Chapter 3.2.3
Using Extensible Grammars for Data
Modelling

Florian Matthes, Joachim W. Schmidt, and Jens Wahlen

Technical University Hamburg-Harburg
Harburger Schlofistrafie 20
D-21071 Hamburg, Germany

Summary We present a systematic approach to the rapid implementation of high-
level data models and query languages in the polymorphic higher-order program-
ming language TL. The static semantics of data model constructs are captured
by a mapping to polymorphic types and associated data constructor and selector
functions. The dynamic semantics of query languages are realised by a mapping to
bulk data types and iteration abstractions. Contrary to conventional approaches,
these two mappings are specified by user-defined grammar extensions of the target
language TL based on user-defined library code and not by separate tools in the
programming environment. We give examples of this syntax-directed approach to
data modelling and discuss its advantages and limitations.

1. Introduction and Motivation

To address the modelling requirements of advanced data-intensive applications, a
large number of high-level data models and query languages have been proposed
in the literature to overcome the limitations of existing relational, deductive or
object-oriented models.

Unfortunately, the implementation of a new data model or query language for
evaluation purposes turns out to be a rather complex task since it requires non-
trivial language processing, software engineering and database system construction
know-how. Therefore, such data model proposals lead either to ambitious long-
term database system development projects (see, e.g., [17] and [16], synopsis in
Chapter 2.1.2) with a very long design-implementation-evaluation cycle, or, more
frequently, to closed toy implementations that lack the operational support required
for experiments in a realistic setting (persistence, interfaces to production systems,
user interface support).

Due to their orthogonality and their full integration of persistent data, code and
meta-data management, persistent higher-order languages constitute a promising
platform for the rapid implementation of high-level data models and their query
languages. The static semantics of data model constructs can be captured by a
mapping to polymorphic types and associated data constructor and selector func-
tions. The dynamic semantics of query languages can be realised by a mapping to
bulk data types and iteration abstractions in the persistent programming language.

The mapping itself can be achieved either by standard source-code to source-
code translators (B-Tool [8] for DBPL, Sidereus [5] for Galileo) or by reflective
code generation techniques [15] (see also Chapter 3.2.2) that exploit the fact that
the target language (run-time environment) and the code generator (compile-time
environment) are tightly integrated in many persistent systems and that typed
persistent program representations can be utilized instead of linear source-code.

Florian Matthes, Joachim W. Schmidt, Jens Wahlen

In this paper, we report on our experience using a third mapping option that
exploits extensible grammars as developed in [9, 10] and implemented in the Ty-
coon system (see Chapter 2.1.4) to translate systematically from declarations and
statements of a high-level data model down to type and value expressions of the
polymorphic Tycoon language TL (see Chapter 1.1.1).

This paper is organized as follows: We first introduce the concept and notation
of extensible grammars by a simple programming language example. In section 3
we give an overview of our syntax-driven approach to data model and query lan-
guage implementation. We then illustrate in section 4 this approach through a
small example (SQL-style queries over multiple bulk types). Section 5 summarizes
our experience gained in the Tycoon/Fibonacci add-on experiment, a larger exer-
cise in data model implementation. The paper concludes with a comparison of our
approach with generator-based techniques to data-model implementation.

2. Extensible Grammars

In this section we introduce the concept and notation of extensible grammars using
a simple programming language example. We also explain how extensible grammars
fit into the Tycoon system architecture (see Chapter 2.1.4).

2.1 Dynamic Syntax Extensions

The Tycoon language TL aims at minimality and orthogonality of semantic con-
cepts which is also reflected by its syntax that provides only a small number of
keywords and syntactic forms.

However, such a syntactic austerity may lead to stereotypical programming
patterns in application code. As a simple example, consider a programming lan-
guage that provides only a single loop ...exit ...end iteration construct. Other
common loop structures (while, repeat, for) have to be expressed by systematic
combinations of loop and if statements.

The idea behind extensible grammars is to provide programmers (or, more
realistically speaking, application library designers) with a generic mechanism to
introduce tailored syntax for the application domain at hand. The use of tailored
syntactic forms often leads to more readable and understandable application code
and helps to avoid accidental programming errors in repeating code patterns.

