
Towards a Continuous Feedback Loop for
Service-oriented Environments

Martin Kleehaus
Chair for Informatics 19

Technische Universität München (TUM)
D-85748, Garching, Germany

Ömer Uludağ
Chair for Informatics 19

Technische Universität München (TUM)
D-85748, Garching, Germany

Florian Matthes
Chair for Informatics 19

Technische Universität München (TUM)
D-85748, Garching, Germany

Abstract—Agile software engineering practices aim at unifying
software development (Dev) and software operation (Ops) in
order to quickly release new software and gather feedback on
new features in the latest version. The feedback loop gets closed
mostly after new releases are deployed to production. During
development, engineers do not receive feedback whether their
changes are still aligned with the requirements and the formalized
concept. This increases the risk of removing implemented code
and decreases productivity. In this paper, we propose a tool for
closing the feedback loop after each continuous deployment stage
i.e. development, test and production. The continuous feedback
is provided via a dependency model that represents the current
software architecture on early stages. Hereby, each deployment
phase and final release are compared against each other in
order to uncover inconsistencies in regard to the predefined
requirements.

Index Terms—devops, agile, feedback loop, continuous deliv-
ery, continuous delivery pipeline, continuous deployment, mi-
croservice, monitoring, architecture discovery, service discovery,
distributed tracing, application performance monitoring

I. INTRODUCTION

Continuous delivery [1] is considered as an emerging
paradigm that aims to significantly shorten software release
cycles by bridging existing gaps between developers, opera-
tors, and other stakeholders involved in the delivery process.
A prerequisite to establish continuous delivery, is a high
degree of technical automation. This is typically achieved by
implementing an automated continuous delivery pipeline (also
known as deployment pipeline) [2], covering all required steps
such as retrieving code from a repository, building packaged
binaries, running tests, and deployment to production. Such an
automated and integrated delivery pipeline improves software
quality, e.g., by avoiding the deployment of changes that did
not pass all tests.

In most concepts the continuous feedback loop is used to
learn and respond to customer needs. It is mostly triggered
after a new release is deployed to production. However,
observations [2] indicate that engineers performing frequent
deployments require more often and faster feedback on every
continuous deployment stage, like after the changes are tested
in the test or preproduction environment and deployed into
production. This would provide engineers valuable feedback
regarding their development is still aligned with the require-
ments and the architecture concept.

For instance, a big microservice based environment in-
volves many developers that change frequently the code of
each service. It must be ensured that after each deployment
from development to production environment no additional
differences emerge into architecture except the expected ones.
This risk is valid as not everything can be deployed in an
automated manner. Many steps are performed manually which
might introduce failures. In addition, the product owners (PO)
are also interested in getting notifications about significant
differences between the several environments as they are
responsible to approve the next release. Differences in version
of services, communication channels, hardware utilization,
performance KPIs amongst others might indicate, for instance,
a broken delivery pipeline.

Furthermore, developers might not understand the require-
ments collected by the product owner or the product vision
described by the customer. Hence, they deploy a wrong
solution which is only recognized after the first product review,
or during the planning of the next sprint. This has to be
identified very soon by the PO.

In this work, we introduce an automated architecture discov-
ery tool called MICROLYZE, which provides continuous feed-
back on each deployment stage by exposing the differences
between deployed architectures. Hereby, it can be quickly
reviewed if a new release was build correctly against the
requirements or not. The concept is illustrated in figure 1. MI-
CROLYZE consumes monitoring data from every deployment
stage and recreates the runtime architecture model of the whole
infrastructure in each environment. The recovered runtime
models are compared against each other in order to uncover
inconsistencies and validated against the planned architecture
model. This comparisons unveil 1) differences that might
exist between the deployment environments and 2) provides
information about the right services with the right changes are
deployed, 3) the developers understood the technical concept
and 4) the new release lead to the expected improvements.
Furthermore, the architecture is continuously documented and
made available for software engineers, architects and opera-
tors. In particular, the operator is supported in the investigation
of problems by the help of the documentation of the dynamic
microservice infrastructure. For instance, the operator detects
missing or broken communications between related services,
which might indicate the root cause of a failure. The following



Fig. 1: Process of the continuous feedback pipeline. After each
deployment stage the architecture is reconstructed based on
monitoring data and compared against the environments.

requirements were defined for the prototype:
• R1: The prototype must be able to recover all architecture

components which are relevant from a software archi-
tecture perspective. This includes clients (R1-1), services
(R1-2), databases (R1-3) and the hardware (R1-4)

• R2: The information which services are load balanced
• R3: The relationship between each component
• R4: How does the services communicate with each other,

i.e. synchronously or asynchronously.
• R5: The classes and methods which are called via the

exposed APIs.
• R6: The libraries which are included in each service
• R7: The recovered architecture can be exported in a

standard format
• R8: A comparison of the recovered architecture between

each deployment environment in order to uncover incon-
sistencies

• R9: The capability to create KPIs in order to measure the
performance in each environment

The remainder of the paper is organized as follows. Section
II recaps shortly the characteristics of modern microservice
infrastructures. Section III describes the layers and compo-
nents that are involved in the architecture recovery. Section
IV presents the technical details of the architecture recovery
approach. Section V describes how a comparison between the
runtime models can be achieved. Section VI and VII evaluate
the prototype and Section VII and IX close the paper with
related work, the limitations and future research.

