
FAKULTÄT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master Thesis in Informatics

Improving the Software Architecture
Documentation Process of Mediawiki

Software

Ankitaa Bhowmick

FAKULTÄT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master Thesis in Informatics

Verbesserung der Software-Architektur
-Dokumentation Prozess der

MediaWiki-Software

Improving the Software Architecture
Documentation Process of Mediawiki

Software

Author: Ankitaa Bhowmick
Supervisor: Matthes, Florian; Prof. Dr. rer. nat.
Advisor: Klym Shumaiev
Submission Date: 15th August, 2015

I assure the single handed composition of this master thesis in informatics only sup-
ported by declared resources.

Munich, 15th August, 2015 Ankitaa Bhowmick

Acknowledgments

First and foremost, I would like to thank Prof. Dr. Florian Matthes for giving me
the opportunity to write my Master thesis in the Software Engineering for Business
Information Systems (SEBIS) chair at TU Munich.

This thesis topic was proposed and realized following the visionary ideas of Dr. Gero
Scholz and Dr. Ernst Denert. I am very grateful for their valuable inputs, collaboration
efforts and immense support that contributed to the successful completion of the thesis
work.

I wholeheartedly thank my adviser Klym Shumaiev for his persistent motivation and
the extensive advice and support throughout the course of this research work.

The thesis work was also supported by the MWDE (Mediawiki Deutschland) at
Berlin with special reference to Mediawiki stakeholders Daniel Kinzler, S Page and
Quim Gil who provided their timely consultation and feedback on the research and
implementation work covered in this thesis.

I want to specially thank all my friends who were directly or indirectly involved
during the course of this thesis and took time to help me out and motivate me in my
difficult times. I would like to specially thank my friend Uliana Bakhtina for her valu-
able inputs on technical issues and constant support. Also, I would like to extend my
special token of thanks to my special friends : Amit R Desai, Snehalatha Radhakrishnan,
Nitin Deshpande, Urmimala Chakroborty, Dip Nag, Anamika Choudhury; for being
my strongest pillars of support.

Last but not least, I thank my parents for always supporting and backing me up in
all my endeavors.

Abstract

Good software architecture documentation paves the way for a good software prac-
tice, making the software itself more maintainable, extendable and sustainable over
its extended lifetime and evolution. A complex open-source software that grows ex-
ponentially with time, requires this documentation to serve the purpose of knowl-
edge sharing for new developers, communicate software architecture rationale to
the users and other stakeholders and serve as means for documenting the ideas
behind the design of architectural components and their interfaces.

The thesis involves the initial research of the available state-of-the-art Software Ar-
chitecture documentation processes, tools, etc. that help in maintaining software
architecture documentation and keeping it consistent with the evolving architec-
ture. Understanding the current software architecture documentation process at
Mediawiki while keeping the evaluation goals in mind is an essential part of this
thesis work. It also focuses on critical evaluation of the existing documentation
process to derive requirements for its improvement.

Based on the analysis, review and interaction method, an improved Software Ar-
chitecture documentation process will be proposed, implemented and evaluated.
Initial work involves understanding the MediaWiki software architecture complex-
ities from an open social software perspective. Then existing software processes are
studied in order to present ideas for a better maintainable software architecture doc-
umentation process. The final step is to evaluate improvements of the process and
the quality of documentation produced following these improvements on grounds
of maintainability, accessibility, consistency, completeness, etc.

iv

Contents

Acknowledgments iii

Abstract iv

I. Introduction 1

1. Introduction 2
1.1. Motivation . 2
1.2. About the Topic . 2

1.2.1. Process Improvement in General 2
1.2.2. Getting to the thesis topic . 3

1.3. Research scope . 4
1.4. Reader’s guide . 4

2. Research Questions 5
2.1. Initial Hypothesis . 5
2.2. Research Questions . 6
2.3. Current state-of-art . 6

2.3.1. Software Architecture Documents 7
2.3.2. Software Process . 8
2.3.3. Documentation Process . 9

2.4. Problems . 11
2.4.1. Maintainability . 12
2.4.2. Roles and Responsibilities . 12
2.4.3. Availability and Management . 12

2.5. Requirement Analysis . 12
2.5.1. Stakeholders . 13
2.5.2. Meetings / Interactive Sessions . 13

3. Literature Survey 15
3.1. Research Methodology . 15

3.1.1. Literature Survey plan . 15

v

Contents

3.1.2. Some Important Concepts . 16
3.2. Points from Literature . 17

3.2.1. Improved Documentation Process 17
3.2.2. Current Industrial State-of-the-Art 19
3.2.3. Evaluation and quality assurance of Documentation Process . . 21
3.2.4. Stakeholder Requirement Satisfaction 23

3.3. Idea Generation . 25

II. Thesis Contribution 28

4. Conceptualization 29
4.1. Idea Generation and Evolution . 29

4.1.1. Preparatory Tasks . 29
4.1.2. Identifying Use case scenarios . 34
4.1.3. Assessing the Initial ideas . 37

4.2. Improved Documentation Process . 42
4.2.1. Roles and Responsibility definition and co-ordination 43
4.2.2. Document Maintenance Bot - A proof of concept 45
4.2.3. Guidelines for the process implementation and orientation . . . 47

4.3. Dimensions of the Improved Documentation Process 49

5. Implementation 52
5.1. Assumptions . 52
5.2. Architecture and Technical outline . 53

5.2.1. BOT architectural components . 53
5.2.2. Details of the Implementation . 54

5.3. Bot in Action . 56
5.3.1. Test Scenarios . 56
5.3.2. Deployment . 58
5.3.3. Inherent capabilities of the Bot . 59
5.3.4. Bot’s advantageous feature . 60

5.4. Future implementation and General Implications 61

III. Evaluation and Conclusion 64

6. Evaluation 65
6.1. Evaluation . 65

6.1.1. Review Questions . 65

vi

Contents

6.1.2. Community-related quality metrics 66
6.1.3. Measure the success of the implemented solution 66

6.2. Assessment through Review and Discussions 67
6.2.1. Critical Assessment . 68
6.2.2. Limitations of the Concept and proposed Solution 70

6.3. Analysis of Successful Process Improvement 71

7. Conclusion 74
7.1. Answer to Research Questions . 74
7.2. Challenges . 74
7.3. Benefits of implemented solution . 74
7.4. Concluding Remarks . 76

IV. Addendum 77

Appendix A. Implementation(code) and Results 78
A.1. Basic code snippet . 78
A.2. Test scenario results . 82

Appendix B. Mediawiki Details 85

List of Figures 87

List of Tables 89

Bibliography 90

vii

Part I.

Introduction

1

1. Introduction

1.1. Motivation

A good software architecture is the focal point of an evolving software [17]. To make
this software maintainable, extendable and sustainable, a robust software architecture
and a defined documentation process for this architecture are required [9].

Documentation is a factor that determines the quality of a software. A good software
architecture documentation helps to understand, evaluate and communicate the various
architectural decisions from different stakeholder viewpoints [5]. Also, as the software
evolves and its complexity and dependencies increase, the corresponding architecture
documentation needs to be updated as well[68].

Standardized software processes and tools for an application’s lifecycle management
provide structural support to a software engineering project’s life-cycle. The quality of
these software processes directly affect the quality of the software [16].

Summing up, a standard process for documentation improves the quality of the
documents and ultimately, the quality of the software itself.

1.2. About the Topic

1.2.1. Process Improvement in General

Literature and early studies have defined the need and scope for continuous process
improvement in a given industrial environment.

The Figure 1.1 shows the Plan-Do-Check-Act paradigm of software process improve-
ment that lays the foundational basis for the need for improvement and the approach
that should be followed in order to structure the improvement of any industrial process.
This scope of structured process improvement is very well tailored for today’s software
industry and will be used as the underlying approach to structure this thesis work.

2

1. Introduction

Figure 1.1.: The PDCA (Plan-Do-Check-Act) Paradigm [21].

1.2.2. Getting to the thesis topic

Open source softwares have distinguished themselves as the trendsetters in the field
of software engineering in this era and have demonstrated advantages which are
beyond comparison. But there are a few downsides to this approach of software
development [54]. When a software depends on its online community which is only
virtually connected, it suffers due to issues like “persistent identity, newcomer confusion,
etiquette standards, leadership roles, and group dynamics” [24]. In the pretext of
software process, open source software communities can be categorized as loosely
co-ordinated and less process-oriented [69]. They believe in “Do-ocracy” where there
is more focus of doing (building) the software from small to big (iterative model),
rather than following a process-oriented strict software life-cycle management process.
This leads to the basic scope of this thesis : Improving the process in an open source
environment

In the recent past, Mediawiki software (WMF Foundation) has grown to become one
of the largest open source communities in the world. This prompted the choice for the
candidate software for the thesis: Improving the process for Mediawiki software

As discussed above, software architecture documentation is as important in the
software project as the software architecture itself. With some background study, it

3

1. Introduction

was found that lack of documentation is one of the major downsides of open source
development model [11] [69]. Hence this thesis topic aims to find a proof of concept
and a theoretical reasoning that may prove helpful for Open Source community in
general and in particular : Improving the software architecture documentation process
of Mediawiki software.

1.3. Research scope

The scope of the thesis has been reduced to maintenance of structured (wiki-formatted)
software architecture documentation of Mediawiki that is available as a part of the
source code on “mediawiki.org”.

Moreover, a process has been defined and demonstrated that can be used as a basis
for a process that can aide in maintenance of documents over a period of time. Coupling
the existing review process and task management system, this documentation process
is well-bound to the practices in the Mediawiki community and aims to win greater
acceptance of the defined process. [11]

1.4. Reader’s guide

The next chapter will list the questions to which this thesis aims to provide an answer.
This will help us understand our initial assumptions, the existing problems and the
expected solution.

The following chapter will present literature analysis giving theoretical proofs to
explain the important concepts for this research and the reasoning to support the thesis
work (chapter 3).

Then, chapter 4 will show the approach followed to find a proper solution by con-
ducting discussions and meetings with the stakeholders. The system design is also
covered in this chapter.

The consecutive chapter will present a detailed description of the system implemen-
tation, defining all of its features (chapter 5).

With regards to chapter 6, the thesis focuses on evaluating the proposed solution
by comparing it with the standard processes in the industry and also by evaluating
stakeholder satisfaction

Lastly, chapter 7 will conclude the concepts of this work, its future scope and the
answers to the initially proposed research questions.

4

2. Research Questions

2.1. Initial Hypothesis

A software architecture document is not just a necessary afterthought of architecture
design [5], but an important contributor to the entire software design and development
lifecycle. At an initial phase, for a new project, the software architecture document
is produced as an artifact for software architecture views for different stakeholders.
During the course of project lifecycle, the software architecture document grows and
serves as an artifact to record important architectural decision made by the architects. At
the design phase the software architecture document provides developers with a high
level view of the software architecture and helps to understand the system interfaces,
component interaction and basic functionality of each architectural component.

A software architecture document is not a static artifact. Rather, it is as dynamic as
the software requirements itself [5]. Maintenance of software architecture requires deep
understanding of the skeleton system and depends heavily on its documentation. This
escalates documentation to the highest position in the software evolution cycle. But
usefulness of this document is measured by its relevance and consistency. This requires
maintenance of the document itself to keep it as up-to-date as the current system. Thus,
software architecture documentation is an integral activity that revolves not only at
a software inception phase, during software architecture design, but also during the
course of software’s development maintenance and evolution. Since documentation is
an activity, it needs to be regulated as a software process.

Software process is affected by organizational behavior of a community [16]. Different
organizations work on a culture specific to the standards and processes followed by
the within their scope of control. In this context, Open Source software communities
are noteworthy due to their relaxed process control and organizational structure. With
regards to any form of artifact, especially documentation, this community is loosely
coordinated where developers or contributors tend to code solutions without producing
adequate documentation [11].

This brings us to an initial hypothesis that forms the basis for this research work
on software architecture documentation process: Open source software community
lacks a process for maintenance of software architecture documentation. For a concrete
example, Mediawiki was chosen as the ideal candidate. In the last few years the

5

2. Research Questions

wiki community (WMF - Wikimedia Foundaion) has become one of the largest open
source communities in the world. The software that runs these wikis is the Mediawiki
engine. The robust architecture of the mediawiki software is a complex system that
has evolved over the years and its architecture complexity has grown manifolds. To
explain its architecture, some documentation is available on “mediawiki.org”. But to
cater to new developers and first time users of mediawiki, architecture details and
technicalities of architectural components is scarcely available on “mediawiki.org”.
Although some architectural component documentation is available as a part of the
source code, this documentation is not well structured or available in wiki format. This
deficit was realized as a part of the initial study and discussions with the stakeholders
at mediawiki which will be elaborated in section 2.3. Hence, all the research and
conceptualization of improved documentation process is based on these initial ideas.
The following section lists the research questions that are intended to be answered by
this thesis work.

2.2. Research Questions

1. RQ1 : How software architecture documentation process can be improved for
Mediawiki Software?

2. RQ2 : What state-of-the-art architecture documentation process (methodology,
tools) are available in the industry that meet domain-specific requirements – e.g.
Open Source Software ?

3. RQ3 : What are the metrics for evaluation of the software architecture documen-
tation process and how can the quality of documentation process be assured
?

4. RQ 4 : Which specific requirements of Mediawiki stakeholders should be met by
documentation process for Software Architecture Documentation ?

The following sections will explain the reasons and requirements that lead to the
formulation of the above-mentioned research questions :

2.3. Current state-of-art

The following sub-sections explain the current state of Mediawiki software architecture
documents and the current software and documentation process in the organization.

6

2. Research Questions

2.3.1. Software Architecture Documents

Mediawiki currently has all its software architecture documentation available on “me-
diawiki.org”. The wiki pages belong to different “namespaces” such as “Manual:”,
“Help:” etc. to segregate them according to the intended information. Yet, these
documents are scattered as a forest of links like any typical wiki, which makes it hard
to follow for new users and harder to maintain for the existing users.

The available documents are useful for understanding some architecture components
and help new Mediawiki users to understand their installation, usage and operational
details. But, these documents are not detailed enough for new developers to acquire a
thorough understanding of the architectural component. Documentation of the Medi-
awiki core source code is auto-generated via “Doxygen” and is available as mw-core
documentation [35]. This auto-generated code level documentation is always updated
as a part of cron-jobs during deployment cycles and hence they are auto-maintained.
The overview of Mediawiki’s architecture was captured and written as a part of the
book “The Architecture of Open Source Applications” by Sumana Harihareshwara and
Guillaume Paumier. This documentation, availbale on “Mediawiki.org”, is an excellent
explanation of the various architectural decisions and corresponding rationale that
were adopted over the years leading to the current architectural state of Mediawiki
software. It is available under the “Manual:” namespace on “Mediawiki.org” and can
be viewed for an abstract high level understanding of the system.

Figure 2.1.: Current state of documentation for different software architecture levels.

7

2. Research Questions

In Figure 2.1 we can see the current documentation structure that is available for
different levels of detail of the software architecture. The green area indicates the exist-
ing documentation and the red area indicates the lack of availability and maintenance
of complete architecture documentation in accordance with the standard software
architecture documentation structure [5] which covers the different views, rationale,
etc.

2.3.2. Software Process

Mediawiki software community follows a process for maintaining its software (code
base) that involves the interaction of the multiple systems for its review, versioning,
tracking and task management. In this regard, before a piece of code is deployed into
production environment, it is important to understand the role of the following entities
as a part of the software process.