For example, the following dynamic TL syntax extension introduces a block-
structured for ...to ...do ...end statement by a syntax-directed rewriting into
a standard TL loop statement.

grammar
value :Value |==
7for” x=ide ”
hv=unique
=> value<<| begin
let hv = h
let var x =1
loop if x > hv then exit else b x:=x+1 end
end |>>

=" I=value "to” h=value "do” b=bindings "end”

end

Using Extensible Grammars for Data Modelling

Grammar definitions can be embedded freely into TL source code and therefore
have to be enclosed in a grammar end block. In the example above, the syntax
for TL values is extended (indicated by the operator |==) by a new production
that consists of a syntax definition preceding the arrow => and a pattern enclosed
in <<| |>> that defines a value which is to be generated whenever the new syntax
appears in the input program. The pattern utilizes pattern variables (x, I, h, b, hv)
which are instantiated on expansion of a pattern with concrete identifiers (x, hv) or
with complete subexpressions (I, h, b) as defined by the pattern variable bindings
to the left of the arrow =>. For example, the loop

let g = 40
for i = 1 to g+7 do afi]:=g end

is rewritten into the TL program

let g = 40
begin
let hv = g+7

let var 1 = 1
loop if i > hv then exit else afi]:=g i:=i+1 end
end

TL grammar definitions are statically sort-checked. For example, the production
value is checked to generate expressions of sort Value only. Similarly, the produc-
tions ide and bindings are guaranteed to return individual identifiers and sequences
of bindings, respectively.

A syntax extension gives also a precise definition of the scoping, typing and
evaluation rules for each newly defined language construct in terms of the scoping,
typing and evaluation rules of the underlying base language. In the example above,
the following rules apply:!

— The scope of the loop variable x is delimited by the loop body b. Inside b, a
loop variable x hides a variable x in an outer scope. All other global variables
are visible in the subexpressions I, h and b. The binding hv=unique ensures
that on expansion, the identifier hv used as an auxiliary variable is chosen to be
different from all other variables in the program and therefore remains invisible
in all subexpressions.

— The loop variable x has to be of type Int since it appears as an argument to the
integer infix function ”>”. This implies that the start and end expressions (I and
h) also have to be of type Int. Assignments to the loop variable in b are allowed.

— The start and end expressions I and h are evaluated only once, h is evaluated

before L

Grammar extensions can be layered without restrictions, for example, a vector sum
could be defined by a mapping onto a for loop.

In addition to the production extension operator |== used in the example
above, TL provides two other operators to destructively override production def-
initions and to introduce new productions avoiding name clashes with existing
productions.

As described in [9, 10], TL’s extensible grammars are superior to other syntax
definition formalisms since they respect static, block-structured scoping and avoid
unwanted name clashes, unlike macro definitions and preprocessor-based systems.

! An alternative loop semantics can be realised easily by local changes to the
syntax definition.

Florian Matthes, Joachim W. Schmidt, Jens Wahlen

2.2 Initial Syntax Definition

The previous subsection explained how new syntactic forms can be defined based
on an existing syntax. To fully decouple the concrete syntax from the TL abstract
syntax, the initial TL syntax is not hard-wired into the compiler but provided as a
grammar source file. In the current version of our system, this file is compiled once
for each persistent store. For example, the syntax of the loop and exit statements
is defined initially as follows using the production definition operator "===":

grammar
value:Value === ...
| ”loop” b=bindings "end” => mkValueLoop(b)
| 7exit” => mkValueExit()

end

The notation to specify the concrete syntax and pattern-variable bindings on the
left-hand side of the productions is identical to the one used for dynamic syntax
extensions. The right-hand side consists of constructor applications (mkValueLoop,
mkValueExit). At compiler definition time, the names and signatures (argument
and result sorts) of all TL constructors are made available to the extensible grammar
front end. These constructors correspond directly to functions in the TL compiler
that create typed program representations (abstract syntax trees).

Despite its rich language model, TL provides language objects of only four dif-
ferent semantic domains which simplifies the orthogonal combination of these ob-
jects in the mapping process for a higher-level data model. These semantic domains
correspond to the following built-in sorts used in TL grammars:

— The sort Type subsumes closed and parameterized type expressions like base
types, structured types and higher-order type operators. The canonical type Ok
is the supertype of all closed types and contains the canonical value ok.

— The sort Value subsumes expressions and side-effecting statements. A statement
returns the canonical value ok. The result of an expression used in a statement
context is discarded.

— Bindings are ordered sequences of identifier/type or identifier/value pairs. If iden-
tifiers are omitted, so-called anonymous bindings are defined. This makes it pos-
sible, for example, to represent tuple attributes, array elements and statement
sequences uniformly as bindings.

— Signatures are ordered sequences of identifier/type or identifier/supertype pairs.
Again, identifiers can be omitted. Signatures appear, for example, in functions,
tuple types and module interfaces.