II. MICROSERVICES

The popularity of microservice-based architectures is in-
creasing in many organizations, as this new software archi-
tecture style has many desirable properties from a DevOps
point of view. It introduces high agility, resilience, scala-
bility, maintainability, separation of concerns, and ease of

deployment and operation [3]. An important goal of DevOps
is to place new features in the hands of users faster. This
is a consequence of the greater amount of modularization
that microservices provide [4]. The benefits emphasize the
reason why over the last decade, leading software development
and consultancy companies (see [5] [6] [7]) have found this
software architecture to be an appealing approach that leads
to more productive teams in general and to more successful
software products.

Even though microservices release the rigid structure of
monolithic systems due to the independent deployment, this
style also introduces a high level of complexity. It is more
and more demanded to deploy new code quickly, while
guaranteeing reliability and effectiveness. As microservices
have more integration points between systems, they suffer
from a higher possibility of failure than monolithic systems.
It is possible to partially mitigate this problem by making an
effort to monitor the services and take appropriate action to
malfunctions. Hence, many different monitoring approaches
[8] [9] [10] and service discovery mechanisms [11] [12] are
developed that pull the status of services dynamically over
the network. This simplifies many aspects of tracking the
system, but lacks in connecting their obtained monitoring data
in order to achieve an integrated and holistic view of the
behavior and status of the whole microservice infrastructure
[13]. In addition, monitoring systems are mostly used in the
production environment in order to react quickly to production
failures. It is hardly considered to apply monitoring already in
the development and testing phase for documentation and in
particular architecture comparison in order to receive valuable
feedback through the delivery pipeline.

III. ARCHITECTURE MODEL

MICROLYZE reconstructs the microservice infrastructure
based on a multi-layer architecture model. This model divides
the infrastructure into three layers as proposed by many
Enterprise Architecture frameworks that emerged in the last
decades, like ArchiMate [14], Zachman [15], TOGAF [16],
amongst others. 1) the technology layer encompasses all
technological-related aspects and the environment in which
the services are running, like hardware. 2) the application layer
defines the particular software components that are deployed
into production. Services, services instances and databases are
assigned to the application layer. 3) the client layer operates on
top of the aforementioned layers and defines the user interface
and all related activities that a user performs and are processed
by the microservices.

The meta-model of the concept is illustrated in figure 2. It is
composed of 13 metaclasses whereas Environment is the root
node of the system being designed. The Environment deter-
mines the specific phase (test, preproduction, production) in
the continuous delivery pipeline from which the microservice
architecture is reconstructed. Component represents the parent
class from which each component subclass inherits. In the
following we describe the several components in more detail.



Fig. 2: Class diagram of the architecture discovery concept

A. Client

A client represents a specific front-end application. A client
consists of several activities that define user events which are
always processed by a sequence of related microservices in
the backend.

B. Service

A service is a logical unit that represents a particular
microservice application. According to the service type classi-
fication discussed by Richards [4], services can be classified in
either functional or infrastructural services. Infrastructure ser-
vices do not handle business logic and perform infrastructure
related tasks like gateway, load balancing, service discovery,
API management etc. Their interface are not exposed and
are treated as private shared services only available internally
to other services. Functional services are responsible for
processing the business logic and their interface are exposed
to external applications. They can forward the user requests to
other functional services in order to receive business relevant
information. The set of possible values of the ServiceType
enumeration allows to define a service as functional by as-
signing to the service the value functional, or implicitly define
the service as infrastructural by assigning to it one of the
remaining possible infrastructural value, which were extracted
according to the classification provided in [17].

We align the service layer to the reference architecture
proposed by Yu et al. [18]. Microservices normally comprises
three layers as a typical 3-tiered application, which consists of
an interface layer, business logic layer and a data persistence
layer:

• The interface layer contains all exposed API endpoints
that can be accessed by client application or by other

microservices and is represented in the metamodel as
ServiceAPI. In order to provide all APIs of a specific
service, a common interface is required to tell exactly
what each service is supposed to do. For that reason, the
interface are mostly documented via an API repository
like Swagger1 that is shared across the enterprise.