1. Developers : The software developers are the the most important functional
entity of the software process in any software project or organization. Similarly
in the mediawiki community, the process is driven, managed and used by the
developers of the software. Although other roles like software architect may exist
as a subset of the stakeholders within the community, they all belong to the larger
set of “Developers”. Developers have the ultimate responsibility to implement
and mainitain the software process.

2. Maintainers : As the name suggests, Maintainers are developers with the acquired
competence and experience to take up the responsibility and become maintainers
of different modules in the mediawiki code base. They are instrumental in
reviewing and following the software process and help to track and complete
required functionality [10].

3. Mediawiki BOTs : Besides human maintainers, Bots assume the role of semi-
automated process to carry out maintenance activities that may be time-consuming
or impossible to perform manually [50].

The above-mentioned entities need supporting systems to perform their daily activi-
ties as a part of the software process.
At mediawiki, the software process activities are supported by following systems that
simplify the process management activities.

1. Gerrit : Gerrit [18] is a web-based code collaboration tool that has been adopted
by the mediawiki community for managing the code base. This tool allows the
review and maintenance of the master and forked branches of the mediawiki

8

2. Research Questions

code repository and allows the developers to manage their contributions. The
tools allows code management as a part of the software process of Mediawiki
which helps in easy maintenance of the software.

2. Phabricator : Phabricator [44] is an open-source task management and project
communication platform that helps to manage different projects and their stake-
holders within the organization. The mediawiki community has adopted the
Phabricator to manage their daily tasks related to software development. The
tasks can be managed according to projects, build versions, tags, etc by human
maintainers. It provides features to discuss on issues related to the task and to
also fork new related tasks.

3. Mailing Lists and IRC : Most open source communities adopt basic modes of
communication channels to interact with their stakeholder and users. Mailing
lists provide the best channel to discuss issues related to the software, request
new features, highlight documentation inadequacy, exchange ideas, etc. Similarly,
Internet Relay Chat [23] provides an informal channel or process to communi-
cate in real-time with groups within Mediawiki or with individuals within the
community in order to request, discuss, understand, inform and talk about the
software.

These systems may seem as casual modes or components of a software process, but
they fit well into the open source milieu. Figure 2.2 shows the sequence diagram that
explains a simple use case scenario : “A software development process that follows
Mediawiki standard task management.”

A developer may create a task on Phabricator to add/update a software functionality.
He assigns the task either to himself or to another developer. The developed piece of
code is pushed to an intermediate repository in Gerrit and awaits review. Once the
code is reviewed and approves by senior developers, it is pushed to the authoritative
repository which is ready for deployment. Once this is completed the task is finally
closed.

2.3.3. Documentation Process

Similar to their software process, the mediawiki community has a standard software
architecture documentation process which involves the interaction of human main-
tainers and use of Phabricator for task management. Tasks for documentation activity
are created manually, based on the need realized by developers. The management of
the task is manual and its tracking, organization and management is supported by
Phabricator

9

2. Research Questions

Figure 2.2.: Mediawiki Software Process Sequence diagram.

10

2. Research Questions

Figure 2.3 sequence diagram explains the use-case scenario : “Manage a documen-
tation task to update a document on the wiki webpage”

In this case a developer himself may create/ assign a task on Phabricator for doc-
ument update on “mediawiki.org”. Once the update has been completed, a the task
maintainer comments and closes the task on Phabricator. Understanding the current

Figure 2.3.: Mediawiki Documentation Process Sequence diagram.

software documentation process leads to the following inherent problems and required
improvements that need to be catered by answering the research questions

2.4. Problems

This section elaborates on the problems that have been identified in the software
architecture documentation process of Mediawiki that call for an improvement in the
documentation process (RQ1).

11

2. Research Questions

2.4.1. Maintainability

As seen in the scenario covered in the previous section, it is evident that the docu-
mentation has shortcomings in terms of its maintainability with the rapid evolution of
the software architecture itself. The process followed by the community is not strictly
structured to ensure that the documents are maintained up-to-date. Phabricator may
help to organize the task of documentation but does not guarantee the availability of
precise documentation itself. Also only a manual check on document maintenance,
without a strict process, is highly dependent on the motivation of the task owner to
create, assign and complete the task. With the existing documentation process, a key
requirement of document maintainability is not completely satisfied. Hence there is a
need for an improvement to incorporate the requirement of up-to-date documents as a
part of the documentation process.

2.4.2. Roles and Responsibilities

Mediawiki is an open source software community and hence it is not structured
in its organization of well-defined roles and responsibilities. This poses a problem
in defining, maintaining and following a strict process-based approach for software
development and documentation. As compared to code maintainers mentioned in
the previous section, there is no defined responsibility in the mediawiki community
specially focused on documentation. The role of a developer for a certain architectural
component implicitly assigns him the responsibility of corresponding documentation
maintenance. But the lack of explicitly defined responsibility for the same creates a
relaxed documentation process.

2.4.3. Availability and Management

An issue with the current documentation process is that software architecture documen-
tation is not available under a single “namespace” or “category” and rather scattered
in the wiki-forest. This makes it harder to manage the documentation and guarantee
its availability on “mediawiki.org”.

2.5. Requirement Analysis

The above listed problems were identified to understand the requirements to be met by
the improved process (RQ1).

12

2. Research Questions

2.5.1. Stakeholders

To understand a system and its architecture, it is important to understand the stake-
holder perspective (RQ4). Mediawiki’s software architecture documentation is available
for developers, architects and system administrators on “mediawiki.org”. Out of this
the developers are the largest stakeholder group that access and use the architecture
documents to the maximum. To cater to new developers various channels and features
offer help in the form of mailing lists, IRC (Internet Relay Channel), Feedback dash-
board, etc.

But a more concrete documentation needs to be prepared and maintained by the
architecture component developers themselves. These detailed documents will help
future developers to understand the software architecture in a more comprehensive
way and on a more readable medium (mediawiki.org). This requirement was also
realized during the “Mediawiki Developer meetup – 2009” which suggested the need
for improved documentation and hinted on the usage of Bots for maintenance purpose.
Also, as a part of the “Mediawiki coding conventions” it was suggested to include a
textual documentation of the code details in a separate file as a part of any coding
activity.

Stakeholders play an important role in the implementation and maintenance of a
process. Likewise in the case of documentation process, the developers are the key
stakeholders who as both provider and user of the documents. As the developers
understand their respective development in the best possible way, they themselves
should prepare the documentation for the corresponding component/ feature/ module.
This will help to capture the architecture decisions and rationale that can be utilized
for future reference.

2.5.2. Meetings / Interactive Sessions

To understand the requirements from the perspective of stakeholders, sessions were
held remotely and on-site with the members of the Mediawiki Foundation at Berlin.
These meetings and conversations gave a chance to understand the existing process and
requirements for process improvement in a more detailed and focused manner (RQ2).
The mediawiki representatives explained that although a compressed user guide could
be copied along with a fresh wiki installation that includes basic information/ details
in a concise yet understandable form, there is dire lack of a structured, detailed and
complete architecture documentation within the community (RQ4).

Some documentation is available as a part of the source code for some architectural
components. But the community prefers to have all documentation available on
“mediawiki.org”(RQ4).

The problem that documentation is often not updated / maintained due to lack of a

13

2. Research Questions

strict process was realized within the community who wanted quality documents that
were mostly up-to-date (RQ3). A process that streamlines this maintenance activity
was put up as an important requirement during these meetings (RQ4).

The availability of guidelines to support the preparation of software architecture
documents and assigning responsibility of its maintenance to developers or bots
will assure the quality of the resulting documents (RQ4). The documentation is
best understood and evaluated by the developers using them and thus, quality of
documentation process was indicated as an important requirement.

The following chapter helps to identify, study and understand the literature and
related work that can help in formulating ideas for an improved documentation
process for the Mediawiki software architecture.

14

3. Literature Survey

This chapter aims to answer the previously formulated research questions by surveying
already available literature and the related work in this direction This literature survey
forms a basis in this thesis to derive ideas from existing examples and to come up with
ideas to conceptualize the implementation work ahead. Also the related work helps
to start with the initial idea and build upon it to derive a novel solution to solve the
existing problems.

3.1. Research Methodology

In a scientific work comprising research and implementation, it is important to strategize
a research methodology for effective and efficient way of approaching the problem and
deriving its solution.

3.1.1. Literature Survey plan

During the Literature Survey phase of thesis work a plan based on Figure 3.1 [63]
was adopted for a defined approach to search relevant work in the available literature.
Papers from Google scholar, ACM library and IEEE library were the overall terget of the
search. The final collection was organized using the “Mendeley” desktop application
for better readability and access.

15

3. Literature Survey

Figure 3.1.: Literature Survey strategy [63].

3.1.2. Some Important Concepts

This subsection lists and defines a few keywords (used for literature search) that are
relevant for understanding the scope of this thesis.

Software Architecture : Software architecture documentation provides a blueprint
of a software-intensive system for the communication between stakeholders about the
high-level design of the system [11]

Complete : A software or documentation or requirement is complete when it
is “good enough to meet our expectations for this system within the context in which
we are developing it” [5]

Documentation : Software architecture should be documented from a knowl-
edge management perspective because “If it is not written, it does not exist” [26]

16

3. Literature Survey

System : A collection of components organized to accomplish a specific function or
set of functions [61].

Environment : Environment determines the setting and circumstances of devel-
opmental, operational, political, and other influences upon that system [61].

Stakeholder : An individual, team, organization who has an interest in a sys-
tem [61].

Architectural View : A representation of a whole system from the perspective
of a related set of concerns [61].

Software Process : Systematic co-operation and co-ordination mechanisms in
software-intensive systems by using defined work procedures, organization of work
products and management of resources in order to create product value [42].

Software process improvement (continuously improving the process maturity) leads
to software quality improvement ([16], [28])

3.2. Points from Literature

This section elaborates on some facts and answers to research questions derived from
existing literature. These points of reference help to build on ideas for finding solutions
to the research questions formulated in this thesis.

3.2.1. Improved Documentation Process

How software architecture documentation process can be improved for Wikimedia Software and
why is it required?

Software Architecture Documentation : A very extensive research and usage
of software architecture documents, documentation process and evaluation has been
covered in the book “Documenting Software Architecture- Views and beyond” [5]. In
this book Clement el.al. extensively describe the implementation of a “Package Module”
for documentation that aims at collecting all relevant architecture documentation as
a package i.e. all in one place. The architecture documentation is regarded complete
when it captures the following aspects :

• Document control information

• Documentation roadmap

17

3. Literature Survey

• How a view is documented

• System overview

• Views

• Mapping between views

• Rationale

• Directory

This improves the documents’ availability and accessibility. The book elaborates on cap-
turing various views of the software architecture from the stakeholder’s perspective and
explains the structuring of documentation based on these “stakeholder views” (e.g) in
this thesis the target stakeholders are the developers- hence a software architecture doc-
umentation that explains the architectural component overview and inter-component
interaction specification is required for the better training of new developers and serve
as reference for experienced developers.

The book also answers the question : “Why should we choose wiki ?”. It suggests
that documenting software architecture on a wiki platform ha several advantages :

• wiki-links are easy to navigate

• they provide easy formatting options

• wiki is easy to learn and more or less, intuitive

• it delivers nice readable web pages which provide editing and revision feature
for version tracking and maintenance

• the wiki-pages are available/ accessible by all

Process and Community : “Software processes are processes too !” [16]. Literature
supports the idea the understanding the social environment of software communities
has helped to understand their functional model and process-orientation. This un-
derstanding has lead way for guidelines and best practices to improve their current
processes, as explained in [26]. The Open source culture of Mediawiki community poses
limitations brought about by the relaxed process management and control [11]. Hence
an improvement requires a process to be built upon the existing, available resources that
can be easily be adopted or integrated into the environment. The “Eclipse Development
Process” suggest that guidelines can be provided for new members such that they

18

3. Literature Survey

follow processes in a more self-regulated manner [14]. The eclipse development process
sets an example for open source communities by providing such guidelines for user
groups like “committers” and “contributors” .

Software architecture documentation is an inherent part of the software architecture
itself and is an integrated part of the architecture design process [59]. It is very impor-
tant to document the software architecture as it helps to identify and record important
decisions taken during the course of architecture design and also forms the basis for
future architectural re-factoring.

Open Source Software Architecture documentation : The article “Empirical study
of the effects of open source adoption on software development economics” [1] quotes
that “When adopting an Open Source Software, software architecture documentation
has a positive impact on the degree and cost of the software adoption”. Thus, it is
important for open source communities to offer concrete documentation to expand
and enrich their contributing community. Some research has indicated that a lack of
software architecture documentation maintenance in open source projects may hinder
the use and further development of the software [40].

Research and empirical studies [11] have revealed that there is no dedicated role in
open source communities to take responsibility of collecting, archiving , aligning and
maintaining the software architecture documentation. This mandated the need for an
advanced documentation process to handle the responsibility gap.

Documentation Level and Extent : The scope of detail in software architecture
documentation “how much is enough and appropriate” and its need within open
source developer community is largely dependent on “the contextual factors of soft-
ware development, such as development method, rate of change, size of project, and
architecture stability” ([25] , [8]).

3.2.2. Current Industrial State-of-the-Art

What standard architecture documentation processes are available in the industry and practice
of open source software?

Many industry standards have been defined in literature and practiced in the field of
software engineering that support software process management and evaluation. Also,
there is a possibility of adopting these standards in the open source community. Some
research on the current practices in open source software development helps to under-
stand the community processes and methodologies. Also, some ideas can be derived
from existing standard processes for project lifecycle management that are followed
in the process-oriented software industries (not adopted by the OSS community yet).

19

3. Literature Survey

The list below explains some of the industry standards that are not yet incorporated as
apart of Open Source Software yet, but, have a high scope and potential for inclusion
and practice in the community.

Application Lifecycle Management tools : There are a host of ALM software
suits available in the industry that support a software product’s governance, develop-
ment and maintenance in order to streamline the development process and achieve
better standards [4]. The figure shows a typical Application lifecycle management
process, highlighting the important roles defined by the process.

Figure 3.2.: ALM process and some roles [4].

Capability Maturity Model : For process oriented software engineering, CMM stan-
dards [57] have been set for process maturity evaluation. But open source communities
are more focused on development maturity rather than process maturity. The Open
Source Maturity Model (OSMM) [12] defines the standards and maturity levels to help
established organizations to assess and select the open source software before adopting
it as a component of their larger software. Thus, although OSMM defines process
maturity for open source software maturity assessment, it does not mandate a maturity

20

3. Literature Survey

model as a part of the software development and documentation process within the
community.

IEEE1471-2000 standard : Software Architecture Documentation in standard process-
oriented software engineering projects (not OSS) follow the IEEE1471-2000 standard [5]
from the project inception phase to document their software architecture. The standard
outlines and also details the need for documentation of software architecture views
and viewpoints based on different stakeholder requirements.

Software process in Open Source community : The journal for “Systems and
Software” [69] surveyed that over 61% of the open source projects employ bug tracking
tools, and a majority of projects use bug tracking tools provided by the host web sites to
maintain their software and process. No explicit standard or process has been defined
for documentation alone but some maturity levels and standards have been defined by
the comprehensive QualOSS assessment model [60]for open source software that can
help to understand and improve the process maturity. Some earlier assessment models
that concentrated mostly on OSS code, documentation and community structure are :

• Open Business Readiness Rating (OBRR)[20]

• Qualification and Selection of Open Source Software(QSOS) [53]

Natural Language and visualizations : It was surveyed and studied that 70.4 % of
the OSS projects use natural language with HTML as the main format for documenting
software architecture [11].