2.3 On the Implementation of Extensible Grammars

Extensible grammars are realised by a fully self-contained polymorphic Tycoon
library implementing an extensible parser and grammar checker which are bound
statically as a front-end to the TL type checker and code generator (see figure 2.1).
Without recompilation, the very same extensible grammar package can be used for
other programming languages, as demonstrated by the TooL language [11].

The grammar checker and parser generator as well as the constructors for TL
abstract syntax trees are defined in TL. Input phrases accepted by the extensible
parser can be either new syntax definitions which are passed on to the grammar
checker and parser generator to be available for future input parsing or they can

Using Extensible Grammars for Data Modelling

Extensible Grammar

Package [
- Typed constructors for
(Syntax for TL (Lg)) S;ar\grrvgreﬁgggsr ; QL Abstract Syntax Trees
y

Parse Tables

: ; syntax
Programs in Ly, / \ Egg?ssg;le >/ TL Abstract TL Type Checker
Syntax for Lpy4q) program| © _Syntax Trees & Code Generator

Fig. 2.1. Interfaces of the extensible grammar package

be TL abstract syntax trees that are processed further by the TL type checker and
code generator.

The extensible parser is initialized with the syntax of the target language Lo at
hand (TL or TooL). Given an extensible parser for programs in a language Ly, a new
extensible parser for a language L,41 can be defined by specifying the context-free
grammar and the rewrite rules (productions) that map L,41 terms into L, terms.
This method is incremental since L, is translated into L,,—; until the base target
language is reached and the final (TL or ToolL) abstract syntax tree is generated.

Static checks at grammar-definition time guarantee the sort-correctness of gram-
mars (only legal syntax trees are generated during parsing), the termination of pars-
ing for arbitrary input programs, and the absence of syntactic ambiguities. Formal
proofs for these properties are given in [10]. This high degree of static correctness
should be contrasted with other program transformation or reflective compilation
techniques.

Extensible grammars can be implemented efficiently. In our persistent system
environment, the first extensible TL parser is half as fast as the old, hand-coded
standard LL(1) top-down parser. We expect the next re-implementaion of the ex-
tensible parser to outperform a handcoded parser using a simple optimization of
the attribute evaluation strategy. Furthermore, the space required for the code and
data of both parsers is of similar size.

3. Supporting Data Modelling with Extensible
Grammars

Figure 3.1 sketches the generic architecture of a data model implementation in
TL: Users interact with the system through data-model-specific tools like schema
and data browsers. Data and schema declarations, and interactive and embedded
queries are written in a data-model-specific syntax. This syntax is specified once per
data model by a set of TL syntax modules (bulk syntax, query syntax, etc.). Each
syntactic construct is mapped to functions and types exported from Tycoon inter-
faces. This mapping captures the static and dynamic semantics of the data model.
The data-model-specific TL interfaces in turn are based either on the existing set
of TL libraries or directly on the built-in TL constructs.

Florian Matthes, Joachim W. Schmidt, Jens Wahlen

DM-specific Tools

DM-specific Syntax

|Bu|k Syntax| |Query Syntax| | View Syntax | | |

+

I I I I
|BquTypes| | Queries | | Views | | |

DM-specific Library

Tycoon Libraries

Tycoon Core Language

Fig. 3.1. A layered architecture for data model implementation in Tycoon

The top-down methodology to implement a given data model M in TL can be

summarized as follows:

1.

2.

Identify the semantic concepts of M (e.g., table, row, attribute, domain, query,
view).

Map each concept to a newly defined or pre-existing abstract TL type or type
constructor. At this stage, the implementation of the abstract types is irrele-
vant.

. Identify the abstract operations available on each of the semantic objects (e.g.,

create a table, insert a row, execute a query, define a view, union two tables,
join two tables, ...).

. Map these abstract operations to typed TL function signatures that refer to

the types identified in step 2. In order to correctly capture the static semantic
constraints on the abstract operations of M by TL type constraints, elaborate
TL type concepts (parametric polymorphism, subtype polymorphism, ad-hoc
reflective polymorphism based on dynamic type inspection) can be used. The
abstract types and their operations are preferably clustered into TL interfaces
named after their semantic concept.

. In parallel, develop a TL grammar definition (incrementally) that maps each

syntactic construct of M (e.g. attribute type definition, table type definition,
query, subquery, projection list, ...) into nested TL expressions that utilize the
types, type operators and functions defined in the previous step. An important
task of the grammar is to correctly capture M’s scoping rules.

The name of a grammar production should be chosen based on the data model
concept it represents. As a positive side-effect of this naming convention, later
syntax error messages generated for non-well-formed data models will utilize
this name and convey additional information to the data modeller (e.g., error
in tableDefinition).