• The business logic implements the business functions,
computations and service integration logic. Many moni-
toring agents are able to analyze transactions in an aspect-
oriented way and extract the information which classes
and methods are called for processing a specific request
[19] [20]. We assign the MethodCalls to the exposed
service APIs, as they are only executed as soon as the
particular API endpoint is triggered.

• The persistence layer comprises all databases that are
accessed by the services. We define Database as an
own component as several services may share the same
database. Database is defined with the attributes URL,
port and database type like postgres, mysql, etc.

In addition to the 3-tiered architecture, we analyze the required
libraries in every service and store the information in the
Libraries class. The attributes describe the name of the used
package, its version and its author.

C. Service Instance

In contrast to services that form the logical unit of a
microservice, the service instance represents the real object of
this service. We introduce this separation as a logical service
that can own more service instances. This is often the case
when load balancing is applied. However, a service is always
represented by at least one instance. Instances are identified

1https://swagger.io/



by the used IP address and port but always contain the same
endpoint service name.

D. Component Revision

In order to provide developers and operators the capability
to compare different stages of the developed microservice
architecture within the delivery pipeline and between different
releases, we introduce the concept of component revisions. A
Revision is always assigned to a Component in the architecture
and describes it for a particular validity period as well as in
which Environment it was discovered. If the system recognizes
a change in the component like the service was removed,
a new service was introduced, the list of exposed interfaces
was extended, the used libraries were changed, the database
was replaced, etc. the current revision gets invalid and a new
revision is created for the specific component. Hence, there
exists only one valid revision for each component through its
lifecycle but may contain several invalid revisions.

In addition, we establish the relationship between Compo-
nents through the Revision and not directly in the Component
class. The reason is that the interaction or mapping between
the architecture components could also be changed after a new
deployment. For instance, the database type was replaced, or
the data exchange between two services is removed. If a new
revision for a specific component is created all related relation-
ship revisions are becoming invalid. This is necessary as we
cannot be sure whether a relationship to another component
was changed with this release as well. As a consequence,
we continuously rebuild the outgoing relationships from a
component as soon as it experience a change.

E. Relationship between architecture components

The architecture model constitutes two relationship types
between the components: The intra-relation defines connec-
tions within a specific abstraction layer. For instance, sev-
eral services in the application layer contribute to serve a
user request. The proxy service forwards the request to the
responsible functional service that may communicate with
other services in order to process this request. Microservices
communicate directly via RPC or architecture patterns that
propose asynchronous communication like message broker
(see Apache Kafka2 or MQTT3). For that reason, we introduce
the Annotations class that describes the relationship in more
detail. It features a key-value structure so that several annota-
tions can be assigned to one relationship. One example is the
definition of synchronous or asynchronous communication.

Besides relationships within abstraction layers, the inter-
relation constitutes connections between two different layers.
In order to obtain the holistic architecture of a microservice-
based environment, inter-relationships uncover important in-
formation about the interaction between abstraction layers,
like the docker container in which particular services are
deployed or which services are responsible to process requests
from clients. Especially the last example is very important for

2https://kafka.apache.org/
3http://mqtt.org/

Fig. 3: Component diagram of the architecture discovery
concept. The tool consists of two components that consumes
data from five different sources.

bug fixing purposes. In case a specific button in the client
application is not working anymore and triggers an error
respond, the developers must understand which services, API
endpoints and methods are called after clicking this button.
Due to the inter-relationships, developers are able to quickly
identify which user activities are affected by certain back-end
failures.

IV. ARCHITECTURE DISCOVERY PROCESS

Microservice architectures evolve over time [21]. That
means, new services are added or removed, and newly imple-
mented interfaces lead to a change in the information exchange
and dependency structure. Hence, it is important to keep track
of architectural changes, especially when new releases cause
failures or performance anomalies.

Based on the aforementioned considerations, our archi-
tecture recovery concept consumes data from four different
sources and consists of three specific components that were
developed from scratch as illustrated in figure 3. The addressed
data sources are existing in most modern microservice infras-
tructures as stated by Yu et al. [18]. The Architecture Discovery
component consumes the monitoring data and recovers the
architecture in the particular environment. The result of the
discovery process is incorporated into a dependency model that
is exposed to the Architecture Comparison component which
recognizes the delta between each environments or releases.
Both components provide interfaces for a Web Client that
finally visualizes the architecture dependency model.

A. Discover services

Initially, MICROLYZE automatically rebuilds the current
microservice infrastructure that is registered in a service dis-
covery tool like Eureka4, or Kubernetes5. Service repositories

4https://github.com/Netfix/eureka
5https://kubernetes.io/



are generally integrated in microservice-based environments
for storing the instance information of running microservices.
Microservices frequently change their status due to reasons
like updates, autoscaling or failures; the service discovery
mechanisms are used to allow services to find each other
in the network dynamically. By retrieving the information
from the service discovery service, we are able to reveal the
current status of each service instance. In case a change (un-
registered service, new service, updated service) is detected,
MICROLYZE alters the dependency model by creating a new
revision for this service, as it described in section III-D.

