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Rule-based Text Annotation

● Annotations are metadata for a span of text 

● Rules consist of patterns and actions

● Patterns are RegEx like formulations for sequences of annotations
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Ein Produkt hat einen Fehler, wenn...



Rule-based text annotation is still useful in times of machine learning:

● Predictable results

● Easy and fast to implement

● Incorporation of domain knowledge

● Creation of training sets

Motivation

5© sebis 5



Current workflow
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Status Quo
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GATE / JAPE IDE UIMA / UIMA Ruta IDE

Conceptualization X X

Implementation ✓ ✓
Testing ✓ ✓
Embeddable IDE X X

Doesn’t require 
technical knowledge

X X

© sebis 7



Manual Collection of Samples
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Implementation Requires Communication
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Testing Needs To Be Synchronized
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Problem Statement

● Rule-based text annotation

● Current environments do not cover complete development process

● Unsuitable for non-technical domain experts

● No focus on interdisciplinary collaboration of domain experts and SE
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Solution

● Dedicated user interfaces for the conceptualization of rules

○ Sample collection by text highlighting

○ Remove immediate need for SE

● Support rule implementation 

○ Different approaches to rule editors

○ Automatic rule learning

○ … 

● Automate manual tasks like testing
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Research Questions

● What are the concrete phases in rule development?

● How can we support this development process?

● Which existing technologies can be integrated?

● How can we separate concerns?
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Questions
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Phase: UrlPre
Input:  Token SpaceToken
Options: control = appelt

Rule: Urlpre

( (({Token.string == "http"} |
{Token.string == "ftp"})
{Token.string == ":"}
{Token.string == "/"}

{Token.string == "/"}
) |

({Token.string == "www"}
{Token.string == "."}
)

):urlpre
-->
:urlpre.UrlPre = {rule = "UrlPre"}
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WORDLIST FirstNameList = 'FirstNames.txt';
DECLARE FirstName, FirstNameInitial, Name, NameListPart;

Document{-> MARKFAST(FirstName, FirstNameList)};

DECLARE NameLinker;
W{REGEXP("and", false) -> MARK(NameLinker)};
COMMA{ -> MARK(NameLinker)};
SPECIAL{REGEXP("&") -> MARK(NameLinker)};

CW{REGEXP(".") -> MARK(FirstNameInitial,1,2)} PERIOD;

FirstName+ FirstNameInitial* CW{-> MARK(Name, 1, 2, 3)};
FirstNameInitial+{-PARTOF(Name)} CW{-> MARK(Name, 1, 2, 3)};
CW{-PARTOF(Name), -REGEXP(".")} COMMA? FirstNameInitial+{-> MARK(Name, 1, 2, 3)};
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