The initial grammar should de-emphasize syntactic details of M (like prece-
dence rules or alternative notations). Such detail can be added easily at a
later stage. The sorts for the grammar productions (Value, Type, ...) follow
immediately from the TL mapping chosen.

. Verify the consistency of the model developed so far by compiling the grammar

and by translating some examples using empty stub implementations for the
TL functions defined in step 4. That is, the static semantics of M (scoping and
typing rules) can be checked in isolation.

Using Extensible Grammars for Data Modelling

7. Choose appropriate implementations for the abstract data types and polymor-
phic functions introduced in steps 2 and 4 to implement the dynamic semantics
of M by TL program code. The implementation typically makes heavy use of
polymorphic data structures (lists, sets, bags, dictionaries, ...) and iteration
abstractions (select, map, join, ...) provided by the TL libraries.

8. Provide tools for schema browsing, data visualization, code management, data
import and export, etc. Again, these tools can frequently be derived schemat-
ically from the existing, strongly-typed TL tools.

This top-down approach can also be complemented by a bottom-up composition of
existing modules and grammar extensions to increase code reuse and to speed up
the data model mapping process.

4. Uniform Iteration Abstraction over Bulk Types

The Tycoon libraries implement multiple bulk data types (sets, lists, relations,
etc.). Each bulk data type is represented by a module that exports an abstract
type operator and a set of polymorphic functions that work on bulk values of that
type. Additional bulk types can be added to the Tycoon library as needed (add-on
vs. built-in approach [12]; synopsis in Chapter 1.4.2). Some of these bulk types
(like SQL tables) are implemented by gateways to external servers. Each bulk type
has to satisfy a bulk type algebra (similar to [7]) to create and inspect bulk type
instances in a uniform manner.

Uniform declarative access to multiple bulk data types (selection, projection,
mapping, join, aggregate functions, ...) is provided by the concept of abstract
iterators implemented by a separate Tycoon library module iter. An iterator over a
homogeneous collection of values of type E has type iter. T(E). It can be inspected
and manipulated by a large number of iteration abstractions such as iter.select,
iter.flatten and iter.map exported from the module iter.

Set-oriented query access to bulk data values is achieved in TL as follows. First,
the bulk data is (conceptually) transformed into the common iterator type iter.T.
Then, iterator functions are applied to this iterator which can also combine an
iterator with other iterators derived from other bulk data collections. The result
can then be converted explicitly into a specific bulk data structure (set, list, bag,

For example, the following iterator expression joins an iteration over Person
values (tuples with a name and cityZip attribute) with an iteration over City values
(tuples with a zip and name attribute) based on their cityZip attributes returning
an iteration residences over person name and city name pairs:

let residences = iter.flatten(iter.map(persons
fun(p :Person) iter.get(

fun(c :City) tuple p.name c.name end

cities

fun(c :City) p.cityZip == c.zip)))
The function iter.flatten produces a single iteration by concatenating an iteration of
iterations. The function iter.map applies its function argument to each element of
the iteration supplied as its first argument and returns the results as a new iteration.
The function iter.get provides combined selection and projection on an iteration.
The first parameter is a projection function applied to each element (select) of the
iteration supplied as the second parameter (from) restricted by the predicate of the

Florian Matthes, Joachim W. Schmidt, Jens Wahlen

third parameter (where). The infix function ”==" is a polymorphic test on object

identity.

Clearly, it is desirable to support a more readable syntax for these declarative
iterator queries. In the following, we describe how to define a SQL-style select from
where syntax for the generalized Tycoon iteration abstractions. Other syntactic
forms like bulk comprehensions [18] can be defined in a similar fashion. The above
query can then be written more succinctly as:

let residences= select p.name c.name
from persons p:Person, cities c:City
where p.cityZip == c.zip

Based on the functions provided by the Tycoon iter module sketched above, the
following small grammar extension suffices to add this SQL syntax to iterator ex-
pressions:

grammar
value:Value |==
”select” b=bindings "from” =>> range(b)
range(b:Bnds): Value ===
v=value i=ide ”:” t=type => rangeOrPredicate(b v i t)
rangeOrPredicate(b:Bnds v:Value i:Binder t:Type):Value ===
”?.” r=range(b) =>
value< <| iter.flatten(iter.map(v fun(i :t) r)) [>>
| ”where” p=value =>
value< <] iter.get(fun(i :t) tuple b end v fun(i:t)p) |[>>
end

The expanded value production parses the target list (a list of bindings following
the select keyword) and passes these bindings as parameters to the recursively
defined productions range and rangeOrPredicate. A range specification defines an
iterator v, a range variable 1 with local scope, and a type ¢. This information is
again passed as a parameter to the production rangeOrPredicate. If there is just a
single range iteration, the second alternative of the production rangeOrPredicate
(starting with the keyword where) matches and a call to iter.get is generated. The
first argument of this function is generated based on the structure of the target list
b, the name of the range variable i, and the iteration element type t. The second
argument is the range v and the third argument is the selection predicate p, again
in the scope of the user-defined range variable i.