B. Discover libraries

Some build systems, such as Maven6, provide configuration
files (Maven POM) that contain descriptions of which build
dependencies are needed. In case they are not already present
on the build server they are fetched automatically by the build
system. By accessing these configuration files MICROLYZE is
capable to extract all libraries that are needed by the individual
microservice. The information are stored in the Library class.
Moreover, in the configuration files are also the release number
defined which is extracted as well.

C. Discover service relationships and annotations

Although service discovery mechanisms are often applied to
discover the status of running services in run-time, they mask
the real dependencies among microservices in the system.
The communication behavior is in particular important in
performance testing as every service contributes individually
to the overall response time. For that reason, it is necessary to
install on each microservice a monitoring probe, that monitors
the response time of a server while the performance testing
software generates synthetic requests to each REST endpoints.
A popular technology for extracting performance measures is
the distributed tracing technology proposed by Google [19].
The technology was adapted by many projects and companies
like openTracing.io7, zipkin8 developed by Twitter, jaeger9

created by Uber, or commercial products like Dynatrace, App-
Dynamics and Instana. Distributed tracing tracks all executed
HTTP requests in each service by injecting tracing information
into the request headers. Hereby, it helps to gather timing data
like process duration for each request in order to troubleshoot
latency problems. In addition, distributed tracing uncovers the
dependencies between microservices by tracking the service
calls via a correlation identifier.

MICROLYZE frequently polls the distributed tracing data
and analyzes the dependency structure. If a new commu-
nication relationship is recognized the dependency model
is updated accordingly. All information are assigned to the
particular classes in the UML diagram (see figure 2): The
communication between all components are specified in the
Relationship class. The communication details are stored in

6https://maven.apache.org/
7http://opentracing.io/
8https://github.com/openzipkin/zipkin
9https://github.com/jaegertracing/jaeger

the Annotation class. Database specific information like url,
port and type are stored in the Database class.

D. Determine service classification
Furthermore, MICROLYZE classifies each service based on

the distributed tracing data. Functional services, for instance,
have mostly no parent services that forward requests to child
nodes [4]. The parent node is the client itself. Hence, the parent
ID in the tracing data is mostly empty. However, there are situ-
ations in which this approach is not applicable. Service proxy,
for example, provide a unified interface to the consumers of
the system that proxies requests to multiple backing services.
In order to recognize this type of service, the incoming
HTTP requests are continuously analyzed. If the very first
accessed microservice is always the same in most requests
MICROLYZE flags it as the Service proxy. All child nodes after
the gateway are flagged as functional services accordingly.
Another specialty are configuration services that address the
cross-cutting concern how to provide configuration data that
expose the information how to connect to external services.
One characteristic of these services is that they are used by
other services only once in the very beginning of their lifetime.
Hence, these services are flagged as configuration services
as soon as the aforementioned considerations can be applied.
Service discovery services are automatically recognized as they
already serve as data source. Further infrastructure services
that are listed in [17] can be defined via manual input.

E. Discover service API endpoints
REST APIs [22] are mostly documented by tool support like

swagger and others. API documentation is a technical content
deliverable, containing instructions about how to effectively
use and integrate with an API. MICROLYZE consumes the
API documentation and stores it in the ServiceAPI class that
is assigned to the particular microservice. However, which
specific API is accessed by the client or other services is not
always visible in the monitoring data, as the REST API spec-
ification parameterized the interface URLs. For instance, the
interface GET /object/{objectId} provide object data filtered
by id. The monitoring data stores the request in the format
GET /object/123. Hence, it is necessary to establish a mapping
between the API specification and the monitored runtime data
in order to automatically assign the request to the specification.
This problem can be solved by translating the documented API
URL into a regular expression which is applied, in turn, on
the monitored request. The regular expressions are stored in
the database and serves as a mapping table between RPCs and
API specification. The process is illustrated in figure 4.

F. Discover service instances
Huge microservice infrastructures are load balanced to avoid

single points of failures. Which services are load balanced
can be unveiled in the monitoring data: Instances of the same
service always have the same application name but distinguish
itself in IP address and port. Therefore, we aggregate the data
based on service description, IP address and service port in
order to unveil the number of instances of a particular service.



GET 
/object/123

GET 
/object/{objectID}

Monitoring Data API Specification

GET 
/object/[0-9]+$

Regular Expression

API Documentation

Mapping Translation

Fig. 4: Mapping monitoring data to documented API specifi-
cation via regular expressions.

