing.

On the basis of such a protocol a uniform query language for arbitrary user-defined bulk types
is realized. It is even possible to specify different bulk types as an input to a single query.
This enables the formulation of mixed queries, a novel concept to comprehension-based query
languages. Additionally several forms of nested queries [Dayal 87] are possible in the presented
framework. Queries may be employed as subqueries in all building blocks of this language.
This feature is of special importance for complex object models.

1.1.3 Flexibility

The syntax of the query language is not built-in. It is provided by employing syntax ex-
tension technology [Cardelli 93; Kohlbecker 86]. This technology allows the introduction of
application-oriented syntax into an existing language L. This leads to a new language L+,
accepting valid expressions of the language L as well as constructs containing the additionally
introduced syntax. Rules for the translation of the new syntax into constructs of the under-
lying language have to be provided. Figure 1.1 illustrates this approach. Expressions of the
language L+ are mapped to expressions of the language L by the syntax extension tool. The
syntax extension tool is driven by rules. The rules specify how expressions containing newly
introduced syntax are implemented employing the language L. An advantage of this approach
is that the syntax is adaptable to new requirements without touching (changing) the compiler.

So the chosen syntax for the query language is not fixed for all times; it can be adapted
according to experiences made with the syntax and according to new requirements. It is also

possible to change the implementation of the query language by developing new rules for the
syntax extension tool. This might be necessary to improve the performance of the system.

As mentioned above the bulk type support for the query language is not built-in. It is provided
by libraries. This introduces further flexibility to the environment of the query language: the
implementation of the bulk types can be altered in order to fulfil new requirements towards
the functionality and efficiency of the query evaluation.

1.1.4 Optimizability

The developed query language and its implementation have a prototypic character. It is the
alm of this work to examine the feasibility of the chosen approach. For this reason it does not
focus on efficiency and optimization. On the other hand these topics are very important for
query languages. It is, therefore, notable that the query language offers promising starting
points for optimizations.

Optimization rules for comprehensions, forming the kernel of the query language, are de-
scribed in literature [Trinder, Wadler 89]. Further starting points for optimizations are the
implementations of the query language and of the bulk types. Both are not built-in. The
bulk types are provided by libraries that may be extended and changed by the user. Ex-
isting implementations are exchangeable by more eflicient ones. The implementation of the
query language is defined by the rules for the syntax extension tool. Other and probably more
efficient implementations can be established by developing new rules.

The query language is realized employing syntax extension technology. Expressions containing
query-specific syntax are transformed into code of the Tycoon language, or more precisely into
abstract syntax trees of the language T1. After this transformation queries are subject to the
code optimization performed by the Tycoon compiler. It has to be examined which options
to the compiler improves the optimization of code typical for the query implementation.

1.2 Outline of the Text

In this chapter design goals for the developed query language together with some first ideas for
the realization of the approach are presented. The rest of the thesis is split into five chapters.

The query language presented in this thesis is comprehension-based. Chapter 2 describes
the origins of the comprehensions and the different application of this notation. One of the
most significant application areas is the use of list comprehensions in functional languages.
Comprehensions are proposed as query language in [Trinder 92; Abiteboul, Beeri 88]. The
concepts of the comprehensions can be extended to different bulk types. Different approaches
towards the notion of a bulk type are known from literature. Some of these approaches are
summarized in chapter 2. First, attempts to give an intuitive semantics of bulk types are
described followed by a more formal treatment of the notion of a bulk type. Among these
approaches one can identify the monadic [Wadler 90; Trinder 92] and abstract data type
[Beeri, Ta-Shma 94] definition of bulk types.

The query language developed in this thesis is embedded into a host language. This embedding
is achieved by employing syntax extension technology. The language TL [Matthes 92b], a

modern programming language supporting concepts as parametric polymorphism and higher-
order functions, is used as host language for the query language and also as target language
for the syntax extension. Relevant concepts of the language TL are described in chapter 3.
Additionally a short overview of the employed syntax extension tool is given in this chapter.
Both the language TL [Matthes 92a] and the employed syntax extension tool [Schréder 93]
have been developed at the University of Hamburg.

Chapter 4 describes the designed query language. The query language consists of two parts:
the kernel of the query language and an extensible framework for contexts. The kernel is mainly
formed by comprehensions that accept arbitrary bulk types as input. First, the building
blocks of the kernel of the query language and the proposed syntax for this part of the
language is introduced. These considerations are completed by the presentation of a grammar.
Furthermore, typing and scoping aspects are discussed.

Intuitively, contexts fix the last processing step for the sequence of elements specified by the
comprehension that forms the kernel of the query. The query language provides an extensible
framework for the definition of contexts. This framework together with the resulting extensions
of the grammar of the query language are presented in chapter 4. The concrete contexts are
supported by a library that is extendible and adaptable by the user. In order to give an
impression of the wide variety of possible contexts a concrete set of representative contexts
is described. It is a novelty of the developed query language that it supports mixed queries,
i.e., different bulk types can be specified as ranges to a single query. Based on the theoretical
results presented in chapter 2, a semantic for mixed queries is discussed in chapter 4. The
last part of the chapter is devoted to more advanced aspects of the query language. First it is
shown that naming and parameterization can be naturally introduced into the query language.
Second an approach for the integration of recursive queries into the presented framework is
outlined.

The query language presented in this thesis is realized employing syntax extension technology.
Thus expressions containing query language syntax have to be implemented by expressions of
the host language (here T1). This implementation fixes the operational semantics of the query
language. Prior to the discussion of different implementation alternatives, an architecture for
the extensible query language environment is presented in the first part of chapter 5. The
implementation of the query language consists of a realization of the comprehensions and of a
realization of the framework for the contexts. It is the design goal to keep the implementation of
the comprehensions independent of the context in which they may appear. The environment
for the query language and its implementation is constituted by libraries supporting bulk
types, contexts, and iteration abstraction.

First, a functional implementation is examined. It is based on a translation scheme for list
comprehensions presented in [Wadler 87]. The translation scheme is extended to work for
arbitrary bulk types as input of the query and especially also for mixed queries. This is
achieved employing a functional implementation of iteration abstraction. Furthermore the
approach is generalized allowing the implementation of comprehensions in different contexts.
For this reason a generic function reduce is introduced that is parameterized by functions in
dependence of the chosen context. A further generalization leads to a generator for reduce
functions. In accordance with approaches proposed in literature the employed bulk types are
implementations of ringads [Trinder 92].

In the third part of the chapter an imperative implementation of the query language is de-
scribed. The range variables of the comprehensions are realized by mutable variables. The
elements of the according ranges of the comprehension are subsequently assigned to these
variables resulting in a sequence of environments, called binding sequences or comprehension
threads, for the evaluation specified in the target expression of the comprehension. Iteration
abstraction and bulk types are realized by objects with a mutable state in this approach.

The first part of chapter 6 gives a summary of the results of the work. The efficiency of
the presented query language depends on the chosen implementation for the comprehension
and on the implementation of the bulk types. There are several methods to optimize the
query language. Among these are the code optimization and the choice of more efficient bulk
type implementations. Possible starting points for the optimization of the query language are
described in the second part of chapter 6. Experience and further research have to show the
effectiveness of the various approaches. In the third part of chapter 6 the experiences with the
employed technologies are summarized. First the language TL used as host language for the
query language is considered. Afterwards the experiences with the employed syntax extension
tool are summarized. In the last part of the chapter some topics for further research related
to the presented approach are proposed.

Chapter 2

Query Languages and Bulk Types

In this thesis an extensible framework for a query language is presented. This query language
is based on comprehensions, known from functional programming. Comprehensions are used
as declarative notation to express list manipulations. Comprehensions are proposed as query
language in [Trinder 92]. An introduction to the origins and applications of comprehensions is
given in this chapter. It is one of the goals of the proposed query language to allow querying
different bulk types. In the literature different approaches for the definition of bulk types exist
[Atkinson et al. 90; Breazu-Tannen, Subrahmanyam 91; Stemple, Sheard 91; Watt, Trinder 91;
Beeri, Ta-Shma 94]. In the past, most work relied on a more intuitive understanding of bulk
types [Atkinson et al. 90]. In recent work attempts are made to find a formal framework for
the definition of them. Monads are taken as starting point in some approaches [Wadler 90;
Trinder 92; Wadler 90] whereas other work propose a definition employing abstract data
types for the specification of bulk types [Ross 92; Beeri, Ta-Shma 94]. There are also some
approaches relying on a free algebra approach of bulk data types [Fegaras 94], or on other
notions of bulk types as for example the maps presented in [Atkinson et al. 90]. This chapter
gives a short description of some of these approaches.

An extension of the monads, the ringads, are taken as a basis to describe the semantics of
comprehensions for other bulk types than lists. This approach is taken as a starting point
for the definition of the semantics of the query language and especially of the mixed queries
described in chapter 4. The functional implementation of the query language described in
chapter 5 is also based on this approach. Further the restrictions from a monadic definition of
bulk types are loosened in a more general theoretic framework for the semantic definition of
bulk types. This generalization is a summary of the work of Beeri and Ta-Shma undertaken
recently [Beeri, Ta-Shma 94].

2.1 Comprehensions: Origins and Applications

The most direct way to denote finite sets is to list their members, e.g., { 1, 2, 3,4 }. However,
sets do not depend upon any ordering of their elements or upon duplication, so that { 1, 2,3 }
and {3, 1,1, 2,2, 3} denote the same set. A disadvantage of this notation is that it is not
adequate for the representation of large sets and impossible for the representation of infinite
sets. A more adequate and concise notation for sets are ZF-expressions named after Zermelo

and Fraenkel [Zermelo 08]:

Suppose F is an expression and P is a predicate, then { F'| P } denotes the set that contains
z if, and only if, there are values for the variables in P and F that make P = true and £ =
z.

In many functional programming languages lists are a central programming feature. They
are used for data structuring as well as for programming, e.g., for defining functions. Lisp,
Miranda, and Haskell [McCarthey et al. 65; Turner 85; Bird, Wadler 88] are typical represen-
tatives for this class of functional languages.

The heavy use of lists in these programming languages motivates the introduction of declara-
tive constructs for list expressions. List comprehensions, an adaptation of the ZF-expressions,
are often used for this purpose. List comprehensions in functional languages were first intro-
duced in KRC [Turner 85|, a functional language designed by Turner [Turner 82] and were
further developed in Miranda.

2.1.1 Introducing the Comprehension Notation

The following considerations are based on the comprehension syntax presented in [Wadler 87,
p.128]. Many other authors employ a similar notation referring to Wadler’s proposal. Analogue
to ZF-expressions, a list comprehension is mainly divided into two parts: an expression and
a list of qualifiers.

[<expression> | <qualifier> ;... ; <qualifier>]
There are two forms of qualifiers, generators and filters.

Generators: A generator is a range expression ranging over a list. It introduces a range
variable and a list as the domain of this variable. Syntactically, a generator is of the
following form:

z— A

In this expression x denotes the range variable and A the name of a list. Instead of a
named list A, it is possible to have an expression denoting a list or a functional expression
returning a list as a result. During the evaluation of the comprehension the members of
list A are bound successively to the variable x. This mechanism is denoted by the arrow
symbol pointing from the list to the variable.

Filters: A filter is a Boolean expression. All range variables introduced in generators pre-
ceding the filter can be part of the Boolean expression. The filter restricts the members
of the lists, which can affect the result of the comprehension, to those which fulfil the
given predicate.

The result of a list comprehension is by definition a list. The expression preceding the bar
in the comprehension describes the construction of the elements of the resulting list. All
introduced range variables can appear in this expression.

The following example of a list comprehension denotes a list of all members of a given list A
of integers satisfying the condition that the members are all greater than five.

[x]|x— A;x> 5]
The semantics of list comprehensions may be given by a set of five rewrite rules [Wadler 87]:

(D IE|v=[;Q] =[]

(2)[E|v=FE:1";Q] =[E |QE/V ++[E |v—1;Q]
(3) [E | False; Q] —[]

(4) [E | True; Q] —[E | Q]

(5) TE|] —[F]

In the rules F denotes an expression, () denotes a sequence of zero or more qualifiers and
E’: L' denotes a list with head E’ and tail L’. The append function on lists is denoted by ++.
The used notation for substitution [<expression>][E’/v] expresses that all free occurrences
of v in the expression are replaced by E’. The first two rules explain the impelling effect of
the generators on the comprehension result. A comprehension with an empty list in the first
generator results in an empty list (rule 1). In case of having a list £’ : L' in the generator
all occurrences of the range variable v are replaced by the expression E’ in the remaining
qualifiers and the expression F. The result of the substitution is appended to the result of the
rest of the comprehension. Rules (3) and (4) describe the effect of filters on the result. Rule
(5) reduces comprehensions without qualifiers, which occur as temporary result during the
reduction process. The following rule for the generators derived from rules (1) and (2) makes
the effects of the generators in a comprehension more obvious:

(2) [E | ve=T[B, ... E]; Q= [E [QU E/v]++ ... 4+ [E [Q] [En/V]

Employing these rules, the above example with the list A = [2, 4, 6, 8] leads to the following
reductions:

(x| x = (24,6 8);x> 5]

|2>5]++[4]4>5]++[6]6>5]++[8]8> 5]
| False | ++ [4| False | ++[6 | True] ++ [8 | True |
++[1 ++[61]++[8]]

++[] ++[6]++ 18]
8

2
2
]
]
6, 8]

L A

2

[
[
[
[
[

2.1.2 A Translation Scheme

On the basis of the five reduction rules describing the semantics of the comprehensions a
translation scheme is evolved in [Wadler 87]. This scheme allows the translation of list com-
prehensions into an enriched lambda calculus. The translation uses a higher-order function
flatMap which takes a list-valued function f and a list L as parameters. flatMap applies f to
each element of the list and appends the resulting lists, yielding a single result list.

(1) Translate ([E|v < L;Q]) — flatMap A v Translate ([E| Q]) Translate (L)
(2) Translate ([E| B; Q]) — If Translate (B) Translate ([E| Q]) NIL

(3) Translate ([E|]) — CONS Translate (E) NIL

The given rules are expressed using a meta-function "Translate’, to describe the different
translation steps. A generator v «— L is translated into a call of the function flatMap, where
the function-parameter f is a lambda abstraction over the range variable ». The body of this
lambda abstraction is formed by the translation of the rest of the comprehension [E | @]. The
consecutive application of the rules guarantees the translation of all existing generators into
nested flatMap expressions.

The presented rules are part of a larger translation scheme for a language that incorporates
comprehensions [Peyton-Jones 87]. The translation of list I is performed by further rules of
the scheme. These rules are omitted here since they are not of interest for the considerations!.
Rule 2 shows that a filter B is translated into a conditional expression. If the filter is fulfilled,
the expression returns the translation of the rest of the comprehension [E |)], else an empty
list is returned. A comprehension without qualifiers is translated into a list containing only

an expression £ (rule 3).

The efficiency of the expressions generated by the translation scheme may be improved by
using methods from program transformation [Feather 87] known as inlining and elimination.
The resulting rules are presented in [Wadler 87, p.135] are optimal in the number of cons-
operations performed to construct the result.

2.1.3 Comprehensions as Query Language

Comprehensions have not only been used for functional programming as explained in the
previous section, but have proved to be a successful notation for database applications. List
comprehensions are used in persistent storage systems, in distributed database languages,
and in languages for database programming [Heytens, Nikhil 91; Kato et al. 90; Trinder 92;
Ghelli et al. 92]. In his thesis, Trinder introduced comprehensions as a query notation for
database programming languages [Trinder 89, chapter8]. Trinder argues that the complexity
having multiple kinds of bulk data can be reduced if the comprehension notation is used
[Trinder 92]. It is stated that comprehensions can be defined in terms of a number of functions
which are also definable over a dedicated set of collection types. In connection to this, the
integration of bulk data constructors into database programming languages plays an important
role.

According to Trinder the following properties make the comprehension notation a good can-
didate for a query language for different bulk types.

Clarity and Brevity: Comprehensions allow a brief, declarative specification of queries.
It is obvious how to formulate intended queries and conversly queries formulated by
comprehensions are also easy to understand.

!This is also true for the translation of the filter predicate B in rule 2 and for the expression E in rule 3.

Efficiency and Optimizability: Database literature identifies four algebraic and two im-
plementation based improvement strategies [Ullman 88b]. For these strategies equivalent
optimization rules can be developed for list comprehensions [Trinder, Wadler 89].

Extensibility: Comprehensions as query language are originally restricted to lists. It is shown
in [Wadler 90] that they are easily made applicable to a larger class of bulk types,
fulfilling certain structural restrictions.

Expressive Power: Relational completeness introduced in [Codd 72] is a measure for the
expressive power of query languages. List comprehensions augmented by three auxiliary
functions are proven to be relational complete in [Trinder 89]. It is shown that any
relational calculus query can be mapped into an equivalent list comprehension. Since
the semantic basis of comprehensions can be expressed on the basis of lambda calculus
[Wadler 87], it is argued in [Trinder 92] that recursive functions added to comprehensions
allow the formulation of recursive queries. As argued by Trinder, augmenting functions
results in a query language that is computational complete and allows the formulation
of recursive queries [Trinder 92].

For these reason comprehensions are chosen as basis for the query language developed in this
work.

2.2 Bulk Types

In the database programming community there is a quite common understanding of the in-
tuitive semantics of a bulk type. Bulk types are understood to be collections or values that
have the properties:

Homogeneity: This is expressed as, “ Fvery collection is homogenous, i.e., all elements have
a common type, termed the element type of the collection” in [Watt, Trinder 91, p.3].
Others claim that, “All elements are of a certain lype”, have, “certain required proper-
ties”, are of a “subtype of some specified type” [Atkinson et al. 90, p.6]. Moreover some
argue that, “data have uniform structure” [Hull, Su 90].

Largeness: This is expressed as, “the instances can be populated in a unbound fashion”,
and “instances of a bulk are potentially large”, in [Atkinson et al. 90]. Others make the
statement that, “arbitrary large numbers of elements” are allowed [Beeri, Ta-Shma, 94].

Further, a bulk type is understood to have the property of making all those elements accessible
or retrievable which were inserted during the construction of a particular collection of entities
[Watt, Trinder 91, p.17]. Examples of bulk types are sets, lists or sequences, multisets or
bags, relations, 1NF relations, NF2 relations, directed acyclic graphs (DAGs), lattices, trees
[Atkinson et al. 90, p.2,6,15] [Atkinson et al. 93, p.49] [Wong 92].

Atkinson et al. give a number of further requirements for bulk types [Atkinson et al. 90, p.6-7].
Some of them are on a conceptual level whereas others are more implementation-dependent.
Since the conceptual understanding is emphasized here, the implementation-dependent re-
quirements are omitted in the following list:

1. Data type completeness is expected for bulk types, i.e., arbitrary types are possible for
the elements of a bulk;

Instances of a bulk may vary in size;
Means for iteration should be provided over the elements of a bulk type;

Bulk data values should be able to persist in a system;

[. I)

A useful and succinct algebra with well-understood properties is required over the in-
stances of the bulk type.

2.2.1 Monads and Monadic Bulk Types

The considerations presented in section 2.2 allow an intuitive understanding of the notion of a
bulk type. A formal framework is needed to allow accurate, general, and formal propositions
about bulk types. The monads are an early attempt to describe the formal properties of bulk
data types [Moggi 89; MacLane 71].

Monads

The notion of a monad is taken from category theory and describes a specific structure em-
ploying mathematical methods. This section gives an overview of the monads. A detailed
introduction can be found in [Lambek, Scott 86].

A category consists of two kinds of entities, namely, objects and morphisms. Among the
morphisms there is an identity mapping for each object of the category and a facility for
composing morphisms. For arbitrary categories monads may be defined. The monad used for
the definition of bulk types is based on the following category: The objects of the category
are types and the morphisms are functions. The identity functions ¢d, for each type a form
the identities and function composition, denoted o, performs the composition of morphisms.

As in all other categories the following laws for the composition and the identities hold:

(hog)o f = ho(gof)
foidy, =f= idgof for f:a— g

A monad consists of a functor M and two special morphisms 7 and g, called natural trans-
formations. A functor is applicable to the objects and to the morphisms of the category, i.e.,
on types and on functions in the special category.

As an example let M be the functor for lists. The application of M to a type a yields Ma,
the type of all lists with element type a. In case of passing a function f: a — §to M a
function M f : Ma — Mp is obtained?, taking a list of elements of o and returning a list of
elements of 3. The returned list is constructed by mapping the function f to all elements of its
argument. A functor M has certain properties. For the chosen category it maps the identity
function of a type a to the identity functions of Ma.

Mid, = idye (2.3)

2Sometimes referred to as function map.

Further, M applied to the composition of two functions is equal to the composition of their
images under M:

M(gof) = MgoMf (2.4)

The functor and the natural transformations have to satisfy the laws presented in the following
diagrams:

Mn

M3 M?* M M?
pM Iz Iz

Y
M? 1 M M? 1 M

The laws in the left diagram are the associative laws of a monad, whereas the right diagram
depicts the unity laws of a monad, with idy; as the unit of M [Lambek, Scott 86, p.28]. Such
diagrams are often used to represent relationships between families of functions. The edges
are names of types and the arrows depict functions. The left diagram is said to commute,
since the following equation holds:

poMp=popuM, (2.5)

i.e., the function obtained by composing the right-hand side and the top of the square is
identical to the function obtained by composing the bottom and left-hand side of the square.
The right diagram depicts the following unity laws:

o Mn=idy
vdpyy = ponM

A well known alternative representation of monads are the Kleisli monads. Similar to the
monads considered so far, the Kleisli monad consists of a functor M and two natural trans-
formations. One of these transformations is again 7, whereas p is replaced by the following
more general morphism:

flatMap : (¢ — M 3)— (M a — M j3)

Three laws are sufficient to describe the semantics of a Kleisly monad:

flatMapn = id (2.8)
flatMap fon = f .
(flatMap g)o (flatMap f) = flatMap((flatMap g)o f) (2.10)

The Monad of Lists

As an example of a monad, the data type of lists is taken. It is shown that the given laws are
satisfied within a theory of lists.

As mentioned above it is assumed that functions and types are the basic objects of interest.
The function composition is associative and the identity functions of our types are left and
right identities for composition with any function. Further there is a type constructor M which
takes a type to the type of lists of elements of this type and a function f to the function map
mapping f over the elements of a list and returning a list. The two above laws 2.3 and 2.4 hold
since map(id,) = idyr: and map (f o g) = map f o map g are obviously true. As an example
take the list Ma = [1,2,3,4] and « to be the integers then the following result is obtained:

Mid, = map(id,:Int — Int [1,2,3,4])
[1d(1),2d(2),1d(3),1d(4)]
[1,2,3,4]

= idpyp34 = 1dM o

Having the singleton function for lists, a function f : @ — 3, and the type operator M for
lists, one can construct the list of alphas: M «, the list of betas: M (3, and the function
mapping a list of alphas to a list of betas: map f. A well-known law can then be deduced
which states that constructing a singleton list of alphas and mapping the function f to it is
the same as applying the function f directly to the element and constructing the singleton
of the result. Morphisms having this property are said to be natural transformations. The
equation is:

map [o singleton, = singletong o f (2.11)

A similar law can be constructed when looking at the flatten function for lists:
map f o flatten, = flatteng o map(map f) (2.12)
To show how the associative (2.1) and unity laws (2.2) hold for lists, consider the following

examples:
map flatten

Mo = [[[23][34]][[45][56]] [[2334][4556]]
flatten flatten
! flatten
[[23][34][45][56]] [23344556)]

The diagram shows how the associative law (2.1) is fulfilled for a given list. A list of list of
lists is given and has the type M?3. Applying the flatten operator u to a collection M which is

flattening from the outside, a list of lists is obtained whose type is M?. Applying the operator
M to the function flatten (M) performs mapping the flatten function to the elements of a
given list — i.e., flattening from the inside of the list —. The result is again of type M?2.
Applying the flatten function p to both intermediate results then gives the final result of type
M.

map singleton

Ma = [1234] [2][3]]
vdpg
singleton flatten
[[1234]] flatten [1234]

In case of the unity laws (2.2) the above example shows how a given list of type M is applied
to the singleton function nM and the result of type M? is then flattened in a further step
leading to the initial list of type M. These two operations are identical to applying the
identity function ¢das to the list. The second law states that mapping the singleton function
to a collection, and in a further step flattening the result is also identical to applying the
identity function to the original list.

In this section a small theory over lists in a mathematic notation using functions and types was
introduced. The results obtained from this approach are two: First, a set of laws is identified;
i.e., identities for known operators of the data type list. Once recongnizing such identities they
may be exploited for transformation purposes of a defined language using these operators on
the manipulation of lists. Secondly, a set of abstract operators and operations were identified.
These operations can also be defined for other data types, as 'bags’ and ’sets’. In terms of the
above, bulk types can be defined in terms of a monad.

Not all known bulks fit the description by monad operations and laws. Therefore, we talk of
monadic bulks when we mean bulk data types in this framework. At least "sets”, ”bags”, and
”list” can be defined in terms of a monad.

2.2.2 Monadic Bulk Types and Comprehensions

Various approaches are described in the literature [Trinder 92; Watt, Trinder 91; Wadler 90;
Wadler 92; Atkinson et al. 93] proposing monads as a basis for a formal framework for bulk
types. [Wadler 90; Trinder 92; Watt, Trinder 91] take the (list)comprehensions as a starting
point. The extension of comprehensions to other bulk types are considered. The requirements
posed on a bulk type by the definition of comprehensions for these bulk types are examined.

Wadler’s approach [Wadler 90] is based on the first representation for monads presented in
the previous section. In this approach the functor M is modelled by a type operator M and a
function map. The two natural transformations n and p are called unit and join, respectively.
The five laws for the monad presented in the previous section are extended by two further

laws. These two laws are derived from the types of the functions unit and join according to
results developed in Reynolds type theory [Reynolds 83; Wadler 89]:

mapfounit = wunito f (2.13)
mapfojoin = join o map(mapf) (2.14)

The monad operations map, unit, and join are used to define comprehensions. It is shown that
an additional function zero : ¢ — 3 collection is needed to define the semantics of filters in
comprehensions. This function takes an element and returns an empty collection. The element
passed as parameter is discarded. Three laws are given for the function zero:

map f o zero = zero (2.15)
join o zero = zero (2.16)
join o map zero = zero (2.17)

The following rules are presented for the definition of comprehensions in [Wadler 90]:

[t]|A] = wunitt
[t]|z «— u] map(Az — t)u
[t] p;d] jomn[[t] q] | p]
[t] 0] if b then unit ¢ else zero t

[t]b;e] = [t|(bAc)]
[t1q:b] = [t]b;q]

where t and u are terms, b and c are filters, p and q are qualifiers, A denotes the empty
qualifier and x is a variable. The first two rules treat the cases of a comprehension without
qualifiers and a comprehension with a single generator as qualifier. The third rule describes
the semantics of composed qualifiers denoted by p;q. The semantics of a filter is described by
the fourth rule. If the filter is fulfilled, a singleton collection with ¢ as element is returned, else
the empty collection is returned. Rule five describes the composition of filters (b and c are
filters). For the last rule it has to be assumed that q does not bind variables used in b. Only in
this case the interchange is legal. As described in section 2.1.3 comprehensions are proposed
as query language in [Trinder 92]. The extension of comprehensions to different bulk types
leads to the notion of a ringad. Ringads are monads augmented with a function zero and a
function combine. Trinder uses Kleisli monads as basis using the names single and iter instead
of n and flatMap, respectively. As in the approach of Wadler, a function zero is introduced
to allow the implementation of filters. The laws specified for the zero are somewhat different
since a different monad representation is used as basis:

zZerooe = zero (2.18)
iter zero = zero (2.19)
iter fozero = zero (2.20)

where f:a — gM.

A monad with a zero is called a quad. In order to allow the construction of bulk values in a
uniform manner a further function, combine : Ma X Ma — M a, is introduced. The function

combine merges two collection ¢ and ¢’ so that each element in ¢ and each element in ¢’ have
a counterpart in the result. A monad with a zero and a combine fulfilling the following laws
is termed a ringad:

combine (zero) fx = fu (2.21)
combine(fz)(zerox) = fuz (2.22)

A third law describes how iter distributes through the combine function:

iter f (combine) c ') = combine(iter f c)(iter f) (2.23)

Wadler [Wadler 92] discusses the impact of monads to modelling impure programming con-
cepts such as exceptions and states within functional programming languages. Additionally
the definition of comprehensions using monads is described. The considerations made are
based in the Kleisli monad with natural transformations unitM for 5 and bindM for flat Map.

The following table gives an overview over the different notations used in the literature con-
cerned with the notion of a monad:

Lambek, Scott86 | Wadler87 | Wadler90 | Trinder92 | Wadler92
M M Collection M
map
] unet stngle unitM
I join
APPEND combine plusM
flatMap iter bindM
NIL Zero Zero zeroM

The table shows vertically grouped axiom systems with their operators and gives the authors
for each of the identified group in the first row of the table. The authors Lambek and Scott
discuss monads in a pure categorial/mathematical sense, whereas all the other authors view
monads as structures to implement functional programming.

To summarize, monads with a zero, called quad in [Trinder 92|, are identified as sufficient for
the definition of comprehensions. The function zero is required to define the semantics of a
filter. Quads are extended to ringads by a combine function to support the construction of
bulk values. Ringads can be used as a basis for a formal definition of a bulk type.

2.2.3 An Initial Algebra Approach

Not all bulk types which are constructible are captured by the notion of a monad, e.g., trees
with data at internal nodes [Ross 92, p.5] [Trinder 92, p.50] [Trinder 92, p.59] [Watt, Trinder
91, p.16-17] relations with keys [Watt, Trinder 91, p.16]. The aim of the work of Beeri and
Ross [Ross 92; Beeri, Ta-Shma 94] is to provide a basis to allow a formal definition of the
notion of a bulk type. Criteria are given to investigate whether a specified data type is a
bulk data type or not. Relationships between bulk types and the role of the data type set are
investigated. Algebraic properties are thus consequently utilized to investigate the effect of

operations defined over bulk types. The work of defining bulk types as ringads is generalized
by capturing types which are difficult to view as monads or ringads. The following sections

give an overview of this framework. A detailed presentation can be found in [Ross 92] and
[Beeri, Ta-Shma 94].

Formalizing Bulk Type Properties

In section 2.2 intuitively defined properties for bulk types, namely, homogeneity and largeness
are introduced. As argued in [Ross 92] bulk types are described as container types which admit
finite type definitions, while their instances can be populated in a unbound fashion. Integers
and arrays are, for example, not considered as bulk types since they can not be regarded as
container types and can not be populated in a unbound fashion, respectively.