For each additional range iteration, the first alternative of the production range-
OrPredicate matches, and an enclosing iter.flatten call is generated which accumu-
lates the results of nested iterations defined by a recursive invocation of range.

The reader is encouraged to verify that this syntax definition does in fact capture
the scoping and typing constraints of the usual select from where syntax.

5. Tycoon/Fibonacci Add-On Experiment

The goal of the Tycoon/Fibonacci add-on experiment is the evaluation of the Ty-
coon system as an implementation platform for advanced data models. The ex-
periment aims at a comparison of the effort required for the implementation of (a
significant subset of) the Fibonacci language [2, 4] (see Chapter 1.1.2) using exten-
sible TL grammars and Tycoon’s persistent system infrastructure with the effort

Using Extensible Grammars for Data Modelling

Fibonacci-specific Syntax

Object.syntax Sequence.syntax
BaseTypes.syntax 4 4

| FiboICore | | Fibo | |Fib0ICIass |<—| FiboSeq |

J

Fibonacci-specific Library

Tycoon Libraries Iter

Tycoon Core Language

Fig. 5.1. Implementing the Fibonacci data model in Tycoon

required to implement Fibonacci from scratch using Modula-3 at Pisa University
[3].

The Fibonacci TL implementation re-used Tycoon’s persistent stores, code gen-
erator, interactive top level, module manager, incremental linker, and its gateways
to commercial systems without change by a rather straightforward mapping of Fi-
bonacci data and code objects onto corresponding TL persistent language objects.
This fact nicely demonstrates that one of Tycoon’s system design goals, the full
separation of data storage, data manipulation and data presentation aspects from
data modelling features has been achieved.

Another goal of the experiment is to fully capture Fibonacci’s strong static
type system (including objects with multiple roles [1]) by a statically typed map-
ping of data and code objects. This way, the full functionality of the Fibonacci
type checker is emulated by the existing Tycoon TL type checker. In the remainder
of this section we give some insight into this translation scheme at the value and
type level. The development of this scheme revealed limitations of the existing TL
language constructs available for the manipulation of signature lists and binding
lists. The current TL primitives Repeat and open [13] (see Chapter 1.1.1) are
not flexible enough to emulate the specific multiple inheritance conflict resolution
strategy of Fibonacci. This deficiency could be solved by introducing a rather small
(but ad-hoc) TL type checker extension matching the specific Fibonacci inheritance
semantics. This extension would require approximately one week’s work for a pro-
grammer who is familiar with the non-trivial TL type checker implementation. The
Tycoon/Fibonacci experiment required a total of six person months by a scien-
tist visiting our group who had no previous programming experience in persistent
languages.

5.1 Module Structure and Overview

Figure 5.1 gives an overview of the implementation of the Fibonacci data model
which was developed following the approach sketched in section 3 and involves five
Tycoon interface modules and four associated grammar modules. The interfaces
are implemented by modules written in statically-typed Tycoon code. A small set
of record operations is implemented in type-unsafe C and is only available within
type-safe programming patterns specified by the syntax-directed Fibonacci to TL

mapping. C code could be avoided completely by using dynamically-typed TL code.
However, this would lead to “unnecessary” additional run-time type tests (which

Florian Matthes, Joachim W. Schmidt, Jens Wahlen

never fail).

Fibonacci Source Code |

TL Equivalent

Let Address =
[name:String
country:String]

Let Address = fiboCore.T(
Tuple name:fiboCore.StringT
country:fiboCore.StringT end)

let address :Address =

[?Bill” unknown]

let address :Address = fiboCore.new(
tuple fiboCore.new(” Bill”)
fiboCore.noneT.unknown end)

Let Object =
NewObject

let Object = tuple

Let T = Record _object:fibo.Object end
let to(...):0k = ...
let copy(..):T = ...
let lateImplementationSetting(...):Ok = ...
let roleExistenceTest(...):0Ok = ...