Rev 1.12 Rev 1.13 Rev 1.14 Rev 1.15

Rev 2.1

Rev 3.1

Timet1 t2

Comp. A

Comp. B

Comp. C

Fig. 5: Sequence of created revisions for component A, B and
C and the retrieved revisions in t1 and t2

V. REVISION COMPARISON

In order to track the emerging behavior of microservice ar-
chitectures and to compare different environment against each
other, we introduce a revision concept. The implementation
of the revision concept is based on the assumption that every
change in the infrastructure has an impact on the components
in the dependency model. If a new component or a new rela-
tionship is identified a revision for this component is created
simultaneously. The validFrom in the Revision class indicates
the timestamp when the component was discovered, changed
or removed. Hence, new revisions are always created after
each deployment in the delivery pipeline and the timestamp
determines when the deployment was triggered.

In order to retrieve the microservice architecture for a
specific environment and time period one must simple select
all revisions that were valid in a particular snapshot and
the relationships are automatically assigned to the retrieved
components. With this approach developers and operators
are capable to compare the different architecture revisions
in order to uncover unforeseen changes between releases
and environments. In addition, it is possible to evaluate how
the architecture emerged over time and what impact specific
changes have on the performance.

Figure 5 presents the chronological sequence of the validity
of a revision and how the architecture model can be retrieved
for a selected time. Time t1 leads to the selection of revision
1.12 and 2.1. Component C does not yet exists at this time.
T2 contains the revisions 1.14, 2.1 and 3.1 for the components
A, B and C. That means, the architecture model has been sig-
nificantly changed after t1, as component A was modified two
times and component C was introduced into the architecture.

VI. EVALUATION

The described architecture discovery concept has been pro-
totyped and applied to a microservice-based product from a
German company that is active in the production industry.

The product is developed based on a continuous delivery
strategy with the environments test, preproduction and pro-
duction. Modified services are automatically deployed to the
test environment as soon as the code is committed into the
repository. The deployment from preproduction to production
is triggered manually after it was approved by the Product
Owner.

Each microservice runs in a docker container and is de-
veloped with Spring Boot. The architecture incorporates six
functional services that expose the business logic and three
infrastructural services which cover central configuration, ser-
vice registry and a proxy service. All services are distributed
on three virtual machines, each running on the same hardware.

For monitoring each infrastructure environment the appli-
cation performance monitoring tool Zipkin is attached to each
microservice. In the system under observation (SUP) we do not
have access to hardware monitoring probes. The monitoring
tools provide time series data about application performance,
service communication and database communication. Zipkin
complies with the openTracing standard, for that reason
any other monitoring tool that follows the same standard
like Instana can also be used with only little modifications.
The monitoring agents are available for the languages, Go,
JavaScript, Java, Python, Ruby, PHP, Objective-C, C++, C and
corresponding frameworks that are provided by the community
like Spring Boot, Django, Flask, etc. Zipkin provides time
series data about application performance in form of ”spans”.
Additional information about request processing is attached as
”annotations” to each span. Annotations contain the following
attributes: service name, service IP and port, called class
and requested method, HTTP related information like path,
URL and status code as well as further information like
asynchronous calls. All those information specify in more
detail how the microservice process the request and which
additional services are needed for data exchange. Requests
to databases are stored as separated spans that contains SQL
specific information. The time series data can be consumed
via the following REST APIs: GET /spans; GET /traces; GET
/services; GET /dependencies

MICROLYZE frequently accesses the Eureka service API
in order to receive all registered services. In order to recover
the relationships between the components, we produce traffic
on the development and test environment by using JMeter10,
which simulates user transactions based on all given REST
API endpoints documented by Swagger. After each endpoint
was called MICROLYZE is able to reconstruct the dependency
structure among the microservice architecture. The result for
the test environment and for the current snaphshot, i.e most
current revisions is illustrated in the adjecency matrix in figure
6. MICROLYZE correctly recognizes 9 services (S1 – S9), 9
instances (I1 - I9) and 3 hardware components (H1 – H3).
Hence, in the test environment there is no load balancing in
place. By hovering over a dependency field within the matrix,
an information box is displayed and shows relation specific

10http://jmeter.apache.org/



Database

Client

xx x x xx x x x x x x x x x x x

x

x

TRAVELCOMPANION APPLICATION C1

C1

x

Fig. 6: Architecture discovery result visualized in a grouped adjacency matrix

information. For instance, the communication between S8 →
S4 and S8 → S5 is asynchronously which is correctly reported.
In addition, it is detected that service S9 consumes data from
every functional service. Hence, S9 is successfully recognized
as a proxy service.

The adjecency matrix visualizes the relationship types with
a black x and a grey x. The black one represents direct
relationships between two components, like S8 communicates
directly with S4 and is deployed on hardware H1. Indirect
relationships unveils the whole communication path, e.g. C1
calls an API of S8 via the proxy service S9. We designed
the adjecency matrix to be scalable for a large amount of
microservices. On the right side of the application the user is
able to disable specific architecture components. This reduces
the amount of visible component relationships on the screen.
However, as many companies, like Netflix, Spotify, etc. are
already managing thousands of microservices which are all
load balanced this visualization might still reach its limit fast.
For that reason, we plan in future work to add an additional
table view for listing all the components and its parent and
child relationships. This table must be sortable and searchable.