Ross makes an approach to describe bulk types in terms of abstract data type specifications.
The concept of a bulk data type is given through parameterized algebraic specifications [Ross
92]. These abstract data type specifications consist of a formal parameter specification and a
target specification. A sort represents the formal parameter specification and describes a set
of minimal requirements which all actual parameters of the target specification must satisfy.
Hence the notion of homogeneity is naturally captured in this framework. In a standard
construction [Gougen et al. 76] the initial algebra is associated with each of the specified
abstract data types. The notions of largeness and conservativity are employed to single out
only those abstract data types that meet the conditions which have to be fulfilled by bulk
data types. In the following these conditions are explained in detail:

Largeness: To capture the intuition that bulk data types are types with arbitrary large
numbers of elements, a formal criterion is given. A bulk is considered large if, and only
if, the directed hypergraph derived from its definition, especially from its constructors,
is large, i.e., has cyclic structures and the formal parameter specification for the bulk
admits infinite algebras [Ross 92, Def. 3.10, Th. 3.11]. Admitting infinite algebras means
that no constraint limiting the actual size of constructible bulks is imposed on the target
specification by the formal parameter specification. An example of such a constraint
would be the equation "insert(z, B) = false if size(B) > 1000, restricting the number
of elements which can be inserted into a collection B.

The construction algorithm for the directed hypergraph on the constructors of an ab-
stract data type specification is given in [Ross 92, Def. 3.9].

Conservativity: The formal notion of conservativity expresses the property of a bulk type
to preserve all data items added to it. This criterion focuses on the equations found
in the specification of the target type. Only the constructors are of relevance to this
criterion, the destructors are excluded from these considerations, since their nature is
by definition not information preserving and, therefore, the conservativity property does
not hold for them.

A bulk is considered to have the conservativity property, if for all suitable parameters
the equivalence, constructed from the initial algebra approach, of any pair of data terms
(t1, t2) implies that the contents of the bulks from data terms ¢; and ¢ are equal [Ross
92, Def. 3.17].

In general, conservativity is not recursive [Ross 92, Th. 3.19], but constraints that have
to be satisfied by the equations of the specification can be named [Ross 92, p.19]. These
constraints are sufflicient to guarantee conservativity of the specified bulk type.

In summary, abstract data types are bulk types, when proven to be large and conservative,
where largeness is a property of the constructors and conservativity is a property satisfied by
the equations of an abstract data type.

Bulk-Morphisms

Of further interest are the relationships between bulk types. Ross investigates them by con-
structing a category whose objects are bulk type specifications and whose relationships are
morphisms [Ross 92]. The notion of a bulk-morphism is used to describe the relationship
between two bulks. For example, the bulk-morphism from lists to sets represents a type con-
version of a list collection into a set collection. A bulk-morphism has to specify how to map
a given bulk type specification (abstract data type) to Another bulk type specification; i.e.,
the sorts, function symbols, and data terms of one data type have to be mapped according
to constructs of the target specification. Again certain properties have to hold for morphisms
to identify them as bulk-morphisms. Ross defines a formal definition of a morphism for a
given parameterization [Ross 92, p.21]. Three mappings hs, hr, and héT are defined to map
the sorts, the function symbols, and the data terms of one bulk data type into the other,
respectively. The mappings have to prove holding the b-morphism criterion:

F(hpr(ty), - hpr(ta)) = hpp(he(f)(t, -5 ta);

for all function symbols f of the source type of the defined mapping with signature s1,---,s, —
s and for all data terms ¢y € s1,---,%, € Sy,.

Having parameterized specifications as bulk types, a family of morphisms is definable from one
bulk type to the other. One morphism for each of the actual parameter types is constructed
and the resulting family denotes the bulk-morphism between the considered types. These
morphisms have to satisfy certain properties to constitute a bulk-morphism.

First, it has to be guaranteed for the obtained family of morphisms that they act in a uniform
way over all suitable actual parameters, giving similar results for similar inputs [Ross 92,
p.25]. Well-definedness and complete-definedness [Ross 92, p.25] of the morphism guarantee
this uniform behavior. Second, the family of morphisms from one bulk into the other has to
be content preserving, i.e., the content of the image of the morphism applied to a bulk has
to be the same as the contents of the original bulk. This is always true for all possible bulks
subsumed in one bulk data specification [Ross 92, p.27]. Thirdly, the family of morphisms has
to satisfy the conservativity condition. This states that the equality of two data terms under
the morphism implies the equality of the contents of their images unser the morphism [Ross
92, p.27].

A Bulk-Morphism

This section gives an example of a bulk-morphism taken from [Ross 92]. A bulk-morphism
from lists to binary trees is constructed and all the properties named in the previous section

are discussed. First, the target specifications for the bulk types ’list” and ’binary tree’ are

given:
LIST = BINTREE =
import : data, nat import : data, nat
sorts : list sorts : bintree
cons : nil : — list cons : empty : — bintree
insert : data, list — list leaf : data — bintree
func : length : list — nat node : bintree, bintree — bintree
eqns : x € data, L € list func : breadth : bintree — nat
length(nil) = 0 height : bintree — nat
length(insert(x,L)) = eqns: X,y € bintree, d € data
1 + length(L) breadth(empty) = 0
breadth(leaf(d)) = 1
breadth(node(x,y)) =

breadth(x) + breadth(y)
height(empty) = 0
height(leaf(d)) = 0
height(node(x,y)) =

1 + max(height(x),height(y))

where nat are the natural numbers, zero included. The morphism from LIST(char) to
BINTREFE(char) defines a mapping for the sorts (hy), for the function symbols (hr), and
for the data terms (hpr):

hs(BINTREE) = LIST hp(breadth) = length hshar(

hs(char) = char hr(height) = length hshar(

hs(nat) = nat hskar(nil) = empty
(

node(leaf(c),hSha7 (L))

The mapping of the sorts is obvious. hrp maps the function symbols breadth and height of
BINTREFE to the function symbol length of LIST. The morphism maps lists to “right-
handed” trees (see the definition of hp7). For this kind of tree the height and the breadth is

always equal.

In order to show that the defined morphism is a bulk-morphism the following properties have
to be proven.

1. The b-morphism criterion;
2. The reasonability of recursion;
3. The well-definedness and complete-definedness of hpr;

4. The morphism hpr is content preserving;

5. The conservativity of the mapping.

To prove the b-morphism criterion, one has to show that for all data terms of the list type
the following equations must hold:

(a) breadth(h(m)) = hpr(length(m)) = length(m)

(b) height(h(m)) = hprlength(m) = length(m)

This is proven by structural induction over the data type LIST. The above morphism can be
viewed as defining a family of morphisms. It has to be shown that the family obtained forms
a natural transformation in the categorial sense.

Let d € data, L. € list. We define
h(nil) = empty
h(insert(d,L)) = node(leaf(d),h(L))

The proofs of the remaining properties for the given example can are given in [Ross 92].

Set is Terminal

An object T of a category is called terminal if for every other object of the category there
exists a unique mapping to this object T' [Lambek, Scott 86, p.19]. The bulk type theory
presented by Ross forms a category with the bulk type specifications as object and the bulk-
morphisms as morphisms. It is shown in [Ross 92] that the bulk type set is a terminal object
in this category, i.e., for all bulk data types, there is a unique bulk-morphism from B to the
bulk type set. Further, it is known from results of category theory that all terminal objects
of a category are isomorphic. Sets are, therefore, upto isomorphism, the only object in the
category of bulk types with this property.

The bulk-morphisms and especially the terminal property of sets are taken as a starting point
for the discussion of the semantics of the query language developed in this work. Query lan-
guages with different bulk types as inputs and different bulk types as results can be interpreted
as bulk-morphisms in a given category. The discussions related to this are given in chapter 4.

Chapter 3

Language Technology

The syntax of the developed query language and its implementation are not built-in. The query
language is realized by employing syntax extension technology. A syntax extension tool is
driven by rules that associate the chosen syntax of the query language with an implementation
of the constructs in a target language. In order to allow the implementation of a query language
a concrete target language has to be chosen. In this approach, the target language T1L is
employed [Matthes 92b], a modern programming language supporting enhanced features as
parametric polymorphism and higher-order functions. TL is also used as host language to
embed the query language: constructs of the host language can be used inside the query, and
queries are valid parts of programs written in the host language. The features of the language
TL relevant for the chosen approach are described in the first part of this chapter.

A syntax extension tool, developed at the University of Hamburg [Schréder 93], is employed
to realize the query language. The second part of the chapter gives a summarized overview
of this syntax extension tool. The concrete rules needed for the implementation of the query
language are described in chapter 5.

3.1 Introduction into the Tycoon Language

The programming language TL evolved from the languages Quest [Cardelli 89; Cardelli 90]
and P-Quest [Matthes 91; Miiller 91; Niederée et al. 92]. Abstracting from some syntactical
differences, QQuest is mainly a subset of TL.

Considering the syntactical structure and the module concept, the language TL is similar to
the languages of the Modula family (Modula-2 [ModISO 91] Oberon [Wirth 87], Modula-2+
[Rovner et al. 85], Modula-3 [Nelson 91] and Ada [Ichbiah 83]). On the other hand, its semantic
is closer related to polymorphic functional languages of the ML language family [Cardelli 89;
Cardelli 90; Mauny 91; Field, Harrison 88; Hudak 89]. The basic semantic concept is formed
by the model of the language Fsub [Cardelli et al. 91], a commonly accepted formal basis
for the study of newer type systems. In T1L this explicitly and strictly typed second-order
lambda calculus with subtyping is embedded into a complete, modular programming language.
Supporting functional and imperative concepts, TL allows functional as well as imperative
programming. It supports an orthogonal persistency concept. TL programs may be interpreted

25

as well as compiled.

The evaluation of expressions is strict and deterministic. T supports many concepts of mod-
ern programming languages:

e functions and types as first class objects

e subtyping for all type constructors and for type operators
e parametric polymorphism and subtype polymorphism

e abstract data types

e modules, interfaces, and libraries

e exception handling

e dynamic typing

This part of the chapter describes the features of T1L that are relevant to this work. It is
structured as follows: the first section presents two basic concepts of TL, naming and bind-
ing. Functions are an important concept in TL. They are first-class values of the language.
The definition and use of simple functions, recursive functions, and higher-order functions is
considered in the second section.

Section 3.1.3 is dedicated to value and type constructors. For all type constructors a subtype
relationship is defined. These subtype relationships are described in section 3.1.4. Parametric
polymorphism is an attracting feature in TL. It allows the definition of polymorphic functions
as well as the definition of type operators. Parametric polymorphism and its applications are
discussed in section 3.1.5. TL is not restricted to functional programming. It also supports
imperative programming features as mutable variables, loops, and a powerful exception mech-
anisms. These features are the topic of section 3.1.6. Finally an overview of the structuring
facilities for T programs is given in section 3.1.7.

The following syntactic rules and conventions are important for the examples presented in this
chapter and in chapter 5. Keywords are emphasized by writing them in bold face. Reserved
identifiers referring to types or used to define types are capitalized. All other identifiers start
with small letters. This rule is adopted as a convention for user-defined identifiers whenever
TL code is presented in this work. This convention improves the readability of the programs.
Comments are enclosed in (* and *). They may be arbitrarily nested.

3.1.1 Naming and Binding
Important concepts in TL, on the level of values as well as on the level of types, are naming

and binding. User-defined names may be bound to semantic objects of the language and
afterwards used to denote the bound objects.

Binding of Values

The binding of names to values is accomplished by constructs of the following form:

let a = 3

The variable a is not mutable'. Every subsequent use of such a variable evaluates to the
bound value. If the right-hand side of a binding is an expression, this expression is evaluated
in advance, and the result of the evaluation is bound to the specified identifier.

let x =a + 4

binds the identifier x to the value 7.

Groups of bindings can be written in one program block without the use of limiting characters
as comma or semicolon. A sequence of bindings denotes a sequential binding and they are
evaluated in the order of their appearance. Bindings may refer to identifiers bound earlier in
the sequence:

leta=3 letx=a+3

Simultaneous bindings are also possible in TL. In this case the bindings are connected by the
keyword and. The identifier b is bound to the value 6 by the following bindings:

let a = 4
let a = 100/4 and b = a + 2

Recursive bindings must be characterized as such by the use of the keyword rec. The ex-
pressions permitted in recursive bindings have to obey certain constraints concerning their
construction (for details see [Matthes 92b]). Mutual recursive bindings are expressed by the
combination of the concepts recursive and simultaneous binding. An important application of
recursive bindings is the definition of recursive functions (see section 3.1.2).

The types of variables may be inferred by the TL compiler from the inferred types of the
subexpressions and the types of the values used to construct the expression bound to the
variable. The types can be given explicitly by the programmer to improve the readability of
the program. In recursive bindings, the type of the variable has to be given explicitly.

Binding of Types

Most of the concepts presented for the value level can also be found on the type level. Type
bindings are established as follows:

Let A = Int

This construct binds the identifier A to the base type Int. Recursive bindings on type level are
marked by the keyword Rec in analogy to the keyword rec on the value level. An example for
a recursive type definition is presented in section 3.1.3. Simultaneous bindings are achieved
by connecting two or more bindings by the keyword and, as it is the case for simultaneous
value bindings.

1The definition of mutable variables will be presented in section 3.1.6.

3.1.2 Functions

Since TL supports functional programming, functions are a central concept in TL. Functions
are first-class values. This permits the definition of higher-order functions and the inclusion
of functions as components into constructed value, e.g., tuples. TL also supports polymorphic
functions. Since they represent an application of parametric polymorphism, their presentation
is postponed to the section describing parametric polymorphism (section 3.1.5).

Function Definition and Binding

The definition of a function consists of defining a function abstraction and binding a name
to it. In contrast to many programming languages, as Pascal [Wirth 71] for example, where
definition and naming are inseparably coupled, T1L allows the definition of a function abstrac-
tion without binding a name to it. These unnamed functions can be used to be passed as
parameters to higher-order functions. The definition of a function abstraction is introduced
by the keyword fun followed by a list of signatures which describe the formal parameters and
an expression which forms the function body. The parameters of the function are separated

by a blank.

fun(x :Int) x + 1
fun(x :Real y :Real) :Real x ++ y

The function body can refer to the formal parameters, to global variables in the static scope
of the function definition, and to local variables introduced in the function body.

Functions are first-class values in TL, so names can be bound to functions by the standard
binding mechanism for values:

let succ = fun(x :Int) :Int x + 1
let add = fun(x :Real y :Real) :Real x ++ y

let succ2 = succ

The first function takes a parameter of type Int and returns a value of type Int. It calculates
the successor of the integer value passed as parameter. The second function add adds two
given real values?. It takes two parameters of type Real and returns a value of type Real. For
convenience, TL also offers the following short form for the definition of a named function:

let suce(x :Int) = x + 1
let add(x, y :Real) = x ++ y

When the function is applied, the actual parameters are dynamically bound to the formal
parameters. They may be explicitly bound, using the let-construct, but it is also sufficient just
to list the actual parameters. Since the parameter list is an ordered sequence, the assignment
to the formal parameters is unique. The following applications of the function add yield the
same result:

2Note that there is no operator overloading in TL; therefore there are different operators for the addition
of integer and for the addition of real values.

add(1.0 2.0)
add(let x = 1.0 let y = x ++ 1.0)

A function call f(D)is evaluated as follows: First, f is determined. Then, sequential evaluation
of the bindings D yields the actual parameters. The sequential evaluation allows parameter
definitions to reference to earlier bound parameters, as it is seen in the second example of
applying add. The result of the function is yielded by evaluating the body of the function,
where the formal parameters are bound to the actual parameters.

TL distinguishes two kinds of identifiers: Alphanumeric identifiers and infix symbols. Alphanu-
meric identifiers are formed by a sequence of characters and digits, infix symbols contain only
special symbols. The use of infix symbols as names of functions allows the definition of binary
infix operators. For example, the function string.concat defining string concatenation may be
renamed employing an infix symbol:

let <> = string.concat

Functions bound to symbolic identifiers may be applied using the infix notation as well as the
standard notation for function application:

<>("concat” “enation”)
“concat” <> "enation”

So, the renaming of the function string.concat results in a more convenient notation for
applying it. This technique is employed to yield infix operators for the predefined operations
on the basic types which are normal functions imported from modules in TL .

Recursive Functions

TL allows the definition of recursive functions. This is accomplished by the use of recursive
bindings. The example shows the well-known function computing the factorial of a number:

let rec fac(n :Int) :Int =
if n == 0 then 1
else n * fac(n - 1)

end

To avoid operator overloading the equality test in TL, is not performed by the symbol =,
which is reserved to bind names, but a special operator == is used instead.

By combining the concepts of recursive and simultaneous binding, it is possible to define
mutual recursive functions.

Function Types

A function type describes the names and types, i.e., the signatures of the formal parameters
and the type of the result of the function. Function types are introduced by the keyword Fun.
Here are the types of the functions which are used as examples in the preceding sections:

succ, succ2 :Fun(x :Int) :Int
fac :Fun(n :Int) :Int
add :Fun(x :Real y :Real) :Real

Function types are needed to define higher-order functions and types with functions as com-
ponents unless the short forms are used (see below). They may be used by programmers
wherever functions are defined to improve the readability. Names of formal parameters can be
omitted in function types. This yields a more general function type: functions with arbitrary
names for this formal parameter are included in this type. For example the functions succ,
succ2 and fac are all of the type:

succe, succ2, fac :Fun(:Int) :Int

Higher-Order Functions

Functions are first-class values in TL. It, therefore, is possible to define higher-order functions,
i.e., functions which take functions as parameters and/or return functions as results:

let twice = fun(f :Fun(:Int) :Int a :Int) :Int f{f(a))
let newlnc = fun(x :Int) :Fun (:Int) :Int fun(y :Int) :Int x + y

Function valued parameters and results have to be specified by function types in the signature.
The following short forms for the definition of higher-order functions omit the explicit use of
function types:

let twice(f(:Int) :Int a :Int) = f(f(a))
let newlnc(x :Int) (y :Int) =x + y

twice is a higher-order function that accepts a function and a value as parameter. It applies
the function passed as first parameter twice to the second parameter:

twice(succ 3)
= 5 :nt

newlnc is a higher-order function that takes an integer value as parameter and returns an
integer function as result. If newlnc is applied to a parameter b, it returns a new unnamed
function of type Fun(:Int) :Int. If this new function is applied to an integer value c, it returns
the sum of the values b and c:

let plus2 = newlnc(2)
plus2(5)

= 7 :nt

let plus3 = newlnc(3)
plus3(5)

= &8 :nt
newlne(3)(5)

= &8 :nt

The function newlnc may be viewed as a function generator generating different functions in
dependence of the first passed parameter, e.g., plus2, plus3. The short form of newlInc proposes
an alternative view. newlnc may be interpreted as function with two separated parameters.
The application of newlnc to a single parameter may then be viewed as partial application of
the function (currying of functions).

3.1.3 Value and Type Construction

TL supports a set of value constructors that may be arbitrarily combined with each other.
For each constructor ¢ on the value level there exists a corresponding constructor C on the
type level, that is used to construct the type of a value constructed with c. Examples are the

definition of functions and function types as described in section 3.1.2. The operator == is
provided for equality tests for values of base types as well as for constructed values. For simple
values it checks the equality, for constructed values an identity test is performed: vl == v2

only holds if vI and v2 are synonyms for the same value.

Tuples

T offers two constructors to define aggregate types: tuples and records. Tuples represent the
labeled cartesian product type. The components of a tuple are ordered. A tuple type defines
an ordered sequence of signatures:

Let Person = Tuple name :String age :Int end
Values of tuple types are ordered lists of bindings. The bindings may be anonymous.

let peter = tuple let name = ”Peter” let age = 25 end
let peter :Person = tuple ”Peter” 25 end

Since functions are first-class values in T they may be built in as components of aggregate
types, for example for tuples. Selection of components of a tuple is denoted by using the dot
notation, e.g., peter.age.

Records

The second alternative to define aggregate types in TL are records. In contrast to tuples the
components of records are not ordered. Record types are sets of signatures.

Let Point = Record x :Int y :Int end

Accordingly, values of a record type are sets of bindings. As in the case of tuple values
component selection is performed by the dot notation.

Tuples allow a more efficient implementation of component selection since the components
are ordered. The advantage of records compared to tuples is a higher flexibility in defining
subtype relationships. In addition, record values may be extended by additional components
without loosing the record identity. These two topics are discussed in section 3.1.4.

Variants

The variant type of TL is closely related to the tuple type. The syntax of variant types is
presented in an example together with the recursive types in the next part of the section.

Recursive Types

T supports the definition of recursive types. A recursive type is introduced by the keyword
Rec. An example is the definition of the type of lists of integers:

Let Rec IntegerList <:0k =
Tuple
case nil
case cons with head :Int tail :IntegerList end
end

IntegerList is defined by a variant type. The different variants of such a type are introduced
by the keyword case. There are two variants for a list. A list can be empty (case nil) or it
consists of a head of type Int and a tail of type IntegerList (case cons).

The different variants of a variant type can be inspected by a case-expression as illustrated
by the following example:

let rec sum (I: IntegerList) :Int =
case |
when nil then 0
when cons with x then x.head + sum(x.tail)
end

The function sum sums up all integers contained in the list. The with-construct allows the
introduction of a identifier that takes the value of the considered variant. The introduced
identifier x is of type:

Tuple head :Integer tail :IntegerList end

3.1.4 Subtyping

A subtype relationship (<:) is defined on the types of TL. The intuition about the subtype
relationship is set inclusion between supertype and subtype, i.e., each value of a type T is
also a value of each supertype T'1 (T <:T1) of this type T. There are no subtype relationships
between the basic types, except the trivial ones (e.g., Int <:Int). For structured types the
subtype relationship is defined inductively. The type Ok plays a special role in the subtyping
hierarchy. Ok is the top type, i.e., it is the supertype of all non-parameterized types®.

®There is also a subtype hierarchy defined on type operators. This aspect is not discussed here.

The subtype relationship specifies a partial ordering on the types. It is transitive (A <:B A
B <:C => A <:C), reflexive (A <:A), and the subsumption principle (a :A A A <:B => a
:B) holds for it.

The notion of subsignatures are needed to define subtype relationships on function types:
Signatures S’ are called subsignatures of signatures S, if (1.) the ordered sequences S and
S’ have the same length, (2.) the types A; of the signature components of S are subtypes of
the types A; in the same position of S’, and (3.) if both variable names z; and z; are not
anonymous then z; = z; has to hold. The subsignature relationship is denoted by 5’ <::9.

Subtype Polymorphism

Signatures in TT are partial specifications. A signature x :T does not state that x has to be
of type T, but that it has to satisfy at least the specification, i.e., x is at least of type T. An
actual value for x may be of type T or of any subtype of T. This gives rise to a special form of
polymorphism, the so-called subtype polymorphism: a function that expects a value of type
T as parameter also accepts values of an arbitrary subtype of T as parameter. So the function
is not restricted to parameters of one type, and therefore polymorphic.

Subtyping on Aggregate Types

A subtype of a tuple type can be constructed by restricting one or more of its component
types A; to a subtype A; <:A; and/or by appending additional components at the end of the
tuple. In the following example Employee is a subtype of Person, but Student is not.

Let Person = Tuple name :String age :Int end
Let Employee = Tuple name :String age :Int company :String end
Let Student = Tuple name :String matrNr :Int age :Int end

TL offers a special construct that allows the definition of subtypes of tuple types without
repeating the components of the supertype in verbatim: Signatures of named tuples, records
or functions may be repeated using the keyword Repeat followed by the name of the signa-
ture(s). Employing this construct the type Employee may be defined as followed:

Let Employee = Tuple Repeat Person company :String end

This construct is also useful in other situations than the definition of tuple subtypes (see

[Matthes 93]).

The subtyping relationship between record types is similar to the one on tuple types, but
there are some differences: Additional components may be inserted at arbitrary positions in
a type T and not only be appended at the end to construct a subtype of T'. In addition, the
components of the subtype do not need to be in the same order as the components in T". This
enables the representation of multiple inheritance hierarchies. Subtype hierarchies over record
types can result in acyclic directed graphs, not only in trees as in the case of tuple types.

The Rule of Contravariance

The subtyping relationships between function types is defined by the contravariance rule: A
function type with signature S of the formal parameters and result type A is subtype of a
function type with signature 51 and result type B, if A <:B and 51 <::§ holds.

For the following function types, the subtype relationship PersonToString <:EmployeeToString
holds:

Let EmployeeToString = Fun(:Employee) :String
Let PersonToString = Fun(:Person) :String

According to the subtype polymorphism the function
let nameOfPerson(p :Person) :String = p.name

can be used whenever a function of type EmployeeToString is expected.

3.1.5 Parametric Polymorphism

TL has a polymorphic type system. Beside subtype polymorphism, already presented in the
previous section, it supports parametric polymorphism: It is possible to introduce type pa-
rameters into function and type definitions. The use of type parameters in function definitions
yields polymorphic functions, whereas type definitions containing type parameters are type
operators. Parametric polymorphism represents universal quantification over type variables,
because the definitions are valid for arbitrary types. TL also supports a restricted form of the
parametric polymorphism: the bounded parametric polymorphism. In this special case, the
definitions are not valid for arbitrary types, but only for subtypes of the specified type, which
is understood as the bound of a type parameter.

Polymorphic Functions

Polymorphic functions are functions including type parameters in their parameter list. The
further parameters of the function may refer to this type. A simple example of a polymorphic
function is the identity function that is presented in two versions:

let identityl (E <:0Ok) (e :E) = e
let identity? (E <:Ok e:E) =e

In the above examples E <:Ok introduces a type parameter. F is specified to be subtype of
Ok, which is the supertype of all non-parameterized types. Thus arbitrary non-parameterized
types may be passed as parameters to the functions. The second parameter of the functions
is of the type FE passed as first parameter.

The two versions of the identity function in the examples differ in the way they can be
parameterized. The first function, identityl, may be parameterized in two steps (currying). It
is a higher-order function and parameterizing it with a type in the first step yields an identity
function over this type.

let intld = identityl(:Int)

Note that type parameters are preceded by a colon. In a second step this function can be
parameterized with values of the type passed as first parameter.

The second version has to be parameterized in a single step with a type and a value of this
type. The type parameter is omitted in most cases since it can be inferred from the type check-
ing algorithm of the TL compiler. The following different applications of the above identity
functions evaluate to the same result and show the different possible parameterizations:

intld(4)
identity1(:Int)(4)
identity2(:Int 4)
identity2(4)

A cunning aspect of T1L is the possibility to combine the concepts of polymorphic and higher-
order functions. This can be illustrated by a function to sort a list with arbitrary element type.
The sorting algorithm may be implemented independent of the element type (polymorphism).
The function to compare two elements needed for sorting is passed as parameter. For a list
with elements of type F it has the following signature:

sort(el, e2 :E) :Bool

Type Operators

Type operators are functions on the level of types, they take types as parameters and map
them to a type. An example of a type operator is the operator BinaryFun, that may be used
to define the type of binary functions over arbitrary types:

Let BinaryFun = Oper(E <:Ok) Fun(:E :E) :E
As in the case of functions, TL offers a short form for the definition of type operators:
Let BinaryFun(E <:0k) = Fun(:E :E) :E

This operator maps every type E to the type BinaryFun(E). BinaryFun(Real) is the type of
the function add presented in section 3.1.2 and BinaryFun(Int) is the type of the predefined
operators '+’ and .

Further, it is possible to define recursive type operators. An important application of recursive
type operators is the definition of bulk data types, since the use of type operators allows
abstraction from the element type of the collection. It is, for example, possible to define lists
over arbitrary element types as generalization of IntList:

Let Rec List(E <:0k) <:Ok =
Tuple
case nil
case cons with head :E tail :List(E) end
end

The operations new and cons can be defined as polymorphic functions:

let new(E <:0k) :List(E) =
tuple case nil of List(E) end

let cons(E <:Ok head :E tail :List(E)) :List(E) =
tuple case cons of List(E) with head tail end

This shows that polymorphic functions complement the concept of type operators. The combi-
nation of both concepts allows the employment of generic code in the description of structure
as well as of behavior.

Bounded Parametric Polymorphism

Bounded parametric polymorphism restricts the introduced type parameters to subtypes of
a specified type. It may be used to overcome restrictions of parametric polymorphism as well
as restrictions of subtype polymorphism. As motivating example the function chooseOQOlder is
considered. chooseOlder is intended to compare the age component of two values pl and p2
of an arbitrary subtype of type Person and to return the value with the higher age. This may
be implemented using subtype polymorphism:

let chooseOlderl(pl, p2 :Person) :Person =
if pl.age > p2.age then pl else p2 end

The result of this function is of type Person, independent of the type of the parameters
passed. When the function is applied to values of type Employee, this results in a loss of type
information: the salary field of an employee passed as parameter may no longer be accessed
in the function result, although it is the same tuple. The more specialized type information,
that it is of type Employee not only of type Person is lost.

This loss of type information may be avoided by employing parametric polymorphism: Intro-
ducing a type parameter P allows to specify that the result of the function is of the same type
as the parameters pl and p2:

let chooseOlder2(P <:Ok pl, p2:P):P = ...

The type parameter P is specified to be subtype of Ok. Since no further assumption are
made about P, the function has no information about the structure of pI and p2. For this
reason no operations as, for example, field selections are possible on these parameters. So the
comparison of ages may not be defined in the body of the function.

Bounded parametric polymorphism allows the restriction of type parameters to subtypes of
a certain type. Now the function may be restricted to subtypes P of the type Person and the
intended function chooseOlder can be defined:

let chooseOlder(P <:Person pl, p2:P):P =
if pl.age > p2.age then pl else p2 end

Bounded parametric polymorphism is also permitted in definitions of type operators to restrict
the possible types passed as parameter to the operator. A possible application is modelling
relations. Relations permit only tuple types as element types of the relation. This restriction
may be modelled in TL as follows:

Let Relation(ElementType <:Tuple end) = ...

3.1.6 Imperative Programming

T1L offers functional as well as imperative programming features. The previous sections of
this chapter are dedicated to the basic concepts and the functional aspects of the language.
Concepts supporting imperative programming are presented in this section. Many of these
concepts can be found in a similar form in common imperative programming languages as
Modula-2 [ModISO 91]. They are, therefore, only mentioned here. A detailed description can
be found in [Matthes 93].

Variables do not allow updates, if they are not explicitly defined as mutable variables in TL.
The only exception are arrays. The components of arrays are always mutable. The definition
of mutable variables is described in the first part of this section.

T supports different constructs for the definition of loops: while-loops, for-loops, and the
most general construct loop which is left with the exit statement. A further way determining
the control flow of a TL program are exceptions. The definition and use of exceptions and
exception handlers is described in the second part of this section.

Mutable Variables
Variables in TL are not mutable, if they are not explicitly defined as such. Value bindings
established by the let-construct (see section 3.1.1) represent constant definitions. A repeated

binding of the same identifier employing the let-construct does not change the original binding,
but produces a new constant with the same name.

A mutable variable has to be introduced by the keyword var:
let var x = 3

This binding defines a mutable variable 2 and initializes it to the value 3. A mutable variable
can be updated by destructive assignment using the operator :=.

x:=4
The assignment operator has the following signature:
:=(A <:Ok var [Value :A rValue :A) :0k

An assignment, therefore, evaluates to the value ok. The operator := is not built-in, it may
be redefined by the user.

