
TECHNISCHE UNIVERSITÄT
MÜNCHEN

DEPARTMENT OF INFORMATICS

Master’s Thesis in Information Systems

Enhancing Business Process Mining
with Distributed Tracing Data in a

Microservice Architecture

Jochen Graeff

TECHNISCHE UNIVERSITÄT
MÜNCHEN

DEPARTMENT OF INFORMATICS

Master’s Thesis in Information Systems

Enhancing Business Process Mining
with Distributed Tracing Data in a

Microservice Architecture

Eine Erweiterung von Business
Process Mining mit Hilfe von

Distributed Tracing Daten in einer
Microservice-Architektur

Author: Jochen Graeff
Supervisor: Prof. Dr. Florian Matthes
Advisor: Martin Kleehaus, M.Sc.
Submission Date: 15.08.2017

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, 15.08.2017 Jochen Graeff

Abstract

A main goal of Enterprise Architecture Management (EAM) is to align business needs
with IT capabilities in order to understand and visualise interdependencies between
the layers of an Enterprise Architecture (EA) and therefore gain a holistic view.

This thesis aims to provide the required visibility between the business and application
layer through a monitoring and analysis approach. The approach enhances traditional
process mining with performance indicators obtained from the application layer. With
the developed prototype, correlations between user behaviour from the business layer
and system performance occurring in the application layer can be detected.

This is achieved by applying process mining discovery techniques on distributed
tracing data originating from an instrumented microservice architecture. Through an
activity log generation component, low level events of the distributed tracing data
are transformed into a high level activity log comprising of two hierarchies: user and
system activities.

It is shown, that the developed prototype can be implemented with little effort and
provides a cost-efficient bottom-up approach to discover business processes in mi-
croservice architectures in near real-time. The approach comes with little instrumenta-
tion effort and is agnostic to programming frameworks or architectural styles.

Limitations especially emerge through possible performance losses caused by high
sampling rates in the instrumented software component.

Contents

List of Tables v

List of Figures vii

Listings ix

Glossary xi

1. Introduction 1
1.1. Motivation and problem statement . 1
1.2. Research methodology . 3
1.3. Thesis structure . 4

2. Foundations of microservice architectures, distributed tracing and process
mining 7
2.1. Microservice architectures . 7

2.1.1. Characteristics, benefits and challenges of microservice
architectures . 7

2.1.2. Microservice composition styles 9
2.2. Distributed tracing . 12

2.2.1. General concept and raison d’être 12
2.2.2. Principle function, terminology and tracing architecture 13

2.3. Business process mining . 18
2.3.1. Use cases of business process mining 18
2.3.2. Types of process mining . 18
2.3.3. Description of the α-Algorithm . 19
2.3.4. Structure of an event log . 21
2.3.5. Strategies of data acquisition . 22
2.3.6. Transforming the multi-dimensional reality into a flat event log . 23
2.3.7. Challenges in extracting data and generating event logs 23

3. Description of the system under survey 27
3.1. General system architecture . 27
3.2. Description of the business functionalities 31

i

Contents

3.3. Description of the software architecture 37
3.3.1. Service communication architecture 37
3.3.2. Infrastructure microservices . 38
3.3.3. Exemplary setup of a business microservice 39

4. Description of the automated process discovery prototype 43
4.1. Extended system under survey architecture 43
4.2. Distributed tracing and process mining tool selection 45
4.3. Instrumentation of the system under survey 46
4.4. Data architecture . 47

4.4.1. Tracing data persistence data . 48
4.4.2. General table structure . 48

4.5. Event log generation . 53
4.5.1. Scoping the event data . 53
4.5.2. Transformation of low level events to activities and binding to

process instances . 54
4.6. Process configuration and analysis creation in the process mining tool . 60

4.6.1. Process mining workflow . 60
4.6.2. Data model and activity table configuration 61
4.6.3. Process visualisation . 63
4.6.4. Description of created analyses . 67

5. Discussion 81
5.1. Benefits of the proposed solution . 81

5.1.1. Cross-domain analysis . 81
5.1.2. Resource efficient data source for generating event logs 82
5.1.3. Portability . 82
5.1.4. Ubiquity . 83
5.1.5. Flexibility on process perspectives 83
5.1.6. Foundation for real-time process mining 84
5.1.7. Bottom-up process discovery in legacy systems 84