end

Let Person =
IsA Object With
name :String
End

let Person = tuple
Let T = Record
Repeat Object. T
name:fibo.Dispatcher(fiboCore.StringT)
end
let propagateToSub(...):0Ok = ...

end

let john = role Person
methods
name = ”John Major”
end

let john = begin
let rec _object:fibo.Object = record
let _oid = fibo.newOid() let Person = me
end
and me :Person = record
let _object = _object
let name = fibo.newDispatcher(”name”
me fun()fiboCore.new(” John Major”))
end
end

john.name

john.name.late()

johnlname

john.name.strict()

Table 5.1 gives some examples of the systematic translation from Fibonacci to
TL. Some details of the translation are described below. The implementation of Fi-
bonacci class extents, sequences and relationships (modules FiboClass and FiboSeq)
is based on the Tycoon bulk libraries and utilises syntax definitions (Class.syntax
and Sequence.syntax) similar to the ones described in section 4 to map Fibonacci’s
query language to Tycoon iterator expressions. Value-based integrity constraints on
class extents were not studied in the experiment but could be realised by a mapping
to an existing Tycoon add-on library (dbenv [14]) that provides the required base

Table 5.1. Translation scheme from Fibonacci to TL

services.

Using Extensible Grammars for Data Modelling

5.2 Mapping of Concrete Types

The interface FiboCore exports the Fibonacci base types and some predefined val-
ues like booleans and functions on the base types (comparisons, arithmetics, etc.).
This interface relies on the services of the interface OptionalFibo to ensure that the
value space of each Fibonacci base type and structured type also contains the spe-
cial value unknown (a generic null value). This value is handled explicitly by the
predefined functions, for example, by raising a run-time exception fiboCore.error
that can be caught by the programmer. The type operator fiboCore.T(A) defines
a representation for a Fibonacci type A by a mapping onto a TL union type with
a variant unknown and a variant known with a value val of type A. The polymor-
phic functions new and value construct or inspect values of type fiboCore. T(A),
respectively.

interface FiboCore export
Let T(A <:Ok) = Tuple case unknown case known with val:A end
error :Exception
new(A <:Ok a:A) :T(A)
value(A <:Ok optional:T(A)) :A (* may raise "error” *)
Let NoneT = Tuple case unknown end
Let AnyT = T(Ok)
Let StringT = T(String)
end
By using the Tycoon type Nonel to represent the Fibonacci type None that only
contains the value unknown and by mapping the type Any (the supertype of
all Fibonacci types) to type AnyT, the subtype hierarchy of Fibonacci is fully
mapped onto the TL subtype hierarchy. In particular, this mapping preserves the
subsumption principle, i.e., a value of type A can be substituted freely in any
context where a value of a supertype of A is expected.
Using the interface FiboCore, the syntactic mapping of Fibonacci base types

and type expressions (functions, aggregates, unions) to Tycoon type expressions as
defined in the module BaseTypes.syntax is rather straightforward:

grammar
fiboType:Type ===
x=simpleld => type<<|x|>>
| ?Null” => type<<|fiboCore. Null'T|>>
| 7Any” => type<<|fiboCore.AnyT|>>
| ”String” => type<<|fiboCore.StringT|>>
| ?Fun” ”(” s=fiboSigs ”)” ”:” t=fiboType => type<<|fiboCore.T(Fun(s):t)|>>
| 7[? s=fiboSigs ”]” => type<<|fiboCore.T(Tuple s end)|>>
| ”Choice” c=fiboCases "End” => type<<|fiboCore.T(Tuple c end)|>>
end

The first two rows of table 5.1 give an example of the translation of a Fibonacci
type and a matching value expression into TL code.

5.3 Mapping of Object and Role Types

A key feature of Fibonacci is the support for statically-typed objects with multiple
roles [2, 1]. Any interaction with a Fibonacci object takes place by sending messages

Florian Matthes, Joachim W. Schmidt, Jens Wahlen

to a specific role of an object. The set of roles possessed by an object can change
over time so that its behavior changes over time too. Here we do not want to go
into the intricate details of the Fibonacci object model but only give a rough idea
of its mapping to typed TL object representations.