Exception Handling

In addition to the handling of exceptions raised by exceptional conditions as arithmetic over-
flow and division by zero, TL supports user-definable exceptions. A special value constructor
exception is provided for this purpose:

let noCredit = exception "No Credit!”

The string "No Credit!” is used for an identification of the exception if it is propagated to the
top level of the system. An actual exception can be raised at all points in a program signaling
the related exceptional condition:

let withdraw(var account :Int amount :Int) =
if amount <= account then
account := account — amount
else
raise noCredit
end

An exception terminates the actual execution (evaluation) and propagates along the calling
hierarchy of the enclosing functions until an adequate handler is found or the top level of the
system is reached. In TL an exception handler is defined as follows:

try
withdraw(petersAccount 300)
print.string(” Transfer succeeded”)
when noCredit then
print.string(”Overdrawn”)
else
print.string(” Unexpected exception occurred”)
end

In order to enable exception handling, the operation that raises the exception has to be
enclosed in a try-construct. The when-branches of this construct are dedicated to special
exceptions. The specified handler is only evaluated for the named exception. An exception
not explicitly captured by one of the when-branches is propagated further, if no else-branch is
provided by the try-constructs. Otherwise, the handler defined in the else-branch is evaluated.

3.1.7 Modules, Interfaces, and Libraries

The possibility to define modules is one of the most important structuring facilities in modern
programming languages. As in the language Modula-2 [ModISO 91] large programs are divid-
able into several modules. In TL each module consists of an interface and an implementation

module. The interface contains names and supertypes of abstract data type definitions, names
and signatures of functions and type operators, and names and types of variables that are
defined and exported by the module. Additionally, it is possible to define types in an interface.

Modules and interfaces can import other modules and use the types, type operators, functions,
and variables exported by these modules. References to the imported objects have to be
preceded by the name of the exporting object. A function cons exported by a module list, for
example, is referenced by the name list.cons.

T offers a further structuring facility for larger programs. Interfaces and modules are groupable
into libraries. A library may also contain other libraries.

3.2 Syntax Extension in the Tycoon Environment

The syntax extension tool presented in [Schréder 93] (see also [Cardelli et al. 94; Kohlbecker
86]) is based on a two phase compiler model. The first phase is the frontend taking source
code to an intermediate machine independent representation. The second phase is the backend
taking the machine independent representation to the target code of an existing machine. The
syntax extension is solely concerned with the frontend of this compiler model. The syntax
extension changes the frontend of the compiler for a base language. The frontend can be
divided into five phases: the first three phases are scanning of the source code, the parsing
with generation of a parse tree, and the generation of an abstract syntax tree derived from
the parse tree. Since the used syntax extension tool leaves the abstract syntax of the base
language unchanged the syntax extension tool is only concerned with these three phases.

As mentioned above the syntax extension modifies the frontend of an existing compiler. Chang-
ing the code implementing the frontend is a very complex and error prone task. For this reason
a different approach is proposed by [Schréder 93]. The frontend is specified in an abstract
description language that allows automatic generation of a frontend (by scanner-, parser-
generators). To modify the frontend, it is sufficient to change this description of the frontend.
It is even possible to generate the frontend incrementally using incremental parser generators.

Syntax extensions consists of two phases. In the first phase (definition phase) the new syntax
extending the syntax of a given language is defined. For each new syntactic construct a
semantic interpretation has to be specified. The use of these new syntactic constructs initializes
the second phase (expansion phase) of the syntax extension: the syntactic constructs are
expanded according to the specified semantic interpretations.

A system for syntax extension has to support two languages. The first language, extension
language TLExt, allows the formulation of the syntax extensions. The extensions of the syntax
refer to an existing language, the base language of the syntax extension. Figure 3.1 taken from
[Cardelli et al. 94] illustrates this scenario. An extensible grammar package consisting of a
grammar checker and a parser generator extends the given base language TL. For this, object
languages OLg - -- OL,, are defined providing a grammar specifying the syntax of a language.
Parse tables are generated from the syntax description by the parser generator and resemble
an extensible parser from which internal parse tree information is mapped to abstract syntax
trees of the language TL. Programs of the object languages are valid semantic actions denoted
by the corresponding syntax and TL expressions exist for these. The TL expressions are valid

Extensible Grammar
Package

Syntax for OLg
] ™| Grammar Checker|_ { [TL Abstract Syntax
Programs in OLg | | Parser Generator & Scoping Rules
Syntax for OLq Parse Tables
Programs in OLq \‘ Extensible L TL Abstract TL Type Checker
= Parser Syntax Trees & Code Generator

Figure 3.1: Syntax Extension

programs and hence subject to the underlying type checker and code generator for different
target languages.

Description of a Syntax Extension

The description of a syntax extension consists of two parts. A syntactic construct and a
semantic interpretation of this construct. The syntactic constructs are described by so called
patterns. Patterns are similar to productions of context free grammars except that they allow
placeholders in addition to the terminal and non-terminals of a grammar. The placeholders
are identifiers that are assigned to non-terminals in the pattern. They introduce names for
the constructs generated by the associated semantic interpretations. The introduced names
for these constructs allow a reference to them in the semantic interpretation. The following
example is taken from [Schréder 93]:

”for” each” id = ideG ”in” table = valG ”:” pred = valG ”do” act = bndsG "end”

and shows how the placeholders id, table, pred and act are introduced in a syntactic expression
for the use in a syntax extension tool. The placeholder id is for any valid expression resembling
an identifier in the base language. table and pred are placeholders for value expressions, and
act is a placeholder for a binding expression in the base language. Such augmented syntactical
patterns are a central construct to a valid description of a syntax extension.

Abstract syntax trees are used to specify the semantic interpretation. Instead of describing
the syntax trees by constructors, the base language extended by the placeholders is employed
for this purpose. This allows a user-friendly definition of the semantic interpretations in a
syntax extension.

A syntax extension consists therefore of a set of declarations. There are three possible forms
of declarations: a declaration can introduce a new production, or it can replace an existing
production, or it can extend a production by further alternatives. Each production must have

at least one alternative and each alternative is of the following form:
patterns = semantic interpretation

A kind of parameterization of the productions is possible by introducing inherited attributes.
The attributes can be referenced in the semantic interpretation analogous to the placeholders
introduced in the pattern. If inherited attributes are used in a production a sort is assigned
to each of the attributes. This enables the system to check whether attributes used in the
semantic interpretation are conform to their sort.

For each production the according derived attributes belonging to the production have to be
determined. The derivation of such attributes is defined by the semantic interpretation of the
rule. A sort is assigned to each derived attribute of a production. A detailed discussion of this
can be found in [Schréder 93].

Variable captures are one of the most crucial problems in connection with syntax extension
technology. They occur during the expansion of the rules where local bindings can occur as
placeholders and therefore conflicts from preexisting local/global bindings in the semantic
interpretations of a rule are possible. In [Schrdder 93] a novel approach to resolve the inherent
in the expansion process of syntax extensions is described. Further a classification of occurring
binding problems on syntax extensions is given (see also [Kohlbecker 86] and [Cardelli et al.

94]).

Chapter 4

A Typed Comprehension-Based
Query Language

List comprehensions are known from functional programming as a concise notation expressing
list manipulations [Bird, Wadler 88; Field, Harrison 88; Peyton-Jones 87] (see also chapter
2). As described in [Trinder 92], comprehensions may be employed as a query language. The
query language developed in this work is based on comprehensions. It relaxes the restrictions
of (list) comprehensions in the following ways:

Arbitrary bulk types as input: In a list comprehension one or more lists may be specified
by a generator as input for the list manipulation. When the comprehension is considered
as query, these ranges have the role of the queried bulks. In list comprehensions, as in
most other query languages, the ranges are restricted to one type of bulk, namely, lists.
The presented query language permits arbitrary bulk types as ranges. It is even possible
to use different bulk types as inputs inside a single query (mixed queries). To achieve this
generality, a common supertype for all bulk types is defined, and iteration abstractions
are used as uniform intermediate representations.

Arbitrary bulk types and non-bulk values as result: The result of a list comprehen-
sion is in every case a list. Similarly, in many query languages query results are fixed to
be of a specific bulk type, e.g., tables in SQL. Even if the result is a single value, e.g., af-
ter application of an aggregate function, the result is a bulk containing this single value.
It would be more adequate in this situation, to allow non-bulk values as results. This
is the case in the proposed query language. Additionally, the user may choose arbitrary
bulk types as container for the elements of the query result.

Trinder proposes to use the comprehensions directly for the formulation of queries [Trinder
92]. In order to augment the flexibility, a different approach is chosen in this thesis. Each
query consists of a comprehension construct, forming the kernel of the query. This kernel
determines the flow of control, especially the order of iteration over the elements of the ranges.
The sequence of elements defined by this kernel is called comprehension result. The query is
completed by an additional construct which is called context in the sequel of the text. The
context determines the actions to be performed on the elements of the comprehension result.

43

This may, for example, be the insertion into a bulk type or the formulation of quantifiers
and aggregate computations for a comprehension. The idea of a context is implicitly used in
many other query languages, e.g., by offering aggregate functions. A more explicit treatment
is found in the database programming language DBPL [Schmidt, Matthes 92]. This language
supports selective and constructive access expressions that may be used in different contexts.
An overview of the treatment of contexts in DBPL and other query languages is given in the
appendix.

Many contexts require a complete evaluation of the comprehension. The number of the ele-
ments in the query result, for example, may only be computed by evaluating the complete com-
prehension. The presented language, on the other hand, supports the definition of a context
allowing lazy evaluation of the comprehension result. The comprehension result is evaluated
element-by-element on request. Such contexts enable querying bulk types that are potentially
infinite, or not completely determined in the moment of query evaluation. An example for
such bulk types are input streams. This feature is also useful in the case that only few elements
of the query result are requested, or if the result is extremely large (calculation of the whole
result exceeds given time and/or space limits).

The query language is independent of a specific data model. Since arbitrary bulk types with
arbitrary element types are possible inputs to the queries, the query language is not restricted
to a bulk type or element structure (as for example flat relations) characteristic for a concrete
data model. Special requirements of data models can be supported by contexts defined for this
purpose. Furthermore, several kinds of nesting queries are possible. This is especially useful
in the presence of nested structures.

The query language is integrated into a host language. This is accomplished by employing
syntax extension technology. The integration has a two-fold effect towards the query language:
On the one hand, the query result has to represent a valid expression of the host language.
On the other hand, arbitrary expressions of the host language may be used inside the compre-
hension, e.g., for the formulation of filters. This introduces computational completeness into
the query language.

The language T1 [Matthes 93] is used as host language'. This language may be interpreted
as well as compiled. This is also true for the extended language. It, therefore, is possible
to formulate ad-hoc queries that are interpreted instantly on the top-level of the system.
However, queries may also be embedded into programs and compiled as part of them. Since
TL is a typed language the query language is realized in a typed environment. This implies
that a type has to be assigned to the query result. This assigned type depends on the ranges,
the target expression, and the context.

The proposed framework for the query language does not manifest a fixed number of specific
contexts; instead it supports a small number of different classes of contexts. The classes may
be parameterized to yield a specific context. Suitable parameters are supported by a special
context library. This library may be extended and adapted to support new requirements and
applications of the query language.

This chapter starts with an introduction to the syntax of the query language. First, the
building blocks of the kernel of the query language are presented, followed by the definition
of a grammar for the query language. In the second section typing and scoping aspects of the

! A short description of this language is presented in chapter 3.

comprehension which form the kernel of the query language are considered. The third section
is devoted to the contexts. Contexts are classified and an extensible framework for contexts
is presented. In order to illustrate the variety of possible contexts, a set of representative
contexts is described. Finally, a short overview concerning typing aspects of the contexts is
given.

It is a novelty of the presented query language to allow different bulk types within a single
query (called mixed queries in this thesis). Additionally, arbitrary bulk types can be specified
as contexts. The semantic of mixed queries in different contexts is examined in section 4.4.
This discussion is based on the theoretical approaches presented in chapter 2. The last section
(4.5) of the chapter is dedicated to more advanced features of the query language. Naming
and parameterization of queries may be introduced into the presented framework in a rather
natural way. The support of recursive queries is also discussed.

4.1 Introduction of the Syntax

Comprehensions are chosen as notation for the kernel of the query language. The design
decisions in developing the syntax for the query language are driven mainly by the following
requirements:

Concise and Uniform Notation: List comprehensions are a well-understood notation used
in functional programming. They are a concise, declarative notation for list manipula-
tions that may be used as query language [Trinder 89; Trinder 92]. Comprehensions may
be easily extended to other bulk types resulting in a uniform notation for queries over
different bulk types (see chapter 2).

Expressive Power: It can be shown that any relational calculus query can be translated
into an equivalent list comprehension expression [Trinder 89, pp.124-131]. A language
based on list comprehensions is at least relational complete.

The chosen embedding of the query language via syntax extension allows the use of
arbitrary expressions of the host language. This introduces computational completeness
into the query language.

Clean Semantics: List comprehensions are a well-understood concept with a good theoreti-
cal foundation. The extension of comprehensions to other bulk types and their semantics
has been examined in several publications (see chapter 2). A set of rewrite rules exists
that translate a comprehension into an expression of an enriched lambda calculus. This
leads in a natural way to an implementation in the Tycoon language, since it is also
based on the lambda calculus.

Syntactic Integration: An important point for the syntax of the query language is to fit
well into the syntax of the embedding language. The proposed language in this chapter
is comprehension-based and uses a classical comprehension notation. The use of a syntax
extension tool enables the user to adapt the syntax to his preferred style, e.g., a keyword-
fashion style [Ghelli et al. 92]. The syntax of the language can be changed easily by
altering the grammar driving the syntax extension tool.

Query
— Context

\ 4

Comprehensiont———>

Figure 4.1: Syntax Chart with Components of a Query

Comprehension

4>®—> ComprehensionBody %

Figure 4.2: Syntax Chart of the Comprehension

Seamless Embedding: The aim of the design process is an embedding of the query language
into a host language. This is accomplished by using a syntax extension tool. The query
language is embedded into the host language by extending the grammar of the Tycoon
language. The extended front-end of the host language accepts comprehension queries
as well as valid host language expressions.

The first part of this section introduces the building blocks of a query. A query is split
into a comprehension and a context. Each of the building blocks of the comprehension is
discussed in detail in one of the following subsections. The contexts are considered in section
4.3. The examples used for illustration of the discussions are all based on a common schema.
The presentation of this schema together with the first simple query examples precedes the
detailed discussion of the buliding blocks.

4.1.1 The Building Blocks of a Query

The query language is comprehension-based. The comprehensions form the kernel of the query
language. For every query the comprehension is augmented with a context (see figure 4.1).
Contexts are considered in the next section. The syntax of the comprehensions used in the
query language is very similar to the one presented in [Trinder 92]. A comprehension consists
of a comprehension body enclosed in curly brackets (see figure 4.2). The first part of the
comprehension body is a target expression followed by a vertical bar (”|”) and one or more
qualifiers (see figure 4.3). A qualifier can be a generator or a filter. The first qualifier is
always a generator. Filters are separated by a colon from the previous building blocks, further
generators by a comma (see figure 4.4).

A generator introduces a range variable and a range; these components are connected by an
arrow pointing from the range to the range variable (see figure 4.5).

Example Database

For the examples presented in the next sections, the following type definitions are assumed.

ComprehensionBody

R

Target

H@H

Generator

C

Qualifier

Figure 4.3: Syntax Chart of the Body of a Comprehension

Qualifier

@_,

Generator

Filter

Figure 4.4: Syntax Chart of a Qualifier

Let Person =
Tuple
name :String
var age :Int
end

Let City =
Tuple
name :String
country :String
habitants :Int
end

Let Family =
Tuple
mother :Person
father :Person

children :Set(Person)

home :City

Generator

B

RangeVariable

H@H

Figure 4.5: Syntax Chart of a Generator

Range

end

Additionally, the bulk values persons, cities, and families are used, where persons is a set
of elements of type Person, cities is a list of elements of type City, and families is a set of
elements of type Family.

The following example is a simple query in the described syntax notation:
get list { p.name | p — persons : p.age < 18 }

The example is a one-range query with a context list. Contexts are introduced by the keyword
get in the query language. The comprehension body contains a target expression p.name, a
generator p «— persons, and a filter p.age < 18. The query computes the list of the names of
all persons younger than 18 years. The same query without filter looks as follows:

get list { p.name | p — persons }

It returns the list of the names of all persons.

Generators

A generator introduces a new identifier, a so called range variable. This variable is bound to
a collection constituting the range for the variable. Syntactically, the range variable and the
range are connected by an arrow pointing from the range to the range variable.

During the evaluation of the query, all elements of the range are successively assigned to the
range variable. This identifier holds one single element of the range at a time and amounts to
an iteration over the range.

It is the aim of the query language to allow queries over different bulk types using a uniform
syntax. In contrast to most common query languages the ranges are not restricted to one
kind of bulk type (e.g., tables in SQL [ISO9075 92]). Any structured homogenous bulk type
is permitted as range, presuming it allows iteration over its elements?. Additionally, arbitrary
expressions evaluating to bulk types are accepted inputs to a query. The element type of
the range is not restricted in any way. It may be an arbitrary type of the language TL. The
generality of this approach admits the following enhanced forms of queries:

Mixed queries: Having a query with several ranges, it is possible to employ different bulk
types as ranges inside a single comprehension. This kind of queries is called mixed queries
in this thesis. The impact of mixed bulks as ranges on the query result is discussed in
section 4.4, presenting a clean semantics for mixed queries. The considerations are re-
lated to the bulk-morphisms presented in [Ross 92; Beeri, Ta-Shma 94] (see also chapter
2). The following is an example of a mixed query:

2For implementation reasons this restriction is later narrowed to the constraint that the bulk type of the
ranges have to be in subtype relationship to a common supertype; see section 5.3.1.

get list { tuple c.name c.age end | f «— families, ¢ «— f.children }

computing the list of all ’children’ of all ’families’. Note that ’families’ is a list and
f.children is a set.

Nested queries: With the choice of certain contexts for the comprehension, the result of a
query evaluates to a bulk type. Such queries are valid ranges for other queries forming
subqueries. If comprehensions are used as ranges they form subqueries. This allows the
formulation of nested queries, as illustrated in the following example:

get list { f| ¢ — get bag { ¢ | ¢ — cities : c.country == "I1” }
, f — families : f.home == ¢ }

The subquery computes all cities in Italy. The entire query returns the list of all families
living in Italy.

Thus nested queries are naturally integrated into the presented framework. As described
in [Cluet, Moerkotte 94] for a SQL-like query language, there are several other kinds of
nesting queries by using queries in other parts of the comprehension, as for example in
the filter or in the target expression. These kinds of nesting are discussed together with
the associated building blocks.

Queries over nested collections: Since arbitrary TL types are valid element types of the
queried bulk types, it is possible to define nested bulk types as ranges. The scope of
a range variable starts just behind the introducing generator. This admits subsequent
generators to refer to this identifier, employing bulk-valued components of this range
variable as their ranges. This is illustrated by the following example:

get count { ¢ | { — families, ¢ — f.children }

where count is a context calculating the number of elements in a comprehension result.
The query computes the total number of all children for each family. The set-valued
component children from the value f of type Family is used as range of the second
generator. Note that the second range depends on the first range variable.

Filters

Filters are predicates restricting the range of the preceding generator. Only those elements of
the ranges of the preceding generator that fulfil the predicate specified by the filter are taken
into account for the rest of the comprehension.

The filter may refer to range variables introduced in generators preceding the filter and to
identifiers defined in the environment of the query (global variables). The filter predicate may
construct arbitrary expressions using these identifiers and literals. The only restriction is that
the expression has to yield Boolean expressions, when evaluated for concrete elements of the
ranges. Especially the filter may use functions and operators defined in the environment of
the query. Therefore the expressive power of the filter strongly depends on the environment

of the query in contrast to many other query languages with a fixed set of operators for the
construction of filters; e.g., SQL.

Arbitrary TL values can be employed in the construction of filters. Since query results are TL
values, they may participate in the filter construction. This yields a further kind of nesting
queries illustrated by the following example:

get list { {| f — families : 3 < get count { ¢ | ¢ — f.children } }

where count is defined as above. The example query computes the list of all families with
more than three children.

According to the syntax charts in figure 4.3 and 4.4 it is possible that a filter directly succeeds
another filter. This is interpreted as a conjunction of the filter predicates.

Target Expressions

The target expression is the first part of the comprehension. The elements of the Cartesian
product of all ranges in the comprehension are potential candidates for the comprehension
result, but only the tuples fulfilling all filters specified in the comprehension are taken into
account. The target expression is evaluated only for these elements. The sequence of elements
resulting from these evaluations form the comprehension result.

The target expression may refer to all range variables introduced in the comprehension and
to all identifiers visible in the environment of the query. From these variables and arbitrary
literals, the result elements may be constructed. For this purpose the value constructors of TL
and functions, which are defined in the environment of the query, are applicable. Of special
importance are the dot notation and constructors for tuples and records allowing the selection
of components of range variables and the combination of values and /or components of different
range variables, respectively.

As in the case of filter construction, it is possible to employ queries in the target expression.
This is still another method to introduce nesting into queries. The resulting kind of nesting
may be used to yield nested collections as a query result. This is illustrated by the following
example®:

get list { tuple c.name get list { | f — families :fhome == ¢ } end
| ¢ « cities }

The query computes a list of tuples, each consisting of the name of a city and the list of all
families living in the city.

4.1.2 Grammar of the Query Language

The query language is to be understood as an embedded language in a given host language.
The syntax of the host language is extended by the syntax of the query language. The resulting

?A similar example may be found in [Cluet, Moerkotte 94].

Value ::= ..

| Query
Query 1= Context Comprehension
Comprehension ::= "{” Value ”|” Generator { Qualifier } ”}”
Qualifier ::= ? .7 Generator

| 7 Value

Generator ::= Ide ”<-" Range
Range ::= Value
Context ::=

Figure 4.6: Grammar of the Query Language

syntax describes a language of all valid expressions of the host language and, in addition, the
expressions of the query language. The chosen host language is TL. The grammar of the
query language (see figure 4.6) extends the grammar of TL [Matthes 93, appendix A]. The
production rules of the query language introduce new terminal and non-terminal symbols, but
there are also non-terminals shared by both languages. To facilitate distinction between the
non-terminals of the host language and those of the query language, the non-terminals of the
host language are italicized.

The production Value of TL is extended by an additional alternative production Query, since
query results are values of the language TL. The production rules of the grammar may be
directly derived from the description of the building blocks of the query language (see page
46). Target expressions, ranges, and filter predicates are values of the Tycoon language. So
they are described by the non-terminal Value. The grammar rules for the context will be
presented in section 4.3.2.

The syntax presented for the query language is based on the classical mathematical compre-
hension syntax. It should be viewed as a proposal for one possible syntax rather than as the
only syntax of the query language. It is easy to offer a keyword-based syntax instead, for
example, by replacing the symbols of the language keywords according to figure 4.7. When
employing this syntax the example query from page 48 looks as follows:

get list of each p.name from p in persons where p.age < 18 end

The proposed keyword-style syntax does not affect the structure of the language and the
statements made about it. It would even be possible to offer both syntax styles in a single
grammar by adding an alternative right side for each production which is a copy of it with

Symbols | Replace by
{---} of each --- end

| from

— in
where

Figure 4.7: Mathematic vs. Keyword Style

the replacements given in table 4.7. In this setting it would however not be possible to avoid
mixing of keyword and mathematical notation in a single query.

4.2 Typing and Scoping in a Comprehension

The considerations in this section are based on an abstract representation of queries. It is
assumed that queries are of the general form:

context {t|rvy «—ry:fi,rvg— 1o fo, 0, r0, — 1y fn}

The rv; are the range variables, the r; are the ranges and the f; are the filters for ¢ ranging
from 1 ton (n > 1). ¢ is the target expression. It is assumed that each generator is followed
by a filter. Filters have no influence on the typing of the comprehension and do not introduce
variables relevant to the comprehension. So this assumption does not restrict the generality
of the considerations.

The first generator introduces a range variable rv; and a range 1. Range r; is a bulk with
elements of type Fy. The type of 1 depends on the element type F;. This is expressed by

T ! B’U,lkl[Elj

where Bulky is the type operator representing the bulk type of ry. The range variable rv;
is used to iterate over the elements of r{. It is therefore of type Fi. The scope of rv; starts
behind the generator and ends with the closing bracket of the comprehension. Additionally it
includes the target expression ¢. The range ry also represents a bulk. Since it is in the scope
of rvy it may depend on the value of this variable. Therefore ro must be represented as a
function

ro 1 Fy — Bulky[E;]
in the general case. Pursuing this scheme yields the type

ri: By x Ey x -+ x F;_y — Bulk;[E;] i=2---,n
for the general case of range r; and the type

ro; : F;

for the range variables. As in the case of rv; the scope of each range variable rv; consists of
the target expression and of the comprehension starting behind the generator introducing rv;.

Now the types of the filters are considered. Filters are Boolean expressions. Filter f; may
depend on the range variable rv; introduced by the first generator. This fact results in the

type
f1 : F1 — Bool

Because of the scoping rules for the range variables, filters may depend on all range variables
already introduced, i.e., a filter f; may depend on the range variables rvy, - - -, rv; which have
element types Fy, ---, E;, respectively. So, every filter f; may be expressed as function of the
following type

fi:Fh x --- X FE; — Bool i=1,---,n

The type of the elements of the comprehension result is determined by the target expression.
The target expression ¢ may depend on all range variables defined in the comprehension. Since
the range variables are of types Fy, ---, E,, respectively, t is expressible as function of the
following type:

t:E x - x E, — E,

where F, is the element type of the comprehension result.

A query consists of a comprehension and a context. The type of the query result is influenced
by the context. In most cases it also depends on the type F, of the elements of the compre-
hension result as well. The static semantic of the query regarding the type of the contexts
and the type of the comprehension and their interaction is discussed in section 4.3.

A comprehension defines a sequence of elements. Comprehensions do not represent values of
the language TL. Since comprehensions and contexts are implemented seperately, comprehen-
sion results appear as intermediate results in the implementation. For this reason a type has
to be assigned to comprehensions. Since this type depends on the element type E,, a type
operator [Cardelli, Wegner 85] has to be used to describe the type. The concrete type operator
depends on the implementation.

4.3 Comprehensions in Different Contexts

The building blocks of the comprehension — generator, filter, and target expression — may
be identified in a similar form in most query languages. They may be viewed as the essence or
kernel of a query language?*. Generally those building blocks determine a sequence of elements
in the following way: The target expression is applied to all those elements of the Cartesian
product of the ranges that pass all filters. In case of the comprehensions this sequence is called

*This kernel can express the three primitives of relational calculus: selection o, projection «, and join X

[Beeri 92b].

‘comprehension result’ (see section 4.1). The obtained sequence is not considered as the result
of the entire query.

In most query languages the elements are collected in some specific kind of bulk, for example
a sequence in FiBoNacct ([Albano et al. 93]) or a table in SQL ([IS09075 92]). This implicit
fixing of the last processing step for the result elements is avoided in the proposed query
language in order to support an extensible set of possible last processing steps. This leads to
the introduction of a further abstract building block into the query language, called context in
the sequel of this thesis. The context of a comprehension defines an environment in which the
comprehension is evaluated. It is the aim of this environment to fix the final processing steps.
The insertion of the elements into a collection may then be viewed as one possible concrete
form of the context as abstract building block. Other contexts are aggregate functions as sum
or count which are supported by many query languages, e.g., SQL, and FiBoNAccI. The lan-
guage DBPL [Schmidt, Matthes 92] is an example of a database programming language with
an explicit treatment of a concept similar to the contexts presented here. It supports selec-
tive and constructive access expressions, that are applicable in different contexts allowing, for
example, the construction of a new relation and the iteration over selected relation elements.

In the first part of this section an overview over common contexts used in query languages
and a classification of such contexts is given. In the second part of this section it is shown
how the contexts are integrated into the proposed query language. This leads to an extensible
and flexible framework for contexts. Although the presented query language does not have a
fixed set of contexts, examples of contexts are needed for illustration. A set of representative
contexts illustrating the wide variety of possible contexts is presented in the third part of this
section. Typing aspects of contexts and especially of the chosen set of contexts are discussed
in the last part of this section.

4.3.1 A Classification of Contexts

A systematic overview of some contexts supported by other database and query languages,
namely, FiBoNaccI [Albano et al. 93], O;SQL [Bancilhon et al. 92], ADAPLEX [Smith et
al. 83], FAD [Bancilhon et al. 87], Napier [Morrison et al. 89], Machiavelli [Ohori et al. 89],
and DBPL [Schmidt, Matthes 92] is given in the appendix (see A). The contexts found in
literature are also used as basis for the following classification of contexts:

Bulk types are the implicit standard context in many query languages. The elements of the
comprehension result are collected in the according bulk type if no explicit context is
declared.. In most query languages this class of contexts is restricted to one bulk type,
for example, tables in SQL, sequences in FIBONACCI.

Aggregate functions accumulate a single value from all elements in the comprehension
result. In each step the already accumulated result of the aggregation is combined with
the next element. The kind of the aggregate function is determined by the operator
chosen for the combination (e.g., 74”7 for the summation of elements). In addition, in
some cases a bottom value is needed. It is used as return value if the comprehension

result is empty. Examples for language constructs describing aggregating functionality
are SUM and COUNT in SQL, count in FIBONACCI.

Quantifiers check whether a specified predicate holds for all elements or at least one element
of the comprehension result, respectively. The query result is a single Boolean value.
Quantifiers may be viewed as special aggregate function with A and V as combining
operators and true and false as bottom elements, respectively.

Selections of single elements return one element of the comprehension result. There are
two variations: a) The comprehension result may contain several elements, and an
arbitrary element is chosen non-deterministically. An example is the operator pick in
FiBonaccl. b) It is assumed that the comprehension result consists of a single element:
This element is returned as query result. If the number of elements in the comprehension
result is not equal to one, this leads to a failure. Examples are the operators the in
FiBonacct and element in O5SQL.

Combinative contexts are contexts that have to be (or may be) combined with other con-
texts. This class contains contexts specifying duplicate elimination, sorting, grouping,
and flattening to be applied to the comprehension result. Examples are flatten in O,SQL
and setof in FiBoNAccCI. The contexts of this class are used in combination with other
contexts, frequently with the implicit standard bulk type context.

Iterations with side-effect apply some operation to each element of the comprehension
result. This class of contexts leads to constructs that are no longer queries in the strict
sense. Their intention is to perform side-effecting operations and not to calculate a
result as in the case of a query. They are not excluded from the discussion, since they
need the same kernel constructs, i.e., may be expressed by employing comprehensions.
Examples are operations that update, insert, or delete the sequence of elements specified
by the comprehension. This kind of contexts is supported in the languages FAD, SQL
and COOL. An alternative approach is to allow the definition of loops where the loop
body is evaluated for each element of the comprehension result. In the loop body, an
arbitrary side-effecting operation may be specified. An example are constructive access
expressions in DBPL. They can be embedded into for-loops.