5.2. Limitations of the proposed solution . 85
5.2.1. System under survey . 85
5.2.2. Suitability of applied process visualisations 86
5.2.3. Performance overhead through high sampling rates 89
5.2.4. Real-time event handling, event log generation and process dis-

covery . 90
5.3. Related work . 91

6. Summary and outlook 97

Bibliography 101

ii

Contents

A. Appendix 109
A.1. Additional figures and tables . 109
A.2. Technical documentation of analyses in the PMT 114
A.3. Installation guide for prototype setup . 123

iii

List of Tables

2.1. Sample event log . 21

3.1. Dependency matrix between user activities and microservice
involvement . 30

3.2. Webui service endpoints and their usage in user activities 34
3.3. Maps service endpoints and their usage in user activities 35
3.4. Accounting service endpoints and their usage in user activities 35
3.5. Notifications service endpoints and their usage in user activities 36
3.6. Payments service endpoints and their usage in user activities 36
3.7. User service endpoints and their usage in user activities 36
3.8. Cars service endpoints and their usage in user activities 37

4.1. Database tables usage classification . 48
4.2. zipkin_spans table definition . 49
4.3. zipkin_annotations table definition . 50
4.4. Description of the activites table . 51
4.5. Activities table configuration in the Process Mining Tool (PMT) 62
4.6. Structure of analysis description . 68
4.7. Key Performance Indicators (KPIs) of header component in the Business

Analysis (BA) analysis . 69
4.8. KPIs of header component in the Application Analysis (AA) analysis . 72
4.9. KPIs of header component in the Cross-domain Analysis (CDA)

analysis . 75
4.10. KPIs of header component in the Single User Activity Analysis (SUAA)

analysis . 78

5.1. Description of the classification framework for related work 92
5.2. Classification of related work . 95

v

List of Figures

1.1. Research process . 3

2.1. Service orchestration, adapted from [46] 11
2.2. Service choreography, adapted from [46] 12
2.3. Example trace of a request from the front-end processed by multiple

back-end services, adapted from [64] . 14
2.4. Waterfall diagram showing the four spans and their ids from a temporal

perspective . 14
2.5. Temporal occurrence of timestamps during a span’s life for a request

and response between Service A and B, adapted from [8] 15
2.6. Distributed tracing architecture [18] . 16
2.7. Exemplary trace generation explained in sequence diagram [10] 17

3.1. Architectural overview of System under Survey (SUS) 28
3.2. Call flow for /endRental request at the front-end (i.e. End car rental user

activity) . 31
3.3. Web front-end rendered by the webui service 33

4.1. Overview of the prototype development process 43
4.2. Architectural setup for the data processing 44
4.3. End-to-end process mining workflow . 61
4.4. Data model configuration in the PMT . 62
4.5. User click path visualisation in the PMT 64
4.6. Model excerpt showing the case frequency KPI 65
4.7. Model excerpt showing the durations KPI 66
4.8. Model excerpt showing the conversion rate KPI 67
4.9. Business Analysis in PMT . 71
4.10. Application Analysis in PMT . 74
4.11. Cross-Domain Analysis in PMT . 77
4.12. Single User Activity Analysis in PMT . 80

5.1. Ambiguous placement of system activities 87
5.2. Waterfall-like visualisation of a trace in Zipkin, triggered through the

/bookPackage request from the front-end 87

vii

List of Figures

5.3. Process visualisation of a the Book package user activity and the called
system activities in the PMT . 88

A.1. List available cars activity, triggered through /getCars request 109
A.2. Reserve car activity, triggered through /reserveCar request 109
A.3. Book car activity, triggered through /bookCar request 109
A.4. Unlock car activity, triggered through /openCar request 109
A.5. End car rental activity, triggered through /endRental request 110
A.6. Show balance activity, triggered through /showBalance request 110
A.7. Book package activity, triggered through /bookPackage request 110
A.8. Show driving history activity, triggered through /showHistory request . 110
A.9. Report issue activity, triggered through /reportIssue request 110
A.10.Find route activity, triggered through /findRoute request 110
A.11.Complete data model in UML notation 113

viii

Listings

3.1. The application’s local bootstrap.properties 39
3.2. Class definition for the accounting application 40
3.3. Endpoints definition in the accounting controller 41