A Fibonacci object is represented by a dynamically-constructed directed acyclic
graph of roles that share a common object representation. Each role is a static
Tycoon record that aggregates a set of named dispatchers, one for each message
understood by a role. A Fibonacci role type is described by a Tycoon record type
(a set of message signatures) and enables the static type checking of message send
operations. A message dispatcher for a Fibonacci message (or attribute) of type A
is a Tycoon tuple of type fibo.Dispatcher(A):

Let Dispatcher(A<:Ok) = Tuple
methodName :String
self : Record end
strict():A
var late():A
end

The two functional components strict and late of a dispatcher realize the two forms
of message dispatching supported by Fibonacci. A late binding as in john.name
leads to the execution of the most specialized implementation of the method name
(which depends on the run-time history of role acquisitions for the object john).
A strict binding as in john!name executes the method specified statically for the
current role. A dispatcher is created by a call to fibo.newDispatcher which provides
an initial method implementation for strict and late. The function late is tagged
as mutable with the var keyword since it is overridden dynamically whenever a
matching dispatcher is created in a subrole. The dispatcher attributes method Name
and self are utilised by the Tycoon library code that has to work uniformly on
dispatchers of arbitrary roles.

The last two lines in table 5.1 show how the two forms of Fibonacci message
send operations are translated into TL function calls. Once a systematic encoding
of objects, roles and methods by a graph of linked TL records and function closures
has been found, the translation of role type and role value expressions can be carried
out in a type-safe way as indicated by examples in table 5.1.

An interesting detail is the fact that a Fibonacci role type Person is mapped to
a Tycoon value Person that aggregates a type specification Person.T and a set of
functions to work on instances of that type (Person.copy, Person.roleExistenceTest,
...). The aggregation of types and values into a first-class language object is a
good example of the power available to data model implementors through Tycoon’s
higher-order type system.

The following fragments of the grammar definitions in the module Object.syntax
(see figure 5.1) show that the mechanism of extensible grammars is sufficiently
expressive to carry out the mappings indicated in table 5.1 and that these mappings
can be written in a rather readable way.

grammar
fiboValue: Value ===
v=fiboSimpleValue => optFiboValueApp(v)
optFiboValueApp(v:Value): Value ===
?1” method=ide => value<<|v.method.strict()|>>
| 7.7 method=ide => value<<|v.method.late()|>>
| (* nosuffix *) => v
end

Using Extensible Grammars for Data Modelling

grammar
fiboObjectValue: Value ===
”role” roleName=ide "methods” mbnds=fiboObject MethodBnds ”end”
=> value<<| begin
let rec _object :fibo.Object = record
let _oid = fibo.newOid()
let roleName = me
end
and me :roleName.T = record
let _object = _object
mbnds
end
me
end |>>

end

Note that this rewriting captures the Fibonacci scoping rules, for example, the
identifier me is bound to the “current” object in the scope of the method bindings
mbnds by virtue of a recursive object binding in Tycoon. Similarly, the names of
record attributes that should not be visible to Fibonacci programmers are made
inaccessible by prefixing them with an underscore that is disallowed in the source
syntax.

6. Related Work and Concluding Remarks

The work described in this paper can be seen as a contribution towards the “type
alchemist’s dream” [6], to express multiple data models uniformly in a sufficiently
expressive type system.

The rapid implementation of a data model in the typed and persistent Ty-
coon framework has the following advantages compared with a system prototype
implemented from scratch:

— The constructed system inherits most of Tycoon’s system functionality (per-
sistence management, garbage collection, code generation, modular compilation
etc.);

— No Zompiler implementation know-how is needed to implement type checkers for
polymorphic (higher-order) data models;

— The methodology described in section 3 supports early experimentation with
newly developed data models.

Compared with source-to-source code generators and preprocessor-based systems,
extensible grammars have the following advantages:

— Extensible grammars are fully integrated in the Tycoon compiler (intermediate
source files are avoided, error messages refer to the original source code position,
code management is simplified);

— Extensible grammars are easy to read and modify;

— Extensible grammars provide mechanisms to avoid name clashes and to invent
fresh identifiers as needed.

Extensible grammars are best suited for contezt-independent local rewriting tech-
niques. Some data model implementation techniques, e.g. the one described in [8],
make heavy use of global schema information held in a central repository to drive

Florian Matthes, Joachim W. Schmidt, Jens Wahlen

the generation of integrity-preserving transaction code. This is not possible with
the mechanism of extensible grammars since the rewrite process can only depend
on the input syntax and not on schema information available at compile-time. How-
ever, as exemplified by the Tycoon/Fibonacci add-on implementation, the handling
of context dependencies can often be delayed until run-time where it is possible to
work on persistent meta-data generated at compile-time.

Acknowledgement This research was supported by ESPRIT Basic Research, Project
FIDE, #6309 and by a grant from the German Israeli Foundation for Research and
Development (bulk data classification,1-183 060). Davide Berveglieri (Politecnico di
Milano) contributed significantly to the Tycoon/Fibonacci experiment described in
section 5. He was supported by the ESPRIT Basic Research Network of Excellence
IDOMENEUS (No. #6606) and the ESPRIT Basic Research Project FIDE #6309.