4.3.2 An Extensible Framework for Contexts

It would be possible to support a fixed set of contexts for the presented query language, but in
order to achieve an extensible and more flexible framework for contexts, a different approach
is chosen. It is based on the following more general classification of contexts. Contexts may

be

result oriented: The intended effect of the query is to compute a value. The value may
be non-bulk or bulk. Contexts of this class are introduced by the keyword get in the
presented query language. The concrete context is determined by an object which is
provided by a special context library.

side-effect oriented: The result of the query is the application of some side-effecting op-
erations to the elements of the comprehension result (Iteration with side-effect). The
keyword do followed by the operation to be performed for the specified elements is used
to define contexts of this class.

Query = Context Comprehension

Context ::= get Value
| do Value

Figure 4.8: Extension to the Grammar of the Query Language

The keywords get and do introducing the different classes of contexts are part of the syntax
of the query language (see figure 4.8).

The result oriented queries are separable into some fine-granular classification in regard to the
evaluation of the comprehension. Some contexts require a complete evaluation to yield the
query result. Examples of these contexts are the summation of the comprehension elements
sum and the computation of the cardinality count. For some contexts it is sufficient to evaluate
a part of the comprehension (partial evaluation). An example is the context implementing
the existential quantifier some: the evaluation of the comprehension can terminate if the
first element fulfilling the predicate of the quantifier is found. A special group of contexts is
introduced in this work. It performs an evaluation of the comprehension on demand. These
contexts allow to query inputs that are potentially infinite as for example input streams. Lazy
evaluation is supported facilitating the treatment of extremely large comprehension results.
This further classification is of special interest for the implementation of the contexts (see
section 5.3.4).

A comprehension augmented by a side-effect oriented context is not a query in the strict sense.
The side effecting function specified for the context is applied to each element determined by
the enclosed comprehension; operations performing output are possible applications:

do print.string { c.name | ¢ — cities : c.habitants < 10000 }

The construct prints the names of all cities with less than 10.000 habitants. Another interesting
utilization are update operations:

do incrementAge { p | p < persons }
More enhanced applications of the side-effect oriented contexts are also possible, e.g., the
visualization of the query result. The graphical editors presented in [Kirch, Miifiig 92] can be
utilized for this purpose.

do editCities { ¢ | ¢ < cities : c.habitants < 10000 }
where editCities is a function that produces a graphical presentation of the data records city on

the screen. The browsing through the elements of the comprehension result can be controlled
interactively by the user.

4.3.3 A Set of Representative Contexts

As described in section 4.3.2 the presented query language does not support a fixed set of
contexts. Instead it offers an extensible framework for contexts. The concrete contexts are
defined in a supporting library that may be extended and adapted by the user of the query
language.

A set of representative contexts is described in this section. For this reason they are grouped
into the classes presented in section 4.3.1. They are chosen to show the flexibility of the
approach and to give an impression of the wide variety of contexts that may be realized in the
framework. The implementation of these representative contexts described in sections 5.2.4
and 5.3.4 may be used as template for the implementation of new similar contexts.

Bulk Types

There exists a large number of bulk types that may be chosen as contexts for comprehensions,
distinguishable by properties as duplicate elimination and order and by the operations for
access and update defined on them (see section 4.4). The contexts list, bag, set, and relation
are taken as representative examples for bulk type contexts.

Lists and bags represent bulk types with and without respecting the order of their elements,
respectively. Both bags and lists may contain duplicates. Sets and relations are chosen as
examples for bulk types with duplicate elimination. Prerequisite of duplicate elimination is a
notion of equality that defines in which case two given elements are regarded as equal and
therefore are duplicates. Identity is the notion of equality (for constructed values) directly
supported by the host language T'L (see section 3.1.3). In order to allow other forms of equality,
as for example value equality, to be defined for the duplicate elimination, the context set is
equipped with a parameter equal. This parameter is a function of type Fun(: E, : E,) : Bool
specifying the notion of equality to be used to enforce duplicate elimination.

In comparison with sets, relations introduce the additional feature of a unique key. The key
is used as basis for the duplicate elimination and for the definition of access operations. In
order to enforce the uniqueness of keys, two elements have to be considered as duplicates if
their keys are equal.

If a relation is specified as context, the resulting relation must not contain elements with equal
keys. If the comprehension result contains elements with equal keys, there are two possible
ways to handle this situation. The simplest way is to reject the query since the uniqueness
constraint for the keys is not fulfilled. The alternative solution requires a case analysis. If e;
and ey have the same key two cases can be distinguished:

e; and e; are equal: In this case only one of the elements is included in the result relation.
The duplicate is ignored;

e; and e; are not equal: i.e., e; and e; are conflicting elements (compare to [Watt, Trinder
91]). In this case the query is rejected, because the query result of not well-defined.

The second alternative is chosen for the context relation. For this reason three functions are
needed as parameters for the context: a function key to extract the key from a given element,

a function keyEqual to compare two keys, and a function equal to check whether two elements
are equal.

Aggregating Contexts

As mentioned in section 4.3.1, the different aggregate functions mainly vary in the choice of
the function that is used to combine the elements of the comprehension result. Additionally
there are differences in the effect of applying them to an empty comprehension result. The
computation of the maximum element, for example, is not a legal operation in this case,
whereas the sum of an empty collection is well-defined (equals zero). The aggregate functions
that may be applied to empty comprehension results provide a bottom element that is returned
as aggregate value in the empty case, and is also used to initialize the aggregate value computed
by the function.

The aggregate functions sum, max, min and count are taken as example contexts. The context
sum adds up the elements of the comprehension result. It may only be used for comprehensions
with a numeric element type, or more precisely, an element type for which addition may be
defined. Since TL supports no overloading, there is no unique operator ”4” that is used for
different numeric types as Int and Real. In order to allow the sum context to be applied for
different numeric types, the add-function specific for the type (e.g., int.add, real.add) and
the zero value of the type (e.g., 0 and 0.0) have to be passed as parameters to the context
sum. The context is applicable to other types than Int and Real allowing the definition of a
function add and a value zero.

The computation of the maximal or minimal element of the comprehension result needs an
order that is specified by the elements. This order is expressable by a function Iess that takes
two parameters and returns true; if, according to the order the first parameter is less than the
second parameter. This function less is a parameter for the contexts max and min used for
the computation of maximal and minimal elements, respectively. The following query example
computes the oldest person that is younger than fifty years:

get max(older) { p | p — persons : p.age < 50 }

where older is a function of type Fun(pl,p2 : Person) : Bool that compares the ages of
persons pl and p2.

The context count does not depend on the element type of a comprehensions result. It com-
putes the number of elements in the comprehension result.

The contexts representing aggregate functions may be classified by the properties (laws) that
are fulfilled for the combining functions used. Commutativity and idempotence of these oper-
ators are considered in this discussion. The contexts count and sum are commutative, but not
idempotent. The contexts max and min are idempotent and commutative. A context that is
neither commutative nor idempotent would be a context concat that concatenates elements
of type String. The above classification of contexts is of interest for the combination with con-
texts that restructure the comprehension result, namely, sorting and duplicate elimination.
The application of an aggregate function that is not idempotent may yield a different result, if
a duplicate elimination is enforced on the comprehension result before the aggregate function
is applied. Duplicate elimination may not affect the query result if the aggregate function

is idempotent. There exists a similar relationship between commutativity of the aggregate
function and sorting. Sorting the elements of the comprehension result before applying the
aggregate function may only change the query result, if the aggregate function is not commu-
tative. Theses considerations are of interest for the use of combinative contexts together with
aggregate functions.

Quantifiers

Existential and universal quantification over the elements of a comprehension are included in
the representative set of contexts (some and all). Both existential and universal quantification
depend on a predicate. It may be defined as part of the context or as part of the comprehension.
In the first case, the predicate is a parameter of the context, as is illustrated by the following
query example checking whether there is a person older than 100 years in the set of persons:

get some(older100) { p — persons }

where older100 is a function of type Fun(: Person) : Bool that tests if a person’s age is
greater than one hundred years.

In the second case, when the predicate is part of the comprehension, the predicate is rep-
resented by the target expression of the comprehension. Employing this approach the above
query may be formulated as follows:

get some { p.age > 100 | p — persons }

The advantage of the second approach is the possibility to formulate the predicate by em-
ploying the range variables introduced in the comprehension. The definition of a function
representing the predicate is avoided. For this reason, the quantifiers are included in this
parameterless version into the representative set of contexts.

Selective Contexts

In section 4.3.1 two variations of this class of contexts are described. A representative for each
variation is contained in the set of contexts considered here. The context the requires that
the comprehension result consists of exactly one element and returns this element (variation
b), whereas the context any chooses one of the elements contained in the comprehension
result (variation a). Both contexts cause an exception, if the comprehension result is empty.
The context the also raises an exception, if the comprehension result includes more than one
element.

Combinative Contexts

In the scenario considered so far, every query consists of a comprehension and a single con-
text. In contrast to this, some contexts presented in section 4.3.1 are combinable with other
contexts. Examples are sorting of the comprehension result and the elimination of duplicates.

Duplicate elimination may, for example, be combined with the context sum, resulting in a
summation that does not take duplicates into account when accumulating the sum.

There are two approaches to integrate such contexts into the given framework: other contexts
can have these combinative contexts as parameters and yield combined contexts. Since the
combination with contexts is optional, and since a context is combinable with several combi-
native contexts, a context must accept an arbitrary number of contexts as parameters. This
leads to difficulties in the implementation. It is not possible to define a function that accepts
arbitrary numbers of parameters.

Another approach is, therefore, applied. The combinative contexts are defined as a special
class of contexts called combinators. Structurally, combinators are mappings from iterators to
iterators. Since comprehension results are iterators, combinators as all other contexts can be
applied to comprehensions. The result of this application is again an iterator and, therefore,
further contexts are applicable. By this definition, queries can have more than one context,
where the second and all further contexts have to be combinators. This approach requires an
extension of the grammar of the query language. The alternative describing the result-oriented
context has to allow more than one TL value for the specification of the context.

The representative set of contexts considered here includes the following combinators: sortBy,
uniqueOn, fromTo and flatten. It is possible to distinguish different kinds of combinators. For
some kinds of combinators a complete materialization of the comprehension result is necessary.
An example for this kind is the combinator sortBy which computes a sorted iterator from a
given iterator (comprehension result). Sorting of the elements of the comprehension requires
the complete materialization. The elements may be inserted into a structure that facilitates
sorting, as for example a search tree. A function before specifying the intended order of the
elements has to be passed as parameter.

For other combinators, as for example uniqueOn (duplicate elimination), it is sufficient to
keep track of the set of elements that have already been visited during the iteration. This set
allows the detection of duplicates. The elements have to be stored in a structure that allows
efficient member tests. The combinator uniqueOn expects a function equal as parameter that
defines the notion of equality underlying the duplicate elimination (compare with the context
set).

The combinator fromTo allows a position-dependent selection of a part of the comprehension
result. Its two parameters lowerLimit and upperLimit specify the starting and ending position
of the selection. The following query illustrates the application of the combinators fromTo and
sortBy. It returns the list of the ten largest cities:

get fromTo (1,10) sortBy(size) { ¢ | ¢ «— cities }

where size is a function of type Fun(cy, c; :City) :Bool that returns true if the city ¢; has more
habitants than the city ¢3. The combinator flatten can only be applied on comprehensions
whose result elements are bulks. It flattens the structure. If it is, for example, applied on
a comprehension result whose elements are lists the combinator returns an iterator over all
elements in all lists®. The combinator flatten can be used to yield the bag of all children of
all families living in cities with more than 50.000 habitants:

®This combinator is especially useful in the case of complex object databases.

get bag flatten { f.children | — families : f.home.habitants > 50000 }

The combinators fromTo and flatten need no materialization of the comprehension result for
the computation of the resulting iterator.

Evaluation on Demand

As mentioned above contexts enabling an evaluation of the comprehension on demand are
necessary for querying very large and potentially infinite inputs. The representative set of
contexts includes two contexts for this kind, namely iter and range.

The context iter allows a lazy evaluation of the comprehension. The computation of each
element of the comprehension result has to be explicitly requested by the user. For this pur-
pose the context iter returns an iterator that allows to iterate element-by-element over the
comprehension result®. A comprehension enclosed in a bulk type context can be used as range
to another comprehension, forming subqueries. A bulk type context requires complete evalua-
tion in order to compute the query result”. In some situations lazy evaluation of subqueries is
desirable, for example, if the context any is chosen for the outer query. In this case a complete
evaluation of the comprehension is unnecessary and inefficient. The context range enables a
lazy evaluation of comprehensions used as ranges for other comprehensions. It is very similar
to the context iter, but additionally it fulfils the requirements, specified for bulk types used
as ranges. A comprehension enclosed in the context range, therefore, is a valid range for a

query.

4.3.4 Typing Aspects of Contexts

In section 4.2 typing aspects of comprehensions are considered. It is examined in which way
the element type F, of the comprehension result depends on the building blocks of the com-
prehension. The embedding of a comprehension into a specific context leads to several new
typing aspects.

Firstly, there are contexts that may not be used for arbitrary comprehensions. They impose
certain restrictions on the element type of the enclosed comprehension. For the context flatten,
for example, the elements of the comprehension result have to be bulks®.

Secondly, the result type of the complete query is considered. It is determined by the chosen
context, and in many cases it also depends on the element type E, of the comprehension.

Finally, if the contexts have one or more parameters, the typing of these parameters is of
interest. Generally, the types of these parameters depend on the type FE,. In some cases the
choice of the parameters have influence on the type of the query result.

Table 4.9 lists the typing aspects for the representative set of contexts presented in the previous
section. It consists of five columns. The first column names the different contexts. The second
and third column list the parameters of the contexts and their types. The fourth column

%The concept of an iterator is discussed in more detail in section 4.4. Possible implementations are presented
in chapter 5.

TAll elements of the comprehension result have to be inserted into the bulk.

8 This is described by the resriction <: Bulk(E) in table 4.9.

Context | Parameters | Parameter Type Result Type Restriction
on E,
Aggregating Contexts
sum Zero :E, <:0k
add Fun(:E, :E,) :E, E, (Numeric)
max less Fun(:E, :E,) :Bool E, <:0k
min less Fun(:E, :E,) :Bool E, <:0k
count - - Int <:0k
Quantifiers
some - - Bool <: Bool
all - - Bool <: Bool
Bulk Types
bag - - Bag(E,) <:0k
list - - List(E,) <:0k
set equal Fun(:E, :E,) :Bool Set(E,) <:0k
relation key Fun(:E,) :K Relation(E, K) | <:0Ok
keyEqual Fun(:K :K) :Bool
equal Fun(:E, :E,) :Bool
Selection of Single Elements
any - - E, <:0k
the only | — - E, <:0k
Combinators
flatten - - Iterator(E) <: Bulk(E)
uniqueOn | equal Fun(:E, :E,) :Bool | Iterator(E,) | <:0Ok
sortBy before Fun(:E, :E,) :Bool | Iterator(E,) | <:0Ok
fromTo lowerLimit :Int Iterator(E,) <:0k
upperLimit Int
Evaluation on Demand
iter - - Iterator(E,) | <:0k
range - - Range(E,) <:0k

Figure 4.9: Typing Aspects of the Contexts

specifies the type of the query result. The last column shows the restrictions on the element
type E., of the comprehension result. Note that the entry <:0k imposes no restriction on
FE, since Ok is the supertype of all non-parameterized types in Tycoon. In all columns F.
represents the element type of the result of the comprehension which is embedded into the
considered context.

4.4 TIteration Abstraction and Bulk-Morphisms

The developed query language is comprehension-based. The semantics of list comprehensions
and its extension to comprehensions for other bulk types, namely, for ringads is given in
chapter 2. All these semantic definitions are restricted to a special case: all inputs and the
result of the comprehension are of the same bulk type. In contrary to this, different bulk types
can be used as ranges of a comprehension in the presented query language. It is even possible
to define mixed queries, i.e., to specify different bulk types for the ranges of a single query.
An example illustrating such a case is given below:

A :List(Int)
B :Set(String)

get bag { tuplez yend |z — A,y — B}

The ranges A and B are of type List(Int) and Set(String), respectively. The type of the query
result is Bag(Tuple :Int :String end). Thus, the result of the query is not compatible with
one of the types of the ranges.

In order to enable a uniform implementation of the queries, independent of the bulk types, a
uniform intermediate format for the bulk types is needed.

Beeri and Ta-Shma present a category of bulk types where the objects are bulk types and
the arrows are bulk-morphisms [Beeri, Ta-Shma 94]. In this category sets are identified as
the terminal objects, i.e., for all other bulk types a unique bulk-morphism to the set bulk
type exists. The notion of a bulk-morphism is discussed in section 2.2.3. Intuitively, a bulk-
morphism may be used to map an instance of one bulk type to a target instance of another
bulk type. Since set is terminal, every bulk type may be uniquely mapped to a set.

This approach leads to a first attempt for the definition of the semantics of mixed queries.
Arbitrary ranges of the query may be uniquely mapped to sets. The sets are used as inter-
mediate representation during the evaluation of the query. The result of the query is a set
constructed from these intermediate representations. Since mappings of the bulk types to the
sets are unique, the result is also unique. The approach leads, therefore, to a well-defined
semantics for mixed queries. Unfortunately, this is not the intended semantic. Duplicates and
order information present in the ranges are lost by the mapping to sets. In dependence of the
chosen context, some of this information may be necessary to construct the query result. For
the general case, an intermediate representation is therefore needed that preserves duplicates
and order information present in the ranges.

In chapter 2 rewrite rules defining the semantics of list comprehensions are described. These
rules are taken as a starting point for the examination of effects of ordering aspects to the

comprehension/query result. In the following example the rewrite rules are used to transform
a comprehension containing two lists A and B as ranges with elements aq, - -+, @, and by, - - -,
b,,, respectively:

get list { tuple xyend | x— A, y — B}

— [(a1 b1) (a1 by) -+ (a1 by) -+~
(a2 b1) --- (a2 by)

(ar b1) - (an bn)]

The result of the comprehension is determined by iteration over the lists given as ranges. The
rules specify the following iteration order: all elements of the second range are visited for
the first element of the first range before the second element of the first range is considered,
and so on. This can easily be extended to arbitrary numbers of ranges. The result of the list
comprehension depends on the iteration order of the elements in the lists as well as on the
order of the ranges in the comprehension. Exchanging ranges in the above list comprehension
yields a different result, since the elements are iterated in a different order.

The semantic of a comprehension strongly depends on the iteration order over the elements
for the involved bulk types. For this reason iterators as presented in [Liskov et al. 77] seem to
fit well as an intermediate representation. Iterators are a kind of data abstraction, accessing
all objects in a given bulk sequentially without exposing irrelevant details. If iterators are
employed as intermediate representation, mappings from bulk types to iterators are needed
(see figure 4.10). For the specific bulk type list, it is quite obvious how to iterate over the
elements in a given list. For other ordered bulk types the iteration over their elements can
be uniquely determined by the order of the elements in the bulk type. This is not true for
unordered bulk types. To generalize the presented semantic definition, the iteration order for
other bulk types than lists has to be considered.

For unordered bulk types more than one iteration order is possible. A mapping from such a
bulk type to an iterator is, therefore, not uniquely determined. It is, for example, possible
to iterate in different ways over the elements of a bag. This is clear from theoretic results
given in the theory of Beeri and Ross (see chapter 2). The mapping from a bulk type to an
iterator can be regarded as a morphism. Sets and iterators do not constitute an isomorphism:
iterators preserve order information and duplicate elements of a bulk, whereas sets do not.
Only those objects which are isomorphic to sets can be a terminal object in the considered
category. Iterators are, therefore, not a terminal object of the defined category in the theory
of Beeri and Ta-Shma, i.e., there are bulk types having no unique mapping to an iterator.
Next, the consequences of this ambiguities towards the semantics of the comprehensions are
examined.

It is possible to distinguish the following cases for the bulk types occurring as ranges of a
comprehension:

(i1) the comprehension contains only ordered bulks

(i2) the comprehension contains only unordered bulks

(i8) the comprehension contains at least one ordered and at least one unordered bulk

The cases (i2) and (i3) involve iteration orders on unordered bulk types, resulting in possibly
different sequences of elements for the comprehension result. The result of a comprehension
can also be viewed as an iterator that allows the iteration of the mentioned sequence of
elements. Following this argumentation, comprehensions form a mapping from one or more
iterators to a target iterator (see figure 4.10). For the cases (i2) and (i3) this mapping is not
uniquely defined. In these settings there is no well-defined semantics for the result of a given
comprehension. The resulting iterator of this intermediate mapping does not represent the
result of the query. The query is completed by setting the comprehension into a context which
determines the result of the query. A context can specify the result of a query as a bulk type
(see section 4.3.3). With respect to the ordering property two cases can be distinguished:

(rl) the result collection is ordered and

(r2) the result collection is unordered.

The following table shows the dependencies between the ordering aspects of the ranges, the
ordering aspects of the resulting bulk and the uniqueness of the query result:

rl r2 al a2

il (ordered) unique result unique result | unique result unique result

i2 (unordered) || no unique result | unique result | unique result | no unique result

i3 (mixed) no unique result | unique result | unique result | no unique result

In general the order of the elements in an ordered bulk type depends on the order on which
the elements are inserted®. It is assumed that the elements of the comprehension result are
inserted into the bulk type chosen as context in the order they are visited by the iteration. For
ordered result collections (r1) the order of the elements, therefore, is determined by the order
of the elements in the result of the comprehension. Thus the different comprehension results
in the cases (i2) and (i3) lead to different query results. The query result is not well-defined in
these cases. If an unordered bulk type is chosen as context all possible comprehension results
in the cases (i2) and (i3) yield semantically equal bulk values, since the order of the insertion
of the elements has influence on the result. If all ranges are ordered bulks the comprehension
result, and as a consequence, the query result is well-defined. Similar considerations can be
made if aggregate functions are chosen as context. Referring to the examinations on page 58,
the aggregating function can be commutative (case a;) or not (case az). For a commutative
aggregating function the order in which the elements are aggregated does not make a differ-
ence to the result. It is comparable to a unordered bulk type where the order of insertion of
elements into the bulk does not make any difference (is commutative). For unordered bulk
types and commutative aggregating functions the same results concerning well-definedness
hold (see table). Aggregating functions that are not commutative are sensitive towards or-
dering aspects. For this reason they are comparable to ordered bulks as result. Note that the
order of the ranges has an impact on the result of the query. This is true for the case (il, rl)

9 An exception are, for example, sorted list where the order is independent of the insertion. It is determined
by the sorting. These cases are not considered here.

y \ Query / N

| \

Comprehension Context

I @ I \

, , \‘
I I !
I ol] [
! _ "1 < Relation > |
1 <_Relation | I
\ \ !
‘ @ Vst |

\ \ List
\ ! \ !
\ ! \ !
\ \Bag) \ Cset
\ / \ /
\ // \ //
\ \
NP \\"//

Figure 4.10: Mapping Semantics of the Query Language

for example. This aspect has been discussed for list comprehensions at the beginning of this
section. Exchanging ranges can lead to different results.

A well-defined semantic for the queries (comprehensions) can be achieved by the following
approach: while implementing a bulk type, a function that maps an instance of this bulk
type to an iterator is defined. This function fixes the order of iteration over the elements of
instances of this bulk type and as a consequence of this a unique comprehension result. If these
functions are applied on the ranges of a comprehension used to determine the comprehension
result a unique, well-defined result can be achieved for each case. Note that for unordered
bulk types more than one definition of the mapping function exists. If more than one possible
comprehension result exists for a comprehension, it is also possible to chose one of them by
specifying an order predicate fixing the order of the elements in the result of the query.

4.5 Naming, Parameterization, and Recursion

Naming and parameterization of queries are important features for an enhanced query lan-
guage. With the chosen approach for the realization of the query language, these features can
be smoothly and naturally integrated into the presented framework for a query language. This
is also true for recursive queries. The integration of parameterization, naming, and recursion
into the query language is described in this section.

4.5.1 Naming of Queries

It is desirable that a query, like all other constructs of the language, can be bound to a name.
There are two distinct ways for binding an identifier to a query. A name may be bound to

the result of the query: subsequent use of the name refers to the value calculated as query
result. This way of binding allows the further processing of query results.

the query as an executable unit: each subsequent use of the name causes an execution
of the query in the context of the actual state of the database. This kind of naming is
useful for the definition of frequently used queries. The query is defined once and bound
to a name. Reevaluation of the query may then be caused by employing the bound name.
Another important application of this kind of naming is the definition of views.

Since queries are values of the language T, no special constructs for the binding of identifiers
to queries is needed. The binding mechanism defined for values in TL is applicable; the binding
of a name to a query result may be accomplished by the use of the let-construct:

let bigCities =
get list { c.name | ¢ — cities : c.habitants > 500000 }

The identifier bigCities is bound to the list of all cities with more than 500000 habitants. In
order to define a query as an executable unit, it is enclosed into a function closure before
binding a name to it:

let bigCities = fun()
get list { c.name | ¢ — cities : c.habitants > 500000 }

An evaluation of the query is initiated by a call bigCities().

4.5.2 Parameterization of Queries

A natural extension of naming a query as an executable unit is to allow parameterized queries.
Parameterization means the introduction of one or more parameters into a query. Actual
values for this parameters have to be passed at execution time of the query. As with all other
parameterizations this approach allows to express a variety of similar queries by a single query.
The differences are captured by the parameters.

Parameterized queries may easily fit into the presented framework. Queries as executable
units are represented by parameterless functions. An obvious extension of this approach is to
represent parameterized queries by functions with parameters:

let bigCities(lowerLimit :Int) =
get list { c.name | ¢ — cities : c.habitants > lowerLimit }

The parameters of the query are unbound identifiers inside the comprehension.

Since filters specified in the comprehension are values of the language TL (see section 4.1.2) a
query can be parameterized with a filter predicate. This is illustrated by the following example:

let selectedPersons(predicate :Fun(:Person) :Bool) =
get list { p.name | p «— persons : predicate(p) }

In this case the query is a higher-order function. It is also possible to pass an entire query
as parameter. The query passed as parameter can be employed as subquery in any building
block of the query (compare to section 4.1.1).

Copy Semantic vs. Referential Semantic

Mutable values which are referenced during the processing of the query have an identity,
and, therefore, they can be referenced and altered from other locations. The consequence is
a possible change of the query result during processing, since such an element could possibly
change the result of a predicate referencing it. This can be omitted with deep copy semantics,
but the costs for such an operation can be very expensive.

4.5.3 Recursive Queries

Naming and parameterization of queries are not supported by constructs of the proposed
query language. As described in the previous section the binding facilities and the facilities
for the definition of functions of the language T1L are used for this purpose.

A straightforward extension of this approach is to realize recursive queries by recursive func-
tions. A similar approach is presented in [Smedt et al. 93]. Following this idea the query to
calculate the cost of a part p in a bill-of-material database may look as follows:

let rec cost(p :Part) :Int =
p.cost + get sum { sp.qty * cost(sp) | sp < p.subparts }

On the first sight the identification of recursive functions with recursive queries conceptually
fits well into the presented framework. But a closer look shows some grave problems. A
consequence of this approach is that recursive queries are evaluated with the same strategy
used for the evaluation of recursive functions. This strategy lacks some features that are
desirable or even necessary for the evaluation of recursive queries.

1. Query evaluation may run into cycles that are caused by cyclic data. These cycles have
to be detected in order to avoid non-terminating evaluations.

2. It is crucial for the efficiency of query evaluation that intermediate results that are
needed several times, are computed only once.

It is, therefore, desirable that the algorithm for the evaluation of recursive queries is not
indivisibly coupled with the evaluation strategy for recursive functions.

Recursive queries in the considered representation are very similar to functions. They have a
name and a signature. The following description is restricted to queries with one parameter in
order to facilitate illustration. It is easily extended to queries with more than one parameter.

As mentioned above the detection of cycles and the memorization of intermediate results are
important aspects of the evaluation of recursive queries. A structure is required that allows
the detection of cycles and the storage and retrieval of intermediate results. This can be
accomplished by a kind of dictionary having calls of the query as entries and parameters of
the call as keys. For each parameter three states can be distinguished:

new: a call with this parameter did not yet occur during evaluation, no entry exists for this
parameter;

ready: a call for this parameter has been completly evaluated; the structure contains the
according intermediate result;

evaluating: a call for this parameter is actually in progress, a cycle has occured during
evaluation.

The structure has to support the following operations: It has to be possible to request the
state for a parameter p and to insert and retrieve intermediate results in dependence of a
parameter p. Additionally, the structure has to keep track of the state of evaluation for a
parameter p. For this reason functions to signal the start and termination of a evaluation
towards the structure are desireable.

A recursive query rq with signature rq(p :T):R is transformed into a recursive function with
the same signature preceded by the creation of a structure as described above. The body
of the function mainly consists of the query expression ge of rq augmented by the following
functionalities: for each parameter p the state is requested. The further processing depends
on the state. In case of state new the query expression is evaluated for the parameter. If the
case is ready, the already computed result for this parameter is retrieved and returned as
result of the call. The state evaluating signals the occurence of a cycle. Actions taken upon
the occurence of such a cycle depend on the query and the chosen evaluation strategy. If the
evaluation of a call is completed the result has to be entered into the structure.

In order to distinguish them from recursive functions a special keyword for the definition of
recursive queries is introduced. There are different approaches for the introduction of such a
keyword. It is possible to introduce a new keyword recq that is used in the same position as
the keyword rec for the definition of recursive bindings. The following example illustrates the
use of the keyword recq in a recursive query.

let recq cost(p :Part) :Int =
p.cost + get sum { sp.qty * cost(sp) | sp < p.subparts }

For the introduction of this facility the grammar rule describing value binding of TL has to
be extended.

An alternative approach is to introduce a keyword that directly precedes the query expression
and introduces the recursively used name. With this approach the above query looks as follows:

recQuery cost(p :Part) :Int
p.cost + get sum { sp.qty * cost(sp) | sp < p.subparts }

For this approach it is sufficient to extend the rules for values in T1L, as it has been done for
the introduction of queries as values in the grammar in section 4.1.2. Note, that the name cost
is introduced only for internal use in the query in this approach. It may not be used outside
of the recursive query.