4.1. Class definition for ZipkinApplication.java 46
4.2. Appending the session_id to the span . 47
4.3. Creation of healthy user activites . 55
4.4. Activity name alteration . 57
4.5. Filter alteration on join . 57
4.6. Creation of healthy user activites . 58
4.7. First filter alteration on join for failed system activities 60
4.8. Second filter alteration on join for failed system activities 60
4.9. Definition of edge durations . 65
4.10. Definition of activity conversion rate . 66
4.11. Definition of edge conversion rate . 67

ix

Glossary

A

AA Application Analysis
AOP Aspect-oriented Programming
API Application Programming Interface
APM Application Performance Manage-
ment

B

BA Business Analysis
BI Business Intelligence
BPEL Business Process Execution Lan-
guage
BPMN Business Process Model and Nota-
tion

C

CDA Cross-domain Analysis
CRM Customer Relationship Management

E

EA Enterprise Architecture
EAM Enterprise Architecture Manage-
ment
ERP Enterprise Resource Planning
ESB Enterprise Service Bus
ESP Event Stream Processing

H

HTTP Hypertext Transfer Protocol

K

KPI Key Performance Indicator

L

LLCM Living Lab Connected Mobility

O

OLAP Online Analytical Processing

P

PAIS Process-Aware Information Systems
PMT Process Mining Tool
POM Project Object Model
PQL Process Query Language

R

RDBMS Relational Database Management
System
REST Representational State Transfer
RPC Remote Procedure Call

S

SOA Service Oriented Architecture
SQL Structured Query Language
SUAA Single User Activity Analysis
SUS System under Survey

U

UI User Interface
UML Unified Modeling Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
UX User Experience

W

WFM Workflow Management System

xi

1. Introduction

1.1. Motivation and problem statement

One of the main challenges in handling EAs is reacting to new environments, character-
ised through ever-evolving technologies and rapidly changing business requirements
[22]. The discipline of Enterprise Architecture Management (EAM) tries to address
these challenges and produced several frameworks in the past, that help to align busi-
ness needs and IT capabilities from a holistic perspective through models and processes
[9, 57]. EA models capture connections and dependencies between the layers of an
enterprise [13]. The division of an EA into layers, as applied in most frameworks,
aims to enable the management of entities and the reduction of complexity [60]. The
definition of layers varies in the many frameworks developed while the contents in-
troduced by a layer are mostly resembling each other [54]. In this work, a three layer
perspective will be applied, which can often be found in practice and consists of an
infrastructure layer at the bottom, focusing on technological aspects such as computing
and communication infrastructure, followed by the application layer above that entails
aspects of the software that is deployed on the IT infrastructure and the business layer
on top, that is comprised of the organisation’s business processes [40].

The transparency, that holistic EA models aim to provide, is endangered trough rapidly
changing environments affecting all layers of an EA. Maintaining these models to
continuously support the EAM function requires on-going effort [26].

A coexisting approach for providing transparency in an EA is monitoring. In compar-
ison to EA models, that capture static representation at build time, monitoring provides
visibility in form of real-time behaviour at run-time. For each of the before described
layers, various approaches were developed that try to achieve transparency [39]. These
monitoring approaches are all driven by a set of analysis questions, that arise most
often from of a single domain. Therefore, they focus on monitoring and analysing an
EA from a local perspective and provide transparency for a single layer only.

One of theses approaches, that provides visibility for the business layer, is process mining.
Process mining is a relatively young research discipline that makes use of the growing
amount of available event data that IT systems produce. This data is used to generate
process models and discover process weaknesses.

An emergent technique that provides visibility for the application layer is distributed

1

1. Introduction

tracing. Distributed tracing found a lot of application recently due to the spread of
microservice architectures, which especially require visibility through their distributed
nature. Distributed tracing enables latency optimisation and the discovery and analysis
of back-end errors.

However, analysis questions are not restricted to a single layer only. They often emerge
in-between the layers and are not addressed through the existent approaches. An
example, that illustrates the correlation between system and business performance, is
the case of Amazon, that found out that 100 ms in surplus latency drops sales by 1%
[62]. Moreover Google stated, that they receive 20% less traffic, when their web sites
have an additional latency of 500 ms [43].