XWiki : Xwiki [67] is a professional wiki the can not only provide a WYSIWIG
(what you see is what you get) editing feature for content collaboration but can also be
used for collaborative web applications. The popularity of this wiki tool suggests the
demand for wiki as a platform for documentation and collaboration.

3.2.3. Evaluation and quality assurance of Documentation Process

What are the metrics for evaluation of the software architecture documentation process and how
can the quality of process be assured?

As seen from the Figure 3.3 [69], we can evaluate and understand the documentation
process followed within a surveyed pool of open source software communities. Similar
results that were found in all responses to conclude that informal “TODO-lists” were
the most common channel used for documentation.

21

3. Literature Survey

Figure 3.3.: Statistical evaluation of Documentation process/ modes in Open source
communities [69].

The following can be considered as factors that define metrics for evaluating the
documentation process:

Socio-Technical factors : Software quality is influenced by the way the community
interacts [38]. The socio-technical environment within a community of developers who
are geographically separated and not bound by strict process control tends to introduce
risk factors in terms of software quality. QualOSS assessment model [60] suggest
that the organization of open source communities is loosely-bound and statistical
research [69] proves that only about 20% of the open source projects have planned
release dates . Some process oriented co-ordination approaches have been developed
and adopted by open sorce software communities to manage their software processes.
The “STIN” (Socio-Technical Interaction Networks)in Free/Open Source Software
Development Processes [55] describes the well-established STIN (“Socio-Technical
Interaction Networks”)relationship for process enforcement by combining the socio-
technical aspects that effect open source organizations.

Process Quality metrics : Maintainability, evolvability and sustainability of the
system should be supported by the software process [5] [60]. There is a direct correlation
between the quality of the process and the quality of the developed software [16]. The
article on “Software Process Roadmap” [16] suggests that the degree of maturity of the
process is a main dimension of process assessment. Open source communities can be
evaluated on the basis of a few exceptional metrics in this regard [69] :

22

3. Literature Survey

• Responsibility : level of user participation in open source projects is extremely
high

• Organizational process : simpler feature-request process and easier transition
from detection to debugging

• Efficiency : larger motivation of developer to propagate personal need to com-
munity need

• Collaboration : open source processes and tools for change management include
cutting edge, large-scale collaborative software development

The quality assurance activities in open source communities, that heavily rely on
large scale distributed software development, is still an evolving discipline. Although
the open development model may pose challenges with regard to quality assurance,
sometimes it may prove successful as compared to traditional software development
practices [69]. For example, more people or users of the code and documents will
result in more errors / shortfalls / requirements to be detected, ultimately resulting
in an accelerated software development and better quality. An extensive study of the
open source Apache Server [41] resulted in findings that grounded the hypothesis that
open source software development processes prove to reach the quality standards of
traditional software processes and sometimes even reach better standards.
To assure quality the open source software community emphasize majorly on certain
key process areas (KPA) which include high maturity levels of configuration manage-
ment and project tracking, as compared to traditional software projects [69]. “User
participation and feedback” serve as an important metric for assuring quality of open
source software, its architecture and documents.

3.2.4. Stakeholder Requirement Satisfaction

Which specific requirements of Mediawiki stakeholders should be met by documentation process
for Mediawiki SAD ?
Point to note : At Mediawiki, the most active and important stakeholders are the coders
or developers of the software (subsection 2.5.1).

Documentation within source code : The open source developers need to collabo-
rate at a larger extent than traditional software systems. The daily work of developers
within the community involves version control systems to manage and maintain the
software repository. Thus, a requirement arises for collaboration in terms of code com-
mit and source code consistency. Also, the documentation should be consistent with
software version. It is always preferable and desirable that documentation confirms to

23

3. Literature Survey

the master branch source code.
Also, a centralized control structure like version control ensures and mandates re-

strictions into the community, thus, ensuring a structured process within organisation
[66].

Community acceptance : Any existing or newly incorporated software process
should fit into the socio-technical environment of the open source community [38].Com-
munity interaction helps to understand the roles and responsibilities of community
members as a part of the software process.

It is also observed that the free/ open source communities believe in the “opprtunity
to learn and share what they know about the software” such that as the software
evolves, the community grows as well [56].

Architectural views : [5] stresses on the fact that a good software architecture docu-
ment should provide the different architectural views for all the different stakeholders
of the software. In Figure 3.4 the standard views in accordance with the software
architecture has been mapped to stakeholder concern. With the specific case of me-
diawiki software where the Developers(Programmers) are the prime stakeholders, all
documentation needs to be created and maintained for the developers and by the
developers.

Figure 3.4.: "4+1" Unified View of the Software Architecture [26].

24

3. Literature Survey

The document itself and the process to create/ update and maintain this documenta-
tion should assist the stakeholders and not add to cost of the software project ([58]).

Roles and Responsibility : The user management system is usually well-established
in any software development organization which follow group management where
user rights are group specific. Also, guidelines for user management with regard to the
responsibility within the documentation process can be issued and followed [60]. This
would include change submission and review of documents in the same process as the
documentation.

Documentation Availability and Readability : Literature suggests that the fol-
lowing are the advantages of using wiki as a tool to document software architecture
[6]

• Higher Granularity of text with better readability and navigation options.

• No special deployment needs, only a web browser is required at any place that
has network connectivity.

• Search option is not limited to current page, rather to the entire wiki.

• Feedback page (in the form of discussions)improve user participation and feed-
back to assure quality of the documents [69].

3.3. Idea Generation

This section covers the ideas that were derived from the literature to improve the
documentation process for Mediawiki.

The book “Documenting Software Architecture – Views and Beyond” [5] suggests to
define a page for architecture document in the exiting wiki.

Idea : Use category feature of wiki to segregate “Mid-level Software Architecture Doc-
umentation” pages. Also, add templates on wiki page such that source-code consistent
documentation belongs to non-editable parts and cannot be modified by sources other
than Mediawiki developers.

Wiki provides a discussion page in addition to only some basic features to track and
edit past changes. Advanced options for version control are not available.

Idea : Add the software architecture documentation to version control system (along
with the source code). Also, migrate document related discussion from wiki page to
task management system where documentation process can be tracked as a task.

25

3. Literature Survey

Many options are available to capture documentation in wiki format. The book “Doc-
umenting Software Architecture – Views and Beyond” [5] suggests to use word2wiki
to migrate word documents into wiki. Also XWiki [67], a free wiki software platform
includes WYSIWYG editing, OpenDocument based document import/export options,
semantic annotations and tagging, and advanced permissions management.

“Software Process” [16] suggests to pay attention to the complex interrelation of a
number of organizational, cultural, technological and economical factors.

Idea : It is wise to interact personally with members of the community to understand
their specific requirements, already existing practices/ processes and try to improve it,
rather than bringing in something completely new. This increases the acceptance of the
process within the community

“Documenting Software Architecture from Knowledge Management perspective”
[26] suggests to provide rationale for final architectural solution.Within a software
organisation, the extent of design that constitutes its software architecture is based
on its “context, domain, culture, assets, staff expertise, etc.”. And this “thin line in
the sand” must be made visible to all stakeholders. Also, it is important to “revisit,
redefine and adjust” the architecture design decisions as the software and organization
evolves. It is the software architect’s responsibility to “make design choices, validate
them, and capture them in various architecture related artifacts” [27]. The Mediawiki
coding convention suggests having a text (.txt) file for the corresponding component in
the source code [30]

Idea : The documentation should be written by the architect/ developer as they un-
derstand the architectural components in the best possible way. While an architectural
component is added/ updated, the corresponding text file documenting the component
should also be updated. There can be inter-references between the code and document
to find relevant parts easily.

The architectural viewpoint needs to capture details that are more abstract than
source code functional details and less abstract than high-level architectural component
interaction [26].

Idea : Capture the architectural component details and their functional details from
a developer’s view of the system to add relevant details as understood by current
developer and as would be required for the future developer.

“Mediawiki.org” follows a standard user based rights system to grant permissions
(Manual:User Rights) to user groups with the special case of BOTs that have the rights to
access and modify “mediawiki.org” pages for huge volume of maintenance activities.

26

3. Literature Survey

Idea : Apart from manual creation of documents by the Mediawiki developers, the
responsibility for their maintenance can be partially automated by the usage of BOTs.

The following chapter derives concepts that were studied and understood in this
chapter in order to formulate and support ideas for an improved documentation
process for the Mediawiki software architecture.

27

Part II.

Thesis Contribution

28

4. Conceptualization

After framing of research question and sorting ideas from related work and literature,
the thesis contribution aims to answer the questions posed initially and conceptualize
an optimal solution. The solution should not only meet the stakeholder and community
requirements but also confirm to some already established / deployed standards or
tools. The ultimate aim is to find a solution that is evaluated and accepted by Mediawiki
stakeholders as a deployable/ usable solution.

4.1. Idea Generation and Evolution

This section outlines the approach that was taken to understand the existing system
and derive solutions for improved documentation process.

4.1.1. Preparatory Tasks

During the initial weeks of conceptualization phase discussion were held and emails
were exchanged with the developers / architects at Mediawiki to come to an under-
standing of their current community setup and to get a beginner’s guide to the system.
Their suggestions and the advise of experienced developers to kick-start included the
following :

1. Understand and use the Software : It was important to download and locally
install Mediawiki open source software to understand the basic components of
the software architecture. The installation guide [33] helped in understanding the
system requirements and successfully configuring and setting up the executable
code on the “localhost” under the the name “en” to denote the English language
version of the setup.

29

4. Conceptualization

Figure 4.1.: Mediawiki code statistics [43].

The Mediawiki open source package is written in PHP [37] (originally written
for use on Wikipedia) - Figure 4.1 [43]. The first approach to understand the
architecture was to dive into the “\includes” folder which comprises the code for
the basic architectural components of the Mediawiki software like “api”, “cache”,
“db” and many more. On successful setup of Mediawiki software and configuring
the necessary database and server setup, the main page of the local installation
powered by the Mediawiki engine can be launched as seen in the Figure B.2.
This complete setup now helped to play around the software and the wiki to
understand, use and modify its features.

2. Analyze the documentation that already exists : It was important to understand
the documentation that is already available on “Mediawiki.org” in order to
analyze the pros and cons of the existing structure and process of the software
architecture documentation. The existing documentation helped to get a high
level understanding of the system and some low-level implementation details
of certain components which are well-documented (e.g) Mediawiki APIs [3],
Extensions [32], etc. Documentation is also available for developers and system
administrators [36]
During code analysis the important architectural components and modules were

30

4. Conceptualization

identified as candidates that were in need of an improved, organized, detailed
and structured architecture documentation :

• Installation, Update and Deployment

• Page processing, parsing, rendering and caching

• Extensions

• Architecture and Software Performance

• Internationalization / Localization

• Static and Dynamic Structure

• User and Access Control

• Database Design

• Security

It was advised to look into “Doxygen” tool’s auto-generated documentation of
the software that captures the code and function level details of the Mediawiki
software architecture. As seen in Figure 4.2, it is clear that the the architecture
details are captured at “Module”, “Class” and “File” level.

Figure 4.2.: Auto-generated doxygen documentation.

Having realized the need for improved documentation of Mediawiki software
architecture, the conscious demand arose for an improved process that could
ensure the creation and maintenance of improved documents. Hence the scope

31

4. Conceptualization

of this thesis work was limited and set to the defined scope of “Improving the
Software Architecture Documentation process of Mediawiki Software”.

3. Organizational structure : When understanding a software system as an or-
ganization and the processes that drive its daily activities, it is important to
understand the “Who, What and How ?” of the system. This helps to grasp the
organizational behavior as a complex socio-technical system. Thus the initial
phase of the thesis involved the identification and understanding of current roles,
responsibilities and processes that are practiced in the Mediawiki community.
The outline of the current state-of-the-art organizational components have been
captured in section 2.3.

4. Documentation process as a part of the software process : Every software de-
velopment organization follows a process in order to manage, co-ordinate and
streamline its daily SDLC (Software Development Life-Cycle) activities. Docu-
mentation itself is a part of this development process. Thus, it was important to
analyze the process for generating and maintaining documentation by mediawiki
community in order to assess its shortfalls and required improvements. The
software and documentation process components and an outline of their basic in-
teraction can be seen in the Figure 4.3 The important roles within the community
that are a part of the software process have been captured in the blue ellipses. The
interaction of these roles with the system components and the activities involved
as a part of individual responsibility has been captured in the diagram.

32

4. Conceptualization

Figure 4.3.: Mediawiki Software Process including Documentation process.

5. Understanding wiki (Mediawiki.org) : It was suggested that in order to under-
stand the wiki platform provided by “mediawiki.org”, it was important to use
various features like templates, extensions, visualizations, etc. that are used for
rendering and structuring the content with better readability and navigability.
Also, it is useful to understand the “namespaces” like “categories” that can help to
organize the wiki pages into more understandable linearly-hierarchical structure.
“Discussion pages” helps to improve the documentation where suggestions are
given.
Other possibilities of documentation are also available on Mediawiki that prove
the fact that conscious efforts have been made towards creation and mainte-
nance of documentation in general and software architecture documentation in
particular.

• Suggestions from 3rd party Mediawiki discussion pages can be used to create
new requests that can be linked to “phabricator tasks” [62]

• “Project:PD” intends to create documentation as help pages that reach out

33

4. Conceptualization

to the public domain [51]. The idea of this project is to provide a set of
pages which can be copied into a fresh wiki installation, or included in the
Mediawiki distribution. This will include basic user information and other
“Meta information”, in a reasonably concise form. The basic concept is to
create a compressed user guide which should focus on what users want and
not explain other functions.

• Mediawiki manual on coding conventions mandates having a “.txt” file in
“\docs” folder [31]

During these preparatory activities, different versions of the solutions were con-
ceptualized and reasoned for their applicability and usability within the existing
socio-technical environment of Mediawiki. Arguments made for several concepts,
judging the user scenarios and assessing the scope and feasibility of the concept helped
in the decision-making process for the final solution.

4.1.2. Identifying Use case scenarios

In order to understand the documentation process and intended improvements, the
use cases for document creation and maintenance activities were developed.

Use Case 1 : Task for documentation is created by developer as a sub-task
of code development

User : Developer / Reviewer

Activity : task to write code and add document on “mediawiki.org”

System : Phabricator

Task Details : Documentation task is added by code developer / reviewer.
The task is tagged with the related code patch git commit id.

Use Case 2 : Developer writes and commits a piece of code

User : Developer

Activity : Software development - write code

34

4. Conceptualization

System : Mediawiki

Task Details : A usual development activity to add code which is then
review and pushed into production. Documentation may or may not be
created or updated

Use Case 3 : Only document is added

User : Documenter

Activity : Creating / updating / reviewing software architecture docu-
mentation of mediawiki.

System : Mediawiki

Task Details : A usual documentation activity to add software architec-
ture documents for which may or may not be a part of maintenance activities

Use Case 4 : Documentation task on phabricator

User : Developer / Reviewer

Activity : Creating / updating / reviewing software architecture docu-
mentation of mediawiki.

System : Phabricator

Task Details : Task to add software architecture documents is created under
the project “MediaWiki-Documentation” [46] and tagged as “documentation”
to link all the tasks under this project. This task may or may not be assigned .
Open comments section serves as a discussion forum to find related tasks or
find people to complete the task.

These use cases clearly identify the responsibilities as a part of current process and
need to be considered for their roles in the improved process as well. The improvement
will not require the complete change in roles and responsibilities. Rather, the same use
cases need to be satisfied with a better process.

