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Motivation — Problem in the Legal Domain TN

» Legislative texts = Contracts

» Regulations = |P documents
= Epactments = Agreements
= Patents .

Huge amount of unstructured
legal documents and text

Demand for Natural Language Processing
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Motivation - Problem in the Legal Domain

Natural Language Processing in the Legal Domain

Named Entity Recognition

Named Entity Disambiguation

Question Answering

Machine Translation

Text Classification

Text Summarization

Parsing

Semantic analysis and extraction

Network analysis, relationship extraction and taxonomy generation

Solutions

= Support Vector Machines
= Random Forests
= Recurrent Neural Networks

However, ...
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Motivation - Problem in the Legal Domain TUT

..., they need two things:

Computational = Task-independent V
1 Resources = Domain-independent

Large Annotated = Task-dependent x
Datasets = Domain-dependent

» Appropriate datasets for tasks in the legal domain are highly limited
... or better phrased, barely exist at all
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Motivation - Problem in the Legal Domain TUT

Unstructured legal Annotated training

documents and text datasets

What can we do?

= Creating new datasets
» Task-dependent

» Use datasets from other domains [1]
= Pretrain and Adapt

= Active Machine Learning [2] [3]

Are there other methods?
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Motivation - Multi-Task Deep Learning

“Last week, Kigali

“Can you give our

Train one model which can perform multiple tasks [4] [5]

The above represents

X "3:“: z;isr:i(ljit?rf/ ?;Zﬁgl(l:z readers some details  a triumph of either
. DN on this?” apathy or civilit
. ‘ after shells...” ' peily erevity
! ! ' ¢
To English To Category To French To German To Parse
v v v v v
“A man that is Category 127 “La semaine derniere, “Kénnen Sie unseren  «g NP DT JJS /NP
sitting in front of (Male Human) Kigali a soulevé la Lesern einige VP VBZ NP NP DT
a suitcase” possibilité de Details dazu geben?”

représailles militaires
aprés avoir débarqué
des coquilles...”
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Motivation - Multi-Task Deep Learning

Natural Machine
Language Learning
Processing

Objective:

= Exploit commonalities and overcome task-specific dataset shortage

in the legal domain
» Establish Transfer Learning for better results in legal text tasks
=  Support generic / task-independent Deep Learning architecures
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Research Questions TUT

Can multi-task deep learning be beneficial for tasks in the legal domain?

How does training on multiple tasks of the legal domain
simultaneously compare to training on each task seperately?

How far is multi-task deep learning from state-of-the-art solutions in the
legal domain?

What are good hyperparameters for multi-task deep learning in the
legal domain?

Can feeding datasets from other domains improve the performance
of tasks in the legal domain?
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Research Approach - Overview

@ Deductive Reasoning

= Choose a Multi-Task model

= Conduct experiments

= Search for datasets in the legal domain

= Integrate datasets into the Multi-Task model

4

= Train the Multi-Task model on legal tasks —
» Generate information according to the hypotheses —

= Evaluate generated information -

& Backed by literature research

Verify or disprove research questions
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Research Approach - Corpora

Corpus LD | EN | DE | Classification| Summarization | Parsing | Cost | Size
JRC-Acquis X | X | X X X - - TS
The HOLJ Corpus | X | X | - - [ Y = e T
Patent Decisions X | X | - X - - - ?
Reuters Newswire ~ | X [ X X ~ - - ++
CNN / Daily Mail ~ | X | - X X ] I
Annotated Gigaword ~ | X | - - X X X | ++++
DeReKo ~ - | X - - - - |4+t
DUC Corpora ~ | X | - - X - - +
Huge German Corpus | ~ - | X - - X - +++
NEGR@ Corpus ~ | - [ X - - X - ++
TIGER corpus ~ - | X - - X - +4+
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Research Approach - Corpora

Corpus LD | EN | DE | Classification| Summarization | Parsing | Cost | Size
JRC-Acquis X | X | X X X - - TS
EuroParl X | X | X - = - - 4+
e R R
Patent Decisions X | X | - X - - - ?
ReuterSNeWSW|re ...... a XXX SR A e _ ++
CNN / Daily Mail ~ | X | - X X - - |+
Annotated Gigaword | ~ [ x | - | - x | x| x e
DeReKo ~ - | X - - - - |4+t
DUC Corpora ~ | X | - - X - - +
Huge German Corpus | ~ - | X - - X - +++
NEGR@ Corpus ~ - | X - - X - ++
TIGER corpus ~ | - X - - X - 4
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Research Approach — Legal Multi-Task TUM

Legal Domain Legal Tasks

JRC-Acquis

Legal Text Classification

EuroParl

MultiModel [6] Legal Text Translation
German Court Decisions

Legal Text Summarization
Patent Corpus

Translation Classification Summarization

JRC-Acquis
EuroParl

German Court Decisions

Patent Corpus
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Evaluation Metrics TUT

Text Summarization Machine Translation

Tasks Text Classificiation

ROGUE-1
F1 Score BLEU Score
ROGUE-2
Measure
precision * recall Overlap of n grams between Overlap of n grams between
* precision + recall system and reference system and reference
summaries translation according to total
appearance
18 sebis’
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Preliminary Results - Preprocessing for Translation TUM

= XML format = MOSES format
= Metainformation = Aligned text line by line
» Tagged paragraphs = One file per language

= s, de, en, es, fr, it, sv

EuroParl

JRC-Acquis

MultiModel
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Timeline

Literature Research
Development Concept
Implementation
Evaluation

Writing

Review

Today
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What preprocessing of the datasets is necessary for translation,
classification and summarization?

What factors should be considered when training Deep Learning /
Multi-Task models?

What impact do dataset properties have on the performance?

What state-of-the-art solutions exist for which tasks? Are they domain-
dependent?

What solutions are currently used in practice? Are they competitive?

How can the MultiModel be extended?
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