
Chair of Software Engineering for Business Information Systems (sebis)
Faculty of Informatics
Technische Universität München
wwwmatthes.in.tum.de

Bachelor‘s Thesis:
Conceptualization and Implementation of a Rule-based
Workbench for Textual Pattern Annotation
Georg Bonczek, 2017

Administrative Setup

● Title: Conceptualization and Implementation of a Rule-based
Workbench for Textual Pattern Annotation

● Start: 15.08.2017

● End: 15.12.2017

● Author: Georg Bonczek (georg.bonczek@tum.de)

● Advisor: M.Sc. Bernhard Waltl (b.waltl@tum.de)

© sebis 2

mailto:georg.bonczek@tum.de
mailto:b.waltl@tum.de

Rule-based Text Annotation

● Annotations are metadata for a span of text

● Rules consist of patterns and actions

● Patterns are RegEx like formulations for sequences of annotations

3

Rule-based Text Annotation

● Annotations are metadata for a span of text

● Rules consist of patterns and actions

● Patterns are RegEx like formulations for sequences of annotations

4

Ein Produkt hat einen Fehler, wenn...

Rule-based text annotation is still useful in times of machine learning:

● Predictable results

● Easy and fast to implement

● Incorporation of domain knowledge

● Creation of training sets

Motivation

5© sebis 5

Current workflow

6

Samples for
Annotations Define Rules

Implement RulesTest RulesRules
Correct

refine rules

true

Define
Annotations

false

Status Quo

7

GATE / JAPE IDE UIMA / UIMA Ruta IDE

Conceptualization X X

Implementation ✓ ✓
Testing ✓ ✓
Embeddable IDE X X

Doesn’t require
technical knowledge

X X

© sebis 7

Manual Collection of Samples

8

Samples for
Annotations Define Rules

Implement RulesTest RulesRules
Correct

refine rules

true

Define
Annotations

false

Implementation Requires Communication

Samples for
Annotations Define Rules

Implement RulesTest RulesRules
Correct

refine rules
Domain
Expert

Software
Engineer

true

Define
Annotations

false

9

Testing Needs To Be Synchronized

Samples for
Annotations Define Rules

Implement RulesTest RulesRules
Correct

refine rules
Domain
Expert

Software
Engineer

true

Define
Annotations

false

10

Problem Statement

● Rule-based text annotation

● Current environments do not cover complete development process

● Unsuitable for non-technical domain experts

● No focus on interdisciplinary collaboration of domain experts and SE

11

Samples for
Annotations

Define Rules by
Implementation

Rules
Correct

refines rules

Domain
Expert

Provide
Functionality

true

Define
Annotations

Software
Engineer

false

12

Samples for
Annotations

Define Rules by
Implementation

Rules
Correct

refines rules

Domain
Expert

Provide
Functionality

true

Define
Annotations

Software
Engineer

false

Solution

● Dedicated user interfaces for the conceptualization of rules

○ Sample collection by text highlighting

○ Remove immediate need for SE

● Support rule implementation

○ Different approaches to rule editors

○ Automatic rule learning

○ …

● Automate manual tasks like testing

14

Research Questions

● What are the concrete phases in rule development?

● How can we support this development process?

● Which existing technologies can be integrated?

● How can we separate concerns?

15

Questions

16

References

Figure p. 19: Chiticariu, Laura, Yunyao Li, and Frederick R. Reiss. "Rule-based
information extraction is dead! long live rule-based information extraction systems!."
EMNLP. No. October. 2013.

17

Phase: UrlPre
Input: Token SpaceToken
Options: control = appelt

Rule: Urlpre

((({Token.string == "http"} |
{Token.string == "ftp"})
{Token.string == ":"}
{Token.string == "/"}

{Token.string == "/"}
) |

({Token.string == "www"}
{Token.string == "."}
)

):urlpre
-->
:urlpre.UrlPre = {rule = "UrlPre"}

18© sebis 18

WORDLIST FirstNameList = 'FirstNames.txt';
DECLARE FirstName, FirstNameInitial, Name, NameListPart;

Document{-> MARKFAST(FirstName, FirstNameList)};

DECLARE NameLinker;
W{REGEXP("and", false) -> MARK(NameLinker)};
COMMA{ -> MARK(NameLinker)};
SPECIAL{REGEXP("&") -> MARK(NameLinker)};

CW{REGEXP(".") -> MARK(FirstNameInitial,1,2)} PERIOD;

FirstName+ FirstNameInitial* CW{-> MARK(Name, 1, 2, 3)};
FirstNameInitial+{-PARTOF(Name)} CW{-> MARK(Name, 1, 2, 3)};
CW{-PARTOF(Name), -REGEXP(".")} COMMA? FirstNameInitial+{-> MARK(Name, 1, 2, 3)};

19

20