For the formulation of many recursive queries a union operator is needed. As an example the
query calculating all subparts of the part p is considered. The set of these parts is the union
of the direct subparts sp of p with the set of the subparts of these parts sp. A similar pattern
may be identified in most queries calculating transitive closures. For the languages SQL2 and

SQL3 [Melton 93] an operator recursive union is proposed for this purpose. In [Smedt et al.
93] an operator orin the predicate is used to express the union. If comprehensions are used as
query language there is also a need for this kind of operator. It is employed to express a union
over ranges. In [Trinder 89] a cons-operation for lists is proposed for this purpose. Whereas
[Beeri 92a] introduces an operator ”U”. A similar approach is proposed in the presented query
language: An operator ”<+>” is introduced into the query language. Employing <+4> as
union-operator the subpart query may look as follows:

let recq subparts(p :Part) : Set(Part) =
get set { ssp | sp < p.subparts, ssp < subparts(sp) <+> sp }

There are two different ways to support the union-operator. First, it may be introduced as
additional syntactical construct into the query language. In this case the implementation
of the operator is part of the syntax extension. On the other hand the operator may also
be supported by the environment. A generic function allowing the union of arbitrary bulk
types with an element can be defined. The function does not insert the specified element into
the bulk type. It causes iteration over the bulk type and the specified element during query
evaluation. If a symbolic name as <+4> is chosen for the function it is even possible to use
the operator in the intended infix notation (compare section 3.1.1). The approach to define
the union operator as a function in the environment is more flexible since its implementation
is adaptable. Additionally it avoids the introduction of new keywords into the language. This
approach, therefore, is chosen here.

The considerations are restricted to recursive queries that may be expressed by linear recursive
functions [Bancilhon, Ramakrishnan 86, p.20] [Smedt et al. 93, p.145]. This class of queries is
powerful enough to express classical application problems such as computing ancestors, bill-
of-materials, and shortest paths. It covers a broad range of practical applications involving
recursion.

In the following a set of classical applications for recursive queries and their realization in the
proposed query language is given [Ceri et al. 90]. First, a computation of a transitive closure
having non-cyclic data is considered. The query returning all ancestors of a given person may
be formulated as follows:

let recq ancestor(a :Person) :Set(:Person) =
get set { anc | p < persons, ¢ «— p.children : ¢ == a, anc — ancestor(p) <+> p }

The next query computes an aggregate with a recursive query. The cost of a given part is
computed from the cost of its subparts [Atkinson, Buneman 87].

let recq costPart(p :Part) :Int =
p.cost + get sum { sp.qty * costPart(sp)| sp — p.subparts }

The last class are queries computing the transitive closure over data structures having cycles.
Assuming a set of connections between cities with the following structure

Tuple
from :City
to :City
end

a query computing all cities reachable from a given city may look as follows:

let recq reachable (s :City) :List(City) =
get list { dest | ¢ — connections : c.from == s, dest — reachable(c.to) <+> c.to }

Note that connections may describe cyclic data.

4.6 Expressive Power

The relational calculus is a query formalism which underlies several database systems [Codd
72]. A query language is said to be relational complete, i.e., adequately expressive, if it is
at least as powerful as the calculus. Any relational calculus query can be translated into an
equivalent list comprehension [Trinder 89, pp.124-131]. Since the proposed query language also
incorporates arbitrary functions and the naming and parameterization allows the formulation
of recursive queries one can expect an even greater power than in the relational calculus.

The approach allows one to define a variety of models with rich data structuring facilities,
including, in particular, all those that use constructors, or that allow abstract data types.
Abstract data types are used to define add-on user definable bulk types and further they
are used to define operations as generalized aggregates, restructuring operations, quantifiers,
iterations, and generalized selection operations. The proposed query language utilizes com-
prehensions as its kernel construct and allows the lazy evaluation of queries [Vuillemin 74;
Wadsworth 71], thus interpreted functions within a query expression are permitted. The user
has the ability to evaluate potentially infinite query results to be materialized in an on-demand
fashion. By this approach safety [Beeri, Milo 92; Abiteboul, Beeri 88] of a query can not be
guaranteed, but the gain in flexibility and expressiveness is very large. Complete material-
ization of queries is also possible, but has to be handled with care since present functions
may cause the query to compute the complete database. ”Queries over infinite domains and
complex types can be hard and their result may not be recursive enumerable” [Hull, Su 90].
The queries are typed and in the system they show to be syntactic sugar for a static-typeable
expression.

The underlying model for the proposed query language uses a general data model generalizing
the nested relations/complex object models that support the construction of complex values
using tuple, set, etc. and those that support abstract data type definitions.

In the following a set of examples are given which support the above argumentation. A set-
collapse and a powerset query is expressible in the proposed language. Further, the nesting
abilities of the language allow the expression of queries performing grouping on query results.

A set-collapse query takes a collection of sets and returns their union [Beeri 92a, p.9]. It is
expressible using pump and union [Abiteboul, Beeri 88].

let collapse (E <:Ok sets :Set(Set(E))) :Set(E) =

get set { element | set — sets, element «— set }

The collection of sets in the above query is sets. The first generator takes each set of the
collection of sets (implicitly flattening). The second generator takes all elements of each set
and returns the single elements. All elements are inserted into the resulting set.

A powerset query takes a set collection and returns the powerset of the set.

let recq power (E <:Ok s, s; :Set(E)) :Set(Set(E))=
get set { s, | s, — get set { e, — s:e¢d sy, e, — power (s, union(e s1)) } <+>s1 }

The query is parameterized with two sets s and s; and returns the powerset of the set s. To
compute the powerset for a concrete set b, it has to be called with the following parameters
power(b {}). With the set b as first and the empty set as second parameter. The operator
union is the set union. It can be expressed by the following query:

let union(E <:Ok e :E s :Set(E)) :Set(E) =
getset {r|r—s<+>e}

The filter condition e ¢ s1 is only included to eliminate unnecessary evaluation steps. Note
that the recursive query is introduces with a let recq binding construct which allows the
introduction of an appropriate temporary data structure for the detection of cycles during the
evaluation of the recursive query.

The next illustrating query returns all families having more than 4 children grouped by their
townships. And only those groups are taken into account which have at least 5000 such families.
A seperate query children_lover that computes all families with more than four children in a
city is defined for this purpose:

let children_lover(c:City) =
get list { | f — families : get count { c¢ | ¢ — f.children } > 4 A f.home = ¢ }

The named query children_lover can be utilized to formulate the intended as follows:

get list {I |
1 — get list { tuple let ¢ = city let ¢l = children_lover(city) end |
city « cities
: get count { cl | cl — Lel } > 5000 }

Note that it is not necessary to define the subquery seperately. It could also be directly
incorporated, but the resulting query would be harder to understand.

Chapter 5

The Operational Semantics of the
Query Language

In the previous chapter, a framework for a comprehension-based query language is presented.
The discussion is focused on the conceptual design and the syntax of the query language.
Furthermore, typing and scoping aspects are considered and a first intuition of the intended
semantics is given.

Instead of defining an interpreter for the proposed query language, it is the aim to design
the query language in an add-on approach using a syntax extension tool. For this reason, the
queries have to be implemented by constructs of the underlying language. This process of fixing
an appropriate implementation defines an operational semantics for the introduced query
language. TL, a typed polymorphic language based on a second-order lambda calculus is used
as target language!. The chosen language supports procedural and functional programming,
allowing a functional, as well as a procedural implementation of the query language. These
two alternatives are examined separately; mixed forms are also possible.

In the presented framework a query consists of two parts: a context and a comprehension,
forming the kernel of the query. In order to facilitate the realization of the approach by a
syntax extension tool, the attempt is made to keep the implementation of the comprehensions
and the implementation of the contexts independent of each other.

Before the implementations are considered, the architecture of the environment of the query
language is described in the first section of this chapter. The second section is devoted to a
functional approach for the implementation. The described solution is based on the translation
scheme for comprehensions presented in section 2.2.2. Alternatively, the query language can
also be implemented using imperative programming features. An imperative approach to
the operational semantics of the query language is presented in section 5.3. The last part
of the chapter treats aspects of a concrete implementation of the query language by syntax
extension. Rules for the implementation of the query language employing the syntax extension
tool described in chapter 3 are presented. The rules realize the implementation developed in
section 5.3.

!Chapter 3 introduces the concepts of this language that are relevant for this work.

73

Bulk Types

Query Language | Extensible Context
Kernel Environment

Contexts

Iteration

Figure 5.1: Architecture of an Environment for Query Languages

5.1 An Extensible Environment for Query Languages

Figure 5.1 shows the architecture of the query language environment. It consists of two parts:
The language TLt and a set of supporting libraries. TLT is an extension of the language
T1L, used as host language for the presented query language. TL is extended by the syntax
necessary for the declarative formulation of queries. The syntax extension consists of the
syntax for the kernel of the query language, mainly a comprehension-based syntax (see section
4.1.1). Additionally, constructs for an extensible environment for contexts are included into
the language TL (see section 4.3). The resulting language TLT accepts expressions of the
language T1 as well as expressions containing the constructs of the query language. Constructs
containing the newly introduced syntax have to be implemented in the host language. The
type checker of T1 verifies the correct typing of the queries?. In order to realize TLt, an
implementation of the query language kernel and of the context environment is needed. A
functional and an imperative implementation for these two components of the language are
presented in the following sections.

The environment of contexts included in TL% is a framework for the implementation of con-
texts. Concrete contexts are supported by a library that may be adapted and extended in
order to meet the requirements of special applications. In section 5.3.4 an example library of
contexts is presented.

It is the aim of this chapter to present a uniform framework for querying different bulk
types. The bulk types are not built-in in T1L. They have to be supported by a library. The
environment of the query language contains a library of bulk types. Similar libraries are
provided in Modula-3 [Nelson 91; Mehlhorn, Niher 92] (reader, writer, and tables), Eiffel

2Typing aspects of the queries are discussed in section 4.2.

[Meyer 90] and Smalltalk [Goldberg, Robson 83] (collections), and in functional languages as
ML [Paulson 91] and CAML [Mauny 91] (lists).

For the functional approach, a functional implementation of bulk types is employed based
on ringads. The support of bulk types for the imperative approach represents bulk types as
objects with a mutable state. The bulk types are provided in a generic form, as type operators,
allowing arbitrary element types and key types (for relations).

The bulk types employed as input for the presented query language have to meet certain
requirements. Especially, each bulk type has to provide a facility to iterate over its elements
(compare to section 4.4). For the implementation of the query language a uniform format
for iteration abstraction is needed. This format is described by a type operator in a separate
interface (Iteration). It is used to iterate over the elements of the ranges. In the presented
implementations each bulk type supplies a function that maps a collection to the required
uniform format for iteration abstraction.

The environment for the query language is extensible: a library of bulk types may be extended
and adapted to new requirements, e.g., for the introduction of new data models (object-
relationship model [Albano et al. 91]). The query language may also be extended by extending
the library of contexts.

5.2 A Functional Approach

Wadler introduces a translation scheme for list comprehensions [Wadler 87, p.132]. This
scheme is described in chapter 2. It is taken as starting point for a functional implemen-
tation of the comprehensions. For the translation Wadler uses an enriched lambda calculus as
target language. This facilitates the adaptation of the solution since the used target language
TL is based on a lambda calculus as well. The translation scheme is based on a higher-
order polymorphic function flatMap. This function takes a list and a list-valued function fas
argument®. flatMap applies f to each element of the list and appends the lists resulting from
the successive applications of f. An implementation of the function flatMap in TL may look
as follows:

let rec flatMap (E1, E2 <:Ok f{e :E1) :list. T(E2) 1 :list.T(E1)) :list. T(E2) =
if list.empty(l) then
list.new(:E2)
else
list.append(f(list.head(1)) flatMap(:E1 :E2 f list.tail(1)))

end

This implementation reveals the dependencies between the signature of the function f and
the element type of the input list and the resulting list. These dependencies are implicitly
included in the implementation presented by Wadler.

The solution in [Wadler 87] is restricted to lists. In [Wadler 90; Trinder 92] it is shown that
the translation scheme may be extended to arbitrary ringads (see also chapter 2). For the

®The application of the function f to an element returns a list as result.

considered query language this approach has to be adapted to allow the implementation of
mixed queries (see section 4.4) and of comprehensions in different contexts (see section 4.3).

A direct adoption of Wadler’s approach would require the definition of a function flatMap for
each bulk type (ringad). Alternatively, the definition of a generic function flatMap working
on arbitrary ringads is proposed. By further generalizing this function flatMap to a generic
function reduce, a uniform implementation of the comprehensions in different contexts is
possible. For the implementation of the different contexts it is sufficient to parameterize the
function reduce with appropriate functions. An even more general approach is obtained by
defining a generator for the reduce functions which are necessary for the different contexts.
The generic reduce function and the generator are presented in section 5.2.2.

The implementation of queries employing a reduce function is divided into two parts. In section
5.2.3 a context independent implementation of the comprehensions is presented, whereas in
section 5.2.4 the parameterizations of the reduce generator necessary for the realization of
different contexts is described.

As discussed in section 5.1, the implementation of the queries imposes requirements on the
environment in which the query is formulated and evaluated. Especially, certain assumptions
about the bulk types defined in the environment have to be made to allow a uniform imple-
mentation of the comprehensions on arbitrary bulk types. Since the implementation relies on
the environment and the definition of bulk types, the discussion of those precede the discussion
of aspects of the rest of the implementation.

5.2.1 The Environment: Iteration and Bulk Types

In order to admit a uniform treatment of queries over different bulk types, a unifying frame-
work for bulk types is needed. This topic has been investigated elsewhere [Trinder 92] and
leads to the ringad theory of bulk types. Although the number of bulk types satisfying the
ringad laws is restricted, most bulk types intuitively classified as such are ringads.

In section 5.1 a facility for iteration abstraction [Liskov et al. 77] is identified as further
rudimentary building block of the environment for the query language. A functional realization
of iterators is presented here.

A Functional Approach to Iterators

When aiming to support a uniform protocol for a sequential iteration over the elements of
an arbitrary homogenous bulk structure, one can define the following recursively defined type
constructor [Matthes, Schmidt 92]:

Let Rec Iter(E <:0k) <:0Ok =
Tuple
empty() :Bool
get() :E
rest() :Iter(E)

end

It is parameterized by the element type F of the iteration. The components empty, get, and
rest of the type constructor Iter are parameterless functions. The function empty yields the
Boolean value true, if the iteration contains no elements to iterate over. Application of the
function get returns the first value of the iteration and rest yields an iterator without the
first element. This iterator is again of type Iter(E). Both get and rest are only defined for
non-empty iterators*. An application of the function get leaves the iterator unchanged. The
second element of an iterator it is obtained by the following expression: it.rest().get().

Iterations over sets, bags, and lists and other bulk types can be represented using this recursive
representation of an enumerative data structure. For each bulk type a function elements has to
be defined that maps an instance of this bulk type with element type E to an iterator of type
Iter(E). In [Matthes, Schmidt 92] the implementation of such a function elements for arrays
is presented as an example. In a similar way this function can be defined also for other bulk
types, as sets, bags, and lists and for more complex types as trees. As discussed in section 4.4,
one might not find a unique solution in each case: binary trees and lists for example provide
a criterion for their iteration order, whereas sets and bags do not specify any order at all.

An Implementation of Ringads

A monad may be defined by a constructor M and two functions flatMap and unit. The expres-
sive power of a quad, i.e., of a monad with a zero is sufficient to implement comprehensions
(see chapter 2). Therefore comprehensions may be implemented for bulk types having the
functions flatMap, unit, and zero. This approach is adopted here. In order to avoid the def-
inition of an own function flatMap for each bulk type, it is attempted to define one generic
function flatMap that may be used for the implementation of comprehensions over arbitrary
bulk types. Aiming to explore in which way the function flatMap must be generalized to
support other bulk types than lists, the structure of flatMap is examined (see page 75).

The function is defined by structural recursion [Burstall 69]. It consists of two branches, one
for the empty list and one for lists consisting of at least one element. In case of an empty list
as input the function flatMap returns an empty list. Regarding lists as a ringad, the returned
list is the zero of this ringad. In case of a non-empty list the result of the application of the
function f to the head of the list is appended to the result of a recursive call of latMap applied
to the rest of the list. Again taking the point of view of a ringad, the list append is the ringad
operation combine.

Consequently, the bulk type has to be augmented with a function combine in order to allow
an implementation of the generic function flatMap. This leads to an implementation of a
ringad®. The functions zero and combine of the ringad are utilized to construct the result of
the function flatMap. Every bulk type defined as ringad, therefore, may be specified as result
type (context).

Additionally, a facility to split the bulk type into a first element and the rest of its elements
has to be provided for each bulk type. This may be realized by providing a function elements
for each bulk type mapping instances of this bulk type to iterators (compare to page 76).
The operations of the iterator get and rest are applied to split the bulk type specified as

“Their application to empty iterators causes an exception.
® A ringad is a monad with a zero and a combine (see chapter 2).

input to the generic function flatMap. This solution allows arbitrary bulk types as input to a
comprehension. It is even possible to specify different bulk types as input to a single query,
thus, enabling the implementation of mixed queries.

A ringad can be realized in TL by an abstract data type of the following form:

Let Ringad (E <:0k) =
Tuple
M <: Iterative(E)
zero() :M
unit(:E) :M
combine (:M :M) :M
end

where Iterative is defined as:

Let Iterative (E <:0Ok) =
Tuple
elements() :Iter(E)
end

M represents the constructor of the ringad. Syntactically M is a type variable that has to
be defined in a concrete implementation. The specified subtype relationship guarantees that
it is at least possible to iterate over the elements of a value of type Ringad. More precisely,
a value 7 of type M can be mapped to an iterator by application of the function r.elements.
The functions zero, unit, and combine are defined on the type M.

To enable the implementation of comprehensions, a bulk type has to be defined as ringad (cf.
above). In the implementation this restriction is realized by a subtype relationship: each bulk
type has to be represented by an abstract data type that is in subtype relationship to the
operator Ringad. As an example, the abstract data type for a list is considered:

Let List (E <:Ok) <:Ringad(E) =
Tuple
M <:Iterative(E)
zero() :M
unit(:E) :M
combine (:M :M) :M

end

The subtype relationship ensures that at least the functions zero, unit, and combine are
defined for the abstract data type. Further operators may be appended at the end of the
tuple. A concrete implementation of the abstract data type list implements the functions
specified in the tuple. The ringad laws must hold for this implementation. For many common
bulk types as sets, lists, and bags implementations fulfilling the ringad laws are discussed
in literature [Watt, Trinder 91]. For a ringad implementation of sets the combine function

has to be idempotent (see [Watt, Trinder 91, p.5]), i.e., duplicates have to be eliminated. As
discussed in section 4.3.3, an equality function has to be defined as basis for the duplicate
elimination. Different notions of equality are possible. The proposed solution is to provide a
Boolean function for a set that specifies the intended equality. There are two approaches to
incorporate this parameter into a set ringad. An additional parameter can be defined for the
functions unit and zero that are used to construct new sets. By this approach the uniformity
of the signatures of the ringad operation is lost. The subtype relationship to the type Ringad
does not hold. Additionally, the semantics of combining two sets with different definitions
of equality is not clear. Therefore, a different approach is taken. The equality is specified
as a component of the abstract data type. A concrete implementation of the abstract data
type set, fixes the notion of equality. All values (sets) of type set.M are based on the same
equality function. In this framework it is only possible to combine sets carrying the same
notion of equality. It is possible to write a polymorphic, higher-order function generateSet
that generates an implementation for the abstract data type Set. It is parameterized by the
element type and the equality function:

generateSet(E:Ok equal(:E :E) :Bool) :Set(E)

The implementation of relations with unique keys requires special treatment. This is discussed
in the next part of the section.

Relations as Ringads

Watt and Trinder discuss the problem of representing relations with a unique key as ringads
[Watt, Trinder 91]. More precisely, they examine a concept finite mappings that is very similar
to relations with keys. It is shown that the function combine, denoted as & in this text, has
to be defined as partial function in order to fulfil the ringad laws. For this reason, the notion
of conflicting elements is introduced. Two elements are conflicting if they are not equal in
their values, but have equal keys. The function combine has to fail, if an attempt is made to
combine two collections containing conflicting elements ([x] & [x'] = L if same_key(x, x') A x
x' [Watt, Trinder 91, p.16]). This specification of the combine function raises the question
for equality of two elements and two keys of a relation.

Contrary to flat relations, the answer to this question is not obvious in presence of nested
structures for key and element types. Again different notions of equality are applicable (see
section 4.3.3). Similar to the set implementation, equality functions may be employed to solve
the problem of defining key equality and value equality for a given relation. Typically relations
provide associative access to elements employing the unique key concepts. With a function
lookup for the associative access the abstract data type for the relations may look as follows:

Let Relation (E, K <:0k) =
Tuple
M <:Iterative(E)
zero() :M
unit(:E) :M
combine(:M :M) :M
lookup(:M :K) :E

end

The abstract data type does not only depend on the element type of the relation, but also of
the type K of the keys. As described in section 4.3.3, functions key and keyEqual are needed
to support the concept of keys. Additionally, a function equal of type Fun(:E :E) :Bool is
needed for the recognition of conflicting elements. This leads to the following signature for a
generator function associated to the abstract data type Relation:

generateRelation(E, K <:0k
key(:E) :K
keyEqual(:K :K) :Bool equal(:E :E) :Bool) :Relation(E K)

5.2.2 A Generic Function Reduce

The function flatMap can be generalized to arbitrary bulk types employing ringads and it-
eration abstraction (see previous section). This generic function is used to implement com-
prehensions with arbitrary bulk types (ringads) as input and in arbitrary bulk type contexts.
A further generalization of the function flatMap to a generic function reduce is presented in
this section. As a motivation the result of the application of Wadler’s translation scheme to a

query
get list { x | x — listA : odd(x) }

is considered, where listA is the list [1, 2, 3, 4, 5] and odd is a Boolean function that checks
if an integer value is odd. This query will be transformed into the following expression by the
translation scheme:

[++ [++ B ++ (] ++ (B ++ 1))

where ++ denotes the list append operation and [| denotes the empty list.

If the context sum is chosen the expected result of the transformation could be written as
follows:

I+ 0+ (3+(0+5)
id(1) + (0 + id(3) + (0 + id(5)))

The same translation scheme would work for the context sum if we replace combine by add
(4),[] (zero) by 0 and unit by id. If this idea is generalized the translation scheme is applicable
for different contexts, if it is parameterized by the following context-dependent functions: a
function zero, a function unit to be applied to each element which takes part in the result,
and a function combine to unite two intermediate results.

If this idea is applied to the function flatMap, it leads to a generic function reduce parame-
terized by the functions f, zero, and combine:

let rec reduce(E, R <:Ok it :Iter. T(E) f(:E):R zero():R combine(:R :R):R) :R =
if it.empty() then
zero()
else
combine(f(it.get()) reduce(it.rest() f zero combine))
end

Choosing zero as list.zero and combine as list.combine the application of the reduce function
returns the same result as a flatMap. In contrast to the function flatMap the result type R of
reduce does not have to be a bulk type. It may as well be a scalar value as in the case of sum.

If the translation scheme is applied to queries with more than one range, there is a call of
reduce for each range®. Fach call of reduce has to be parameterized with the result type R of
the query, the element type E of the actually considered range, and the functions f, combine,
and zero. Since the parameters R, zero, and combine depend only on the context of the query
they are equal for each call of reduce within one query. In order to reduce the number of
parameters a generator for reduce functions is defined:

let reduceGen (R<:Ok zero() :R combine(:R :R) :R)
‘Fun(E:Ok it :Iter. T(E) f(:E) :R) :R =
begin
let rec reduce(E:Ok it :Iter.T(E) f(:E) :R) :R =
if it.empty() then
zero()
else
combine(f(it.get()) reduce(it.rest() f))
end
reduce
end

The generator is used to generate the appropriate reduce function for a query. The parameters
R, combine, and zero are chosen in dependence of the context. They are fixed for a concrete
reduce function. The function reduce generated by the following parameterization may be
used to implement a query when list is chosen as context:

let reduce = reduceGen(:E list.zero list.combine)

where list is an implementation of the abstract data type List(E).

The next section describes how a comprehension can be implemented employing a reduce
function generated in dependence of a context. The choice of appropriate parameters for the
reduce generator for different contexts is discussed in section 5.2.4.

5.2.3 The Implementation of Comprehensions

In this section a context-independent implementation for comprehensions with arbitrary num-
bers of ranges is developed. Again as a starting point, a direct implementation of the trans-

6This is discussed in the next section (Compare also to Wadler’s translation scheme.).

lation scheme proposed by Wadler is considered [Wadler 87].

The following query is used as example:
get list { p.name | p — persons : p.age < 18 }

A possible implementation of this query according to Wadler’s translation scheme is:

flatMap (:Person :String
fun(p :Person)
if p.age < 18 then
list.unit(p.name)
else
list.zero()
end
persons)

The function passed as parameter generates singleton lists from all those elements which
satisfy the given filter. The function flatMap concatenates these generated lists. The given
implementation seems to complicate things more than necessary. It would be easier to insert
the elements into the result list instead of creating singleton lists and appending them. As
discussed later, this solution is preferred to allow a uniform solution for queries with more
than one range expression.

The reduce generator presented in the previous section is used to define a function flatMap. It
is thereby necessary to define adequate parameters combine and zero for the generator have

to be defined:

let zero = list.zero
let combine = list.combine
let reduce = reduceGen(zero combine) (* = flatMap *)

The implementation of a comprehension still needs an additional function unit to be applied to
each element that takes part in the query result. In case of the list, this is a singleton operation,
i.e., an operation constructing a one-element list out of an element passed as parameter:

let unit = list.unit

Employing the defined functions zero, combine, and unit and the generated function reduce,
the implementation of the query has the following form:

reduce(persons.elements()
fun(p :Person)
if p.age < 18 then
unit(p.name)
else
zero()

end)

The resulting implementation of the comprehension is independent of the context. It may,
for example, also be used to implement a comprehension in the context sum assuming the
environment:

let zero() = 0
let unit(x :Int) = x
let combine(x, y :Int) =x + y

Adequate environments for other contexts are presented in section 5.2.4. A clear separation of
the implementation of the comprehension and the context is possible. This allows a uniform
realization of comprehensions in different contexts, which is a prerequisite for a solution by
syntax extension:

< context > { < target > | < range variable > «— < range > : < filter > }

begin
let zero = - - -
let unit = ---
let combine = - - -

let reduce = reduceGen(zero combine)

reduce(< range >.elements()
fun(< range variable > :< element type of range >)
if < filter > then
unit(< target >)
else
zero()
end)

end

The functions zero, init, and combine are defined in dependence of the context.

The element type of the range is needed for the implementation of the comprehension. It
has to be specified as type of the parameter of the function passed to the function reduce.
This type is not explicitly included in the query. This missing information leads to a problem,
when the code is to be automatically generated by a syntax extension tool. There are two
possible solutions: the type information can be explicitly included into the query expression
by specifying a type for each range variable. This leads to extra work for the programmer
and makes the syntax less compact. Therefore, it is assumed here, that the syntax extension
tool supports a type inference mechanism [Damas, Milner 82], that allows to infer the missing
type information.

Up to now, the discussion is restricted to the class of one-range queries. Next, an extension
of the approach to queries with arbitrary numbers of ranges is examined. Again the consider-
ations are based on the translation scheme of Wadler [Wadler 87] (see also chapter 2).

Building Block | f7_,,
generator reduce(r;.elements()
roy — 1, fan(ry; :F;) [5)
filter if f; then
f. 141
J rest
else
zero()
end
target expression | unit(t)
t

Figure 5.2: Case Analysis for Query Expressions

The implementation of the general case is developed by parsing the comprehension from left
to right, starting with the first generator. The implementation evolves step-by-step. At each
point the remaining part r of the comprehension is split into the leading part and the rest of
the comprehension. The implementation of r consists of the implementation of this leading
part, and the implementation f,.s of the rest of the comprehension.

Fach generator is translated into a call of the reduce function. The function reduce takes two
parameters: an iteration and a function to be applied to each element of the iteration. The
iteration to be passed to the reduce function is the iteration over the elements of the range.
The function to be passed depends on the rest of the comprehension:

fun (TU : E) f;-est

where 7, is the range variable introduced by the generator and F is the type of this variable.
f;est
of the comprehension is the last one, or the following part is a further generator, or it is a
filter. In case of a further generator, f'_, is a subsequent call of the function reduce with
appropriate parameters as discussed above. If the next part is a filter fi__, is of the form:

depends on the rest of the query. Three cases are distinguishable: the considered part

if f then f,.s else zero() end

In the other case the target expression ¢ has to be considered as next part for the implemen-
tation. The implementation of this part is an application of the function unit to the result of
evaluating the target expression ¢. The call corresponding to the (i 4+ 1)th generator is nested
within the call of the i-th generator, or more precisely, it is passed as parameter to the call of
the function for the i-th generator.

5.2.4 The Implementation of Different Contexts

Comprehensions may appear in different contexts as for example aggregates, bulks, etc. (see
section 4.3). The previous section presented a comprehension independent functional imple-

mentation of comprehensions with arbitrary numbers of ranges. Together with the introduc-
tion of the reduce generator (in section 5.2.2) an approach is described to implement the
context of calculating the summation over the query result and collecting the elements in a
bulk type by defining three functions zero, unit, and combine. Employing the reduce genera-
tor, the functions combine and zero are used to generate an appropriate reduce function for
the implementation of the query.

This approach may be extended to further aggregate functions and to other contexts. Table
5.3 shows the implementation of different contexts. In section 4.3.3 a context iter is described
enabling lazy evaluation of a comprehension. In order to implement this context, adequate
functions zero and init have to return an empty iterator and an iterator with a single element,
respectively. They can be defined as follows:

let zero(E, <:0k)() =
tuple
let empty() = true
let get() = raise error
let rest() = raise error
end

let unit(E, <:0Ok)(x :E,) =

tuple
let empty() = false
let get() = x
let rest() = zero()
end

The function combine has to append two iterators:

let combine (E, <:0k) (it1, it2 :Iter(E)) :Iter(E) =
tuple
let empty() = itl.empty() A it2.empty()
let get() = if itl.empty() then
it2.get()
else
it1.get()
end
let rest() = if itl.empty() then
it2.rest()
else
combine(itl.rest() it2)
end
end

The operators zero, init, and combine are polymorphic functions. In order to enable direct
passing to the reduce generator presented in section 5.2.2, they are defined in a curried version
(compare section 3.1.5).

Context

zero()

unit(x)

combine(x y)

Aggre

gates

sum

Zero

add(x y)

max

opt.nil(:E,)

if opt.null(y) then
X

elsif opt.null(x) then

orif less(opt.value(x) opt.value(y)) then
y

else
X

end

min

opt.nil(:E,)

if opt.null(x) then
y

elsif opt.null(y)

orif less(opt.value(x) opt.value(y)) then
X

else

y
end

count

X+y

Quantifiers

some

false

xVy

all

true

XAy

Bulks

bag

bag.zero

bag.unit(x)

bag.combine(x y)

list

list.zero

list.unit(x)

list.combine(x y)

relation

relation.zero

relation.unit(x)

relation.combine(x y)

Single Elements

any

opt.nil(:E,)

opt.new(x)

if opt.nonNull(x) then
X

else y end

Figure 5.3: Implementation of the Contexts

According to the grammar of the query language presented in section 4.1.2 pure comprehen-
sions are not defined as values of the language TL. It is, therefore, not necessary to represent
them as TL values in the implementation. If the comprehensions are not represented by TL
values, as it is the case in the solution considered so far, it is not possible to implement the
combinators presented in section 4.3.3.