Finding exactly these correlations and dependencies, which lay in-between the lay-
ers or become apparent through combining metrics from multiple layers, promise a
vast potential for generating insights. So far, no approach has been described that
enables analysis questions between the business and the application layer which can be
implemented with little effort on the one hand and contains potential for deep drill
downs through a rich availability of data on the other hand (see section 5.3). This thesis
presents such an approach.

One objective of this work is to evaluate distributed tracing data as an alternative
input source for generating high level event logs for traditional process mining. Since
distributed tracing comes with almost negligible instrumentation effort, it can serve as
an alternative to custom business logging of existing IT systems. A second objective
is to demonstrate, that the technical origin of that data can enhance the traditional
business view on a process by technical performance data and thereby give system
planners and process managers better insights into the dependencies between user
behaviour, business and application performance.

To achieve the objectives, the following research questions were defined in order to
govern the work of the thesis.

RQ1. How can a relationship between business activities and a distributed application
architecture be established?

RQ2. What data has to be extracted and how has it to be mapped to enable and store
the relationship knowledge?

RQ3. How can business process mining be extended with technical aspects in order to
uncover

1. user and system throughput times for business activity executions and

2. correlations between business process performance and system behaviour?

The approach was tested through instrumenting a sample microservice architecture
that mocks a car sharing service. Through user interaction with the system, logs were

2

1.2. Research methodology

automatically generated through a distributed tracing system which was connected
to the existing architecture. The application context is related to the use case of the
TUM Living Lab Connected Mobility (LLCM)1 project, that tries to support the digital
transformation in the area of smart mobility and smart city. One of the sub-projects is
concerned with the integrated monitoring of a platform that provides various mobility
services. This thesis relates to that sub-project.

The approach presented in this thesis contributes to two research disciplines through
combining techniques of distributed tracing and process mining.

Firstly, it contributes to the research field of process mining, by presenting a novel
approach for generating high level event logs using tracing data of low level and high
granularity as an data input. Secondly, it contributes to EAM, to which it presents
a novel technique for analysing and monitoring the business and application layer
combined and provides thereby a more holistic view on an EA.

1.2. Research methodology

The research methodology used for the thesis is inspired by the design science approach
described by Hevner et al. [34].

The research process (see Figure 1.1) started with an extensive literature review in the
fields of monitoring both business and application layer combined. After identifying
a research gap and the lack of suitable approaches for the described problem, the
identified research questions were formulated.

1. Problem definition

2. Solution design

3. SUS development

4. Artefact development

5. Artefact evaluation

Figure 1.1.: Research process

In the next stage, a solution scenario was sketched and first hypothesises were formu-
lated in order to close this gap. This included the selection of distributed tracing and
process mining as essential technologies of the later proof-of-concept artefact as well as
an outline of a possible architecture.

1http://tum-llcm.de/

3

1. Introduction

Third, a sample architecture was built, that serves as a SUS. The architecture was built
after common patterns that were identified through sample applications available on
the internet and literature research.

In the fourth step, the sample architecture was instrumented with a distributed tracing
library. From there on, tracing data could be generated through simulating user clicks
in the SUS. Moreover, the actual prototype was developed, which entails the event
log generation algorithm, implemented in an own system component. Additionally,
multiple analyses were developed in the PMT to evaluate and showcase the applicability
for different use cases.

Following the design science approach, an evaluation was performed as a fifth step by
using the data created from the sample system in order to verify the correctness of data
and application of the solution in general. During this phase, benefits and limitations
were identified and validated. Moreover, the presented approach was evaluated against
related work.

Stages four and five embody the integral parts of the work and were passed through in
multiple iterations during the research process.

1.3. Thesis structure

The thesis is structured as follows: Chapter two conveys basic knowledge in the
domains of microservice architectures, distributed tracing and process mining. This is
necessary, since the work will use a microservice architecture as a SUS and distributed
tracing as well as process mining will present integral parts of the proposed solution.
Thereby, the main characteristics together with benefits and challenges of microservices
will be described first. Moreover, two main prevalent service composition styles, namely
service orchestration and service choreography will be described together with benefits
and limitations of each. Afterwards, the concept of distributed tracing is described
along with the specifics of its data model and logging architecture. This provides an
understanding of the data that is needed for developing the event log algorithm. The
third part of chapter two gives an introduction into process mining including use cases
and typical analysis questions, types of process mining, an exemplary description of a
process mining algorithm as well as typical challenges in extracting data and generating
event logs.