We recognized one limitation regarding the recovery of
the hardware layer. With the utilized monitoring solutions it
is not possible to differentiate between physical and virtual
hardware. We only receive the ip addresses but no further
information about virtualization, containerization or operating

system. The incorporation of further monitoring vendors like
Dynatrace may unveil this information which could be part of
future work.

MICROLYZE continuously creates new revision for every
component as soon as modifications are detected. The whole
recovered architecture can be exported in JSON format in
order to compare different environments or deployments as de-
scribed in section 5. Hereby, the user must select the required
snapshot date which retrieves all components who fulfills the
condition validFrom <snapshot <validTo. In order to receive
the current architecture version all revision are selected whose
validTo dates are null. An exception of the exported JSON
file is illustrated in figure 7. We selected the current date for
the preproduction and production environment. It is clearly
visible that an old version of the MAPS HELPER SERVICE
was accidentally deployed into the preproduction environment
at this time. This service in version 1.12 still communicates
synchronously with the service id 000712. Hence, the service
release must be rolled back.

In conclusion, table I highlights which requirements stated
in the introduction section was fulfilled by MICROLYZE and
which limitations must be addressed in future work.

VII. INSTRUMENTATION OVERHEAD

We investigate the extent of instrumentation overhead
via a performance benchmark. We measure the time to
complete selected requests for both the instrumented



{

"environment": “preproduction",

"snapshot": "02/02/2018 13:10",

"components": [

{

"id": "000312",

"type": "Service",

"release": "1.12",

"name": "MAPS_HELPER_SERVICE",

...

},{...}

],

"relationship": [

{

"caller": "000312",

"callee": "000712",

"annotations": [

{

"key": "async",

"value": false,

},{...}

]

},{...}

]

}

{

"environment": "production",

"snapshot": "02/02/2018 13:12",

"components": [

{

"id": "000312",

"type": "Service",

"release": "1.21",

"name": "MAPS_HELPER_SERVICE",

...

},{...}

],

"relationship": [

{

"caller": "000312",

"callee": "000712",

"annotations": [

{

"key": "async",

"value": true,

},{...}

]

},{...}

]

}

Fig. 7: Excerpt of an export of the microservice architecture
from preproduction and production environment. A conflict is
recognized in the deployed service version.

TABLE I: Result of the requirement fulfillment

Req. Result Comment

R1-1 All clients that communicate with the SUP are discovered as long as they are monitored.

R1-2 All services are unveiled as long as they are registered in the service discovery application.

R1-3
All databases are discovered. The type of the database is not recognized due to limited functionality of
the provided monitoring tools. Missing information can be added via manual input.

R1-4
Hardware number and IP address space is discovered. Other information like OS, virtualizations, 
containerization remain hidden. Access to further monitoring tools like Nagios, or Dynatrace are required.

R2 Load balancing is discovered and exposed via service instances.

R3 Relationships between components are discovered

R4 Communication types like synchronicity or asynchronicity are discovered

R5 Classes and methods that are executed by a specfic API call are unveiled

R6 Used libraries in each service are discovered by accessing configuration files (POM, gradle, etc.)

R7 The recovered architecture is exported in the JSON format

R8 A comparison between the recovered architectures is possible by comparing the JSON export

R9 As the architecture is extracted from runtime data, R9 is completely fullfiled

and unmodified version of the software. Each request
executes a transaction that is initially processed by
the gateway service (ZUUL-SERVICE) and forwarded
to the responsible services like BUSINESS-CORE-
SERVICE, TRAVELCOMPANION-MOBILITY-SERVICE,
DRIVENOW-MOBILITY-SERVICE, DEUTSCHEBAHN-
MOBILITY-SERVICE and ACCOUNTING-CORE-SERVICE

This time measurement is performed on the user side,
and thus includes the communication overhead between the
application and the client user. By measuring on the client side,
we achieve an end-to-end processing benchmark. We repeated
these measurements several times and calculated the average
run-time and associated a 95% confidence interval. The results
are presented in figure 8. We use JMeter to perform each
request 5000 times involving database querying. As figure 8
illustrates, the difference in performance is very small. On
average, the requests take 1,03ms longer to respond. Based on
the observations presented above, we conclude that the impact
of the instrumentation is negligible.

VIII. RELATED WORK

O’Brien et al. [23] provide a state-of-the-art report on sev-
eral architecture recovery techniques and tools. The presented

0 5 10 15 20 25 30 35

Book Route

Search Route

List Providers

Open Travelcompanion

Instrumentation Overhead

Unmodified Services Instrumented Services

Fig. 8: Effect of instrumentation on the average time to
complete – Average time to complete (in milliseconds) [95%
confidence interval]

approaches aim to reconstruct software components and their
interrelations by analyzing source code and by applying data
mining methods.

