

Technical Analysis of the Tangle in the IOTA-Environment

Bennet Breier, 14.08.2017, Munich

sebis

Chair of Software Engineering for Business Information Systems (sebis) Faculty of Informatics Technische Universität München wwwmatthes.in.tum.de

1. Motivation

- 2. Research Questions & Approach
- 3. Timeline
- 4. Example Analysis

Motivation – Simple Example

- \checkmark Smart devices can communicate
- \checkmark The ledger is legally binding
- ✓ And immutable

Motivation

- ✓ no fees
- ✓ scalable
- ✓ fast (700 txs/sec, gets faster with more users)
- ✓ works offline
- ✓ quantum secure

- ♦ 0.25 € per tx (transaction)
- Scalability issues not resolved
- ✤ 25 txs/sec
- ✤ needs internet connection
- RSA, ECC not quantum secure

Better suited for IoT use-cases

Setup of this Bachelor's Thesis

- Title: Technical Analysis of the Tangle in the IOTA-Environment
- Author: Bennet Breier (<u>bennet.breier@tum.de</u>)
- Advisor: Patrick Holl (<u>patrick.holl@tum.de</u>)
- **Start**: 15 August 2017
- **End**: 15 November 2017

1. Motivation

- 2. Research Questions & Approach
- 3. Timeline
- 4. Example Analysis

Research Questions and Approach

1. What is the theoretical foundation of the tangle?

- Processing of Transactions
- Tip selection
- Byzantine Fault Tolerance
- Proof-of-Work
- Hashing (Curl & Kerl) & cryptography
- Scalability
- Privacy
- Quantum resistance

- Conditions for a secure & stable system
- Attack vectors (Sybil Attack, Parasite Chain Attack, Splitting Attack, 300% Attack)

Research Questions and Approach

2. What are the key differences between

tangle vs. blockchain?

Comparable characteristics: (argued along a comprehensive use-case)

- Data structure
- Scalability, Transactions per second
- Fee structure
- Time to confirmation
- Privacy
- Security

3. How does IOTA use and advance the tangle in its environment?

- Facts about IOTA Foundation (business relations, adoption/advantages of their technology, ...)
- IOTA-Implementation (deviations from theory)
- Coordinator
- peer discovery

Approach

ПП

Research questions

R1	 Theory behind the tangle
R2	• Tangle vs. Blockchain
R3	IOTA environment

Research Approach

Literature & online research (google scholar,)

✓ Online-communities

- Slack team
- forum.iota.org
- reddit
- Github (+ code review)
- Stackoverflow (coming soon)

\checkmark 2 – 4 Interviews with members of IOTA

1. Motivation

- 2. Research Questions & Approach
- 3. Timeline
- 4. Example Analysis

Timeline

Official Start Date: 15.08.2017

Official End Date: 15.12.2017

Supervisor: Patrick Holl

1. Motivation

- 2. Research Questions & Approach
- 3. Timeline

4. Example Analysis

Example Analysis Process

Processing of Transactions

- 1. Constructing the bundle and signing of inputs
- 2. Tip selection
- 3. Proof of Work

1. Constructing the bundle and signing of inputs

hash

signatureMessage

Fragment

address

value

timestamp

Structure of

a transaction

Example Analysis Process

Processing of Transactions

- 2. Select 2 tips according to a tip selection strategy
- Random tip selection
- Markov Chain Monte Carlo:

Perform multiple random-walks along the tangle:

the transition-probability is proportional to the **cumulative weight** of the tx

cumulative weight = own weight of tx + sum of weights of all approving txs

own weight of a tx is proportional to the amount of work put into it

Example Analysis Process

Processing of Transactions

3. Proof of Work

Principle: Hashcash Hash function: Curl (from sponge fam

Curl (from the sponge family hash functions)

Thank you for your attention

Further questions?

170814 Bennet Breier KickOff Bachelor's Thesis

berg

ing

Geltendo

Eresing

96

B.Sc. Information Systems Bennet Breier

Technische Universität München Faculty of Informatics Chair of Software Engineering for Business Information Systems

Egenhofen

8

Boltzmannstraße 3 85748 Garching bei München

+49.89.289. Tel Fax +49.89.289.17136

bennet.breier@tum.de wwwmatthes.in.tum.de

mme

Indersdorf

Appendix