Chapter three documents the prerequisite architecture that was built in order to serve
as a SUS. It provides a general overview of the system, a description of business
functionalities that the system entails as well as a description of the software architecture
applied and components used in the SUS.

Chapter four entails the main part of the work: the approach applied for implementing
the proof-of-concept prototype. This includes first a tool selection process followed by

4

1.3. Thesis structure

a description of the instrumentation applied to the SUS. Next, the architectural setup
for generating event logs in near real-time is described, followed by a description of the
developed table structure. Thereafter, the central event log generation algorithm, that
translates low level events from the distributed tracing instrumentation to high level
events in a structure that is applicable for the process mining algorithm, is described.
In the next section, the created event log is, together with further tables, configured
in the data model of the PMT. Subsequently, it is described how the two layers of the
EA are visualised in one process model, followed by a description of the four analyses
build, that demonstrate the applicability of the proposed approach.

Chapter five discusses benefits, limitations of the presented poof-of-concept prototype.
Moreover, the proposed solution is evaluated against related work.

The final chapter six summarises the thesis and provides an outlook over research gaps
that need to be addressed in the future.

5

2. Foundations of microservice
architectures, distributed tracing and
process mining

This chapter introduces the foundations of microservice architectures, distributed
tracing and process mining.

The first part of the chapter is an introduction into microservices, which is of importance,
since this thesis tries to discover processes from architectures build with this pattern.
Therefore, the characteristics of microservice architectures need to be understood first.

The second and third part describe the basic concepts of each process mining and
distributed tracing, which are the two techniques that will applied together in the
presented approach. Both techniques are employed in the proof-of-concept in order
to expand transparency from a business-only perspective to a holistic view, that also
integrates the application layer.

2.1. Microservice architectures

In the following section, first a short introduction about the characteristics of mi-
croservice architectures is given. Moreover, the benefits that make them a widely used
pattern in implementing enterprise software architectures are being described. The
second part elaborates on how a microservice architectures handles business processes
and how in general inter-service communication can be realised. Therefore, two dis-
tinctive patterns were identified, that will be presented along with their benefits and
drawbacks.

2.1.1. Characteristics, benefits and challenges of microservice architectures

In recent years, developing enterprise systems using a microservice pattern have become
en vogue [22]. Many leading technology companies like Netflix, Google, Twitter, and
Amazon, that in the past have paved the way for technological advance, adopted the
architectural style and migrated their systems successfully from a monolithic to a
microservice architecture [15]. Martin Fowler and James Lewis, were among the first

7

2. Foundations of microservice architectures, distributed tracing and process mining

providing a working definition [42]:

"In short, the microservice architectural style is an approach to develop-
ing a single application as a suite of small services, each running in its
own process and communicating with lightweight mechanisms, often an
HTTP resource API. These services are built around business capabilities
and independently deployable by fully automated deployment machinery.
There is a bare minimum of centralised management of these services,
which may be written in different programming languages and use different
data storage technologies."

The reasons for more and more enterprises and practitioners using this architectural
pattern are diverse. Most causes are connected to the downsides that developing
applications in a monolithic style bring and that appear together with external drivers
like organisational agility, shorter time-to-market as well as the need for selective
scalability [69, 46]. Microservices aim to minimise the costs for change, create more
operational efficiency and encourage generalisation, replaceability and reuse [22, 46].
In the following the main characteristics of microservices are explained by mapping
out how they deal with the pitfalls that monolithic architectures bring.

Technological pluralism In a monolithic system, organizations tend to standardize
their platform with growing complexity according to a centralized governance
[70, 42]. This contains restrictions for using a predefined set of technologies
(programming languages, frameworks and tools) that are not necessarily the
best suited for the in hand problem. By splitting a monolith into services, the
developing teams freely choose the technology that fits best for the problem [28].
Advances in technology can also be adopted easier in a microservice architecture
since for example using new frameworks doesn’t require a complete rewrite of
the whole application.

Polyglott persistence Enterprises tend to use single databases across the organization
which often has its motivation in limited know-how in maintainability, database
license costs that convene in the aim of standardisation [42]. Polyglott persistence
allows every application or service to choose the best suited database technology
and data model for the problem at hand. The different types of databases are part
of the platform’s core design. Polyglott persistence is something that may also
exist in monolithic systems but is more likely applied in microservice architectures
[42].