35

4. Conceptualization

In the Figure 4.4 all the above use case have been considered in a single use-case
diagram to visually understand the actors and their activities in the system. The task
management system refers to the “Phabricator” as a system with which the various
actors interact.

Figure 4.4.: Use-case scenarios explaining user roles and tasks.

In the Table Table 4.1 the previously identified “roles” in the documentation process
have been listed as per the use-case scenarios. The column “Maintainability” captures
the possibility and scope of documentation maintenance. As understood by the re-
sponsibility field, the use cases where maintenance is “possible”, human involvement
is obligatorily required as a part of the task cretion and documentation process. This
means that the Developer / Reviewer needs to be actively involved in the regular
review and creation of tasks whenever the software architecture (source code) is being
developed.

Requirement for the Improved Documentation process : The above tabular cat-
egorization helps to understand the need for a semi-automated process where the
developer is not completely burdened with the responsibility of review and mainte-
nance of documentation on “mediawiki.org”.

36

4. Conceptualization

Table 4.1.: Maintenance of documentation in different user scenarios

Use Cases Role Responsibility Maintainability

1 Developer/ Reviwer
Documentation task as
a follow-on of develop-
ment task

possible

2 Developer
Coding (software de-
velopment): branch /
push / merge / commit

not possible

3 Documentor
Create documentation
on wiki platform - me-
diawiki.org

not possible

4 Developer/ Reviewer
Task specially created/
assigned for documen-
tation

possible

4.1.3. Assessing the Initial ideas

This subsection helps to understand the initial ideas and the need to build upon them
by discussing their pros-cons and feasibility of implementation within the thesis scope.

1. Creating software architecture documents on “Mediawiki.org” As a part of
the literature survey Section 3.2.1, it was observed that documentation of wiki
had several advantages over traditional documentation. But the concept of
improved documentation process using only wiki as the platform may pose certain
downsides. The following table compares the wiki with a version controlled
platform on certain important criteria.

The table Table 4.2 projects the cons of wiki and the pros of version control, hence,
suggesting the need for version controlled documentation.

2. Creating new “namespace” on “mediawiki.org” for Software Architecture Doc-
umentation

“Mediawiki.org” already provides many “namespaces” like “Manual” that are
used for documentation as already mentioned in the previous chapters. Adding
another namespace to this pool would add to the confusion of categorization and
document organization This thesis aims at structured software architecture docu-
mentation as a part of the wiki page and does not aim to introduce unnecessary
inclusions to “mediawiki.org”.

37

4. Conceptualization

Table 4.2.: Comparing wiki-documents and Version-controlled documentation

Attributes
Documentation on Wiki
(Disadvantages)

Version Controlled docu-
mentation (Advantages)

Formal review is not possible.
Anyone who has access to the
wiki pages can edit and save
pages.

If source code is part of a re-
view system then documenta-
tion also becomes part of the
commits and is reviewed be-
fore final "push".

Maintainability Tracking major changes is not
possible.

The version control system
provides novel solutions to
identify textual differences.

Offline work is not possible.

Coding / documentation can
be performed online until the
"commit" stage. Only the final
"push" needs connectivity.

Usability
Every page save creates a new
history entry. An insignificant
change may lead to unneces-
sary revision history entry.

No history entry needs to be
managed.

38

4. Conceptualization

Table 4.3.: Comparing "Categories" and "Namespaces" for documentation pages catego-
rization

Attribute Namespace (Disadvantages) Category (Advantages)

Creation

Namespace cannot be directly
added as a special page (fea-
ture not available yet). It
needs to be added along with
the namespace array index to
"LocalSeetings.php" file in a
Mediawiki installation

Category can be easily added
to the pool of categories via
the wiki web page. It is equiv-
alent to creating a new page
on the wiki

Description

No explanation is available on
the use and purpose of a par-
ticular namespace. Hence it
may me confulsing and may
lead to unintended use or cat-
egorization.

Category pages are like a
usual page which can contain
description of its purpose and
usage and the list of other
pages that belong to that cate-
gory.

Usage

It is difficult to handle pages
under a namespace. The
page has to be created with
the right format (names-
pace:pageName). To change
the namespace the existing
page needs to be deleted an
d a new page needs to be cre-
ated

It is easy to add, delete, up-
date the category of a page.
Only an edit page is required.

The same categorization efficiency can be achieved by using the Mediawiki fea-
ture : “Category” instead of introducing a new namespace. The table Table 4.3
captures a few advantages of categories in this regard.

This clarifies and explains the need to create a new category like “Software
Architecture Documentation” for categorizing the intended documentation pages
on “mediawiki.org”

3. Provide guidelines for task management on Phabricator An initial idea consid-
ered the provision of guidelines for stakeholders to “tag” documentation tasks
on Phabricator and categorize them as “Software architecture documentation”
task . These guidelines were meant to provide suggestions and helpful tips to

39

4. Conceptualization

identify potential documentation tasks as candidates for “software architecture
document”. This would assist in creation of more meaningful tasks and result in
production of more structured and complete architecture documents.
But the idea of “guidelines for tagging software architecture documentation tasks”
was not pursued for the following reasons :

• Difficult to define the guidelines within this thesis scope

• Might not be complete (capture all architectural components, interfaces or
modules)

• Might be ambiguous in its purpose and use.

• Cannot ensure that guidelines are followed.

• External users may not be aware.

• Guidelines can only suggest and not mandate a process

• Location / placement of guidelines may be inaccessible/ unknown to all
users.

Hence, the idea of providing developers/ architects with a guideline for is not
practical or feasible solution. Instead a more strict review process is required
which ensures structure software architecture document creation and mainte-
nance.

4. Defining Responsibilities for the Role : Maintainer

Figure 4.5.: The sphere of Maintainer’s roles and responsibilities.

40

4. Conceptualization

Table 4.4.: Comparing "Human-maintainer" role and "BOTs" for documentation mainte-
nance responsibility

Attribute Human-Maintainer (Disadvantages) Mediawiki BOT (Advantages)

Role
Maintainer is not a dedicated
user role in the wiki commu-
nity.

A dedicated BOT user can be
created as a Maintainer

Responsibility

Since a human maintainer is
not a dedicated role, the per-
son is vested with multiple re-
sponsibilities apart from doc-
umentation maintenance

A Documentation mainte-
nance BOT is a dedicated user
with a single defined respon-
sibility

Process

Fitting a new human role in
the existing community struc-
ture as a part of an improved
process may be challenging

On the other hand, the com-
munity is open in adopting
BOTs for automated activities
within the software process.

Activity

The periodic maintenance
task may not fit into the
schedule of a user who exe-
cutes multiple activities.

The BOT can be configured to
run a tedious activity at a de-
sired schedule and duration
(repeatedly).

Efficiency
Rigid - heavily dependent
on project schedule, activities
and other factors

Flexible - independent, con-
figurable, reliable

An initial ides of document process improvement focused on the human “Main-
tainer” role to ensure a project-level co-ordination for documentation process.
In Figure 4.5 it can be seen that the sphere of a Maintainer’s responsibility
encompasses the responsibilities of all the roles in the Software architecture docu-
mentation process. Thus, a dedicated “maintainer” can be a person who is an
experienced developer or architect associated with particular architectural compo-
nents with the task of documenting or reviewing the corresponding documents.
A Maintainer’s job is to periodically examine the software architecture document
quality and availability on “mediawiki.org”. The table Table 4.4 compares the
human maintainer role to that of a Mediawiki BOT user role for responsibility
assignment and handling.

The idea of an architectural module / component owner as its “documenter”
and “maintainer” is difficult to achieve and thus, a Bot provides a more practical

41

4. Conceptualization

Table 4.5.: Comparing "Mediawiki extensions" and "BOTs" for documentation mainte-
nance activity

Attributes Extensions (Disadvantages) Mediawiki BOT (Advantages)

Setup

Complex setup. Requires
database configuration, set-
ting up localization, prepar-
ing autoloadable classes and
defining additional hooks.

No setup is required within
the Mediawiki engine

Implementation

Rigid : extensions should be
implemented as subclasses of
a MediaWiki-provided base
class

Flexible : Bots have no
such restrictions and inter-
dependency with the Medi-
awiki engine

Assistance

NO feature of manual assis-
tance is available. The code
can be modified, but once
added, the extension behaves
independently

BOTs can be configured to
add manual assistance to re-
duce chances of mass errors

solution.

5. Building an extension for document maintenance As initial suggestion from the
Mediawiki developers, it was understood that the best way to understand and
document the software architecture of Mediawiki was to build an “extension”. It
could not only help to understand the interfaces of architectural components but
also some of their intrinsic functionalities and complexities. This generated an
idea for building a documentation maintenance extension.

But, the Table 4.5 highlights the complexity involved in building a Mediawiki
extension as compared to a creating a BOT user assigned with a specific activity.
Thus, it strengthens the concept of using a maintenance BOT for improving the
Mediawiki software architecture documentation process.

4.2. Improved Documentation Process

After assessing all the ideas and concepts in the previous section, the final concept for
this thesis contribution was conceived.

The Final Concept :
The final concept for improving the software architecture documentation process of

42

4. Conceptualization

mediawiki software is to build a “Documentation Monitor” that can track the mainte-
nance activity of documents on “mediawiki.org” with the use of BOTs and with the
organization of developer’s responsibilities

The concept aims to solve issues identified previously and to streamline the commu-
nity people into a process.

The improved documentation process is oriented with the salient features and in-
trinsic activities of a standard software processes. These dimensions of documentation
process are captured in the Figure 4.9 and explained in the section 4.3.

The following sub-sections explain the idea and concept behind the improved docu-
mentation process which involves the interaction and co-ordination of human main-
tainers and a maintainer BOT in order to achieve the intended purpose of structure,
up-to-date, useful software architecture documents.

4.2.1. Roles and Responsibility definition and co-ordination

The crux of every software organization process constitutes the personnel belonging
to the organization who are actively involved in the execution of the process. To
successfully implement and execute the activities within the improved documentation
process at Mediawiki, it is important to outline and define the roles an responsibility of
the community stakeholders.

The concept involves a task-centered collaboration approach where the responsibili-
ties of the defined roles are bound by explicit and implicit tasks.

• “Explicit tasks” refer to the role-bound tasks created and assigned on the “Phabri-
cator” or the well defined responsibilities for a particular user-role.

• “Implicit tasks” refer to the activities that are an intrinsic part of community and
organizational responsibility (e.g) community collaboration and acceptance.

Defining new responsibilities for existing roles may pose certain challenges pertaining
to the implicit tasks . These challenges refer to the social aspects of defining new
responsibilities within an existing community structure.The key principles to address
these challenges are [39]

1. the self-organization of the community through task decomposition

2. an on-line community support based on social design principles and best practices

3. an open science process to enable unanticipated contributions

But the challenges are implicitly handled by the organization of the explicit tasks as
suggested by the above principles.

43

4. Conceptualization

Principle 1 : Gracefully handle challenges regarding assignment of responsibility -
Task decomposition by role-responsibility organization

Figure 4.6.: Defining distinct roles and responsibilities in a process.

As seen in the Figure 4.6 the key roles identified within Mediawiki for the improved
documentation process are :

• Architect - outlines/ defines/ upgrades/maintains the Mediawiki software archi-
tecture

• Developer - writes/ updates / creates / maintains the Mediawiki software.

As a part of the software architecture documentation process, these existing roles
have been vested with the added responsibility (explicit tasks) pertaining to software

44

4. Conceptualization

architecture documents:

• Developer - the prime responsibility of the software developers as a part of the
documentation process is to create (write) the software architecture documents as
a part of their regular development activity. This means that they are responsible
for maintaining the up-to-date architecture information.

• Architect - Documentation is medium for architects to communicate the descrip-
tion of the architectural components and their design decisions and implemen-
tation to the developers. Architects could expect the developers to produce a
documentation aligned to the recommended guidelines and agreed specifications
for understandability among readers of the documentation. The architect, owing
to his responsibilities and experience, is capable of checking whether description
of the component (view, style) suits the overall documentation and can be pub-
lished. Hence, as a part of the documentations process, the architect is responsible
for reviewing the documents written by the developers before they are finally
“pushed” and also published on “mediawiki.org”

Principle 2 : On-line community support helps to overcome the challenges of miss-
ing knowledge base. The Mediawiki community is a part of the larger open source
community where it has succeeded to prove its presence over the years of its existence.
Based on its success metrics, it can be very well assumed that the social design princi-
ples and best practices are inherently followed within Mediawiki community. Thus,
introduction of an improved documentation process would be aided and assisted by
the existing support structure.

Principle 3 : Unanticipated contributions are a challenge in face of the socio-technical
environment of open source software development: An open science (open knowl-
edge base) process is the central paradigm of the Mediawiki community structure. Yet
again, the improved documentation process will not be effected by this challenge. In
fact, the external contributions in the form of open discussions will help improve the
quality of the Mediawiki software architecture documents, which is the ultimate goal
of the proposed concept

4.2.2. Document Maintenance Bot - A proof of concept

The previous section capture the human resource organization aspect of the improved
software architecture documentation process.

Organizing roles-responsibilities helps to achieve better quality of software architec-
ture documents. But, an important aspect of the improved documentation process is
document maintainability on “mediawiki.org”. To streamline this maintenance process

45

4. Conceptualization

wherein, the documents on “mediawiki.org” are kept up-to-date, a more regular audit
needs to be performed. Since this task is time consuming and adds to the burden of
human maintainers, it is logical to use a BOT. “Bots are automated tools that can be
used to perform tedious work or certain repetitive tasks related to a wiki” [29]. This
reasoning perfectly fits our requirement. Using a bot to take on the responsibility of
maintainable / visible / sustainable documents, not only relieves the human effort but
also regularizes the mandatory task of documentation.

Figure 4.7.: Introducing the doumentation maintenance BOT in the Mediawiki software
process.

The Figure 4.7 introduces the BOT into the existing Mediawiki software and docu-
mentation process and shows the interactions between the different roles and systems
that were captured in Figure 4.3.
The idea is to use the BOT as a maintenance assistant in the documentation process. As
seen in the figure the BOT seamlessly interacts with different systems that are a part of

46

4. Conceptualization

the existing software process in order to improve the documentation process:

• Mediawiki software source code repository (“/docs” folder)

• Pages on “Mediawiki.org”

• Phabricator task management system

As shown by the dashed red lined, the BOT replaces a few activities and assists the
human maintainer with his responsibilities. This interaction and activities can be better-
explained with a use-case scenario to understand the BOT’s role in the documentation
process. Use Case : An open task is created when the pages on mediawiki.org is not
updated as compared to the latest documents in the source code.

In Figure 4.8 we can analyze this use-case as a sequence diagram where the BOT has
been placed in the sequence of events in the process. The BOT is seen as the principal
actor in this improved documentation process. Sequence Diagram in detail.

1. Pull : The BOT initially pulls the latest version of the source code from the
Mediawiki repository master branch. Once pulled, the text file containing the
documentation within the source code is extracted

2. Read : The bot then reads the text from the corresponding documentation page
on“Mediawiki.org”

3. Compare : The texts from source code and wiki page are compared for difference
(plain text difference).

4. Check History :If there is a mismatch after comparison (web page is not up-to-
date) then the bot checks the history of the wiki page.

5. Create Task : If the wiki page was not updated in the last few days, a task is
created in Phabricator for its maintenance (update/ create).

This sequence of events initiated and executed by the BOT helps to maintain an updated
copy of the documentation of mediawiki software architecture on “mediawiki.org”.