It is proposed in section 4.4 to represent comprehensions by iterators in order to yield a
clear definition of the semantics. This approach can be realized here by utilizing the functions
zero, unit, and combine are utilized as standard parameters for the reduce generator and
the translation scheme independent from the specified context. The different contexts are
then defined on the basis of this iterator. A similar approach is chosen for the imperative
implementation presented in section 5.3.3. Since the implementation of the different contexts
using similar in both cases, a description is omitted here. It is presented in section 5.3.4.

Representing the comprehensions by iterators has the advantage that certain contexts as,
for example, any can be implemented more efficiently: only the part of the comprehension
necessary for the query result has to be evaluated. Furthermore the combinators can be
supported if the approach is chosen”. On the other hand, supporting comprehensions by
a functional implementation of iterators requires a construction of three function closures
(empty, get, and rest) per element of the constructed comprehension result. This leads to
time and space overhead during the evaluation of queries, especially, if contexts requiring a
complete evaluation of the comprehension are chosen.

To conclude the discussion of the imperative implementation, it can be stated that the oper-
ational semantics is based on a clear theoretical foundation. These foundations are smoothly
extensible to support arbitrary bulk types and the implementation of mixed queries. Thus
enabling a concise implementation of the kernel of the query language. Extending the im-
plementation to other contexts than bulks leads to some problems. Some contexts as, for
example, any are implemented inefficiently by the employed framework. Others, namely, the
combinators can not be implemented at all.

Comprehensions are represented by iterators. All contexts presented in section 4.3.3 can be
implemented. The necessity to generate three function closures per element of the compre-
hension result, however, leads to an overhead in space and time during evaluation.

In the next section an imperative implementation of the query language is developed. It
overcomes most of the problems of the functional approach.

5.3 An Imperative Implementation

In the previous section a functional approach to the operational semantics of the query lan-
guage is presented. Since the employed language T1L support imperative as well as functional
programming features, it is possible to develop an imperative approach in the same linguis-
tic framework. To get a first intuition for a possible solution a flowchart of an algorithm
implementing a one-range query in an bulk type context is considered in figure 5.4.

The algorithm consists of the following steps:

TA possible realization of combinators in such a setting is also discussed in section 5.3.4.

'

‘ Create result bulk type ‘

yes

Get first element of range

Test filter predicate
for the element

yes
Get next element of range

Evaluate target expression A
for the element

'

Insert result into
result bulk type

R

no
End

of range
?

j yes

End

Figure 5.4: Algorithm for one-range Queries

| create result bulk] | initialize aggregate value |

while not eoi do while not eoi do
e = get next element of range e = get next element of range
if filter (e) then if filter (e) then
evaluate target expression evaluate target expression
| insert result into result bulk | | add result to the aggregate value |
end end
end end

Figure 5.5: Comparing two Pseudocodes

1. Create the result bulk.

2. Test input range for emptiness.

3. Get the first element of the range.

4. Evaluate the filter predicate for this element. If the predicate is fulfilled then

(a) evaluate the target expression and

(b) insert the result into the result bulk.

5. Get the next element of the range, if possible and return to step four. If no more elements
are retrievable from the bulk, then stop.

The algorithm implements the comprehension in a specific context, namely, a bulk type con-
text. The goal is to find a context-independent implementation of a given comprehension. For
this reason the implementation in different contexts is compared in order to find common pat-
terns, which are context-independent. Figure 5.5 puts the pseudocode for the implementation
in the context of a bulk type in contrast to the implementation in the context of an aggregate
function.

The implementation mainly consists of a while-loop performing the iteration over the input
collection and terminating, if the end of iteration (eoi) is reached. Those differing parts,
namely, the initialization preceding the loop and the function applied inside the filter, are
shown in a framed box in the presented figure. A first version for a context-independent
implementation of comprehensions is discussed in section 5.3.2. It is further developed in
section 5.3.3. The realization of the different contexts is the topic of section 5.3.4.

The implementation of comprehensions assumes an environment supporting bulk types and a
facility to iterate over the elements of a bulk type (as discussed in section 5.1).

Supporting libraries for bulk types and iteration over bulk types are discussed in section 5.3.1.

5.3.1 The Environment: Iteration and Bulk Types

As described in section 5.1, the environment has to include library support for bulk types
and iteration abstraction. In the previous section (5.2) a functional implementation of these
concepts is presented. In this section the necessary library support based on imperative pro-
gramming concepts is presented.

Iteration Abstraction

In order to support queries over different bulk types in a uniform manner, a uniform format
for the iteration over the ranges of queries is needed (see also section 5.2.1). Iterators are
used for this purpose. In section 5.2 a functional realization of iterators is presented. For the
imperative approach, iterators are implemented as objects with a mutable state. The state of
the object keeps track of the progress of the iteration. The interface of the iterator objects
are fixed by the following type operator:

Let Iter(E <:Ok) <:0Ok =
Tuple
eoi() :Bool
get() :E
next() :0k

end

An iterator over a bulk type with element type E is of type Iter(E). The state of the iterator
may be inspected by the functions eoi and get and changed by the function next. The function
next updates the state of the object to point on the next element of the iteration. A call of the
function get returns the actual element of the iteration. If the end of the iteration is reached,
which can be checked using the function eoi, calls of the functions get and next cause an
exception to be raised.

Bulk Type Support

The bulk types are also implemented as objects with a mutable state. The set of functions
included in the interface depends on the specific bulk type. As mentioned in section 4.4, bulk
types have to meet certain requirements if they are to be used as input for queries. In order
to allow iteration over the elements of the bulk type, a function elements that maps the bulk
type on an iterator of type Iter is required.

If a bulk type is to be used as context for a comprehension, i.e., if the elements of the
comprehension result are collected in this kind of bulk, an insert operation on this bulk type
is needed. The chosen implementation sets the different bulk types into a subtype relationship
to a common supertype. This supertype is defined by the following type operator:

Let QBulk(E:Ok)<:0Ok =
Tuple
elements() :Iter(E) (* iterator™®)

insert(e :E) :0k
end

Different kinds of bulk types may be defined as subtypes of QBulk. This is shown for lists in
the following example:

Let QList(E <:0k) <:QBulk(E) =
Tuple
Repeat QBulk(E)
(* further bulk type operations *)
end

The type of a list with element type E is a subtype of QBulk(E). For every bulk type a
function new has to be implemented which allows to create new collections of this kind. The
function new has to be polymorphic providing means to create collections with an arbitrary
element type. The desired element type is passed as parameter to the function. For the type
QList the signature of the function new looks as follows:

new(E:Ok) :QList(E)

As discussed in section 5.2.1, additional parameters are needed for the creation of sets and
relations. When a set is created, an equality function for the duplicate elimination has to be
specified. The definition of a relation with unique keys requires a function key to extract a key
from an element, and a function keyEqual to test whether two keys are equal. The functions
key and keyEqual are used to ensure the uniqueness of keys inserting new elements and to
support a function lookup that allows the access of an element of the relation given its key.
The type of relations can be described by the following type operator:

Let Relation(E, K <:0k) <:QBulk(E) =
Tuple
Repeat QBulk(E)
delete(k :K) :Ok
lookup(k :K) :E
member(e :E) :Bool

end

Note that the type operator describing the type Relation does not only depend on the element
type of the relation, but also of the type K of the keys. Beside the function lookup the interface
contains a function delete, deleting an element specified by its key and a function member
performing a membership test based on key equality.

5.3.2 A Context-Independent Implementation

Queries consist of a context and a comprehension. In the introduction of this section an
attempt is made to split the implementation of a query into a context-independent part,

representing the operational semantics of the comprehension, and an implementation of the
context. Implementing different contexts is the topic of the section 5.3.4, whereas it is the aim
of this section to explore a context-independent implementation of comprehensions. In order
to achieve this goal, those parts of a comprehension which are common in different contexts
have to be recognized.

In the introduction of this chapter an implementation of a comprehension in two representa-
tive contexts is given. The implementations in the introduction are given in pseudocode. An
implementation in TL, in the contexts list as an example for collecting the result elements
in a bulk type and count as an example for the application of an aggregate function to the
comprehension result, may look as follows:

get list get count
{ p|p < persons : p.age < 18 } { p|p« persons : p.age < 18 }
= =
begin begin
let result = list.new() let var count = 0
let currentlter = persons.elements() let currentlter = persons.elements()
while not(currentlter.eoi()) do while not(currentlter.eoi()) do
let p = currentlter.get() let p = currentlter.get()
if p.age < 18 then if p.age < 18 then
result.insert(p) count := count + 1
end end
currentlter.next() currentlter.next()
end (* while *) end (* while *)
result count
end end

The left query returns the list of all persons having an age less than eighteen years, whereas the
right query computes the number of these persons. The implementation uses the environment
introduced in section 5.3.1. Both implementations start with the initialization of variables,
namely, of the variables result and count. It is assumed that the type of the list persons is a
subtype of QBulk(Person). This allows the application of the function elements to it yielding
an iteration over its elements.

The while-loop iterates over the elements of the range persons. Fach run through the body of
the loop redefines the range variable p to be the actual element of the iteration. This binding
establishes the environment necessary for the evaluation of the filter and the target expression
that may refer to the identifier p.

If the actual element passes the filter, the target expression is evaluated. In case of the list
context, the result of this evaluation is inserted into the resulting list, whereas in the case of
the count context the variable count is incremented.

At the end of each pass through the body of the loop the state of the iteration is updated
to point to the next element. The loop is terminated if the end of the iteration is reached.
As described in section 5.3.1 this may be tested by a call of the function currentlter.eoi. The
expected query result is the list containing the result elements in the list context and the

number of these elements in the count context, i.e., the values of the variables result and
count after execution of the while-loop, respectively. Since a sequence of expressions evaluates
to the value of the last expression in TL, the last expression of the implementation denotes
the result of the query. The variables result and count, therefore, have to be placed at the end
of the implementation.

The context-dependent parts of the implementation are the initialization of the variables, the
call of the functions insert and + inside of the filter, and the last expression of the implementa-
tion. To separate the context-independent parts of the implementation, the concrete function
inside the filter is replaced by a function action that may be defined for every context in an
adequate way. The definition of the function action and the initialization of the variables may
be included in a context-dependent prologue preceding the implementation of the comprehen-
sion. The query result is denoted by a context-dependent epilogue. So the implementation of
the comprehension is wrapped by a prologue and an epilogue. Now, a context-independent for-
mulation of the implementation of a comprehension is possible. This is shown for the general
case of a comprehension containing one range:

< context > { < target > | < range variable > « < range > : < filter > }
The implementation of this context-independent query looks as follows:
begin
(* prologue ... *)

let currentlter = < range > .elements()
while not(currentlter.eoi()) do
let < range variable > = currentlter.get()
if < filter > then
action(< target >)
end
currentlter.next()

end (* while *)
(* epilogue ... %)
end

The implementation performs different computations in different contexts. This principle is
called uninstantiated comprehension-thread in the remainder of the text. The prologue de-
termines the environment for the interpretation of the loop, especially it binds the identifier
action to a concrete function. This equals to a determined control flow that may be instanti-
ated with different actions action dependent on the context.

Until now, only one-range queries are considered. In case of a one-range query, the elements
of the range are scanned sequentially. The iteration order for n-range queries is described
in section 4.4: All elements of the n-th range are considered for the first element of the (n-
1)th range before the second element of the (n-1)th range is considered. This rule propagates
further for the preceding ranges.

Building Block | fi,,
generator let currentlter = r;.elements()
TV, — T while not(currentIter.eoi()) do
let rv; = currentlter.get()
"
f;est
currentlter.next()
end
filter if {; then
f 141
J rest
end
target expression | action(t)
t

Figure 5.6: Case Analysis for Query Expressions

The implementation of a n-range query has to contain an additional loop for each range to
iterate over its elements. In order to realize the specified iteration order, the loop for the second
range has to be nested inside the loop for the first range and so on. The target expression
is contained in the innermost loop. Note that the evaluation of filters, ranges, and target
expressions can not only access the actual element of the direct enclosing iteration, but of all
iterations embracing the evaluated expression. As an example, the evaluation of the filter in
the following query is considered:

get list { ¢ | p — persons, ¢ — p.children : p.age — c.age > 50 }

The query computes the list of all children that are more than 50 years younger than their
father. The filter predicate involves elements of the second range as well as elements of the
first range. The task of implementing the general case mainly consists of nesting loops of
iterations and computing the elements of the result in the innermost loop.

A systematic way to evolve the implementation for the general case of a n-range query is to
consider the different building blocks of a comprehension and their role in the implementation.
It is assumed that the comprehension is parsed from left to right, starting with the first
generator (compare to section 5.2.3). At each dividing alternative of the syntax, the remaining
part of the comprehension is split into the following part and the rest of the comprehension.
Table 5.6 shows the implementation of the remainder of the comprehension in the different
cases. In each case f,.s; represents the implementation of the rest of the query. The target
expression is considered as last part for the definition of the operational semantics.

5.3.3 Comprehension Threads (Binding Sequences)

The implementation proposed in the previous section has the advantage of being compact
and simple. Unfortunately, it is not adequate for yielding an iterator as comprehension result
as proposed in section 4.4. An iterator performs a lazy evaluation: the comprehension is

evaluated element-by-element on request. The while-loops in the implementation presented
in section 5.3.2 perform a complete evaluation of the comprehension, which can be regarded
as an instant materialization of the comprehension result in contrast to the intended lazy
evaluation. The evaluation of the comprehension may be preempted at any point employing
exceptions, but it is not possible to continue the evaluation later on request. All bindings
representing the actual state of the iterations over all involved ranges are lost when leaving
the nested while-loops.

One reason for the compactness of the considered solution is that the nested while-loops
rebuild the scope of the range variables in a rather direct and natural way (compare also
section 4.2). The solution presented in this section treats the aspects of bindings and scope of
the range variables more explicitly. The range variables are, therefore, realized by updatable
variables.

In a comprehension with n ranges the Cartesian product CP of the n ranges (r1, --+, 7,) is
considered. Some of the ranges are restricted by filters f; (1 < j < p). Each element of CP is
a sequence of n bindings

TUL = ... TUy = ... cee o TU, =

where 7v; is the range variable of the range r; (1 < i < n). Such a sequence of bindings
forms the environment in which the target expression is evaluated. A range r; and a filter f;
following the (i-1)-th generator are evaluated in an environment, where the range variables
rvy, ..., rv;—1 are bound. Fach filter prohibits some of the binding sequences of CP. The
target expression is only evaluated for bindings fulfilling all filters. The elements in CP are
traversed in the order described on page 93: first, the range variables are all bound to the
first possible values in the corresponding ranges. Then, the range variable rv, is subsequently
bound to the values of the range r,. If the end of r, is reached rv,_; has to be actualized to
the next possible value in the range r,,_1. The set of possible values of r,,_1 may be restricted
by a filter.

According to the building blocks, namely, filter, generator, and target expression, a compre-
hension may be split into k parts, each consisting of a representative of one of the build-
ing blocks. The target expression forms pariy. It is the main idea of the implementation to
define a sequence of functions nextBnds;, one for each part; (I = 1,---,k) contained in a
comprehension®. A function nextBnds; creates the next possible sequence of bindings in the
above sense. In the implementation of part; the function nextBnds;_ is used to establish the
next environment (sequence of bindings) for the evaluation of part;. Function nextBnds; is
defined in the implementation of part; for use in part;y1. The definition of nextBnds; uses the
definition of nextBnds;_1.

Additionally, the implementation attempts to produce the first possible binding sequence
Byi,st of all range variables rv; - - - rv,. This may only be achieved if the comprehension result
is not empty. The bindings are established step by step in the implementation of the parts
of the comprehensions. To allow a closer view, three cases for part; of the comprehension are
examined:

8The target expression forms the initial part of the comprehension. Its implementation does not fit into this
abstract description, since it does not define a function nextBnds;.

1. part; is the i-th generator of the comprehension rv; < r;: As mentioned above,
the implementation of the generator consists of two steps: the further development of
the first possible binding By;,s; and the definition of a function nextBnds;.

(a) part; is the first generator (1=1, i=1):
The first generator plays a special role since it has no predecessors. If the end of
the range ry is reached there are no more new bindings to be established. The
evaluation of the whole comprehension is completed. If 7y is not empty, the range
variable rv; is initialized with the first element of r;. The function nextBnds;
actualizes the variable rv; to the next element of ry.

(b) part; is a further generator (i > 1):

In the case of the ¢-th generator, the first step consists of establishing a first binding
for range variable rv;. For this reason, r; is evaluated in the environment produced
by the previous parts. If r; is empty, the function nextBnds;_; is called to establish
the next possible binding. This call changes at least the binding of range variable
rv;—1 and may also propagate to the bindings of former range variables, if the end
of r;_1 is reached. Afterwards r; has to be re-evaluated in this environment, since
it may depend on one or more of the range variables rvy, ..., rv;_1. If the first
non-empty range r; is found the range variable rv; is bound to its first element,
thus extending the sequence of bindings By;,s by a new binding. The function
nextBnds; is defined as follows: It attempts to extract the next element from
range 7;. If the end of range r; is reached the next possible binding for rvy, ...,
rv;_1 is established by a call of function nextBnds;_;. Again in this case r; has to
be re-evaluated.

2. part; is the filter f; following the :-th generator:

Since filters do not introduce new range variables the implementation may only actualize
existing bindings to develop By, . If the bindings defined by the previous parts do
not fulfil filter f;, the next possible binding is established by a call of the function
nextBnds;_;. This has to be repeated until a binding is found that fulfils filter f;. This
is the new version of By;, .

The function nextBnds; is defined in a similar manner. It establishes new bindings by
repeated calls of the function nextBnds;_; until a binding is achieved that fulfils filter

Ji-
3. part; is the target expression (1=0):

The target expression may refer to all range variables and so it has to be evaluated in
the environment where all range variables are already bound. Therefore the implemen-
tation of the target expression forms the last part of the implementation of the complete
comprehension. The implementation of the whole comprehension forms a sequence of
expressions. The sequence evaluates to the value yielded by evaluating the last expres-
sion in the sequence which is the last expression of the implementation of the target
expression. Since the comprehension result is intended to be an iterator, this last ex-
pression has to be an iterator. The functions eoi, get, and next froming the interface of
an iterator have to be defined:

e eoi has to return the Boolean value true if the end of the comprehension result is
reached; this is the case if no more new bindings can be established;

o get has to return the actual element of the comprehension result; therefore it eval-
uates the target expression in the environment formed by the actual binding of the
variables rvq, ..., Tv, and returns the result;

e next has to establish the next bindings for the range variables; this is just what
the last function in the defined sequence of functions nextBnds;, does. It, therefore,
may be used to define the function next.

An adequate combination of repeated calls of these three functions allows the implementation
of all different contexts presented in section 4.3. This is described in the next section.

The presented ideas can be directly used to develop a concrete implementation for compre-
hensions. The implementation of the comprehension

get list { p.name | p <—persons :p.age < 18 }

looks as follows:

try (* first generator *)

let firstlter = persons.elements()
if firstIter.eoi() then

raise eocException
end
let var p = firstlter.get()
let nextBnds() = (* definition of nextBnds; *)
begin

firstIter.next()

if firstIter.eoi() then

raise eocException

end

p := firstlter.get()
end

while not(p.age < 18) do (* filter *)

nextBnds()
end
let nextBnds() = (* definition of nextBnds; *)
begin

nextBnds()

while not(p.age < 18) do

nextBnds()

end

end

let var eoi = false (* target expression *)
tuple

let eoi() = eoi
let get() = p.name
let next() = try
nextBnds()
when eoiException then
eoi := true
end (*try *)
end (* tuple *)

when eocException then (* empty comprehension result *)
tuple
let eoi() = true
let get() = raise emptyException
let next() = raise emptyException
end
end (*try *)

The implementation evaluates to a value of type Iter(:String).

For a systematic development of an implementation for the general case, the comprehension
is parsed from left to right starting with the first generator (compare to section 5.2.3 and
5.3.2). At each point the remaining part of the comprehension is split into the next building
block and the rest of the comprehension. f,.s; denotes the implementation of the rest of the
comprehension. The first generator rv; — 7y is implemented by the following code:

try
let firstlter = ry.elements()
if firstlter.eoi() then
raise eocException
end
let var rv, = firstlter.get()
let nextBnds; () =
begin
firstIter.next()
if firstIter.eoi() then
raise eocException
end
rvq ;= firstlter.get()
end
f;“est
when eocException then
tuple
let eoi() = true
let get() = raise emptyException
let next() = raise emptyException
end
end

firstlter is the iterator over the first range ri. An exception eocException is raised, if the
end of this iteration is reached. The last part of the implementation (when eocException
---) handles the case of an empty comprehension result (eocException is raised): an empty
iterator is generated.

The implementation of further generators rv; < 7; (¢>1) is rather similar:

let var currentlter = r;.elements()
while currentlter.eoi() do
nextBnds()
currentlter := r;.elements()
end
let var rv; = currentlter.get()
let nextBnds;() =
begin
currentlter.next()
while currentlter.eoi() do
nextBnds;_1 ()
currentlter := r;.elements()
end
rv; := currentlter.get()
end

fr'est

In order to restrict the number of different identifiers?, the same variable name (currentlter)
is used for the iterator of the second and all further ranges. This is also true for the function
name nextBnds. It is rebound in every part of the comprehension implementation'®. Note
that binding the same identifier to a new value by the let-construct produces a new variable.

The implementation for a filter f; looks as follows:

while not(f;) do
nextBnds;_1 ()

end

let nextBnds;() =

begin
nextBnds;_1()
while not(f;) do

nextBnds;_1 ()

end

end

f;"est

®This is of interest for the automatic generation of the code by a syntax extension tool (see section 5.4).
19The indices { — 1 and [are only inserted as reference to the above description of the solution. They are not
part of the implementation.

It mainly consists of establishing new bindings by repeated calls of nextBnds until a binding

which fulfils the filter is found.

Finally, the implementation for a target expression ¢ is considered. Since it forms the last
part of the implementation, it does not contain an implementation f,., of the rest of the
comprehension:

let var eoc = false

tuple
let eoi() = eoc
let get() =
if not(eoc) then t else raise eocException end
let next() =
if not(eoc) then
try
nextBndsy()

when eocException then
eoc = lrue
end (* try *)
else
raise eocException
end
end (* tuple *)

The variable eoc is set to the Boolean value true if the end of the comprehension result is
reached (eocException is raised). The function get and next are defined as described above.

5.3.4 An Extensible Library of Contexts

A query consists of a context and a comprehension. A context-independent implementation
for comprehensions is developed in the previous sections. This section is devoted to the im-
plementation of the contexts. In section 5.3.2, three components are identified to be part of
the implementation of the contexts:

Clinset the initialization of variables used for the computation of the query result;

Action: the definition of a function action that is applied to the elements of the comprehension
result;

Clreturnt the specification of the query result as last expression of the implementation of the
entire query.

The implementation of a comprehension is formed by a sequence of expressions that evaluates
to an iterator over the elements of the comprehension result. Therefore three functions eoi,
get and next are defined (iterator interface), that can be used by the contexts. Calls of the
functions get and next have to be combined in different ways for different contexts. This leads
to a further part that has to be contained in the implementation of the context.

Cwrap: the combination of calls of the functions get and next in an adequate way for the
specific context.

In section 4.3.2 two classes of contexts are distinguished: result-oriented contexts introduced
by the keyword get and side-effect oriented contexts introduced by the keyword do. The
considerations in this introduction and the first part of this section are restricted to the
result-oriented contexts. The implementation of side-effect oriented contexts is discussed in
the last part of this section.

Contexts as Objects

The contexts may be implemented as objects with a fixed interface. The interface common to
all context objects may be defined by a type operator of the following form:

Let Context(E,, R <:0k) <:0k
Tuple
wrap(:Iter. T(E,)):R

end

A context for a comprehension with element type E, and result type R of the query is of type

Context(E, R).

The interface of each context object consists of a single function wrap. This function forms
the implementations of the parts Cyyqp and Chretyprn. The initialization of the variables (Cipit)
and the definition of the function action are part of the definition of the context object.

The contexts for the presented query language are supported by a library named contexts.
For each query a new context object with fresh local variables has to be defined. The context
library, therefore, supports functions that generate context objects. The concrete contexts
supported by the library will be discussed in the next part of this section.

Given the implementation of a comprehension with element type E,, an object context; of type
Context(E, R) may be utilized to embed the comprehension into the context implemented by
context;:

begin
let compResult (* : Iter(E,) *) =
< implementation of the comprehension >
context;.wrap(compResult)
end

The result of the evaluation of the implementation of the comprehension is a value of type
Iter(E,). It is bound to an identifier compResult. The function wrap of the context is used
to combine the functions compResult.get and compResult.next defined by the comprehension
implementation in a way adequate for the chosen context. It returns the result of the query.
Different ways of combination are discussed in the next part of this section.

Context | C;,; Action(t) Cuwrap Creturn
Aggregates
sum let var sum := add(sum t) loopAll sum
sum = zero
max let var max = if opt.null(max) loopAll opt.value
opt.nil(:E,) orif less(opt.value(max) t) (max)
then
max := opt.new(t)
end
min let var min = if opt.null(min) loopAll opt.value
opt.nil(:E,) orif less(t opt.value(min)) (min)
then
min := opt.new(t)
end
count let var count := count + 1 loopAll count
count = 0
Quantifiers
some let var if t then while not(result) | result
result = false result := true A not(eoi()) do
end action(get())
next()
end
all let var if not(t) then while result result
result = true result := false A not(eoi()) do
end action(get())
next()
end
Bulks
bag let result = result.insert(t) loopAll result
bag.new(:E,)
list let result = result.insert(t) loopAll result
list.new(:E,)
set let result = result.insert(t) loopAll result
set.new(equal)
relation | let result = if result.member(t) then loopAll result
relation.new let e = result.lookup(key(t))
(key if not(equal(e t)) then
keyEqual raise error
equal) end
else
result.insert(t)
end
Single Elements
any let var e = opt.new(t) action(get()) opt.value(e)
e = opt.nil(:E,)
the only | let var e := opt.new(t) action(get()) opt.value(e)
e = opt.nil(:E,) try
next()

raise error
else ok end

Figure 5.7: Implementation of the Contexts

The Implementation of Different Contexts

The set of contexts presented in section 4.3 is used as a source of examples for the discussion
of implementation aspects. Before the implementation of the different contexts is described in
detail, different ways of combining the functions next and get are examined. The classification
of the result-oriented contexts according to their evaluation presented in section 4.3.2 is a
starting point for this discussion.

First the contexts causing a complete evaluation of the comprehension are considered. Exam-
ples for this group of contexts are the computation of aggregating functions and the collection
of the comprehension’s elements into bulk types. In this case C,,,4;, consists of aloop construct:

while not(eoi()) do
action(get())
next()

end

The loop body is an application of the function action, to a call of the function get followed
by a call of the function next. The loop is executed until the end of the iteration over the
comprehension result is reached (eoi()= true). Since this way of combining the functions is
used by many contexts, it is defined as a function loopAll of type Fun(E, <:Ok action(:E,)
:0k comp :Iter(:E,)) :Ok. This function is useful for the definition of new contexts.

The second group of contexts are those causing partial evaluation of the comprehension. For
this group no uniform treatment for the combination of the functions get and next exists.
In the context any, for example, it is sufficient to call get to yield the first element of the
comprehension result. The function next is not needed at all.

In other cases the functions get and next have to be called in alternation until a certain
condition is reached. As an example the context some is considered, where the condition is
the retrieval of an element satisfying the Boolean condition formulated in the target expression
of the comprehension. (4, can be defined as follows:

while not(result) A not(eoi()) do
action(get())
next()

end

with result initialized to false and action defined as'':

let action(t :Bool) =
if t then (*t represents the predicate *)
result := true
end

The while-loop checks if the condition is fulfilled and if the end of comprehension result is
reached. The third group of contexts enables lazy evaluation of the comprehension result. The
contexts iter and range belong to this group.

! Note that action is applied to the result of the evaluation of the target expression (see section 5.3.2).

The implementation of the context iter os trivial, since it has to return an iterator over the
elements of the comprehension result, and such an iterator compResult is already generated
by the implementation of the comprehension (see section 5.3.3). The context, therefore, just
passes the iterator implemented by the comprehension through.

The context range is dedicated as context for comprehensions used as ranges of other com-
prehensions. According to the implementation of the kernel of the query language presented
in section 5.3.3, a range r has to enable the application of a function p.elements(). For this
reason the iterator compResult describing the comprehension result has to be enclosed in a
function closure. For the context range C.etyrn can look as follows:

tuple
let elements() = compResult
end

C'init, action, and C\,qp are not needed for the contexts iter and range.

Table 5.7 shows how the contexts presented in section 4.3.3 may be implemented. The def-
initions for Cns, action, Cyyrap, Creturn for the different contexts are listed in the table. In
section 4.3.3 a special class of contexts, the combinators, is identified. The implementations
of these contexts are not included in the table. It is discussed separately in the next part of
this section.

The Implementation of Combinators

The combinators are contexts that can be combined with other contexts (compare section
4.3.3). They form mappings from iterators to iterators. Since comprehension results are iter-
ators, combinators can be applied to comprehensions as all other contexts and additionally
further contexts can be applied to comprehensions already embedded in combinators.

Combinators have to compute an iterator from an existing iterator. For this reason eoi, get,
and next have to be defined from existing functions eoi, get, and next.

As described in section 4.3.3 different kinds of combinators can be distinguished according
to the degree of materialization of the comprehension result that is necessary. For contexts
as sortBy a complete materialization of the comprehension result is necessary. The complete
comprehension result has to be inspected and sorted before the first element of a sorted iterator
can be determined. In order to enable efficient sorting, all elements of the comprehension result
have to be inserted into a structure that supports sorting efficiently, e.g., into a search-tree.
Then an iterator for this structure can be defined that iterates over the elements in the
intended order. The implementation of this combinator is very similar to the implementation
of the bulk type contexts and therefore not considered further.

For other combinators it is sufficient to keep track of the elements that have already been
visited during the iteration. An example for this kind of combinators is uniqueOn that is used
for duplicate elimination. To implement this combinator the elements that have already been
traversed are inserted into a structure temp that enables efficient membership test. This leads
to the following definition of the function next, of the resulting iterator:

let next,() =

begin
next()
while temp.member(get()) and not(eoi()) do
next()
end

temp.insert(get())
end

The implementation uses the functions next, get, and eoi defined by the implementation of the
comprehension. The functions get and eoi can be directly adopted for the according functions
of the resulting iterator.