Deployment With shorter development cycles, where incremental change is desired,
building and starting huge single applications takes a lot of time and slows down
the development process. In a microservice environment, a developer typically
works on a single service, that by lines of code is much smaller compared to a
whole application. Therefore start up times for applications is much faster [46].

8

2.1. Microservice architectures

Especially in a continuous development setting, where changes are often pushed
into production multiple times per day, it is difficult to do it with a monolithic
architecture, since the complete application would have to be deployed [42].

Scalability In a microservice architecture it is possible to only replicate single services
according to the need instead of horizontally scaling the whole monolith to
multiple instances and placing it behind a load-balancer. Therefore, resources can
be scaled selectively, only for points in the system where bottlenecks occur [56].

Together with the advantages of microservices, of course there are also downsides.
Some are characteristic for distributed systems as for instance lower performance and
reliability for communication through remote calls compared to in-process function calls
[27]. Another issue, that microservice architectures implicate, is eventual consistency,
which occurs through decentralised data management and data replication by multiple
microservices [56]. A third challenge is increased operational complexity. Instead of
a manageable amount of applications, with microservices, a high number of services
needs to be operated and deployed regularly [68, 27]. Proponents of microservices
moreover state, that through smaller application size complexity decreases likewise.
This is often not true because the complexity remains and is now just occurring between
the services [63]. This complexity somehow needs be monitored. Gaining visibility into
systems and debugging behaviour that spans over multiple services is therefore a main
challenge [8, 63]. To address the challenge, distributed tracing systems were developed
that provide the required visibility and add minimum performance overhead. Insights
into operational performance as for instance finding root causes for high user request
latency is feasible with distributed tracing [32]. A description of its functioning and
what further drivers exist that make distributed tracing a crucial tool for developing
and maintaining microservice architectures can be found in section 2.2.

2.1.2. Microservice composition styles

An aspect about microservices that is especially relevant for this work is how archi-
tectures apply different patterns for inter-service communication and the execution
of business logic. This is of special interest, since a sequence of inter-service commu-
nication can be interpreted as a process. This work aims to detect and visualise such
processes. Therefore, a dependency arises from how the system generally integrates
various microservices and provides microservice composition to how the resulting
tracing data is affected by the architecture and can be used for the generation of events
logs as input for process mining. A microservice composition style is defined as "how
multiple microservices are connected in a flow to deliver what a user requested" [50].
Every composition style deals differently with the execution of cross-service processes
in a microservice architecture.

This subsection mainly deals with architectural patterns of managing business processes

9

2. Foundations of microservice architectures, distributed tracing and process mining

that span across multiple services in a microservice architecture. Nevertheless, it makes
sense to first understand how predecessor architectural styles, namely Service Oriented
Architectures (SOAs), dealt with the problem of routing and applying business logic
across services, in order comprehend the differences.

In a SOA, the central unit that is steering process instances is the Enterprise Service
Bus (ESB) [61]. Through the ESB, the communication between all services is handled
centrally using messages. A message completes two tasks: First, it transports the actual
data that is shared between the services and second, it controls the sequence of calls
between the different services [16]. In the ESB, business rules are stored and it is
defined how messages between services are routed, transformed, and orchestrated [36].

A microservices architecture shares common goals compared to a SOA as for instance
removing tight dependencies between components. Some argue that the microservices
pattern is a variant of a SOA [70], or microservices are "SOA done tight" [11, 46]. What
can be generally said about a microservice architecture, is that a ESB, as described
above, is eliminated and generally regarded as an anti-pattern [36], since it contradicts
the objective of loose coupling. The central smartness of the ESB is moved to the
services itself [42]. Each microservice carries its own business logic and can trigger
various of other services in a synchronous or asynchronous fashion [42].

If requests between the services are ad-hoc and uncoupled, the question arises on how
those cross-service request are routed through the system? Sam Newman [46] poses
the questions as follows:

"As we start to model more and more complex logic, we have to deal
with the problem of managing business processes that stretch across the
boundary of individual services."

Two opposing patterns exist, that address the problem of a inter-service communication:
service orchestration and service choreography.

Service orchestration

In service orchestration some authority like a conductor in an orchestra guides the overall
service interactions [46]. In Figure 2.1 a car rental is finished by the user who triggers a
request at the cars service. The cars service, who is the conductor, subsequently calls the
maps, accounting and billing service in a defined order, and waits for a response of each
before calling the other.