O’Brien and Stoermer [24] present the Architecture Re-
construction and MINing (ARMIN) tool for reconstructing
deployment architectures from the source code and documen-
tation. The proposed reconstruction process consists of two
steps: extracting source information and architectural view
composition. In the first step, a set of elements and relations
is extracted from the system and loaded into ARMIN. In the
second step, views of the system architecture are generated
by abstracting the source information through aggregation and
manipulation. ARMIN differs from our approach, as it only
extracts static information of the system without considering
dynamic information.

Cuadrado et al. [25] describe a case study of the evolution
of an existing legacy system towards a SOA. The proposed
process comprises architecture recovery, evolution planning,
and evolution execution activities. Similar to our approach, the
system architecture is recovered by extracting static and dy-
namic information from system documentation, source code,
and the profiling tool. This approach, however, does not
analyze communication dependencies between services, which
is a main feature in our prototype.

Van Hoorn et al. [20] [26] propose the java-based and open-
source Kieker framework for monitoring and analyzing the
run-time behavior of concurrent or distributed software sys-
tems. Focusing on application-level monitoring, Kieker’s ap-
plication areas include performance evaluation, self-adaptation
control, and software reverse engineering, to name a few.
Similar to our approach, Kieker is also based on the distributed
tracing for uncovering dependencies between microservices.
Unlike us, Kieker does not highlight architectural changes
between two releases. Furthermore, it does not cover depen-
dencies between the client and application layer.

MicroART, an approach for recovering the architecture of
microservice-based systems is presented in [27] [28]. The
approach is based on Model-Driven Engineering (MDE) prin-
ciples and is composed of two main steps: recovering the
deployment architecture of the system and semi-automatically
refining the obtained system. The architecture recovery phase



involves all activities necessary to extract an architecture
model of the microservices, by finding static and dynamic
information of microservices and their interrelations from
the GitHub source code repository, Docker container engine,
Vagrant platform, and TcpDump monitoring tool. In contrast
to our concept, MicroART is not used to provide developers
continuous feedback from each deployment stage.

IX. LIMITATIONS AND CONCLUSION

In this paper, we introduce a tool for automated archi-
tecture discovery called MICROLYZE. It can be used to
provide continuous feedback to developers, product owners
and operators from each deployment stage in a continuous
delivery pipeline. The tool recreates the dependency model
of a microservice infrastructure based on a layered struc-
ture proposed by recommended EA frameworks. The tool
consumes data from four different sources and discovers
architecture relevant components. Based on the reconstructed
dependency model the DevOps Teams are capable to recognize
inconsistencies between the deployment stages and different
releases. Hereby, the revision concept helps to historicize
and emphasize changes made in the architecture. Finally, this
information can be used to validate whether the developers are
still on the right track and understand the technical concept.

The proposed approach works well if two implementations
are presented in the regarded microservice architecture: First
of all, for the whole infrastructure an appropriate monitoring
architecture has to be present. Each microservice has to
be instrumented by an monitoring probe that records intra-
communications. Furthermore, a service discovery service has
to be integrated. The monitoring architecture needs to be
setup already in the development phase, or at least in the
test environment. In case one of those prerequisites are not
present, MICROLYZE will not become fully operational, which
outlines our most significant limitation.

X. ACKNOWLEDGMENTS

This work is part of TUM Living Lab Connected Mobility
(TUM LLCM) project and has been funded by the Bayerisches
Staatsministerium für Wirtschaft und Medien, Energie und
Technologie (StMWi).

REFERENCES

[1] Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Addison-Wesley
Signature Series (Fowler). Pearson Education (2010)

[2] Shahin, M., Babar, M.A., Zhu, L.: Continuous integration, delivery and
deployment: A systematic review on approaches, tools, challenges and
practices. IEEE Access 5 (2017) 3909–3943

[3] Alshuqayran, N., Ali, N., Evans, R.: A systematic mapping study
in microservice architecture. In: Service-Oriented Computing and
Applications (SOCA), 2016 IEEE 9th International Conference on, IEEE
(2016) 44–51

[4] Newman, S.: Building Microservices. 1st edn. O’Reilly Media, Inc.
(2015)

[5] Toffetti, G., Brunner, S., Blöchlinger, M., Dudouet, F., Edmonds, A.: An
architecture for self-managing microservices. In: Proceedings of the 1st
International Workshop on Automated Incident Management in Cloud.
AIMC ’15, New York, NY, USA, ACM (2015) 19–24

[6] Calado, P.: Building products at soundcloudpart iii: Microservices in
scala and finagle. Technical report, SoundCloud Limited (2014)

[7] Kramer, S.: The biggest thing amazon got right: The plat-
form. https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-
got-right-the-platform/ (2011) Accessed: 2017-11-18.