For a third kind of combinators, exemplified by the combinators fromTo and flatten, no mate-
rialization of the comprehension result is necessary. The context fromTo has two parameters
lowerLimit and upperLimit. For the implementation of this combinator the first lowerLimit-1
elements of the comprehension result are skipped by lowerLimit-1 calls of the function next.
The iteration over the elements in position lowerLimit to upperLimit forms the resulting
iterator. A counter can be employed to keep track of the position.

The combinator flatten can only be applied to comprehension results whose elements are bulk
values. The resulting iterator has to specify an iteration over all elements of all bulk types
contained as elements in the comprehension result. For this reason the function elements
is subsequently applied to each element of the comprehension and the yielded iterators are
used to visit the elements of the bulk types resembling the elements of the comprehension
result. If the comprehension result is empty, the combinator returns an empty iterator. In the
non-empty case the resulting iterator may be implemented as follows:

let var eoiFlag = false
let var temp = get().elements()
while temp.eoi() A not(eoi()) do

next()

temp := get().elements()
end
if eoi() then eoiFlag := true end
tuple

let eoi,() = eoiFlag
let get,() = if not(eoi,) then
temp.get()
else
raise eoiException
end
let next,() = if not(eoi,) then
if not(temp.eoi()) then
temp.next()
else
while temp.eoi() A not(eoi()) do
next()
temp := get().elements()

end
if eoi() then
eoiFlag := true
end
end
else
raise eoiException
end
end

Side-effect Oriented Contexts

The specification of a side-effecting context consists of a keyword do followed by a side-effect-
oriented function dolt. This function is to be applied to each element of the comprehension
result. If the function dolt is specified as parameter action, this kind of context can be imple-
mented by an application of the function loopAll (see page 103). loopAll applies the function
dolt to all elements of the iteration specified by the comprehension result.

5.4 Realization by Syntax Extension

In chapter 3 a syntax extension tool and its extension language is introduced. To specify
the extensions to a host language one has to give a set of transformation rules describing the
extensions and alternations to the aimed host language’s grammar and the intended semantics.

The syntax extension rules have to be based on a LL(1) grammar. A LL(1) grammar for
the developed query langauge is described in the first part of this section. This grammar
constitutes the basis for the rules to the syntax extension tool, which are presented in the
second part of this section. The rules are based on the imperative implementation of the query
language described in section 5.3.

5.4.1 A LL(1) Grammar

In section 4.1.2 a grammar for the kernel of the proposed query language is presented. This
grammar is taken as starting point for the grammar used formulating the syntax extension of
the host language. The grammar for the syntax extension tool has to fulfil the LL(1)-property
[Aho, Ullman 73]. Some changes to the grammar of section 4.1.2 are therefore necessary. This
leads to the following grammar:

Query ::=
get Value "{” Comprehension ”}” |
do Value "{” Comprehension "}”

Comprehension ::=
Value 7|” Ide ”<-” Value Rest

Rest ::=
7,7 Ide "<-” Value Rest |
7:” Value Rest |
€

The second production describes the construction of the body of the comprehension. Each
comprehension consists of a target expression and a generator followed by the rest of the
comprehension. The rest of the comprehesion can be a further generator or a filter. These are
the two non-empty alternatives of the production Rest!'?. The third alternative of the rule
describes the situation that the end of the comprehension body is reached. This is denoted
by an empty production (epsilon production).

The grammar has to be embedded into the grammar of the host language. This is done by
defining Query as an further alternative of the rules for Values of the grammar of the language
TL (see appendix B).

This grammar forms the basis for the rules driving the syntax extension tool. The rules are
presented in the next section.

5.4.2 Rules for the Syntax Extension Tool

The LL(1) grammar described in the previous section determines the syntax of the query
language. In order to implement the query language, a set of rules have to be specified. Fach
rule consists of a pattern describing the new syntax and a semantic interpretation of the
introduced syntax. The pattern may contain placeholders that can be used in the semantic
interpretation. The semantic interpretation is defined in the language TL enriched with the
placeholders. To facilitate distinction from other identifiers the placeholders are preceded by
a underscore in the presented rules.

The two different classes of contexts introduced by the keywords do and get are alternatives
in the following rule:

queryG 1=

"get” _context = valG "{” _comprehension = comprehensionG "}”
=

let compResult = _comprehension

_context.wrap(compResult)

| "do” _dolt = valG ”{” _comprehension = comprehensionG "}”
=
let compResult = _comprehension
while not (compResult.eoi()) do
_dolt(compResult.get())
compResult.next()
end

12Note that both alternatives start with a different symbol.

The first alternative consists of the keyword get followed by a concrete context and a compre-
hension. The construct returned by the rule comprehensionG represents an expression that
evaluates to an iterator representing the comprehension result. This comprehension result is
bound to the identifier compResult in the body of the rule. The use of the context function
wrap follows the implementation presented in section 5.3.4.

In the second alternative the introducing keyword do is followed by a side-effect function
dolt. Again the value returned by comprehensionG is bound to an identifier (compResult). A
while-loop is specified to iterate over the comprehension result and to apply the function dolt
to each element of the iteration.

The second rule is concerned with the semantic interpretation of the comprehension body.

comprehensionG ::=
-nextBnds = NEW IDENTIFIER
_target = valG ”|” _rv = ideG "<-” _range = valG _rest = restG(_nextBnds)
=
try
let firstIter = _range.elements()
if firstIter.eoi() then
raise eocException
end
let var _rv = firstlter.get()
let _nextBnds() =
begin
firstlter.next()
if firstlter.eoi() then
raise eocException
end
_rv := firstlter.get()
end
_rest
let var eoc = false
tuple
let eoi() = eoc
let get() = if not(eoc) then
_target
else
raise eocException
end
let next() = if not(eoc) then
try
_nextBnds()
when eocException then
eoc := true
end
else
raise eocException

end
end (* tuple *)

when eocException then
tuple
let eoi() = true
let get() = raise eocException
let next() = raise eocException
end

end (* try *)

The first building block is the target expression followed by the first generator and the rest of
the comprehension body. The body of the rule is mainly a direct adoption of the implemen-
tation for the first generator and for the target expression presented in section 5.3.3.

If a non-global identifier, i.e., an identifier that is defined inside of one rule is to be used by
another rule it has to be passed explicitly as derived attribute between the rules. This is the
case for the variable _nextBnds'®. The comprehension does not contain an according identifier
for _nextBnds. It is, therefore, necessary to generate a new identifier for this purpose and a
placeholder for this identifier in order to allow its use as derived attribute. Unfortunately the

employed syntax extension tool does not support a facility for the generation of identifiers.
The expression NEW IDENTIFIER is used to simulate this facility.

The implementation of the parts of the comprehension following the first generator are covered
by the rule restG. The construct _rest produced by this rule is comparable to f,.s; described in
section 5.3.3. It is therefore inserted in the same place of the implementation of the generator.

As described above there exist three different cases for the rest of the query, resulting in a
rule with three alternatives for restG:

restG(_nextBnds) ::=
_generator = generatorG(_nextBnds)
= _generator
| _filter = filterG(_nextBnds)
= filter
| (* empty ¥)
= (%)

The alternatives for the generator and filter expression are described by separate rules:

generatorG(_nextBnds) ::=

77 _rv = ideG 7<-” _range = valG _rest = restG(_nextBnds)
=

let var currentlter = _range.elements()

while currentlter.eoi() do

1% _nextBnds is used as identifier for the function that computes the next possible bindings of the range

variables in the comprehensions (compare to section 5.3.3).

_nextBnds()
currentlter := _range.elements()
end
let var _rv = currentlter.get()
let _nextBnds() =
begin
currentlter.next()
while currentlter.eoi() do

_nextBnds()
currentlter := _range.elements()
end
_rv := currentlter.get()
end
_rest

filterG(_nextBnds) ::=
7.7 _predicate = valG _rest = restG(_nextBnds)
=
while not(_predicate) do
_nextBnds()
end
let _nextBnds() =
begin
_nextBnds()
while not(_predicate) do
_nextBnds()
end
end
_rest

The bodies of the rules are mainly direct adaptions of the implementation for further gener-
ators and filters, respectively. As in the case of the first generator the implementation of the
rest of the expression is generated by the rule restG in generatorG and filterG.

The rules can be used to generate a new frontend that accepts queries containing the in-
troduced comprehension-based syntax as well as expressions of the host language TL. The
expressions containing the newly introduced syntax are transformed to abstract syntax trees
of the language TL according to the rules and may then be further processed as TL-code.

Chapter 6

Conclusions and Further Research

In the previous section an extensible framework for a query language in a typed environment
is developed. A functional and an imperative implementation for the query language are
presented defining the operational semantics. The first part of this chapter gives a summary
of this work.

Since the realization of a query language employing syntax extension technology is a novel
approach, the main interest of the work is on the feasibility of the approach. Efficiency and
optimization aspects are not discussed in detail. The second part of this chapter describes
several starting points for optimizations of the query language.

The third part of the chapter summarizes the experiences made with the employed technology.
The language TL used as host language for the query language and as target language for the
syntax extension as well as the employed syntax extension tool are considered.

The last part of the section discusses topics for the further research related to the presented
work.

6.1 Summary

The starting point of this work has been the goal to combine the user-friendly syntax and
the declarativity of a built-in query language with the flexibility and extensibility of a query
language realized by an add-on approach. The design goals extensibility, uniformity, flexibility,
and optimizability have been formulated for the query language.

The developed query language is based on the comprehension notation. Comprehension are
a concise notation with a well-defined semantics known from list manipulations in functional
programming. The comprehensions form the kernel of the query language. In order to increase
the flexibility and extensibility, the comprehensions are augmented by a novel concept, the
contexts. The contexts fix the last processing step for the sequence of elements determined by
the enclosed comprehension.

The query language is realized in a typed environment. By allowing arbitrary user-defined
bulk types as input of a query and even different bulk types as ranges of a single query (mixed
queries) the query language provides a high flexibility. Avoiding the restriction to special bulk

111

types or special element types keeps the query language independent of a specific data model.

Instead of building in a fixed set of contexts into the query language, the query language
just provides a framework for the definition of contexts. Concrete contexts are provided by
libraries. Since neither the contexts nor the queried bulk types are built-in, one can speak
of an extensible framework for a query language. The framework together with the exten-
sible libraries supporting the bulk types and the contexts form a complete query language
environment.

The syntax of the query language is described by a grammar. Typing aspects and the ex-
pressive power of the query language are also discussed. The semantics of the query language
and especially of the mixed queries is based on the semantics of comprehensions described
in literature and on bulk-morphisms. A representative set of contexts is described in order
to illustrate the wide variety of possible contexts. Furthermore, enhanced features for the
query language are discussed. It is shown that naming, parameterization, and recursion can
be smoothly integrated into the presented framework for a query language.

A functional and an imperative implementation for a query language are presented. Both im-
plementations use iterators as intermediate representation. The functional approach is based
on a ringad implementation of bulk types. It is an extension of translation schemes for com-
prehensions discussed in literature. The representation of comprehension results by functional
iterators allows the implementation of all contexts of the chosen representative sets but leads
to efficiency problems for large comprehension results.

Iterators with states and an explicit treatment of the binding sequences for the range variables
of the comprehensions form the basic concepts for the imperative implementation of the query
language. In addition to the implementation of the query language kernel formed by the
comprehensions, possible implementations for the representative set of contexts are considered.

The presented query language is realized employing syntax extension technology. On the basis
of the imperative implementation of the query language rules for the used syntax extension
technology have been developed.

6.2 Efficiency and Optimization

The chosen approach offers several starting points for optimizations. This is illustrated by
figure 6.1:

1. The kernel of the presented query language is based on comprehensions. In [Trinder,
Wadler 89] a set of optimization rules for comprehensions is described. These rules
can be used to develop optimization rules for the presented language. Such rules have
to be applied at a point that still allows an identification of the building blocks of
the comprehensions. A good candidate for this purpose is the abstraction phase in
which the parse trees are transformed into abstract syntax trees. In this phase the
syntactical analysis is completed and the building blocks of the comprehensions can
still be identified. The rules would have to be applied to intermediate representations
of the comprehensions. Methods known from program transformation could be used to
transform these representations according to the rules [Cordy et al. 91]. For many of
these transformations it is necessary that the applied methods are capable to recognize

L Libraries

+ -
TL
Syntax Extension Rules
v Tool <
TL
A
TML

Figure 6.1: Different Starting Points for Optimization

the dependencies of the building blocks of the comprehension from the introduced range
variables, since these dependencies prohibit certain transformations.

2. A further starting point for the improvement of the efficiency is the implementation
of the query language. In chapter 5 different approaches for this implementation are
introduced, namely, a functional and an imperative approach. Further implementations
can be developed. The implementation of the query language is not built-in. Modification
of the implementation is possible by changing the rules driving the syntax extension tool.
Different prototypical realizations of the query language could be developed employing
different implementations. The different versions could be compared in order to find the
most efficient solution.

3. The queries are transformed to abstract syntax trees representing T code by the syntax
extension tool. After this transformation they are subject to the TL code optimization.
The code representing the queries is generated automatically, driven by rules. This
leads to repeating patterns in the code. The code optimizer could be tuned towards an
effective optimization of these patterns. On the other hand the choice of the most efficient
implementation of the query language is also influenced by the employed optimization
strategies. Different implementations are more or less amendable towards an existing
optimizer.

Currently an optimizer supporting dynamic optimization of TML! code is developed at
the University of Hamburg. This new development promises to support further opti-
mization of control and data flows occurring during the evaluation of queries.

1TML is the Tycoon Machine Language an intermediate program representation based on Continuation
Passing Style [Appel] emphasizing program compilation, transformation, and analysis.

4. Iterators play a central role in the implementation of the query language (compare
section 4.4). Their optimization, therefore, is of special interest. Methods for iterator
optimization proposed in literature [Liskov et al. 77] could be applied.

The efficiency of the query language depends on the efficiency of the bulk type imple-
mentations. So it can be argued that these implementations are also a starting point for
optimizations. The bulk types are not built-in; they are supported by libraries. If the
implementation of a bulk type proves to be inadequate or not efficient enough for an
application, it can be replaced by a more efficient implementation.

It is of special interest for the efficiency of the query language how efficient the iteration
over the elements of a bulk type is implemented, i.e., the function elements. In section
4.4, 1t is described that for certain bulk types different iteration orders over their elements
are possible. In dependence of further information, e.g. access paths, the most efficient
iteration order could be chosen by the implementation of the query language. This can
be regarded as a further method towards optimization.

Fach query has to be transformed employing the syntax extension tool before it is compiled
(embedded queries) or interpreted (ad hoc queries). The performance of the syntax extension
tool, therefore, is of great influence for the efficiency of the evaluation of ad-hoc queries and
it increases the processing time of embedded queries.

6.3 Requirements towards the Technology

The operational semantics of the proposed query language is defined by an implementation
in the Tycoon language (TL). A syntax extension tool with its associated extension language
TLExt has been utilized for the embedding of the designed query language into the host
language T1L. This section describes the experiences made with the employed technology.

6.3.1 Language Technology

This section summarizes the experiences made during the implementation of the query lan-
guage using the language TL. To summarize the experience with the Tycoon language and
system, the statement can be made that the system is very well suited for the design and
realization of an extensible framework for add-on query languages.

TL supports functional as well as imperative programming features. This allows an imperative
and a functional implementation of the query language in the same linguistic environment.
This facilitates the comparison of the different implementations of the query language. TL can
be compiled as well as interpreted. This is also true for the extended language. For this reason
it is possible to formulate ad-hoc queries that are evaluated by the interpreter. Furthermore
queries can be embedded in programs performing further processing of the query results.
These programs can be compiled and later executed. Libraries for frequently used queries
could be developed.

Parametric polymorphism is a prerequisite for the support of user-defined bulk types with
arbitrary element types. Parametric types are used to define type operators for new bulk
types. These operators can be parameterized by an arbitrary type E yielding the type of a

collection with element type F. Type operators are also used to define a uniform format for
the iteration over bulk types (iterators). Polymorphic functions (parametric polymorphism
on the value level) are needed for the definition of operations on the bulk types (e.g., for the
operations new to create bulk types, see sections 5.2.1 and 5.3.1).

Functions are first-class values in TL. They, therefore, may be included as components into
tuples. This feature is used for the definition of interfaces for state based bulk types and iter-
ators in the imperative approach. Tuples with function components describe these interfaces
(see section 5.3.1). Included concepts from imperative programming as exceptions and mu-
table values have supported the implementation of a state based iterator and of state based
bulk types.

The facility to include functions and types as components into a tuple enables the definition
of abstract data types in TL. The ringads forming the basis of the functional definition of the
query language are realized by abstract data types (see section 5.2.1).

Higher-order functions have proven to be very useful for the definition of bulk types and for
the implementation of the query language. Equality functions necessary for the definition of
sets and relations are passed as function parameters (see sections 4.3.3). Another example of
a higher-order function is the reduce generator presented in section 5.2.2. It is parameterized
with the different functions in dependence of the chosen context and returns a reduce function
for this context.

Bulk types have to fulfil certain restrictions if they are to be used as ranges of the query
language. In the functional as well as in the imperative approach these restrictions are ex-
pressible by a subtype relationship to a common supertype. The subtype relationship between
tuple types in TL is used to express these restrictions for the interfaces of the bulk types (see
section 5.2.1 and 5.3.1).

The modularization capabilities of T'L are used for the definition of the bulk type library (see
section 5.2.1 and 5.3.1) and the context library (see section 5.3.4). The additional structuring
facility offered by the possibility to group modules and interfaces into libraries is very helpful
in this setting in order to achieve a well structured environment for the query language (see
section 5.1).

6.3.2 The Syntax Extension Tool

The syntax of the designed query language is mapped by syntax extension to the host lan-
guage TL. A syntax extension tool developed at the University of Hamburg [Schroder 93] is
employed for this purpose. The implementation of the query language employing syntax ex-
tension technology has a twofold purpose. On the one hand the feasibility of such an approach
is examined by developing a prototypic implementation. On the other hand, the requirements
towards the employed tools are investigated. This section summarizes the experiences made
with the used syntax extension tool.

The syntax extension tool proved to be very user-friendly. The semantic interpretation of
the introduced syntax extensions can be formulated in the employed host language TL. This
facilitated the development of the rules for the syntax extension tool. The implementation of
the query language developed in section 5.3 was adapted to be used for the formulation of the
rules. A further improvement of the user-friendliness is the treatment of bindings supported

by the tool. Normally, in the expansion phase of the syntax extension variable captures can
occur, but are resolved in the used tool. Furthermore, the tool guarantees the termination
of expansions. So, the user is not concerned with the problem of termination when designing
the rules for the extension. In addition, the rules are often less complex since no condition
assuring termination have to be included. The conformity checks for the sorts have proven to
be a further useful support for the development process of the rules. They allowed to detect
faults in an early phase of the implementation.

Concerning the power of the tool most of the provided features proved to be necessary for
the implementation of the query language. Since the grammar of the query language contains
mutual recursive rules, it is crucial for the approach that the tool allows the definition of
these rules for the syntax extension. Inherited attributes are needed for the propagation of
the identifier that is used in several rules.

For the implementation of the query language an identifier for a function is needed, that is
used by several rules, for redefinition of this function. For this reason this identifier has to
be passed between the rules as inherited/derived attribute. Since the identifier is no part of
the query it is not possible to define a placeholder for it and therefore it can not be passed
as attribute between the rules. This restriction could be overcome by providing a mechanism
that allows the creation of an identifier and the binding of a placeholder to it.

Further, for the syntax extension it is not possible to infer types that are necessary for the
expansion. This problem raised when the functional approach of the query language was
considered: the element type of the ranges of the comprehension is necessary for function
signatures in the expansion process. This element type is inferable from the existing type
information.

6.4 Further Research

The framework for a query language presented in this work represents a prototypical im-
plementation. For this reason there are many interesting starting points for further research
related to this approach. Furthermore, several extensions of the approach are possible.

In section 6.2 several starting points for optimization of the developed query language are
described. The impact of the different approaches on the efficiency of the query language
demands for further investigation. Currently an optimizer supporting dynamic optimization
is developed at the University of Hamburg. It is of special interest to examine the benefit of
this optimizer for the query language.

The proposed query language is not restricted to a particular data model. Instead it is designed
to support different data models, for example, by allowing nested structures as well as flat
structures. It is open to new data models, e.g., to object oriented models with object generating
semantics. The impact of such new models and queries specific to such new models are of
interest. They could be captured by extending the set of contexts in the environment of the
query language. The necessary contexts and their realization is subject to further research.

The developed framework for a query language is based on definitions of bulk types given in
literature. These are mainly homogenous bulk types: all elements of an instance of a bulk
type have a common type. Although, restricted forms of inhomogenity are also possible: The

element type can be specified by a variant type allowing the choice between a fixed number
of different types for the elements. A further possibility is the use of subtype polymorphism
enabling the management of elements of arbitrary subtypes of a common supertype in a
single collection. This approach is restricted because of the resulting loss of type information.
Employing dynamic types for the elements enables the definition of unrestricted inhomogenous
bulk types. Each element carries its type information that can be inspected when the element
is retrieved from the bulk type. Related topics for further research are the computational
complexity of a query language in the presence of inhomogenous bulk types, the class of
queries evolving from such a setting, and their realization in the proposed framework.

A further application of the developed query language is querying the meta data, i.e., the
database schema and related information. This is of special interest for object oriented systems
where the underlying model carries inherently much more information than relational database
schemata [Kifer et al. 92]. Querying meta data is only possible if the meta data are given in
an adequat format, i.e., they have to be described in the host language of the query language.
It could be examined which classes of queries are important in such a scenario. Futhermore,
it could be investigated if information retrievable by such queries could support optimization
tasks.

An approach for the integration of recursive queries into the presented framework is discussed
in section 4.5.3. The proposed approach requires further investigation, in especially, with
respect to the query evaluation strategies and the structures needed to support the evaluation.
Of special interest is the space complexity of such structures. Different evaluation strategies
for recursive queries could be implemented.

Appendix A

Contexts in other Query Languages

A.1 DBPL

There are three kinds of expressions for the formulation of queries in DBPL, namely, selective
access expressions, constructive access expressions, and quantified expressions. Selective and
constructive access expressions are first class values if the language. They can be named and
parameterized by relation expressions, as well as by other values. DBPL supports a uniform
naming and parameterization construct for them, introduced by the keywords SELECTOR
and CONSTRUCTOR, respectively. In the following a list of further features of DBPL, rele-
vant to the discussion, is given:

1. Bulk Constructors of Bulk Type ’Relation’: The context for constructing a copy
of a relation bulk type is specified by a syntactic construct adapted from set theory. An
example is:

PersonRel{ < access expression > }

with PersonRel the type of the newly defined relation.

2. Iteration: The iteration over the elements of an access expression is defined with the

FOR — DO and WHILE — DO constructs.

3. Assigment Operations: A relation variable rel of type RType can be updated by a
relation expression rex using one of the relation update operators :+’, -’ or ":&’ for

insertion, deletion, and update, respectively.

4. Standard Procedures:

A set of standard procedures related to relational expressions are defined in DBPL. The
operations take a relation expression and a variable of an adequate type as parameter.
Some of them rely on an order of the elements. This order is determined by the key of
the relation if existent:

Lowest selects the first element of a relation

119

Highest selects the last element of a relation

This selects the element in the relation equivalent to a given ordinal
Card returns the number of relation elements in a given relation
Next selects the next element of a relation

Prior selects the prior element of a relation

The access expressions can be pllaced in different contexts. These contexts are listed in the
following table together with the corresponding contexts of the query language presented in
this work.

Context in TLT | Language Construct | Description of the Language Construct

get relation RType { ... } Relation Expression denotes sets of relation elements
do --- FOR --- DO Iteration as one-element-at-a-time processing
possibly applying functions to each single element.
get some SOME Existential quantification
get all ALL Universal quantification
do insert + Relation insert
do delete - Relation delete
do update & Relation replacement
get count CARD Standard procedure returning the number of elements

in a relation.

Note that only the first two contexts in the table can be used as direct contexts of access
expressions. In DBPL quantified boolean expressions, assignment equations, and the presented
standard procedures can not be directly applied as contexts for selective and constructive
access expressions. They can only be applied to access expressions enclosed in a relation
constructor since they are defined on relation expressions.

A.2 COOL

The COOL query language (COOL-QL) is an extension of the (nested) relational algebra.
COOL-QL is an object-oriented query language where the inputs and the outputs of the
query operations are sets of objects at a time. The query operators have object-preserving
semantics, such that the results of queries are some of the the existing objects from the
data base. The kernel of the query language is formed by operators select and project to
express element selection and element projection, respectively. Furthermore, it contins the
set operations union, intersect, and difference. In COOL-QL object preserving operators and
value generating operators are distinguished. COOL-QL allows query expressions to operate
on subtype hierarchies of the data model (guard operator) and operations allowing explicit
object evolution (create, gain, lose, and delete). The following table lists possible contexts for
queries (set-expressions):

Context in TL™ | Language Construct | Description of the Language Construct

get set extract Generates a set of tuples from a set of objects
specified by a set expression.

get the pick Destructs a singleton set into its member value.

do ... apply_to_all Takes a sequence of update operations and executes

it for each element specified by a given set expression.

A.3 Fibonacci

Fibonacci is an object-oriented language incorporating subtyping. Objects are modelled as
entities with an immutable identity and a mutable, encapsulated state. The supported bulk
types: sequences, class, and association types are non-standard bulk types.

Sequences are ordered collections of homogenous values with duplicates. Classes are very
similar to sequences, but in contrast to them they allow updates and the formulation of
constraints. Associations are sequences of tuples. They can be updated and it is possible to
define constraints on them that connect association fields with classes.

The query language kernel is formed by an operator where to express filter predicates, an
operator in to introduce range variables, and operators times and join to express carthesian
products and natural joins. Furthermore it supports two operators project and out for the
formulation of projections. Queries (sequences) can be placed in the following contexts:

Context in TLT Language Construct | Description of the Language Construct

expressible in for .. concat .. Iterates over a sequence applying an

the query language sequence-returning operator to each element;
the results are concatenated

get the the Returns the element of the singleton sequence

get any pick Returns one element of a sequence non-
deterministically

expressible in .. group by .. Returns a partition of the elements of

the query language a sequence into subsequences

get uniqueOn setof .. Eliminates duplicates from a sequence

A4 0,SQL

035QL is the query language of the object oriented database system Os. It is a functional
query language in the sense that a query is a function whose arguments may be other queries or
functions. The data model distinguishes objects and tuple values. It supports three kind of bulk
types: lists with positions, sets with duplicates (i.e., bags) and unique sets (no duplicates).
Queries are interpreted in an interactive mode and it is possible to pass queries from programs
to the query interpreter. The query language kernel of O3SQL is mainly SQL. Operations on

base types and tuples and the construction of tuples, lists, and sets are also viewed as queries
in the language. The following operators of the language can be interpreted as contexts:

Context in Tt

Language Construct

Description of the Language Construct

get all

forall x in y : p(x)

Polymorphic universal quantifier
for lists and sets

get some

exists x in y : p(x)

Polymorphic existential quantifier
for lists and sets

get list fromTo (i1) | L[i] Returns the i-th element of a given list

get list fromTo (i j) | Lli:j] Returns for a given list all elements
of the list starting with position ¢
and ending with position j

get list fromTo (1 1) | first(x) Returns the first element of any list

— last (y) Returns the last element of any list x

get min min returns for a list of numerical values the
smallest element and for strings the first
string in ASCII alphabetical order

get max max Returns for nay list « of numerical value its
largest element and for strings the
last in ASCII alphabetical order

get count count(x) Returns the length/cardinality of a list/set

get sum sum Returns for any list/set of real of integer values
the sum of its elements.

— avg(x) Returns for any list/set of real or integer
values the average of its elements

get set listtoset(x) Returns for a list the corresponding set with
duplicates removed

get list flatten flatten(x) Flattens lists of lists and
lists of sets to a flat list;

get set flatten flattens sets of lists and
sets of sets to a flat set

get the element Returns for any singleton set its members value

get uniqueOn

unique, distinct

Eliminates duplicates in the resulting set/list

get list sortBy

sort ...in ... by

fiy oot

Returns a list containing all

elements of list /set sorted by the keys given
by the f;’s. Complex object values whose keys
are identical are solved internally.

The order relations are system defined.

Appendix B

Grammar of the Language TL™

B.1 Productions

B.1.1 Compilation Units

The grammar of TLT is described by the following productions that define a non-ambiguous
LL(1) grammar. The grammar of TLT extends that of T [Matthes 92a] by the rules presented
in section 5.4.1. Unit is the root production for the language. The production of Values is
extended by a branch for Query.

Unit::=

(Library | Interface | Module | Import | Bindings) ";";
Library::=

library identifier Import with { ComponentSignatures }

[hide { identifier } | end;
ComponentSignatures::=

library { identifier } |

interface { identifier } |

module { identifier ":" identifier };
Interface::=

interface identifier Import export Signatures end;
Module::=

module identifier Import export Bindings end;
Import::=

[import { [":" | identifier } |;

B.1.2 Bindings

Bindings::=
{ TypeBindings | ValueBindings | open Valuelde [":" Type |
":" [Dyn | Type | [var | Value };
TypeBindings::=

123

{ Let [Rec | TypeBinding { and TypeBinding } };

TypeBinding::=

[Dyn | Typelde Parameters ["<:" Type | "=" Type;
ValueBindings::=

{ let [rec | ValueBinding { and ValueBinding } };
ValueBinding::=

[var | Valuelde Parameters [":" Type | "=" Value;

B.1.3 Values

Value::=
Value, { (orif | andif | colonInfix) Value; };
Value; ::=
Value, { infix Valuey };
Valuey::=
Values { "(" Bindings ")" | "?" Caselde | "!" Caselde |
"." Fieldlde | "[" Value "]" |
of Bindings Location end };

Values::=
n{" Value "}" |
Valuelde |
ok |
int | char | string | real | longreal |
fun "(" Signatures ")" [":" Type | Location Value |

tuple Location | case Caselde of Type [with | | Bindings end |

record Location Bindings end |

extend Value with Bindings end |

array Location Bindings end |

exception Value [with Signatures end | |

begin Location Bindings end |

if Value then Bindings { elsif Vakue then Bindings }
[else Bindings | end |

case [of | Value { when CaseldeList [with Valuelde | then Bindings }
[else Bindings | end |

typecase { Valuelde "." } Typelde { when Type then Bindings }
[else Bindings | end |

loop Bindings end |

exit |
while Value do Bindings end |
for Valuelde "=" Value (upto | downto) Value do Bindings end |

try Bindings { when Value [with Valuelde | then Bindings }
[else Bindings | end |

raise Value [with Bindings end | |

reraise |

assert Value |

Query;

Location::=

[in Value |;
Queries::=

get Value "{" Comprehension "}" |

do Value "{" Comprehension "}";
Comprehesions::=

Value "|" Valuelde "<-" Value | Rest |;
Rest::=

""" Valuelde "<-" Value [Rest] |

":" Value [Rest |;

B.1.4 Signatures

Signatures::=
{ TypeSignatures | ValueSignatures | TypeBindings | Repeat Type };
TypeSignatures::=
[Dyn | [TypeldeList Parameters] "<:" Type;
ValueSignatures::=
[var | [ValueldeList Parameters | ":" Type;
Parameters::=
{ "(" Signatures ")" };

B.1.5 Types

Type:=
Typey { colonlnfix Type; };
Typey::=
Typey { infix Type; };
Typeg::=
Types { "(" { Type } ")" };
Types::=
u{" Type "}" |
{ Valuelde "." } Typelde |
Ok | Nok |
Fun "(" Signatures ")" ":" Type |
Tuple Signatures { case CaseldeList [with Signatures | } end |
Record Signatures end |
Exception [with Signatures end | |
Oper "(" Signatures ")" ["<:" Type | Type;

B.1.6 Identifier

ValueldeList, TypeldeList, CaseldeList::=
Ide { "," Ide };
Ide, Valuelde, Typelde, Fieldlde, Caselde::=

identifier | infix | colonlnfix | "{" Ide "}";

Bibliography

Abiteboul, Beeri 88: S. Abiteboul and C. Beeri. “On the Power of Languages for the Mani-
pulation of Complex Objects”. Technical Report 846, INRIA, France, 1988. (Manuscript
of the revised version from October 1992).