4.2.3. Guidelines for the process implementation and orientation

When an improved process is being conceptualized, it is important to understand its
usability and usefulness within the target system. In the case of Mediawiki software ar-
chitecture documentation process, similar questions arise. It is important to understand
how the process can be mandated or followed within the community. There are two
scenarios where guidelines need to be provided in order to implement the improved
process successfully [15] :

47

4. Conceptualization

Figure 4.8.: Maintenace Bot Sequence diagram.

• Orienting the existing community members to accept, understand and follow the
process :
This scenario is a greater challenge with respect to the existing community and
stakeholders. The improved documentation process needs to be mandated by
organizational heads in order to include it within the existing software process. All
current developers need to be advised and instructed by architects to obligatorily
include the documentation of architectural components in the source code before

48

4. Conceptualization

committing the code that they write or update.

• Implementing the process by orienting new members to follow the process :
Coding conventions and guidelines will help new developers and Mediawiki
stakeholders to understand the importance of documentation and mandate them
to include the architecture documents as a part of the source code.

Suggested concept for ease in maintenance activity : Add area (architectural com-
ponent) maintainer to the wiki page (e.g. in a template) which can be read by the
Bot using the Mediawiki API in order to assign the Phabricator task for Software
Architecture documentation to its responsible Maintainer1

4.3. Dimensions of the Improved Documentation Process

This section highlights the key factors that contribute to the improvement of the
documentation process. These factors have been identifies as dimensional facets of the
documentation process structure.

Figure 4.9.: Dimensions of documentation process features.

1suggestion for better implementation from S Page (Mediawiki stakeholder) :
https://en.wikipedia.org/wiki/User:S_Page_(WMF)

49

4. Conceptualization

Capturing the dimensions of the improved documentation process in a nutshell

• Review : Any standard software process involves a strict review process at every
stage of its lifecycle. Thus, it is important for the documentation process also to
involve a review phase. This review involves the definition and interaction of the
following:

1. Role - The role of a “Reviewer” has been defined as a part of the improved
documentation process. Mediawiki clearly defines the user role of a reviewer
for its software development process. The same or other users can be
assigned the role of a “Document Reviewer”. An experienced developer
or an architect is the best candidate for the role of a software architecture
document reviewer.

2. Responsibility - The “Reviewer” has the responsibility of reviewing the
software architecture documents when they are “pushed” as a part of the
source code into the “Gerrit” review system. Only when the reviewer
accepts/ approves the documentation, it is added to the “authoritative
repository”. Once the document is approved, it can be copied/ added to
“mediawiki.org”

3. Organization - The Roles and Responsibilities need to be assigned and
defined as a part of the documentation process. This dimension of software
project organization is ensured by the existing “Gerrit” Review system.

• Maturity - A higher maturity of a software process ensures the quality of a
software and its organization

1. Compatibility - A standard consistent process that fits in with the existing
matured processes is considered matured enough for its intended purpose.
In case of the improved documentation process, it is compatible with the
existing software process, with interfaces that blend into the existing system.

2. Operability - A user’s effort in the operation control of a process deter-
mines its operarbility [7]. In case of the improved documentation process,
maintenance operation effort is shared by the BOT, thus making it highly
operable.

• Community - The improved documentation process targets the open source
community in general and the Mediawiki software in particular. Pertinent to
the community, it is important that the process is conceptualized bearing all the
socio-technical factors in mind.

50

4. Conceptualization

1. Acceptance - A process serves its purpose when it is readily accepted in
the community for which it has been defined and conceptualized. As the
improved documentation process satisfies the stakeholder requirements, its
acceptance is guaranteed within the community.

2. Adaptability - To evaluate whether an improved process will be sustained
within the community over a period of time, its adaptability needs to be
assessed. Since the suggested process is an improvement over the existing
process, it always leaves scope for further improvement as and when the
software evolves.

3. Adoptability - Acquiring and fitting in a new/ improved process refers to the
adoption of the process within the community. In the current scenario, the
need and demand for software architecture documentation within Mediawiki
suggests that the artifacts are highly desired and the process to maintain
them will be adopted readily by the stakeholders.

This chapter concludes with a proof of concept based on the building, refining and
evaluation of ideas. The summarization of the conceptualization phase can be as
follows : The efficient task distribution based on role-responsibility definition and
employment of human as well as non-human effort can result in an effective process
improvement and a matured software standard. The following chapter implements
the final concept devised in this chapter to realize a deployable solution for an
improved documentation process for the Mediawiki software architecture.

51

5. Implementation

As proposed in the previous chapter, this chapter elaborately explains the implementa-
tion of the conceptualized Bot.

5.1. Assumptions

Before starting the implementation of a maintenance-BOT, certain important assump-
tions were made in order to set an ideal context and background to start the planned
development. Only when these conditions are fulfilled or existent, the BOT can provide
the ideal solution for its purpose.

• The architectural components have been identified and a “*.txt” file exists for each
component in the “/docs” folder in the repository that captures the structured
architecture documents.

• These “*.txt” files are written in wiki-formatted text.

• Annotations like “@see” are provided in the source code of Mediawiki architecture
components to help to navigate to the corresponding text file for its documentation
in the docs folder.

• All corresponding architecture component documents are already available as of
date on “Mediawiki.org”

• These documents are categorized to identify them as structured software architec-
ture documents.

• The corresponding pages on Mediawiki.org have restricted access (e.g) Protected
pages [22]. Or, the architecture description could be a part of the non-editable
section such that they cannot be modified by other Mediawiki BOTs or users.

• A phabricator project like “Software Architecture Documentation” already exists.

Keeping these initial assumption in mind, the architectural outline has been designed
for the BOT’s implementation and functionality.

52

5. Implementation

5.2. Architecture and Technical outline

This section explains the technical outlines of the BOT architecture in general and
discusses the components of our specific documentation maintenance BOT.

5.2.1. BOT architectural components

In this sub-section the various existing components and their application interfaces that
were useful to implement the BOT’s architectural design have been listed. It has to be
borne in mind that “Python” is the chosen language for implementation of the BOT
script :

1. Python Git API [19] : The first important requirement for the BOT is to interact
with the master branch of the source code repository in the version control system
in order to “pull” the latest changes (version) of the software. Since the source
code is available as a “Git” repository, the “Git API” is required to interact with
the system. For this reason the Python Api “GitPython” package was installed
and used for interfacing with the Mediawiki software source code and extract the
latest version of the "*.txt" files in the “/docs” folder.

2. Phabricator API [45] : It is an API to phabricator that allows scripts written on
other languages (like Python) can interfae with the applications in the Phabricator
suite.
Python Phabricator library [52] : The “phabricator” library installation enables
python language scripts to interface with the Phabricator application via the
conduit API.

3. Python Mediawiki Robot Framework - PywikiBot [34] : It is a python package
layout that provides the full Mediawiki API usage for maintenance of pages on
Mediawiki.org using a BOT user account. This is the core framework on which the
implemented BOT script “docbot.py” is executed using a BOT user configuration
specific to the intended use.
Mediawiki API [2] : The Mediawiki web API is a web service that can use
any programming language to interact and access wiki pages and their features,
data , etc. over HTTP. The Pywikibot scripts use these APIs to interact with
the Mediawiki pages. In case of this implementation, the BOT script written in
Python language uses these Mediawiki APIs via the PywikiBot framework in
order to read the text from the Mediawiki pages.

53

5. Implementation

5.2.2. Details of the Implementation

Figure 5.1.: Component Diagram of the Maintenance BOT.

The Figure 5.1 the individual components of the BOT implementation can be seen.

• Pywikibot : The Pywikibot framework provides the backbone for the Bot imple-
mentation. As already highlighted in the previous sub-section, the Pywikibot
framework interacts with Mediawiki pages via the APIs, as shown and marked
as Mediawiki.org component in the figure. This helps to retrieve(read) the text
from the wiki pages on “Mediawiki.org”.

• Configuration file : The configuration files is essentially configured / customized
for the local Mediawiki installation. The specifications of the Mediawiki installa-
tion, user, passwords, language, etc. need to be configured in order to use the
Pywikibot framework as a backbone for the intended Bot script (Figure B.3).

• DocBot : The “docbot.py” script is the essential python script that performs the
outlined functionality of the document maintenance Bot. The DocBot interacts
directly with the MediawikiSourceCode component. The git API is used for
interaction with the Git repository of Mediawiki source code in order to fetch the
latest version. Basic code can be found in the Appendix A.

54

5. Implementation

Figure 5.2.: State Diagram of the Maintenance BOT.

• Wmfphablib : The library is a part of the “Phabricator-tools” which are open
source tools under development that can be used for migration of external data
into Phabricator[47]. Using these tools as an example and setting up (configuring)
the “Wmfphablib”, the APIs could for connecting to the Phabricator component
is possible. In the case of this implementation, the “conduit API” is used for task
creation in Phabricator under the project “Software Architecture Documentation”

The basic components above highlight the architectural outline and requirements
for the Bot implementation. Figure 5.2 shows the transition of Bot object during the
various phases of its active life-cycle. The small rectangles capture the States of the bot
object whereas the large rectangles (o-o) represent the Sub-state. The main states of the
active Bot object are “Pull”, “Compare”, “Check” and “Create Task”. These states have
inherent sub-states where the object may interact with the external system in order
to return some useful information to its parent state. There are also several decision
points during these state transitions like checking for : “Pull Success”, “difference in
text”, “last update” The state diagram helps to understand the decision points made by
the Bot and the automation of task creation for documentation maintenance.

55

5. Implementation

5.3. Bot in Action

In order to test the implemented Bot solution and its task creation capability, the script
was executed by connecting the “Wmfphablib” to Wikimedia labs [65]. The lab provides
a cloud computing infrastructure with virtual machines to provide tools for developing
and testing various Wikimedia applications, scripts, Bots, etc. For this specific case the
configuration has been set up to connect to the phab-wmflab [49] for testing the tasks
created under “Software Architecture Documentation”

5.3.1. Test Scenarios

Several scenarios were considered to test the Bot script for its functionality and to
understand the ways in which the Bot could be more productive and responsive for
the intended maintenance use. Screenshots of all results are available in Appendix A
(section A.2).

Scenario 1 : “*.txt” files in the Mediawiki source code repository are up-to-date.

Description : Execute the BOT script in order to test the basic functional-
ity of “pulling” the latest changes in the Git master branch of the Mediawiki
source code repository into the cloned local copy in order to retrieve the lat-
est(reviewed) version of “*.txt” file from the “/docs” folder.

Result : The latest version of the Mediawiki source code is “pulled” from the
Git repository and stored in the local clone. Only when the “pull” is successful,
the rest of the script is executed.

Scenario 2 : Documentation exists on “Mediawiki.org” corresponding to the
architectural component description in the source code.

Description : Execute the BOT script in order to test the basic functional-
ity of reading the “*.txt” file from the “/docs” folder and comparing the text
to the corresponding wikipage.

Result : The latest version of the Mediawiki source code is “pulled” from the
Git repository and stored in the local clone. The file “*.txt” file is read from
the “/docs” folder in the cloned and up-to-date repository. The read text is
written into a file in the same execution environment where the Bot is being

56

5. Implementation

executed. The file is compared (identical textual comparison) to the text read
from the document on wikipage.

Scenario 3 : Documentation does not exists on “Mediawiki.org” corresponding
to the architectural component description in the source code.

Description : This is negative scenario test to check what happens when
the wikipage does not exist for the corresponding architectural component.
Execute the BOT script in order to test the basic functionality of reading the
“*.txt” file from the “/docs” folder and comparing the text to the corresponding
wikipage.

Result : The latest version of the Mediawiki source code is “pulled” from the
Git repository and stored in the local clone. The file “*.txt” file is read from
the “/docs” folder in the cloned and up-to-date repository. The read text is
written into a file in the same execution environment where the Bot is being
executed. But, since the corresponding wikipage is not available, the script
is unable to read the contents into a file and throws an error stating that the
file(wikipage test file) is not defined.

Scenario 4 : Documentation is compared and revision history is checked when
wikipage is not up-to-date.

Description : Execute the BOT script in order to test the basic functional-
ity of comparing the architecture documents from source code to the wikipage
and checking the revision page for document update history. The last updated
date is checked and compared with the present date.

Result - Success : The file “*.txt” file is read from the “/docs” folder Me-
diawiki repository. The read text is written into a file in the same execution
environment where the Bot is being executed. The corresponding wikipage
content is read into a file. If the compared files are not same (text mismatch)
the revision history of the wikipage is checked.

57

5. Implementation

Scenario 5 : Documentation is compared and Phabricator task is created under
the specified project when wikipage is not up-to-date.
Description : Execute the BOT script in order to test the basic functionality of
comparing the architecture documents from source code to the wikipage and
checking the revision page for document update history. In case the text is not
updated in the last few days, a Phabricator task is created.

Result : If the compared files are not same (text mismatch) the revision
history of the wikipage is checked. If the wikipage was not updated recently, a
Phabricator task for documentation maintenance is created under the specified
Phabricator project.

Scenario 6 : Documentation is compared and Phabricator task is not created
when wikipage is relatively new.

Description : Execute the BOT script in order to test that the maintenance
activity does not “flood” the task management system (Phabricator). A fixed
duration (e.g. 5 days) can be provided as a buffer for the maintenance activity
to be completed by human Maintainers without the involvement of the auto-
mated Bot script.

Result : If the compared files are not same (text mismatch) the revision
history of the wikipage is checked. If the wikipage was updated recently (e.g.
less than 5 days), then no task is created on Phabricator.

5.3.2. Deployment

For successful integration of the developed component into the existing Mediawiki
system, was important to understand the Deployment process for deployment of the
bot and the interfacing the the various sub-systems. As shown in Figure 5.3, the
following are the important devices that need interfacing for the deployment of the
implementation.

• Mediawiki.org [37] - The open source wiki package that provides the software
engine that powers the wikis like “Wikipedia” in order to host wiki-formatted
pages. The software architecture documentation of Mediawiki itself is also
available / desired on “Mediawiki.org” webpage as wiki-formatted text.

• Gerrit [18] - The version controlled code review system that links to the Mediawiki
source code repository.

58

5. Implementation

• Phabricator [48] - An important contributor to the process and task management
system for streamlining project management issues. It is a stand-alone collabora-
tion platform (application) which is not directly integrated into the Mediawiki
software system. Rather, it is a sub-system that can be configured and customized
for the purpose of task management as and when required.

These sub-systems / components have already been discussed in the previous
chapter and their functionality and use in the Mediawiki software process has been well
established. The Figure 5.3 captures the general deployment of Mediawiki software.
An important component of deployment is the “configuration files” where the Bot user
details and the wiki details are mentioned that can be used for interfacing the external
components.

Figure 5.3.: Mediawiki Software deployment process.

Figure 5.4 highlights the inclusion of the BOT in the deployment diagram, connecting
the above mentioned system interfaces.
Once deployed, the Bot can be executed as a part of the cron jobs in the build-integration
environment such that the the maintenance task intended to be performed by the Bot
can be regulated. depending on the desired frequency of execution, the cron job can be
set for the maintenance activity (e.g. once per week)

5.3.3. Inherent capabilities of the Bot

Apart from the functionality and test scenarios covered in the above Bot implementation
comprise the basic Bot implementation where the Bot is able to interact with the three
different sub-systems highlighted in the previous subsection. Once these connections

59

5. Implementation

are established and the systems are interfaced via the Bot, many more functionalities
can be added to the “Documentation Maintenance Bot”.