References

1. A. Albano, G. Bergamini, G. Ghelli, and R. Orsini. An object data model with
roles. In Proceedings of the Nineteenth International Conference on Very Large
Databases, Dublin, Ireland, pages 39-51, 1993.

2. A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An introduction to the
database programming language Fibonacci. FIDE Technical Report Series
FIDE/92/64, FIDE Project Coordinator, Department of Computing Sciences,
University of Glasgow, Glasgow G128QQ, 1993.

3. A. Albano, C. Brasini, M. Diotallevi, G. Ghelli, R. Orsini, and R. Rossi.
A guided tour of the Fibonacci system. FIDE Technical Report Series
FIDE/94/103, FIDE Project Coordinator, Department of Computing Sciences,
University of Glasgow, Glasgow G128QQ, July 1994.

4. A. Albano, G. Ghelli, and R. Orsini. Fibonacci reference manual: A prelimi-
nary version. FIDE Technical Report Series FIDE/94/102, FIDE Project Co-
ordinator, Department of Computing Sciences, University of Glasgow, Glasgow
G128QQ, 1994.

5. L. Alfo, S. Coluccini, P. Corte, and D. Presenza. Manuale del sistema sidereus.
Technical report, Dipartimento di Informatica, Universita di Pisa, Italy, 1989.

6. M.P. Atkinson and P. Bunemann. Types and persistence in database program-
ming languages. ACM Computing Surveys, 19(2), June 1987.

7. C. Beeri and P. Ta-Shma. Bulk data types, a theoretical approach. In C. Beeri,
A. Ohori, and D.E. Shasha, editors, Proceedings of the Fourth International
Workshop on Database Programming Languages, Manhatten, New York, Work-
shops in Computing. Springer-Verlag, February 1994.

8. A. Borgida, J. Mylopoulos, J.W. Schmidt, and I. Wetzel. Support for data-
intensive applications: Conceptual design and software development. In Pro-
ceedings of the Second International Workshop on Database Programming Lan-
guages, Portland, Oregon, June 1989.

9. L. Cardelli, F. Matthes, and M. Abadi. Extensible grammars for language
specialization. In C. Beeri, A. Ohori, and D.E. Shasha, editors, Proceedings
of the Fourth International Workshop on Database Programming Languages,
Manhatten, New York, Workshops in Computing, pages 11-31. Springer-Verlag,
February 1994.

10

11.

12.

13.

14.

15.

16.

17.

18.

Using Extensible Grammars for Data Modelling

. L. Cardelli, F. Matthes, and M. Abadi. Extensible syntax with lexical scop-
ing. Technical Report 121, Digital Equipment Corporation, Systems Research
Center, Palo Alto, California, February 1994.

A. Gawecki and F. Matthes. Tool: A persistent language integrating subtyping,
matching and type quantification. FIDE Technical Report Series FIDE/95/135,
FIDE Project Coordinator, Department of Computing Sciences, University of
Glasgow, Glasgow G128QQ, 1995.

F. Matthes and J.W. Schmidt. Bulk types: Built-in or add-on? In Database
Programming Languages: Bulk Types and Persistent Data. Morgan Kaufmann
Publishers, September 1991.

F. Matthes and J.W. Schmidt. Definition of the Tycoon language TL — a
preliminary report. Informatik Fachbericht FBI-HH-B-160/92, Fachbereich In-
formatik, Universitat Hamburg, Germany, November 1992.

C. Niederée. Generic services for data-intensive applications: Iteration abstrac-
tion, integrity checking and recovery. Master’s thesis, Fachbereich Informatik,
Universitit Hamburg, Germany, November 1992. (In German).

K.-D. Schewe, J.W. Schmidt, and I. Wetzel. Identification, genericity and con-
sistency in object-oriented databases. In J. Biskup and R. Hull, editors, Pro-
ceedings of the International Conference on Database Theory, volume 646 of
Lecture Notes in Computer Science, pages 341-356. Springer-Verlag, October
1992.

J.W. Schmidt and F. Matthes. The DBPL project: Advances in modular
database programming. Information Systems, 19(2):121-140, 1994.

M. Stonebraker. Special issue on database prototype systems. IFEE Transac-
tions on Knowledge and Data Engineering, 2(1), March 1990.

P. Trinder. Comprehensions, a query notation for DBPLs. In Database Pro-
gramming Languages: Bulk Types and Persistent Data. Morgan Kaufmann Pub-
lishers, September 1991.