Adrion, Branstad 81: W.R. Adrion and M.A. Branstad. “The Functional Data Model and
the Data Language DAPLEX”. ACM Transactions on Database Systems, 6(1):140-173,
1981.

Aho, Ullman 73: A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation, and
Compiling, Volume 1. Prentice Hall, 1973.

Albano et al. 85: A. Albano, L. Cardelli, and R. Orsini. “Galileo: A Strongly Typed, Interac-
tive Conceptual Language”. ACM Transactions on Database Systems, 10(2):230-260, 1985.
(also in Readings in Object-Oriented Database Systems, S.B. Zdonik and D. Maier (eds.),
Morgan Kauffmann, San Mateo, California, pages 147-161, 1990).

Albano et al. 91: A. Albano, G. Ghelli, and R. Orsini. “A Relationship mechanism for strongly
typed object-oriented database programming languages”. In: Proceedings of the Seventeeth
International Conference on Very Large Databases, Barcelona (Catalonia, Spain), Septem-
ber 3-6, 1991, pages 565-576. Morgan Kaufmann Publishers, 1991. (also as Fide Technical
Report 91/17, Department of Computing Science, University of Glasgow).

Albano et al. 93: A. Albano, R. Bergamini, Ghelli G., and R. Orsini. “An Introduction to the
Database Programming Language Fibonacci”. Fidey Technical Report 93/64, Department
of Computing Science, University of Glasgow, 1993.

Appel : A. Appel. Compiling with Conlinualion.

Astrahan et al. 76: M.M. Astrahan, M.W. Blasgen, D.D. Chamberlin, K.P. Eswaran, J.N.
Gray, P.P. Griffiths, W.F. King, R.A. Lorie, P.R. McJones, J.W. Mehl, G.R. Putzolu,
I.L. Traiger, B.W. Wade, and V. Watson. “System R: Relational Approach to Database
Management”. ACM Transactions on Database Systems, 1(2):97-137, 1976.

Atkinson et al. 90: M.P. Atkinson, P. Richard, and P.W. Trinder. “Bulk Types for Large
Scale Programming”. 1990. (also as Rapport Technique Altair 60-90 Nov. 1990, GIP
Altair, France).

Atkinson et al. 93: M.P. Atkinson, P.W. Trinder, and D.A. Watt. “Bulk Type Construc-
tors”. Fide Technical Report FIDE/93/61, Department of Computing Science, University
of Glasgow, 1993.

127

Atkinson, Buneman 87: M.P. Atkinson and O.P. Buneman. “Types and Persistence in
Database Programming Languages”. ACM Computing Surveys, 19(2):105-190, 1987.

Bancilhon et al. 87: F. Bancilhon, T. Briggs, S. Khoshafian, and P. Valduriez. “FAD, a
Powerful and Simple Database Language”. In: P.M. Stocker, W. Kent, and P. Hammersley,
(eds.), Proceedings of the Thirteenth International Conference on Very Large Databases,
Brighton, Fngland, September 1-4, 1987, pages 97-105. Morgan Kaufmann Publishers,
1987.

Bancilhon et al. 92: F. Bancilhon, S. Cluet, and C. Delobel. “A Query Language for O;”. In:
F. Bancilhon, C Delobel, and P. Kanellakis, (eds.), Building an Object-Oriented Database
System — The Story of Oy, chapter 11. Morgan Kaufmann Publishers, 1992.

Bancilhon, Ramakrishnan 86: F. Bancilhon and R. Ramakrishnan. “An Amateur’s Introduc-
tion to Recursive Query Processing Strategies”. In: C. Zaniolo, (ed.), Proceedings of the
International Conference on Management of Data, Washington, D.C., May 28-30, 1986,
pages 16-52. Association for Computing Machinery, 1986. (SIGMOD RECORD, Volume
15, Number 2, June 1986).

Beeri, Milo 92: C. Beeri and T. Milo. “Functional and Predicative Programming in OODB’s”.
In: Proceedings of the FEleventh ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems, 1992. Association for Computing Machinery, 1992.

Beeri, Ta-Shma 94: C. Beeri and P. Ta-Shma. “Bulk Data Types - A Theoretical Approach”.
In: C. Beeri, A. Ohori, and Shasha D.E, (eds.), Proceedings of the Fourth International
Workshop on Database Programming Languages — Object Models and Languages, New York
City, USA 30 August — 1 September, 1993, pages 80-96. Springer- Verlag, 1994.

Beeri 92a: C. Beeri. “Object-Oriented Databases — Models and Query Languages”. In:
A. Pirotte, C. Delobel, and G. Gottlob, (eds.), Proceedings of the 3rd International Confer-
ence on Frtending Dalabase Technology, Vienna, Austria, March 23-27, 1992, Volume 580,
Lecture Notes in Compuler Science. Springer-Verlag, 1992. Tutorial held at the conference.

Beeri 92b: C. Beeri. “On Monads and Comprehensions”. (Lecture given for the Database
and Information Science Group at the University of Hamburg, on September 17th, 1992),
1992.

Bird, Wadler 88: R.S. Bird and P. Wadler. Introduction to functional programming. Prentice
Hall International Series in Computer Science. Prentice Hall, 1988.

Breazu-Tannen, Subrahmanyam 91: V. Breazu-Tannen and R. Subrahmanyam. “Logical and
Computational Aspects of Programming with Sets/Bags/Lists”. In: J.L. Albert, B. Monien,
and M.R. Artalejo, (eds.), Proceedings of the 18th International Colloguium on Automata,
Languages and Programming Madrid, Spain, July §-12, 1991, Volume 510, Lecture Noles
in Compuler Science, pages 60—75. Springer- Verlag, 1991.

Biiltzingsloe wen 87: G. von Biiltzingsloe wen. “Translating and Optimising SQL Queries
Having Aggregates”. In: Proceedings of the Thirteenth International Conference on Very
Large Databases, Brighton, England, September 1-4, 1987, pages 235-245. Morgan Kauf-
mann Publishers, 1987.

Burstall 69: R.M. Burstall. “Proving properties of programs by structural induction”. Com-
puter Journal, 12:41-48, 1969.

Cardelli et al. 91: L. Cardelli, S. Martini, J.C. Mitchell, and A. Scedrov. “An extension of sys-
tem F with subtyping”. In: T. Ito and A.R. Meyer, (eds.), Proceedings of the International
Conference on Theorelical Aspects of Computer Software, Sendai, Japan, September 24—
27, 1991, Volume 526, Lecture Notes in Compuler Science, pages 750-770. Springer-Verlag,
1991.

Cardelli et al. 94: L. Cardelli, F. Matthes, and M. Abadi. “Extensible Grammars for Lan-
guage Specialization”. In: C. Beeri, A. Ohori, and Shasha D.E, (eds.), Proceedings of the
Fourth International Workshop on Dalabase Programming Languages — Object Models and
Languages, New York City, USA 30 August — 1 September, 1993, Workshops in Computing,
pages 11-31. Springer-Verlag, 1994.

Cardelli, Wegner 85: L. Cardelli and P. Wegner. “On understanding types, data abstraction,
and polymorphism”. ACM Computing Surveys, 17(4):471-522, 1985.

Cardelli 89: L. Cardelli. “Typeful Programming”. Digital Systems Research Center Report
No. 45, Digital Systems Research Center, Palo Alto, California, 1989.

Cardelli 90: L. Cardelli. “The Quest Language and System (Tracking Draft)”. (shipped as
part of the Quest V.12 system distribution), 1990.

Cardelli 93: 1. Cardelli. “An implementation of F..,”. Digital Systems Research Center
Report No. 97, Digital Systems Research Center, Palo Alto, California, 1993.

Carey et al. 88: M.J. Carey, D.J. DeWitt, and S.L. Vandenberg. “A data model and query
language for EXODUS”. In: Proceedings of the ACM-SIGMOD International Conference
on Management of Data, Chicago, Illinois, pages 413-423. acm, 1988. SIGMOD RECORD
Volume 17, Number 3, September.

Ceri et al. 90: S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases.
Springer-Verlag, 1990.

Chamberlin, et al. 76: D.D Chamberlin and et al. “SEQUEL 2: A uniform mechanism to
data definition, manipulation, and control”. IBM System Journal, 20(6):560-575, 1976.

Cluet, Moerkotte 94: S. Cluet and G. Moerkotte. “Nesting Queries in Object Bases”. In:
C. Beeri, A. Ohori, and Shasha D.E, (eds.), Proceedings of the Fourth International Work-
shop on Database Programming Languages — Object Models and Languages, New York City,
USA 30 August — 1 September, 1993, Workshops in Computing, pages 226-242. Springer-
Verlag, 1994. (also appeared as Fide; Technical Report FIDE/93/69).

Codd 72: E.F. Codd. Relational Completeness of Database Sublanguages, Volume 6, Database
Systems: Courant Computer Science Series. Prentice Hall, 1972.

Cordy el al. 91: J.R. Cordy, C.D. Halpern-Hamu, and E. Promislow. “TXL: A Rapid Proto-
typing System for Programming Language Dialects”. Computer Languages, 16(1):97-107,
1991.

Damas, Milner 82: 1. Damas and R. Milner. “Principal type-schemes for functional lan-
guages”. In: Conference Record of the Ninth Annual ACM Syposium on Principles of
Programming Languages, Albuquerque, New Mexico, January 25-27, 1982, pages 207-212.
Association for Computing Machinery, 1982.

Date 89: C.J. Date. A Guide to the SQL Standard. Addison-Wesley, 2nd edition, 1989.

Dayal 87: U. Dayal. “Of Nests and Trees: A Unified Approach to Processing Queries That
Contain Nested Subqueries, Aggregates, and Quantifiers”. In: P.M. Stocker, W. Kent,
and P. Hammersley, (eds.), Proceedings of the Thirteenth International Conference on Very
Large Databases, Brighton, England, September 1-4, 1987, pages 197-208. Morgan Kauf-
mann Publishers, 1987.

Feather 87: M.S. Feather. “A survey and classification of some program transformation ap-
proaches and techniques”. In: L.G.L.T. Meertens, (ed.), Program Specification and Trans-
Sformation, pages 165-196. North-Holland Publishing Company, 1987.

Fegaras 94: L. Fegaras. “Efficient Optimization of Iterative Queries”. In: C. Beeri, A. Ohori,
and Shasha D.E, (eds.), Proceedings of the Fourth International Workshop on Database
Programming Languages — Object Models and Languages, New York City, USA 30 August
— 1 September, 1993, pages 200-225. Springer-Verlag, 1994.

Field, Harrison 88: A.J. Field and P.G. Harrison. Functional Programming. Addison-Wesley,
1988.

Ghelli et al. 92: G. Ghelli, R. Orsini, A.P. Paz, and P. Trinder. “Design of an Integrated
Query and Manipulation Notation for Database Languages”. In: Proceedings of the 25th
Hawair International Conference on System Sciences, pages 777-786. The Institute of Elec-
trical and Electronics Engineers, Inc., 1992.

Goldberg, Robson 83: A. Goldberg and D. Robson. Smalltalk-80: The language and ils im-
plementation. Addison-Wesley, 1983.

Gougen et al. 76: J.A. Gougen, J.W. Thatcher, and E.G. Wagner. “An initial algebra ap-
proach to the specification, correctness and implementation of abstract data types.”. Tech-
nical Report IBM Research Report RC 6487, IBM Almaden Research Center, San Jose,
California, 1976.

Heijenoord 67: J. van Heijenoord, (ed.). From Frege to Gédel. A source book in mathematical
logic. Harvard University Press, 1967.

Heytens, Nikhil 91: M.L. Heytens and R.S. Nikhil. “List Comprehensions in Agna, A Par-
allel Persistent Object Store”. In: J. Hughes, (ed.), Proceedings of the 5th ACM Confer-
ence on Funclional Programming Languages and Computer Architecture, Cambridge, Mas-
sachusetls, August 26-30, 1991, Volume 523, Lecture Notes in Compuler Science, pages
569-591. Springer-Verlag, 1991.

Hudak 89: P. Hudak. “Conception, Evolution, and Application of Functional Programming
Languages”. ACM Computing Surveys, 21(3):359-411, 1989.

Hull, Su 90: R. Hull and J. Su. “On bulk data type constructors and manipulation primitives:
A framework for analysing expressive power and complexity”. In: Proceedings of the Second
International Workshop on Database Programming Languages, Salishan, Oregon, June 4-8,
1989, pages 396-410. Morgan Kaufmann Publishers, 1990.

Ichbiah 83: J. Ichbiah. “The Programming Language Ada: Reference Manual”. Technical
Report ANST/MIL-STD-1815A-1983, Joint Program Office, Department of Defense, Wash-
ington, D.C., 1983.

Ingres 89: Relational Technology, Inc., Alameda, California. FQUFEL User’s Guide, UNIX
release 6.2 edition, 1989.

IS09075 92: “Informations technology - Database Language SQL2, Document ISO/IEC-
9075-1992”. International Standards Organization, 1992.

Kato et al. 90: K. Kato, T. Masuda, and Y. Kiyoki. “A Comprehension-Based Database Lan-
guage and its Distributed Execution”. In: Proceedings of the 10th International Conference
on Distributed Computing Systems, Paris, France, May 28 — June 1, 1990, pages 442—-449.
The Institute of Electrical and Electronics Engineers, Inc., 1990.

Kifer et al. 92: M. Kifer, W. Kim, and Y. Sagiv. “Querying Object-Oriented Databases”.
In: Proccedings of the 1992 ACM SIGMOD International Conference on Management of
Data, San Diego, California, June 2-15, 1992, pages 393-402. Association for Computing
Machinery, 1992. SIGMOD Record, Volume 21, Issue 2, June, 1992.

Kirch, Mifig 92: F. Kirch and S. Miflig. “Entwicklung eines generischen Datenbankbrowsers
in einer polymorphen Programmiersprache”. Studienarbeit, Fachbereich Informatik, Uni-
versitit Hamburg, Germany, 1992. (in German).

Koch et al. 83: J. Koch, M. Mall, P. Putfarken, M. Reimer, J.W. Schmidt, and C.A. Zehnder.
“Modula/R Report, Lilith Version”. Lidas memo, Department Informatik, ETH Ziirich,
Switzerland, 1983.

Kohlbecker 86: E. E. Kohlbecker. Syntactic Extensions in the Programming Language Lisp.
Technical report, University of Indiana, 1986.

Lambek, Scott 86: J. Lambek and P.J. Scott. Introduction to higher order categorial logic,
Volume 7, Cambridge studies in advanced mathematics. Cambridge University Press, 1986.

Landin 64: P.J. Landin. “The Mechanical Evaluation of Expressions”. Computer Journal,
6(4):308-320, 1964.

Lécluse, Richard 89: C. Lécluse and P. Richard. “The O3 Database Programming Language”.
In: P.M.G. Apers and G. Widerhold, (eds.), Proceedings of the Fifteenth Internaltional
Conference on Very Large Dalabases, Amsterdam, The Netherlands, August 22-25, 1989,
pages 411-422. Morgan Kaufmann Publishers, 1989. (also as Rapport Technique 26-89,
GIP Altair, France).

Liskov et al. 77: B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert. “Abstraction mecha-
nisms in CLU”. Communications of the ACM, 20(8):564-576, 1977.

Lockemann, Schmidt 87: P. Lockemann and J.W. Schmidt, (eds.). Datenbank-Handbuch.
Springer-Verlag, 1987. (in German).

Lorie, Wade 79: R.A. Lorie and B.W. Wade. “The compilation of a high level data language”.
Research Report RR RJ 2589, IBM Almaden Research Center, San Jose, California, 1979.

MacLane 71: S. MacLane. Calegories for the working mathematician, Volume 5, Graduate
Tezts in Mathematics. Springer-Verlag, 1971.

Matthes, Schmidt 92: F. Matthes and J.W. Schmidt. “Bulk Types: Built-In or Add-On?”.
In: Proceedings of the Third International Workshop on Database Programming Languages,
Nafplion, Greece, August 27-30, 1991, pages 33-54. Morgan Kaufmann Publishers, 1992.
(also appeared as Fide Technical Report FIDE/91/20, Department of Computing Science,
University of Glasgow).

Matthes 91: F. Matthes. “P-Quest: Installation and User Manual”. Universitit Hamburg,
Fachbereich Informatik, Internal document, DBIS Tycoon Report 102-92, 1991.

Matthes 92a: F. Matthes. Generische Datenbankprogrammierung: Sprachliche und architek-
tonische Grundlangen. Dissertation zur Erlangung des Doktorgrades der Naturwis-
senschaften, Fachbereich Informatik, Universitdt Hamburg, Germany, 1992. (in German).

Matthes 92b: F. Matthes. “Preliminary Definition of the Tycoon Language TL”. Universitat
Hamburg, Fachbereich Informatik, Internal document, DBIS Tycoon Report 062-92, 1992.

Matthes 93: F. Matthes. Persistente Objektsysteme: Integrierte Datenbankentwicklung und
Programmerstellung. Springer-Verlag, 1993. (in German).

Mauny 91: M. Mauny. “Functional Programming using CAML”. Technical Report, INRIA,
France, 1991.

McCarthey et al. 65: J. McCarthey, P.W. Abrahams, and et.al. Edwards, D.J. LISP 1.5
Programmer’s Manual. Massachusetts Institute of Technology, 2nd edition, 1965.

Mehlhorn, Ndiher 92: K. Mehlhorn and S. Niaher. “LEDA — A Library of Efficient Data Types
and Algorithms”. Technical Report, Max-Planck-Institut fiir Informatik, Saarbriicken,
1992.

Melton 93: “(ISO/ANSI Working Draft) Database Language SQL3; X3H2-93-359R/MUN-
003”. 1993.

Meyer 90: B. Meyer. Introduction to the Theory of Programming Languages. Prentice Hall
International Series in Computer Science. Prentice Hall, 1990.

Meyer 92: B. Meyer. Fiffel the Language. Prentice Hall Object-Oriented Series. Prentice
Hall, 1992.

ModISO 91: 10S/IEC JTC1/SC22/WG13. Interim Version of the 4th Draft Modula-2 Stan-
dard, 1991.

Moggi 89: E. Moggi. “Computational lambda-calculus and monads”. In: Proceedings of the
Fourth Symposium on Logic in Computer Science, Pacific Groove, California, June 5-8,
1989, pages 14-23. IEEE Computer Society Press, 1989.

Morrison et al. 89: R. Morrison, A. Brown, R.C.H. Connor, and A. Dearle. “The Napier88
Reference Manual”. Technical Report PPRR-77-89, Department of Computing Science,
University of Glasgow, 1989.

Miiller 91: R. Miiller. “Sprachprozessoren und Objektspeicher: Schnittstellenentwurf und
-implementierung”. Diplomarbeit, Fachbereich Informatik, Johann Wolfgang Goethe-
Universitat, Frankfurt/Main, Germany, 1991. (in German).

Nelson 91: G. Nelson, (ed.). Systems programming with Modula-3. Prentice Hall series in
innovative technology. Prentice Hall, 1991.

Niederée et al. 92: C. Niederée, 5. Miiflig, and F. Matthes. “P-Quest User Manual”. Univer-
sitit Hamburg, Fachbereich Informatik, Internal document, DBIS Tycoon Report 102-92,
1992.

Niederée 92: C. Niederée. “Generische Dienste fiir datenintensive Anwendungen: Iterations-
abstraktion, Integritatsiiberwachung, Fehlererholung”. Diplomarbeit, Fachbereich Infor-
matik, Universitit Hamburg, Germany, 1992. (in German).

Ohori et al. 89: A. Ohori, P. Buneman, and V. Brezeau-Tannen. “Database Programming in
Machiavelli - a Polymorphic Language with Static Type Inference”. In: J. Clifford, B. Lind-
say, and D. Maier, (eds.), Proceedings of the ACM-SIGMOD International Conference on
Management of Data, Portland, Oregon, May 31 — June 2, 1989, pages 46-57. Association
for Computing Machinery, 1989. SIGMOD RECORD Volume 18, Number 2, June.

Oracle 91: Oracle Coorporation. PL/SQL User’s Guide and Reference, Version 1.0, 1991.

Paulson 91: L.C. Paulson. ML for the working programmer. Cambridge University Press,
1991.

Peyton-Jones 87: S.L. Peyton-Jones. The Implementation of Funtional Programming Lan-
guages. Prentice Hall, 1987.

Reimer, Diener 83: M. Reimer and A. Diener. “The Modula/R Compiler for Lilith”. LIDAS
Memo 051-83, Department Informatik, ETH Ziirich, Switzerland, 1983.

Reynolds 83: J.C. Reynolds. “Types, abstractions, and parametric polymorphism”. In:
R.E.A. Mason, (ed.), Information Processing, pages 513-523. North-Holland Publishing
Company, 1983.

Ross 92: P. Ross. Bulk Data Types: A Theorelical Approach. PhD thesis, Department of
Computer Science, The Hebrew University of Jerusalem, Israel, 1992.

Rovner et al. 85: P. Rovner, R. Levin, and J. Wick. “On Extending Modula-2 for Building
Large, Integrated Systems”. Digital Systems Research Center Report No. 3, Digital Systems
Research Center, Palo Alto, California, 1985.

Schmidt, Matthes 92: J.W. Schmidt and F. Matthes. “The Database Programming Lan-
guage DBPL — Rational and Report”. Technical Report FBI-HH-B-158/92, Fachbereich
Informatik, Universitit Hamburg, Germany, 1992.

Schmidt 77: J. Schmidt. “Some High Level Language Constructs for Data of Type Relation”.
ACM Transactions on Database Systems, 2(3):247-261, 1977.

Schroder 93: G. Schroder. “Syntaktische Erweiterbarkeit von Programmiersprachen unter
Benennungs-, Bindungs- und Typisierungsinvarianzen”. Diplomarbeit, Fachbereich Infor-
matik, Universitdit Hamburg, Germany, 1993. (in German).

Smedt el al. 93: P. De Smedt, S. Ceri, M.-A. Neimat, M.-C. Shan, and R. Ahmed. “Recursive
Functions in Iris”. In: F. Golshani, (ed.), Proceedings of the Ninth International Conference
on Data FEngineering, April 19-23, 1993, Vienna, Austria, pages 145-154. The Institute of
Electrical and Electronics Engineers, Inc., 1993.

Smith et al. 81: J.M Smith, S. Fox, and T. Landers. “Reference Manual for ADAPLEX”.
Technical Report CCA-81-02, Computer Corporation of America, Cambridge, MA, 1981.

Smith et al. 83: J.M Smith, S. Fox, and T. Landers. “ADAPLEX: Rationale and Reference
Manual”. Technical Report CCA-83-08, Computer Corporation of America, Cambridge,
MA, 1983.

Stemple, Sheard 91: D. Stemple and T. Sheard. “A Recursive Base for Database Programming
Primitives”. 1In: Proceedings of the First International East/West Database Workshop
on Next Generalion Information System Technology, Kiev, USSR, October 9 — 12, 1990,
Volume 504, Lecture Notes in Computer Science, 1991.

Stonebraker el al. 76: M. Stonebraker, E. Wong, P. Kreps, and G.D. Held. “The Design and
implementation of INGRES”. ACM Transactions on Database Systems, 1(3):189-222,1976.

Stonebraker, Rowe 86: M. Stonebraker and L.A. Rowe. “The Design of POSTGRES”. In:
C. Zaniolo, (ed.), Proceedings of the International Conference on Management of Data,
Washington, D.C., May 28-30, 1986, pages 340-355. Association for Computing Machinery,
1986.

Trinder, Wadler 89: P.W. Trinder and P. Wadler. “Improving List Comprehension Database
Queries”. In: Proceedings of the Fourth IEEF Region 10 International Conference - Infor-
maltion Technologies for the 90’s E*C?; Energy, Electronics, Computers, Communicalions,
Bombay, India, November 22 — 24, 1989, pages 186-192. The Institute of Electrical and
Electronics Engineers, Inc., 1989.

Trinder 89: P. Trinder. A Functional Database. PhD thesis, Oxford University, 1989.

Trinder 92: P. Trinder. “Comprehensions, a Query Notation for DBPLs”. In: P. Kanellakis
and J.W. Schmidt, (eds.), Proceedings of the Third International Workshop on Database
Programming Languages, Nafplion, Greece, August 27-30, 1991, pages 55—68. Morgan Kauf-
mann Publishers, 1992.

Turner 82: D.A. Turner. “Recursion Equations as a programming language”. In: J. Darling-
ton, P. Henderson, and D. Turner, (eds.), Functional Programming and its Applications,
pages 1-28. Cambridge University Press, 1982.

Turner 85: D.A. Turner. “Miranda: A non-strict functional language with polymorphic
types”. In: Proceedings of the 1985 IFIP Conference on Functional Programming Languages

and Computer Archiltecture, Lecture Notes in Computer Science, pages 1-16. Springer-
Verlag, 1985.

Turner 87: D.A. Turner. Miranda System Manual, 1987.

Ullman 88a: J.D. Ullman. Principles of Database and Knowledge-Base Systems, Volume 1.
Computer Science Press, 1988.

Ullman 88b: J.D. Ullman. Principles of Database and Knowledge-Base Systems, Volume II.
Computer Science Press, 1988.

Vwillemin 7/: J. Vuillemin. “The Mechanical Evaluation of Expressions”. Journal of Com-
puter and System Science, 9(3):332-354, 1974.

Wadler 87: P. Wadler. “List Comprehensions”. In: Simon L. Peyton Jones, (ed.), The
Implementation of Functional Programming Languages (chapter 7), pages 127-138. Prentice
Hall, 1987.

Wadler 89: P. Wadler. “Theorems for free!”. In: Proceedings of the Fourth International
Conference on Functional Programming Languages and Computer Architecture, Imperial
College, London, England, September 11-13, 1989, pages 347-359. Association for Com-
puting Machinery, 1989.

Wadler 90: P. Wadler. “Deforestation: Transforming Programs to eleminate trees”. Theoret-
tcal Computer Science, 73:231-248, 1990.

Wadler 92: P. Wadler. “The essence of functional programming”. In: Conference Record of
the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, Albuquerque, New Mezico, January 19-22, 1992, pages 1-13. Association
for Computing Machinery, 1992.

Wadsworth 71: C. Wadsworth. Semantics and Pragmatics of the Lambda Calculus. PhD
thesis, Oxford University, 1971.

Wasserman et al. 81: A.L. Wasserman, D.D. Sheretz, and M.L. Kerstin. “Revised Report on
the Programming Language PLAIN”. ACM SIGPLAN Notices, 16(5):59-80, 1981.

Watt, Trinder 91: D.A. Watt and P. Trinder. “Towards a Theory of Bulk Types”. Fide
Technical Report FIDE/91/26, Department of Computing Science, University of Glasgow,
1991.

Wirth 71: N. Wirth. “The programming language PASCAL”. Acta Informatica, (1):35-63,
1971.

Wirth 87: N. Wirth. “The Programming Language Oberon”. Technical report, Department
Informatik, ETH Ziirich, Switzerland, 1987.

Wong 92: L. Wong. “A Conservative Property of a Nested Relational Query Language”.
Technical Report MS-CIS-92-59, University of Pennsylvania, Computer and Information
Science Department, Pennsylvania, 1992.

Zermelo 08: E. Zermelo. “Untersuchungen iiber die Grundlagen der Mengenlehre”. Mathe-
matische Annalen, 65:261-281, 1908. (article in German; a translation may be found in
[Heijenoord 67]).

Zloof 77: M.M. Zloof. “Query-By-Example: A database language”. [IBM System Journal,
16(4):324-343, 1977.

Zook et al. 77: W. Zook, K. Youssefi, N. Whyte, P. Rubenstein, P. Kreps, G. Held, J. Ford,
R. Berman, and E. Allman. INGRES Reference Manual, 1977.

Danksagung

Mein besonderer Dank gilt Herrn Gerald Schréder fir die intensive, stete Betreuung, die
zahlreichen inhaltlichen Diskussionen und vielen Anrequngen, die zur Entstehung dieser Arbeit
beigetragen haben. Herrn Dr. Florian Matthes mdchte ich fir die inhaltlich sehr wertvollen
Diskussionen danken. Herrn Prof. Dr. Joachim W. Schmidt danke ich fir die Ratschlige
zu Verbesserung der Arbeit sowie fir die exzellenle Arbeitsumgebung und Herrn Prof. Dr.
Heinz Zillinghoven fir die kritische Durchsicht. Mein Dank gilt auch Herrn Prof. Dr. Catriel
Beeri, der wihrend seines Aufenthaltes in Hamburg entscheidende Impulse fir die theoretis-
chen Betrachtungen in dieser Arbeit gab. Frau Helen Brodie mdchte ich fir die tatkrdftige
Unterstitzung im administrativem Bereich danken.

Weiterhin méchte ich Claudia fir die Unterstitzung wéihrend der Diplomarbeit, Rosi und
Herrn Bdttcher fir die vielen Kommata und Korrekturen, Herrn Sven Mifig fir die Durch-
sicht des Literaturverzeichnisses, Herrn Andreas Rudloff fir die Hilfe bei vielen technischen
Fragen und Diskussionen tber rekursive Anfragen, Herrn Andreas Gawecki fir inleressante
Diskussionen, Herrn Thomas Sidow fir die Instandhaltung des Druck- und Rechenbetriebes
danken.

Eine Reihe von interessanten Impulsen fiir meine Arbeit stammen auch aus der inlensiven
Zusammenarbeil des Arbeitsbereichs DBIS mit anderen Projekipartnern und seinen zahlreichen
Besuchern.

Erklarung

Ich erklare hiermit, die vorliegende Arbeit selbstandig
durchgefithrt und keine anderen als die angegebenen
Quellen und Hilfsmittel benutzt zu haben.

Hamburg, den 10. Marz 1994

Dominic M. Juhész