Here is a list of additional / improved functionalities (non-comprehensive) that the
basic Bot implementation is capable of handling.

• Create Phabricator task when a document on wikipage (category- Software Archi-
tecture Document) is not available for an architectural component corresponding
to the “*.txt” file in the “/docs” folder of the source code.

• Capture the difference when documents on “Mediawiki.org” are compared to the
“*.txt” files in the source code and print the difference as a part of a maintenance
template on that wikipage on “Mediawiki.org”

• Create the software architecture document on the wikipage by copying the corre-
sponding text from the source code automatically if that documentation does not
exist on wiki.

• Add changes (update) the wikipage with the corresponding text from the source
code automatically.

• Search by category for all software architecture documents on “Mediawiki.org”
and create Phabricator task if the corresponding reviewed document is not avail-
able as a part of the source code.

• Delete (or add comments in template) if wikipage for any document that does
not have a corresponding text file in the reviewed source code.

• All templates and changes made by other Bots on the wiki pages of Mediawiki
can be ignored by the DocBot while reading the text.

5.3.4. Bot’s advantageous feature

The Bot has been conceptualized and implemented with several advantages in mind.
These advantages refer to its features that are an improvement to existing concepts and
ideas of a semi-automated documentation maintenance process.
Conflict resolution : The existing idea within Mediawiki community 1 suggested
immediately copying the text files from source code to the wiki pages. But the imple-
mented DocBot considers the following scenario:

1available as a phabricator task : https://phabricator.wikimedia.org/T91626

60

5. Implementation

When the wiki page is updated intentionally on “Mediawiki.org” by a human main-
tainer, if the docBot simply copies from the text file, the changes of the human docu-
mentor will be overwhitten.
Thus, the implemented DocBot compares the copies from source code and wiki page
and creates task for the difference in text (not overwriting intentional changes), and
handles the conflict resolution more gracefully.

Well-crafted task for easier maintenance : It is possible to craft the auto-generated
documentation task such that it captures and prints the “diff” between text files and
wiki pages (maybe as an attachment). Any such helpful information will make the task
more understandable and in turn make the maintenance activity easier.

5.4. Future implementation and General Implications

The above implementation of concept in its basic form leaves scope for immense im-
provements and future development. Some future improvements (possible extensions)
to the Bot script have been listed in the previous subsection. Also, more features
can be added to improve the automation of the Maintenance activity for the software
architecture documents.
A few more future implementations of this concept are listed below.

• Provide a mapping for the pages (titles) for the corresponding text files which
need to be compared by the Bot.

• Notify the responsible architecture component owners for missing / updated
documentation.

• Add automated checks for missing text files in the source code for the correspond-
ing architectural component.

• Add templates on Mediawiki software architecture document pages to pull /
display maintenance information.

• Provide guidelines for improved structure of software architecture documentation.
Also, prepare structured documentation for the identified software architecture
components in accordance with these guidelines to serve as an example for future
document writers.

Future Implications of the customized solution :
The conceptualization of a model developed for a certain type of software can have its
implications and useful implementation in all software belonging to the same domain

61

5. Implementation

and development model.
This concept has been conceived on the backdrop of open source Mediawiki software.
In general this paradigm can be tailored to fit any open source software and open
source community structure. Also, the thesis work aims at improving the software
architecture documentation process for Mediawiki software.
This process improvement aims only the documentation process in particular for an
open source community. Similar process improvements can be made in any specific
software process for any such open source development model. Automation of mainte-
nance activity coupled with defined human roles as Maintainers is desired and can be
easily applied/ implemented for process improvement in any open source community.

The implementation of an improved software documentation process leaves scope
for many critical discussions and viewpoints. The following chapter evaluates the
improved concept for its usefulness, acceptance within the community and its gen-
eral implications on process improvement

62

5. Implementation

Fi
gu

re
5.

4.
:D

ep
lo

ym
en

t
D

ia
gr

am
of

th
e

M
ai

nt
en

an
ce

BO
T.

63

Part III.

Evaluation and Conclusion

64

6. Evaluation

Evaluation of the quality of an improved process within a community establishes its
usefulness and justifies the efforts put into its implementation and fulfillment.

The QualOSS standard [58] suggests that the quality of an improved process can be
assessed on grounds of various process qualities related to its performance, efficiency
and effectiveness, recorded over a period of time. Similarly, the evaluation of Software
Process Improvement (SPI) [63] effect on high volume of literature study identified the
“Pre-post evaluation” as the most common evaluation strategy. It also suggests the use
of process metrics, questionnaires and interviews as effective evaluation methods. The
following sections list the use of these strategies to evaluate the improved software
architecture documentation process.

6.1. Evaluation

This section lists the static analysis strategies that evaluate the implemented process for
software architecture documentation.

6.1.1. Review Questions

Architects and architecture analysts are concerned regarding the conformance of the
architecture documentation to the set standards [5]. The conformance of the concept
and implementation of improved documentation process in this thesis can be checked
by answering the following questions[5].

1. Q : Does the Software architecture documentation contain appropriate adminis-
trative and overview data?
A : Yes ! Module owners/ reviewers/ developers are identified for the architec-
tural components. Also, more information can be provided as a template on the
wiki page for the corresponding document.

2. Q : Is the documentation required by the organization ?
A : The discussions before the start of work (Chapter 2) and the later evaluation
of the implemented concept answers the requirement of documentation within
the organization.

65

6. Evaluation

3. Q : Who are the stakeholders and are their requirements for documentation met
by the software architecture documents?
A : As mentioned in previous chapters where stakeholder requirements were
studied, the developer were identified as the most important stakeholders in
terms of creation and use of these documents.

4. Q : Does the document achieve its purpose?
A : The evaluation of the concept (stakeholder review) and the test of solution
proves that it achieves its intended purpose.

5. Q : Does the document provide an introductory information and sufficient infor-
mation to assist the understanding of the architectures?
A : A structured documentation written by the developer of the architectural com-
ponent who understands and can reason for the architectural decision provides
sufficient information in the text document.

6.1.2. Community-related quality metrics

The following quality metrics from the QualOSS standard have been used to formulate
the evaluation points for the improved documentation process [60]

1. Maintenance Capacity - The improved process should provide resources for
maintenance, continuous support and improvement.

2. Sustainability - An improved process should guarantee its sustainability such
that maintenance of documents is possible over an extended period of time.

3. Process Maturity - The process should achieve its goal and should provide a
model for continuous improvement

6.1.3. Measure the success of the implemented solution

1. Maintenance efforts (costs vs. capacity) [58] - Validity, Investment, Cost of qual-
ity and cost of process improvement can be measured in terms of the following
[21]

• Personnel

• Time

The number of people required for achieving an improved process is not large as
only a small subset of Mediawiki developers (also confirmed in the review) are
responsible for architectural module maintenance. This also confirms that initial
effort required is only with regard to the creation of missing documents. Later,

66

6. Evaluation

maintenance of these documents is assisted by the implemented solution.
This analysis helps to answer the question : “Is the process adequate for its
intended purpose?”

2. Process features - The following features need to be evaluated in order to
evaluate the applicability and usefulness [16] of the concept and solution for
software architecture documentation process

• Architecture tracking - A structured software architecture documentation,
as written by developers and reviewed by architects simultaneously during
development, ensures the tracking of software architectural changes.

• Multiple user support - The concept aims accessibility of documents as its
prime requirement. The implementation that allows document access as wiki
page ensures multiple user support not only in terms of the document text
readability but also its purpose and use by multiple stakeholders (developers,
architects, new users, training, maintenance, etc.).

• Capture and reason - The Phabricator tasks are crafted to capture differences
between software architecture document text in source and the text in the
wiki pages and provide a reason for the task’s purpose (e.g. document
maintenance / update required)

The community-related quality metrics and the success measure criteria listed in the
above subsections were used to formulate questions for review and assessment. The
results are presented in the following section.

6.2. Assessment through Review and Discussions

Communication is the key to understanding the views and reviews of users. A good
way to understand and assess the conceptualized idea and implementation scope
was to formulate a set of questions in order to receive feedback from Mediawiki
stakeholders 1, 2. Specifically, this review was performed by Mediawiki architecture-
committee members for checking the conformance of documentation to its standards
and requirements. The questions aim to capture the reviews, feedback and critical
evaluation based on the stakeholders’ interest and experience within the community.
The following questions were answered critically with these viewpoints.

1A1 : reviewed by S Page (WMF - Wikimedia Foundation)
2A2 : suggested and evaluated by Daniel Kinzler (MWDE - Mediawiki Deutschland)

67

6. Evaluation

6.2.1. Critical Assessment

Stakeholder viewpoint - This viewpoint captures the answers of the stakeholders from
the perspective of their role in Mediawiki documentation and their interest in the
improved documentation process.

1. Is the process adequate for its intended purpose (purpose of improving docu-
mentation process) ?
A1 : If the Phabricator task is well-crafted to provide useful information like text
diff, module owner / maintainer, etc. then it will help to update the wiki page
easily.
Useful high level information is captured in these text documents which cover
the important architectural components.
A2 : The purpose can be evaluated only if the Bot is put into use and it is noticed
that community members pay attention to the tasks created by the Bot.

2. What features of this documentation process are attractive ? What features
may pose challenges?
A1 : Attractive feature is the point 1 itself where the well-informed task creation
is made possible. Challenges could be as follows :
Other wiki pages are also dependent on some information from the text files in
the source repository. The mapping of these dependencies might be a challenge.
An “area maintainer” needs to be assigned to each text file for an architectural
component.
Deciding the frequency of the cron job (running the Bot) might be problematic.
(e.g.) every 2 days might be too less as the document writer may need more time
to copy the text into wiki page and might have unnecessary tasks created for a
job that he already is aware of; if the Bot runs every 10 days, then it might to late
to correct text files for some intended changes like typo corrections made on the
wiki page.
If developers are required to make updates to text files as trigger for wiki update,
then the question of effectiveness of the wiki page comes under question.
A2 : Attractive : Automatic syncing (no duplicate effort, improved visibility)
Challenge : Get people to look into the tasks and resolve them.

3. Will the process be effective / sustainable over a period of time?
A1 : Maybe !
Effectiveness depends on the coverage of these text files in terms of the architec-
tural components that are describes in them
Sustainability depends on the motivation of developers/ document writers to

68

6. Evaluation

maintain an identical copy of text file and wiki page.
A2 : It needs to be deployed and monitored for success.

Rationale/ Discussion : The challenge concerning the mapping of other documents
on wiki to the text file is not a concern of this thesis scope. The only motive at hand is
to produce structured documentation that can be readable as wiki pages and accessible
during development as text files during source code development.

Suggestion was made for semi-automatic syncing that provides link to edit page
on the wiki and modifies with the new/ edited text that can be directly saved. This
could overcome the challenge of getting people to resolve the tasks.

Cron job frequency can be varied and tested for different frequencies in order to
determine its optimized frequency.

The effectiveness of wiki as a medium for documentation has been already discussed
in the subsection 4.1.3 and hence proves the idea behind its intended purpose.

Experience viewpoint - This viewpoint for evaluation provides critical assessment
based on the experience of the stakeholders in the role of Mediawiki developers and
document writers.

1. What can be the problems in enforcement of a strict process?
A1 : Ignorance of community members with respect to documentation update
Pile-up of Phabricator tasks without being assigned/ worked on/ closed.
No action being taken on text files to avoid tasks being created.
Community members find ways to bypass the activities of DocBot
If too many architectural components are present for which text files exist then
assigning module owners for each area might be difficult.
A2 : Enforcement in a volunteer-centric community can be ensured only if the
solution is easy and useful.

2. Is the strict documentation process adoptable in the current socio-technical
environment of the Mediawiki community?
A1 : Hard to generalize !
Some module owners are conscientious and may take on the responsibility to
maintain the text files.
Others may be less bound to their responsibility.
A2 : Adoptable, if the process is not "too strict"

3. Is there a scope to define "document maintainer" activities and assign these

69

6. Evaluation

responsibilities to existing Roles of Developer/ Architect?
A1 : Possible, as the DocBot will assist them in their maintenance activity and
make their job easier.
A2 : With Wikimedia Foundation undergoing a major restucturing, it may be the
best or the worst time to adopt a new defined Role.

4. Does the implementation of this process require huge efforts in terms of re-
quired resources - personnel and time?
A1 : No, its doable (initial work required only on 20 text files that correspond to
the identified architectural component)
A2 : Future scope (extension of this thesis work): to implement and measure the
effort required.

5. Can that effort be estimated ?
A1 : No ! Not via survey!
A2 : Everything can be estimated, but no estimate is correct !

6. Is the need of this process equatable to the estimated effort? What precedes -
need or effort?
A1 : Priority is not very high. Need of software architecture documentation is
prime requirement of all complex and good software (whether OSS or not).
Effort is huge as documentation of a ten year old complex software architecture
is already old and un-maintained.
A2 : Its hard or impossible to decide.

Rationale/ Discussion : The challenges faced with process improvement within the
socio-technical scope is the target of this thesis work. There is always a scope to improve
the process and tailor it to the needs of the community. The challenges pointed above
are human and behavioral aspects that can be handled using activities like training and
leadership effectiveness [64].

When comparing need versus effort it is always important to understand the will-
ingness of the community members to accept and adopt a change (as discussed in the
section 4.3). Thus, when equated to the complexity of the evolutionary software, any
activity (solution) that is easy and assists the need for maintenance of its architecture
documentation, is undoubtedly well-desired and worth the effort

6.2.2. Limitations of the Concept and proposed Solution

Every new concept or process improvement brings along certain limitations that may
pose challenges in the face of its intended usefulness and effectiveness. The following

70

6. Evaluation

points are few such limitations that were identified during the review phase.

• Mandatory : There is no way to "automatically mandate" the condition where
the system is aware that when an architectural component is developed, the
corresponding text file is updated by the developer.

• Obligatory : The process obligates conscientious human effort for maintenance.
This may sometimes pose hindrance in the introduction and application of process
improvement.

• Supervisory : In most software engineering projects, motivation and supervision
is required from the technical management for implementation of an improved
process. In case of Mediawiki OSS that is a community-oriented organizational
structure, this hierarchy is hard to set. Practicing managerial activities is hard in
such a community environment. Thus, lack of push may result in deviation from
responsibility.

6.3. Analysis of Successful Process Improvement

The improved software architecture documentation process of Mediawiki provides
an analysis that evaluates process improvement in general and its implications with
respect to documentation within open source community. T. Dyba [13] in his empirical
investigation, identifies the importance of management roles and activities for improv-
ing organizational performance. This relates to any process in general that needs to be
enforced/ practiced within an organization.
Figure 6.1 identifies the variables that can be used to evaluate the software process
improvement success. We can evaluate the proposed concept and implemented solution
for software architecture documentation process improvement based on some of these
variables.

71

6. Evaluation

Figure 6.1.: Understanding factors that effect process improvement [13].

Independent Variables :

• Knowledge sharing is the key motivation for documentation which positively
evaluates the topic itself and also the proposed solution based on the variables
“Exploitation of existing and exploration of new knowledge”

• The community structure in OSS including Mediawiki supports individual par-
ticipation and contribution in the best possible way. The process of software
architecture documentation targets all individuals within the community, thus,
securing a positive process improvement based on the variable “Employee Partici-
pation”.

• As stated in the previous point, the community structure supports effective
collaboration with more emphasis on developing rather than selling. In case of
documentation process improvement this community structure effects negatively
on the variables “Business Orientation and Involved Leadership”. As stated
previously as a limitation, it is clear that motivation and strategic management are
self-driven and not enforced within OSS, leading to inadequacy within process
orientation.

