

# Describing, Modeling and Interdisciplinary Analogies of Complexity and Complex Systems

Master's Thesis initial presentation, Jul. 29 2013

**Bernhard Waltl** 

MCTS – Munich Center for Technology in Society



Software Engineering for Business Information Systems (sebis) www.matthes.in.tum.de

# Agenda



- Introduction
- What is complexity?
- Historical Development
- Complexity in computer science
- What does complexity not imply?
  - Randomness
  - Complication
- Interdisciplinary approach or what can we learn from other disciplines?
  - Systems biology
- References & Literature

### Introduction



- Master's Thesis in Philosophy for Science and Technology
  - MCTS Munich Center for Technology in Society



- Supervisor: Prof. Klaus Mainzer
  - Director and Founder of the MCTS
  - Philosopher, Mathematician, Physicist
  - Complex Dynamical Systems and Self-Organization in Nature and Society
  - Artificial Life and Artificial Intelligence
  - Chaos Theory

## What is complexity?



- Complexity as a property of a system
  - The system must be an open (dissipative) system
    - Interaction with environment is required
    - Closed systems end up in a steady state (2<sup>nd</sup> Law of Thermodynamics)
  - Multiple elements are needed
    - Interconnectivity
    - The behavior of a complex system is different to the behavior of its individuals
  - Non-Linearity
    - Interactions within elements are non-linear
    - The common principle of cause and effect is inadequate



# What is complexity?



- Complexity as a property of a system
  - Dynamic behavior
    - Behavior is changing over time
  - Chaotic behavior
    - Sensitivity to initial conditions ("butterfly-effect")
  - Self-similarity
    - Scale Invariance
  - Self-organization







# **Historical Development**



- "The whole is more than the sum of its parts" [Aristotle]
  - Life was supposed to be more than a set of organs in a body
  - What is the "more"?
- Scientific progress, especially Newton's Laws, pushed engineers, scientists and philosophers towards a more reductionist viewpoint
  - Mechanism instead of vitalism
  - "L'Homme Machine" from La Mettrie
    - Human body as a complicated machine, following simple rules
  - Kant later on criticized the idea of reductionism as well as the idea of purpose (teleology) of Aristotle
    - He postulated self-organization in a quite modern sense [Mainzer07]
- What followed was a centuries of controversial discussions between reductionists and vitalists

# **Historical Development**



- From a scientific point of view it is quite reasonable to believe that the laws of nature, underlying all biological processes, are sooner or later going to be found!
- But the awareness of those laws must not necessarily explain emergent properties of complex systems
  - What do the principles of genetic and biology tell us about life?
  - If we understand the operation of neurons can we explain what consciousness really is and means?
- However, different scientific disciplines arisen and they all struggle with the phenomena complexity
  - Systems biology, neuroscience, sociology, ecology, ....
- Dealing with complexity seems to be one of the big challenges in the 21. century!

# **Complexity in Computer Science**



- Computational Complexity Theory
  - Analysis of algorithms
    - What amount of resources (time, space) are required?
  - Computability theory
    - Can a problem in principle be solved or calculated?
- This is **not** what the thesis is going to address!

- What computer science has in common to many other scientific disciplines is the system approach
  - Dealing with complex systems in reductionist way can be dangerous
  - Holistic approach can explain and forecast behavior where other approaches fail
- Holistic approach in Software Engineering and Enterprise Architectures

# What does complexity not imply?



### Complexity implies randomness?



- No, deterministic processes can be highly complex!
- Forecasting is not possible!
- E.g. Ideal-Double-Pendulum
- Two non-linear differential equations that are not analytically solvable!
  - The process itself is high deterministic but small deviation yield large deviations
  - "When the present determines the future, but the approximate present does not approximately determine the future" – Edward Lorenz, Meteorologist



# Quelle: www.youtube.com/user/turbulenceteamms

## What does complexity not imply?



### Complexity implies complication?



- In general not, but the question itself is not that clear!
- Complexity and complication describe different aspects of a system
- Complexity is an emerging system property
- A complex system is not necessarily complicated but needs different approaches and methods to be described properly
  - E.g. Phase transitions, Bifurcations, Non-deterministic Processes,...
- E.g: Rayleigh–Bénard convection [Nicolis87]



# What can we learn from other disciplines?



- Thinking in systems is not new in computer science
  - Thinking in non-linear and dynamic interconnections though

- Other disciplines have studied their objectives and research objects and developed new approaches to deal with complexity:
  - Sociology
    - Sociodynamics (qualitative & quantitative) [Helbing10]
  - Biology
    - Systems biology
  - Neurology
    - Human Brain Project, Brain Activity Map
  - Economy
    - Econophysics [Chakrabarti06]



# **Example: Systems biology**



- Holistic approach instead of the traditional reductionism
  - Discovering emerging properties
  - Organisms functions
  - Properties of cells



- Quantitative modeling of kinetics
  - (chemical reactions with enzyms)
- Mathematical modeling and simulations (Various tools and new technologies)
- Control theory and cybernetics
- Genome Projects
  - Determining the complete genome sequences of an organism (animal, plant, bacterium,....)

# What can we learn from other disciplines?



- Focusing on method transfer rather than model transfer
  - Stochastic principles
  - Non-linear dynamics
  - Multi-Layer modeling (micro & macro levels)
  - Progress and Success of modeling approaches
  - In-Silico-Experiments (Simulations)
  - Identifying order parameters that indicate phase transitions



# SUGGESTIONS, QUESTIONS, REMARKS?

I think the next century will be the century of complexity.

- Stephen Hawking, 2000

### References



[Aristotle] Aristotle, Metaphysica

### [Nicolis87]

Gregoire Nicolis, Ilya Prigogine: Die Erforschung des Komplexen – Auf dem Weg zu einem neuen Verständnis der Naturwissenschaften, Piper, München 1987

### [Chakrabarti06]

Bikas Chakrabarti, Anirban Chakraborti, Arnab Chatterjee: Econophysics and Sociophysics – Trends and Perspectives, Wiley, Weinheim 2006

### [Mainzer07]

Klaus Mainzer: Thinking in Complexity, Springer, Mainz 2007.

### [Weyer08]

Johannes Weyer, Ingo Schulz-Schaeffer: Management komplexer Systeme, München, Oldenbourg 2008.

### [Vester08]

Frederic Vester: Die Kunst vernetzt zu denken, dtv, München, 2008

### [Helbing10]

Dirk Helbing: Quantitative Sociodynamics, Springer, Berlin Heidelberg 2010