10

2.1. Microservice architectures

CARS
SERVICE

ACCOUNTNG
SERVICE

PAYMENT
SERVICE

NOTIFICATION
SERVICE

/f
in
al
iz
eB
oo
ki
ng

/handlePayment

/notifyUser

1

2

3

Figure 2.1.: Service orchestration, adapted from [46]

The orchestration unit typically communicates with its downstream services in a
request/response manner [46]. The process sequence is directly implemented in the
code of the cars service.

With this pattern, the end-to-end flow can be seen both at design as well as at run-time
[12]. It is well suited for centralising the control flow using synchronous communication,
where the state can be easily tracked by the conductor. That also comes with drawbacks
[36]. For one, it creates dependencies between the services which lead to high coupling
[46]. If for instance the accounting service is down, the car service will wait for its
response before calling the next service. Another form of dependency appears when
changing the process or adding new services [12]. Every calling service needs to know
its downstream services. Moreover, the end-to-end processing time, which is the sum
of each service processing time can become relatively high compared to asynchronous
request without blocking [12].

Service choreography

In service choreography, governance of interaction between the services is decentralised
[46]. Services can emit events to inform other services about ’things that happened’.
They also subscribe to events or channels of interest and react accordingly to those
without a higher supervision. Events are typically send asynchronously to an event
bus, which is a dumb pipe where no logic is implemented [36]. Therefore an emitting
service does not expect any response from the downstream service [35, 14]. The events
sent do not comprise any commands as used in the CRUD approach but are defined as
something remarkable that takes places inside or outside a business domain [45]. A
service can also act as an event aggregator, that listens to multiple events, combining
information and creating new events [20].

See below in Figure 2.2 how the same business workflow as above would be handled
in a choreography styled architecture. The cars service would emit an End car rental
event and the notifications, accounting and payment service would react to it and apply

11

2. Foundations of microservice architectures, distributed tracing and process mining

specific business logic responsive to the event. They could also emit own events.

End car
rental event

MAPS
SERVICE

ACCOUNTING
SERVICE

PAYMENT
SERVICE

su
bs
cr
ib
e

subscribe

subscribe

MAPS
SERVICE

Figure 2.2.: Service choreography, adapted from [46]

The choreography style is highly decoupled, since an emitting service does not need
to know its consumers. When a new service is added, it only has to be connected to
the event stream and configured to subscribe to channels of interest [46]. Maybe a new
event would have to be written but already implemented logic won’t break due to that
[68]. Moreover, the asynchronity applied leads to a faster end-to-end processing [12].
Due to the decentralised nature, no single services gains too much importance which
means that a single point of failure does not evolve easily over time [12]. In case a
service fails, and other services where still produce events stored in the event stream,
the restarting services will be able to replay the events and catch up [12].

The downsides are, that the process flow is not explicit at design time. Additional
components need to be configured to track if the execution was successful, since it is
not per default apparent if an error occurred or the process is stuck [46]. Moreover, this
approach requires a mind shift for developers, that have to have all possible situations
in mind, that could appear during operations and are not explicit at design time [12].

2.2. Distributed tracing

2.2.1. General concept and raison d’être

With the conversion from monoliths to SOAs and the recently increasing adoption
of microservices, the complexity of architectures increases: In distributed systems,
multiple services run in various processes, possibly written in different programming
languages being maintained by multiple teams [64]. This increases the need for more
advanced monitoring and debugging techniques [63, 8].

Monitoring performance and debugging system malfunction in a monolithic system can
be established through analysing log files originating from a single system. However,
considering performance of microservices from an isolated perspective is not feasible

12

2.2. Distributed tracing

[64]. Transactions, where an initial user request might invoke a plethora of downstream
services, need to be analysed as a whole, for instance to find out what request is the
cause for abnormal latency. Moreover, the root cause for latency often lies in-between
the services.

Without distributed tracing it would be necessary to look into every single log of
each service that has been invoked through the request. Knowledge, about which
services are involved in the request needs to be at hand. Furthermore, an investigating
engineer needs to know about the implementation specifics of each service in order
to understand the logged data. In a second step, transactions logged in each service
somehow would need to be correlated manually to the initial request in order to
derive insights about latency bottlenecks. To overcome this problem, workflow tracing
systems were developed that centralise logging and correlate transactions spanning
over different processes through a trace id [64, 31]. Those tools provide transparency in
the application layer and establish a relationship between a user request in top of the
stack and its complex processing in the distributed system [37].