Moderating Variables :

In case of Mediawiki’s software process, the “organizational size” matters in terms
of its complex socio-technical structure. This variable is not only an impetus for the
idea of improved documentation process but also an evaluation point to assess its effec-
tiveness and usefulness within the community. As this organization is a community of

72

6. Evaluation

developers, a well-structured architecture documentation and maintenance process is
very highly desirable and acceptable.

Dependent Variables :

“SPI Success” has been perceived, reviewed and assessed theoretically in the previous
section. In practice, this implementation needs to be adopted and monitored over a
period of time in order prove its efficacy for OSS in general and Mediawiki in particular.

This chapter successfully evaluates and critically supports the motive and reason
behind the suggested solution. The next chapter provides the concluding remarks
to positively support the implication of this thesis work.

73

7. Conclusion

7.1. Answer to Research Questions

The ultimate goal of the thesis work is to answer the research questions that were
initially formulated with the intention of finding relevant and satisfactory answers
to them. In this concluding chapter the materialization of a concept helps to answer
those research questions. The Table 7.1 points to those answers within the scope of this
document.

7.2. Challenges

As this research paper comes to an end it is important to list the implications of this
work. In this regard, it is also important to throw light upon some inherent challenges
that may not be overcome as a part of the solution.

• Acceptance within community - It is hard to predict and even harder to deter-
mine the acceptability of a new process within a community that is more oriented
towards product delivery rather than process orientation.

• Socio-behavioral aspects of OSS community - Open Source Software community
is not a standard organizational structure and is governed by a complex socio-
technical environment that is non-cohesive and loosely-driven. Thus process
improvement may not prove to be sustainable over a long period of time.

• Technical aspects - A ten year old wiki engine is comparable to a legacy system
that may already be too difficult to clean up. For the purpose of software architec-
ture documentation, the complexity of code and lack of previous documentation
will pose challenge during the creation of new documents.

7.3. Benefits of implemented solution

As listed and explained in section 4.3 of this thesis the conceptualized solution and
its implementation have several highlighting features that establish its usefulness and
effectiveness as an improved process. The concept proves its benefits in terms of the

74

7. Conclusion

Table 7.1.: Providing answers to the Research Questions

Requirement Research Questions Solution

RQ1
How SAD process can be im-
proved for Mediawiki S/W ?

The chapter 4 on Conceptualization
and chapter 5 on Implementation
elaborates the idea behind an im-
proved SAD process for Mediawiki

RQ2

What state-of-the-art docu-
mentation processes are avail-
able in the industry that can
meet OSS community require-
ments?

The literature survey in chapter 3
identifies the already established
processes and helps to build on
ideas for the concept derived in
Chapter 4

RQ3
What are the metrics of eval-
uation of SAD and how can
quality of SAD be assured ?

Chapter 6 on evaluation captures
the quality measurement details of
the improved process

RQ4

What specific requirements
of Mediawiki stakeholders
should be met by the im-
proved documentation pro-
cess ?

Chapter 2 on requirement analysis
covers these requirements and the
chapter 4 explains how to imple-
ment them.

75

7. Conclusion

Review imperative, Process Maturity and Community orientation.

The subsection 5.3.3 lists the capabilities of the Bot in terms of its functionality and
broad scope for documentation maintenance assistance. Apart from the basic imple-
mentation the Bot is capable of many more extended features that could be molded
according to the preferences of the developers / architects / area maintainers.

The subsection 5.3.4 highlights some of the distinguishing advantages of using the
Bot-maintainer concept which assists human maintainers to manage documentation
tasks.

7.4. Concluding Remarks

A sincere effort has been made in this thesis work to understand the Mediawiki software
architecture documentation deficits and its maintenance needs in order to improve
the process of documentation. This work’s implication is not just limited to prove its
requirement and use within the Mediawiki community but also reaches out far to find
application for a maintainable documentation process in the Open Source Software
community. With extensive study of existing processes within the community, the
improved documentation process has been tailored to not only meet the requirements
of the community stakeholders but also provide a solution that is coherent with the
existing processes and systems. The implementation and its evaluation portrays that
the goals have been achieved and further improvements to this basic solution can be
realized and adopted in order to attain a novel solution for an improved software
architecture documentation process.

Since a process-oriented solution cannot be empirically measured for perfectness
without practicing it over a period of time, its applicability and correctness can only
be qualitatively measured through assessment and review. This evaluation has been
successfully measured based on past experience and knowledge of the community
stakeholders. Thorough critical assessment has proved that the expectations of stake-
holders have been met in terms of process requirements and its implications on the
existing system and process have been successful. This goes a long way to validate the
fact that process improvement (documentation process) is possible within the socio-
technical limitations of Mediawiki community and within the broader scope of open
source communities.

76

Part IV.

Addendum

77

A. Implementation(code) and Results

A.1. Basic code snippet

#!/usr/bin/python

-*- coding: utf-8 -*-

(C) SEBIS TUM, 2015

import sys

import json

import difflib

import filecmp

import argparse

import datetime

import os

import pywikibot

from phabricator import Phabricator

from wmfphablib import Phab as phabmacros # Cleaner (?), see wmfphablib/

phabapi.py

from wmfphablib import config

from git import Git

class Docbot:

def __init__(self):

parser = argparse.ArgumentParser()

parser.add_argument("-p", "--page", type=lambda s: unicode(s, sys.

stdin.encoding),

required=True, help="component to be read and

compared")

parser.add_argument("-pp", "--phab_project", type=lambda s:

unicode(s, sys.stdin.encoding),

required=True, help="name of Phabricator project

for imported tasks")

78

A. Implementation(code) and Results

self.args = parser.parse_args()

self.set_page()

with open('settings.json') as data_file:

self.data = json.load(data_file)

def set_page(self):

self.site = pywikibot.Site()

page_title = self.args.page

self.page = pywikibot.Page(pywikibot.Link(page_title, self.site))

def set_task(self, title):

global p_id

phab = Phabricator(config.phab_user,

config.phab_cert,

config.phab_host)

phab.update_interfaces()

phabm = phabmacros('', '', '')

phabm.con = phab

phab_project_name = self.args.phab_project

DEBUG to verify the API connection worked:

pywikibot.output(u"API connection details : %s " % phab.user.

whoami())

response = phab.project.query(names=[phab_project_name])

for proj_info in response.data.values():

if proj_info["name"] == phab_project_name:

pywikibot.output(u"Phabricator project %s has PHID %s" % (

phab_project_name, proj_info["phid"]))

p_id = proj_info["phid"]

taskinfo = {

'title': 'update document : ' + title,

'description': 'documentation mismatch in mediawiki.org page

and source code',

'ownerPHID': None,

'ccPHIDs': [],

'projectPHIDs': [p_id],

'auxiliary': None

}

ticket = phab.maniphest.createtask(

title=taskinfo['title'],

79

A. Implementation(code) and Results

description=taskinfo['description'],

projectPHIDs=taskinfo['projectPHIDs'],

ownerPHID=taskinfo['ownerPHID'],

ccPHIDs=taskinfo['ccPHIDs'],

auxiliary=taskinfo['auxiliary']

)

pywikibot.output(u"Created task: T%s (%s) " % (ticket['id'],

ticket['phid']))

def run(self):

global text, fp1, fn1, fp2, fn2, f, fn, days_diff, d1, d2

g = Git(self.data["mediawiki"])

pull_resp = g.pull()

pywikibot.output(u"git response %s" % pull_resp)

if 'error' in pull_resp:

pywikibot.output(u"could not pull changes")

return

else:

self.site.login()

try:

text = self.page.get()

title = self.page.title()

except pywikibot.NoPage:

pywikibot.output(u"Page %s does not exist; skipping." %

self.page.title(asLink=True))

except pywikibot.IsRedirectPage:

pywikibot.output(u"Page %s is a redirect; skipping." % self.

page.title(asLink=True))

else:

fn1 = os.path.join(self.data["readPages"], title)

fp1 = open(fn1, 'r+')

fp1.write(text)

fn2 = os.path.join(self.data["mediawiki"], 'docs', title.

lower())

fp2 = open(fn2, 'r')

result = filecmp.cmp(fn1, fn2, shallow=False)

if result:

pywikibot.output(u"no change")

80

A. Implementation(code) and Results

else:

pywikibot.output(u"text diff")

pywikibot.output(u"mediawiki page \" %s \" last

modified by \" %s \" at timestamp \" %s \"" % (

title, self.page.latest_revision.user, self.page.

latest_revision.timestamp))

d1 = datetime.datetime.date(datetime.datetime.now())

d2 = datetime.datetime.date(self.page.latest_revision.

timestamp)

days_diff = d1 - d2

if (days_diff.days > 5):

create a list of lines in text1

text1_contents = text.splitlines(True)

with open(fn2, "r") as file2:

file2_contents = file2.readlines()

diff_instance = difflib.Differ()

diff_list = list(diff_instance.compare(

text1_contents, file2_contents))

pywikibot.output(u"Lines different in mediawiki.org

and source files")

fn = os.path.join(self.data["logs"], title)

f = open(fn, 'w')

for line in diff_list:

if line[0] == '-':

f.write(line),

f.close()

self.set_task(title)

fp1.close()

fp2.close()

def main():

app = Docbot()

app.run()

if __name__ == "__main__":

main()

81

A. Implementation(code) and Results

A.2. Test scenario results

Execution of the script: The script is executed as a python script. Figure A.1 is
a screenshot of the script execution in the virtual environment by specifying the
parameters : "-p" for the page name (text-file) and "-pp" for the Phabricator Project
name.

Figure A.1.: Executing docbot.py by specifying its parameters.

1. Scenario 1 : Pull from Git

Figure A.2.: Docbot pulls the latest source code from git master repository of Mediawiki.

82

A. Implementation(code) and Results

2. Scenario 2 : Read the wiki text and write into a file for comparison

Figure A.3.: Docbot reads and writes the pages from Mediawiki.org into a file.

3. Scenario 4 : Check revision history

Figure A.4.: Docbot checks the latest update and creates Phab task.

4. Scenario 5 : Creation of Phabricator task

83

A. Implementation(code) and Results

Figure A.5.: Phabricator Dashboard view of the tasks.

Figure A.6.: Task created by docbot.py under the "Software Architecture Documenta-
tion" project.

84

B. Mediawiki Details

. Some screen-shots from Mediawiki software and its details for implementation and
use

Figure B.1.: Mediawiki source code structure and configuration file.

85

B. Mediawiki Details

Figure B.2.: Main page of the local Mediawiki installation.

Figure B.3.: User configuration python file for Mediawiki Pywikibot installation.

86

List of Figures

1.1. The PDCA (Plan-Do-Check-Act) Paradigm /citeGorschek2006 3

2.1. Documentation available for software architecture levels 7
2.2. Current software maintenace process Sequence diagram 10
2.3. Current documentation process Sequence diagram 11

3.1. Literature Survey strategy [63] . 16
3.2. ALM process and roles [4] . 20
3.3. Statistical evaluation of Documentation process/ modes in Open source

communities . 22
3.4. "4+1" Unified View of the Software Architecture [26] 24

4.1. Mediawiki code statistics [43] . 30
4.2. Auto-generated doxygen documentation 31
4.3. Mediawiki Software Process including Documentation process 33
4.4. Use-case scenarios explaining user roles and tasks 36
4.5. The sphere of Maintainer’s roles and responsibilities 40
4.6. Defining distinct roles and responsibilities in a process 44
4.7. Introducing the doumentation maintenance BOT in the Mediawiki soft-

ware process . 46
4.8. Maintenace Bot Sequence diagram . 48
4.9. Dimensions of documentation process features 49

5.1. Component Diagram of the Maintenance BOT 54
5.2. State Diagram of the Maintenance BOT 55
5.3. Mediawiki Software deployment process 59
5.4. Deployment Diagram of the Maintenance BOT 63

6.1. Understanding factors that effect process improvement 72

A.1. Executing docbot.py by specifying its parameters 82
A.2. Docbot pulls the latest source code from git master repository of Mediawiki 82
A.3. Docbot reads and writes the pages from Mediawiki.org into a file 83

87

List of Figures

A.4. Docbot checks the latest update and creates Phab task 83
A.5. Phabricator Dashboard view of the tasks 84
A.6. Task created by docbot.py under the "Software Architecture Documenta-

tion" project . 84

B.1. Mediawiki source code and configuration file 85
B.2. Main page of the local Mediawiki installation 86
B.3. User configuration python file for Mediawiki Pywikibot installation . . 86

88

List of Tables

4.1. Maintenance of documentation in different user scenarios 37
4.2. Comparing wiki-documents and Version-controlled documentation . . 38
4.3. Comparing "Categories" and "Namespaces" for documentation pages

categorization . 39
4.4. Comparing "Human-maintainer" role and "BOTs" for documentation

maintenance responsibility . 41
4.5. Comparing "Mediawiki extensions" and "BOTs" for documentation main-

tenance activity . 42

7.1. Providing answers to the Research Questions 75

89

Bibliography

[1] S. A. Ajila and D. Wu. “Empirical study of the effects of open source adoption on
software development economics.” In: Journal of Systems and Software 80.9 (Sept.
2007), pp. 1517–1529. issn: 01641212. doi: 10.1016/j.jss.2007.01.011.

[2] API:MainPage. url: https://www.mediawiki.org/wiki/API:Main_page.

[3] API:Tutorial. url: https://www.mediawiki.org/wiki/API:Tutorial.

[4] “Application Lifecycle Management.” English. In: Pro Visual Studio Team System
Application Lifecycle Management. Apress, 2009, pp. 23–41. isbn: 978-1-4302-1080-1.
doi: 10.1007/978-1-4302-1079-5_2.

[5] F. Bachmann, L. Bass, P. Clements, D. Garlan, J. Ivers, M. Little, P. Merson, R.
Nord, and J. Stafford. Documenting Software Architectures: Views and Beyond. Second.
Addison-Wesley Professional, 2010.

[6] F. Bachmann, P. Merson, S. Architecture, T. Initiative, and T. N. Cmu. “Experience
Using the Web-Based Tool Wiki for Architecture Documentation.” In: Technology
September (2005). issn: 1548-8837, 1548-8837.

[7] P. Berander, L.-o. Damm, J. Eriksson, T. Gorschek, K. Henningsson, P. Jönsson,
S. Kågström, D. Milicic, F. Mårtensson, K. Rönkkö, P. Tomaszewski, L. Lundberg,
M. Mattsson, and C. Wohlin. “Software quality attributes and trade-offs.” In: June
(2005), pp. 1–100.

[8] L. Briand. “Software documentation: how much is enough?” In: Seventh European
Conference onSoftware Maintenance and Reengineering, 2003. Proceedings. (2003). issn:
1534-5351. doi: 10.1109/CSMR.2003.1192406.

[9] e. a. Crouch Stephen. The Software Sustainability Institute. Computing in Science &
Engineering , vol.15, no.6, pp.74,80, . Dec. 2013. url: http://www.software.ac.
uk/.

[10] Developers/Maintainers. 2014. url: https://www.mediawiki.org/wiki/Developers/
Maintainers.