[8] Rabl, T., Gómez-Villamor, S., Sadoghi, M., Muntés-Mulero, V., Jacob-
sen, H.A., Mankovskii, S.: Solving big data challenges for enterprise
application performance management. CoRR abs/1208.4167 (2012)

[9] Josephsen, D.: Building a Monitoring Infrastructure with Nagios.
Prentice Hall PTR, Upper Saddle River, NJ, USA (2007)

[10] Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from
workflow logs. In: Proceedings of the 6th International Conference
on Extending Database Technology: Advances in Database Technology.
EDBT ’98, London, UK, UK, Springer-Verlag (1998) 469–483

[11] Netflix: Eureka. https://github.com/Netflix/eureka Accessed: 2017-10-
18.

[12] Montesi, F., Weber, J.: Circuit breakers, discovery, and API gateways
in microservices. CoRR abs/1609.05830 (2016)

[13] Brückmann, T., Gruhn, V., Pfeiffer, M.: Towards real-time monitoring
and controlling of enterprise architectures using business software con-
trol centers. In: Proceedings of the 5th European Conference on Software
Architecture. ECSA’11, Berlin, Heidelberg, Springer-Verlag (2011) 287–
294

[14] Group, T.O.: ArchiMate 3.0 Specification. Van Haren Publishing (2016)
[15] Zachman, J.A.: A framework for information systems architecture. IBM

Systems Journal 26(3) (1987) 276–292
[16] Haren, V.: TOGAF Version 9.1. 10th edn. Van Haren Publishing (2011)
[17] Francesco, P.D., Malavolta, I., Lago, P.: Research on architecting

microservices: Trends, focus, and potential for industrial adoption. In:
2017 IEEE International Conference on Software Architecture (ICSA).
(April 2017) 21–30

[18] Yu, Y., Silveira, H., Sundaram, M.: A microservice based reference
architecture model in the context of enterprise architecture. In: 2016
IEEE Advanced Information Management, Communicates, Electronic
and Automation Control Conference (IMCEC). (Oct 2016) 1856–1860

[19] Sigelman, B.H., Barroso, L.A., Burrows, M., Stephenson, P., Plakal, M.,
Beaver, D., Jaspan, S., Shanbhag, C.: Dapper, a large-scale distributed
systems tracing infrastructure. Technical report, Google, Inc. (2010)

[20] van Hoorn, A., Rohr, M., Hasselbring, W., Waller, J., Ehlers, J., Frey,
S., Kieselhorst, D.: Continuous monitoring of software services: Design
and application of the kieker framework. (2009)

[21] Dragoni, N., Giallorenzo, S., Lluch-Lafuente, A., Mazzara, M., Montesi,
F., Mustafin, R., Safina, L.: Microservices: yesterday, today, and
tomorrow. CoRR abs/1606.04036 (2016)

[22] Fielding, R.T., Taylor, R.N.: Architectural styles and the design of
network-based software architectures. Volume 7. University of Cali-
fornia, Irvine Doctoral dissertation (2000)

[23] O’Brien, L., Stoermer, C., Verhoef, C.: Software architecture recon-
struction: Practice needs and current approaches. Technical Report
CMU/SEI-2002-TR-024, Software Engineering Institute, Carnegie Mel-
lon University, Pittsburgh, PA (2002)

[24] O’Brien, L., Stoermer, C.: Architecture reconstruction case study. Tech-
nical Report CMU/SEI-2003-TN-008, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA (2003)

[25] Cuadrado, F., Garcı́a, B., Dueñas, J.C., Parada, H.A.: A case study on
software evolution towards service-oriented architecture. In: Advanced
Information Networking and Applications-Workshops, 2008. AINAW
2008. 22nd International Conference on, IEEE (2008) 1399–1404

[26] van Hoorn, A., Waller, J., Hasselbring, W.: Kieker: A framework
for application performance monitoring and dynamic software analysis.
In: Proceedings of the 3rd ACM/SPEC International Conference on
Performance Engineering. ICPE ’12, New York, NY, USA, ACM (2012)
247–248

[27] Granchelli, G., Cardarelli, M., Di Francesco, P., Malavolta, I., Iovino,
L., Di Salle, A.: Microart: A software architecture recovery tool
for maintaining microservice-based systems. In: IEEE International
Conference on Software Architecture (ICSA). (2017)

[28] Granchelli, G., Cardarelli, M., Di Francesco, P., Malavolta, I., Iovino,
L., Di Salle, A.: Towards recovering the software architecture of
microservice-based systems. In: Software Architecture Workshops
(ICSAW), 2017 IEEE International Conference on, IEEE (2017) 46–53