90

http://dx.doi.org/10.1016/j.jss.2007.01.011
https://www.mediawiki.org/wiki/API:Main_page
https://www.mediawiki.org/wiki/API:Tutorial
http://dx.doi.org/10.1007/978-1-4302-1079-5_2
http://dx.doi.org/10.1109/CSMR.2003.1192406
http://www.software.ac.uk/
http://www.software.ac.uk/
https://www.mediawiki.org/wiki/Developers/Maintainers
https://www.mediawiki.org/wiki/Developers/Maintainers

Bibliography

[11] W. Ding, P. Liang, A. Tang, H. V. Vliet, and M. Shahin. “How Do Open Source
Communities Document Software Architecture: An Exploratory Survey.” In: 2014
19th International Conference on Engineering of Complex Computer Systems. Aug. 2014,
pp. 136–145. isbn: 978-1-4799-5482-7. doi: 10.1109/ICECCS.2014.26.

[12] F.-W. Duijnhouwer and C. Widdows. “Open Surce Maturity Model.” In: Capgemini
Expert Letter August (2003), p. 18.

[13] T. Dyba. “An empirical investigation of the key factors for success in software
process improvement.” In: IEEE Transactions on Software Engineering 31.5 (2005),
pp. 410–424. issn: 0098-5589. doi: 10.1109/TSE.2005.53.

[14] Eclipse. 2013. url: https://eclipse.org/projects/dev_process/development_
process.php.

[15] D. Employee, O. Programs, and D. Ministers. “Employee Orientation Program
Guidelines Purpose.” In: (), pp. 1–5.

[16] A. Fuggeffa, A. Fuggetta, and P. Milano. “Software Process : A Roadmap Software
Process : A Roadmap.” In: 97 (1988).

[17] D. Garlan and M. Shaw. “Software Architecture: Reflections on an Evolving
Discipline.” In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering (2011), p. 2. doi: 10.
1145/2025113.2025116.

[18] Gerrit. url: https://code.google.com/p/gerrit.

[19] GitPython. url: https://pypi.python.org/pypi/GitPython.

[20] B. Golden. “Open Source in the Enterprise : From Invisible to Transparent The
Litany of Enterprise Open Source Complaints.” In: (2006).

[21] T. Gorschek. “The Economics of Success Evaluation and Measures in Software
Process Improvement.” In: Development (2006).

[22] Help:Protected pages. url: https://www.mediawiki.org/wiki/Help:Protected_
pages.

[23] IRChelp. url: http://www.irchelp.org/.

[24] A. J. Kim. Community Building on the Web: Secret Strategies for Successful Online
Communities. 1st. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2000. isbn: 0201874849.

[25] P. Kruchten. “Contextualizing agile software development.” In: Journal of Software:
Evolution and Process 25.4 (2013), pp. 351–361. issn: 2047-7481. doi: 10.1002/smr.
572.

91

http://dx.doi.org/10.1109/ICECCS.2014.26
http://dx.doi.org/10.1109/TSE.2005.53
https://eclipse.org/projects/dev_process/development_process.php
https://eclipse.org/projects/dev_process/development_process.php
http://dx.doi.org/10.1145/2025113.2025116
http://dx.doi.org/10.1145/2025113.2025116
https://code.google.com/p/gerrit
https://pypi.python.org/pypi/GitPython
https://www.mediawiki.org/wiki/Help:Protected_pages
https://www.mediawiki.org/wiki/Help:Protected_pages
http://www.irchelp.org/
http://dx.doi.org/10.1002/smr.572
http://dx.doi.org/10.1002/smr.572

Bibliography

[26] P. Kruchten. “Documentation of Software Architecture from a Knowledge Man-
agement Perspective – Design Representation.” In: Software Architecture Knowl-
edge Management. Ed. by M. Ali Babar, T. Dingsøyr, P. Lago, and H. van Vliet.
Springer Berlin Heidelberg, 2009. Chap. 3, pp. 39–57. isbn: 978-3-642-02373-6. doi:
10.1007/978-3-642-02374-3_3.

[27] P. Kruchten. “What do software architects really do?” In: Journal of Systems and
Software 81.12 (Dec. 2008), pp. 2413–2416. issn: 01641212.

[28] M. Lavallée and P. N. Robillard. “Do software process improvements lead to
ISO 9126 architectural quality factor improvement.” In: Proceedings of the 8th
international workshop on Software quality WoSQ 11 (2011), pp. 11–17. doi: 10.1145/
2024587.2024592.

[29] Manual:Bots. url: https://www.mediawiki.org/wiki/Manual:Bots.

[30] Manual:Coding conventions. url: https://www.mediawiki.org/wiki/Manual:
Coding_conventions.

[31] Manual:CodingConvention. url: https://www.mediawiki.org/wiki/Manual:
Coding_conventions#Documentation.

[32] Manual:Extensions. url: https://www.mediawiki.org/wiki/Manual:Extensions.

[33] Manual:Installation Guide. url: https://www.mediawiki.org/wiki/Manual:
Installation_guide#Main_installation_guide.

[34] Manual:Pywikibot. url: https://www.mediawiki.org/wiki/Manual:Pywikibot.

[35] Mediawiki-core. url: https://doc.wikimedia.org/mediawiki-core/master/php.

[36] Mediawikidocumentation. url: https://www.mediawiki.org/wiki/Documentation.

[37] Mediawiki.org. url: https://www.mediawiki.org/wiki/MediaWiki.

[38] T. Mens and M. Goeminne. “Analysing the evolution of social aspects of open
source software ecosystems.” In: Proc. 3rd Int. Workshop on Software Ecosystems
(2011), pp. 1–14.

[39] F. Michel. “A Structured Task-Centered Framework for Online Collaboration.” In:
(2014).

[40] M. Michlmayr, F. Hunt, and D. Probert. “Quality Practices and Problems in Free
Software Projects.” In: Proceedings of the First International Conference on Open
Source Systems. Ed. by M. Scotto and G. Succi. Genova, Italy, 2005, pp. 24–28.

[41] a. Mockus, R. T. Fielding, and J. Herbsleb. “A case study of open source software
development: the Apache server.” In: Proceedings of the 2000 International Conference
on Software Engineering ICSE 2000 the New Millennium (2000), pp. 263–272. issn:
02705257. doi: 10.1109/ICSE.2000.870417.

92

http://dx.doi.org/10.1007/978-3-642-02374-3_3
http://dx.doi.org/10.1145/2024587.2024592
http://dx.doi.org/10.1145/2024587.2024592
https://www.mediawiki.org/wiki/Manual:Bots
https://www.mediawiki.org/wiki/Manual:Coding_conventions
https://www.mediawiki.org/wiki/Manual:Coding_conventions
https://www.mediawiki.org/wiki/Manual:Coding_conventions#Documentation
https://www.mediawiki.org/wiki/Manual:Coding_conventions#Documentation
https://www.mediawiki.org/wiki/Manual:Extensions
https://www.mediawiki.org/wiki/Manual:Installation_guide#Main_installation_guide
https://www.mediawiki.org/wiki/Manual:Installation_guide#Main_installation_guide
https://www.mediawiki.org/wiki/Manual:Pywikibot
https://doc.wikimedia.org/mediawiki-core/master/php
https://www.mediawiki.org/wiki/Documentation
https://www.mediawiki.org/wiki/MediaWiki
http://dx.doi.org/10.1109/ICSE.2000.870417

Bibliography

[42] J. Münch, O. Armbrust, M. Kowalczyk, and M. Soto. Software Process Definition
and Management. Springer Science & Business Media, 2012.

[43] openhubMediawiki. url: https://www.openhub.net/p/mediawiki.

[44] Phabricator. url: http://phabricator.org/.

[45] phabricatorConduitAPI. url: https://secure.phabricator.com/book/phabdev/
article/conduit/.

[46] PhabricatorMediawikidocumentation. url: https://phabricator.wikimedia.org/
tag/mediawiki-documentation/.

[47] Phabricator-tools. url: https://github.com/wikimedia/phabricator-tools.

[48] PhabricatorWikimedia. 2014. url: http://blog.wikimedia.org/2014/11/24/
welcome-to-phabricator-wikimedias-new-collaboration-platform/.

[49] phabwmflabs. url: https://phab-01.wmflabs.org.

[50] Project:Bots. Oct. 2007. url: https://www.mediawiki.org/wiki/Project:Bots.

[51] Project:PDHelp. url: https://www.mediawiki.org/wiki/Project:PD_help.

[52] PythonPhabricator. url: https://pypi.python.org/pypi/phabricator.

[53] QSOS. url: http://www.qsos.org/.

[54] W. Scacchi. Architectural Issues. Vol. 69. Advances in Computers. Elsevier, 2007,
pp. 243–295. isbn: 9780123737458. doi: 10.1016/S0065-2458(06)69005-0.

[55] W. Scacchi. “Socio-Technical Interaction Networks in Free/Open Source Software
Development Processes.” English. In: Software Process Modeling. Ed. by S. Acuña
and N. Juristo. Vol. 10. International Series in Software Engineering. Springer US,
2005, pp. 1–27. isbn: 978-0-387-24261-3. doi: 10.1007/0-387-24262-7_1.

[56] W. Scacchi, J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani. “Understanding
free/open source software development processes.” In: Software Process Improve-
ment and Practice 11 (2006), pp. 95–105. issn: 10774866. doi: 10.1002/spip.255.

[57] SCAMPI Team. “Standard CMMI Appraisal Method for Process Improvement
(SCAMPI) Version 1.3a: Method Definition Document for SCAMPI A, B, and C.”
In: March (2013).

[58] M. Shahin, P. Liang, and M. A. Babar. “A systematic review of software archi-
tecture visualization techniques.” In: Journal of Systems and Software 94 (2014),
pp. 161–185. issn: 01641212. doi: 10.1016/j.jss.2014.03.071.

93

https://www.openhub.net/p/mediawiki
http://phabricator.org/
https://secure.phabricator.com/book/phabdev/article/conduit/
https://secure.phabricator.com/book/phabdev/article/conduit/
https://phabricator.wikimedia.org/tag/mediawiki-documentation/
https://phabricator.wikimedia.org/tag/mediawiki-documentation/
https://github.com/wikimedia/phabricator-tools
http://blog.wikimedia.org/2014/11/24/welcome-to-phabricator-wikimedias-new-collaboration-platform/
http://blog.wikimedia.org/2014/11/24/welcome-to-phabricator-wikimedias-new-collaboration-platform/
https://phab-01.wmflabs.org
https://www.mediawiki.org/wiki/Project:Bots
https://www.mediawiki.org/wiki/Project:PD_help
https://pypi.python.org/pypi/phabricator
http://www.qsos.org/
http://dx.doi.org/10.1016/S0065-2458(06)69005-0
http://dx.doi.org/10.1007/0-387-24262-7_1
http://dx.doi.org/10.1002/spip.255
http://dx.doi.org/10.1016/j.jss.2014.03.071

Bibliography

[59] M. Shahin, P. Liang, and M. R. Khayyambashi. “Architectural design decision:
Existing models and tools.” In: 2009 Joint Working IEEE/IFIP Conference on Software
Architecture & European Conference on Software Architecture (2009), pp. 293–296. doi:
10.1109/WICSA.2009.5290823.

[60] M. Soto and M. Ciolkowski. “The QualOSS open source assessment model
measuring the performance of open source communities.” In: Empirical Software
Engineering and Measurement, 2009. ESEM 2009. 3rd International Symposium on.
Oct. 2009, pp. 498–501. doi: 10.1109/ESEM.2009.5314237.

[61] I. Standard. INTERNATIONAL STANDARD ISO / IEC. Vol. 2007. 2007. isbn:
0738125180.

[62] Third-partyMediawikiUsersDiscussion. url: https://www.mediawiki.org/wiki/
Third-party_MediaWiki_users_discussion.

[63] M. Unterkalmsteiner, T. Gorschek, a. K. M. M. Islam, C. K. Cheng, R. B. Permadi,
and R. Feldt. “Evaluation and Measurement of Software Process Improvement -
A Systematic Literature Review.” In: IEEE Transactions on Software Engineering X
(2011), pp. 1–29. issn: 00985589. doi: 10.1109/TSE.2011.26.

[64] D. Viana, T. Conte, D. Vilela, C. de Souza, G. Santos, and R. Prikladnicki. The
influence of human aspects on software process improvement: qualitative research findings
and comparison to previous studies. 2012. doi: 10.1049/ic.2012.0015.

[65] WikimediaLabs. url: https://www.mediawiki.org/wiki/Wikimedia_Labs.

[66] M.-w. Wu and Y.-d. Lin. “Open Source Software Development : An Overview.”
In: June (2001), pp. 33–38.

[67] Xwiki. Jan. 2014. url: http://www.xwiki.org/xwiki/bin/view/Main/WebHome.

[68] S. Yeates. OSSWatch. June 2008. url: http://oss-watch.ac.uk/resources/
archived/documentation.

[69] L. Zhao and S. Elbaum. “Quality assurance under the open source development
model.” In: Journal of Systems and Software 66.1 (Apr. 2003), pp. 65–75. issn:
01641212. doi: 10.1016/S0164-1212(02)00064-X.

94

http://dx.doi.org/10.1109/WICSA.2009.5290823
http://dx.doi.org/10.1109/ESEM.2009.5314237
https://www.mediawiki.org/wiki/Third-party_MediaWiki_users_discussion
https://www.mediawiki.org/wiki/Third-party_MediaWiki_users_discussion
http://dx.doi.org/10.1109/TSE.2011.26
http://dx.doi.org/10.1049/ic.2012.0015
https://www.mediawiki.org/wiki/Wikimedia_Labs
http://www.xwiki.org/xwiki/bin/view/Main/WebHome
http://oss-watch.ac.uk/resources/archived/documentation
http://oss-watch.ac.uk/resources/archived/documentation
http://dx.doi.org/10.1016/S0164-1212(02)00064-X

	Acknowledgments
	Abstract
	Introduction
	Introduction
	Motivation
	About the Topic
	Process Improvement in General
	Getting to the thesis topic

	Research scope
	Reader's guide

	Research Questions
	Initial Hypothesis
	Research Questions
	Current state-of-art
	Software Architecture Documents
	Software Process
	Documentation Process

	Problems
	Maintainability
	Roles and Responsibilities
	Availability and Management

	Requirement Analysis
	Stakeholders
	Meetings / Interactive Sessions

	Literature Survey
	Research Methodology
	Literature Survey plan
	Some Important Concepts

	Points from Literature
	Improved Documentation Process
	Current Industrial State-of-the-Art
	Evaluation and quality assurance of Documentation Process
	Stakeholder Requirement Satisfaction

	Idea Generation

	Thesis Contribution
	Conceptualization
	Idea Generation and Evolution
	Preparatory Tasks
	Identifying Use case scenarios
	Assessing the Initial ideas

	Improved Documentation Process
	Roles and Responsibility definition and co-ordination
	Document Maintenance Bot - A proof of concept
	Guidelines for the process implementation and orientation

	Dimensions of the Improved Documentation Process

	Implementation
	Assumptions
	Architecture and Technical outline
	BOT architectural components
	Details of the Implementation

	Bot in Action
	Test Scenarios
	Deployment
	Inherent capabilities of the Bot
	Bot's advantageous feature

	Future implementation and General Implications

	Evaluation and Conclusion
	Evaluation
	Evaluation
	Review Questions
	Community-related quality metrics
	Measure the success of the implemented solution

	Assessment through Review and Discussions
	Critical Assessment
	Limitations of the Concept and proposed Solution

	Analysis of Successful Process Improvement

	Conclusion
	Answer to Research Questions
	Challenges
	Benefits of implemented solution
	Concluding Remarks

	Addendum
	Appendix Implementation(code) and Results
	Basic code snippet
	Test scenario results

	Appendix Mediawiki Details
	List of Figures
	List of Tables
	Bibliography