Google was among the first who developed a tracing infrastructure, called Dapper [64],
that aids to gain visibility in distributed systems. The design goals of Dapper were low
instrumentation overhead, application-level transparency and ubiquitous deployment.
Since then, a plethora of both open source as well es commercial distributed tracing
systems were developed. Many of them implement the approach that was initially
presented by Google in 2010.

Distributed tracing can be seen as a part of Application Performance Management
(APM), which aims to provide techniques that help to achieve a sufficient level of
performance during operation of a system, having in mind that performance is critical
to business success [62].

In the following, the basic concepts of distributed tracing, including the terminology,
the data model as well as the tracing architecture will be explained independent of a
specific implementation.

2.2.2. Principle function, terminology and tracing architecture

Figure 2.3 shows how an exemplary user request in a distributed system is represented
in a tree-like structure. The system contains four services (one front-end service and
three business services A, B and C) that communicate among themselves via Remote
Procedure Calls (RPCs). The initial user request requestX arrives at the front-end service.
From there, a RPC is sent to service A, who next sends two RPCs to service B and C.
Both B and C further process the request before they reply and send a response back
to service A. Service A, who waited temporarily for the two downstream services, now
sends its own reply back to the fronted-service. From there a response to the initial
request is sent back to the user.

13

2. Foundations of microservice architectures, distributed tracing and process mining

user

FRONTEND
SERVICE

SERVICE A

SERVICE B SERVICE C

rpc1

rpc2 rpc3

requestX responseX

Figure 2.3.: Example trace of a request from the front-end processed by multiple back-end
services, adapted from [64]

The described trace is recorded by a distributed tracing system using an annotation
based schema, where each application tags all requests with a global identifier in order
to link the message back to the originating request [64].

Following the Dapper’s terminology [64], the tree nodes from the example above are
different spans. Each span represents a logical operation as the basic unit of work. Such
a casual relationship is manifested in an edge, that materialises between a span and its
parent span. Every span has a probabilistically unique 64 bit integer called span id.

In Figure 2.4, the above described four spans are presented in a waterfall diagram that
depicts the relation between their trace id, span id and parent span id from a temporal
perspective.

time

TraceID = 100

SpanID = 100

ParentID = null

SERVICE C
TraceID = 100

SpanID = 103

ParentID = 101

SERVICE B
TraceID = 100

SpanID = 102

ParentID = 101

SERVICE A
TraceID = 100

SpanID = 101

ParentID = 100

FRONT-END

Figure 2.4.: Waterfall diagram showing the four spans and their ids from a temporal perspective

The four spans together build a trace, correlated through the trace id. The trace id is
determined through the initial span, which is called the root span. Its trace id and

14

2.2. Distributed tracing

span id are equal. Moreover, every span except the parent span, has a parent id, that
indicates its calling service. Furthermore, a span has a span name, an start timestamp,
a duration and a set of annotations, which are timestamped events such as a server
send or a server received, key-value annotations (tags) or process ids [18]. Key-value
annotations are customisable and can be added by the developer to attach arbitrary
content to a span that helps during debugging and provides additional information as
for example a server id.

Timestamps received for one span usually originate from two hosts [64]. This fact can
be depicted in the sequence diagram of Figure 2.5, that shows the temporal occurrence
of the four event timestamps that are generated for span 1 in a request from service A
(client) to service B (server).

:service B

s
p
a
n

0

:service A

s
p
a
n

1

SR server
received

2

: request

SS server
sent

3

CS client
sent

1

CR client
receive

4
:response

Figure 2.5.: Temporal occurrence of timestamps during a span’s life for a request and response
between Service A and B, adapted from [8]

See below described the four core annotations for timestamped events [18]:

Client Sent (cs) Indicates the start of a span when the client has initiated a request.

Server Received (sr) The server received the request and starts processing it.
sr - cs = [Network latency + clock jitter]

15

2. Foundations of microservice architectures, distributed tracing and process mining

Server Sent (ss) The time when the server’s request is completed and a response is
sent back to the client.
ss - sr = [Time the server side needs for processing the request]

Client Received (cr) Time when the client successfully receives the respond from the
server. Depicts the end of the span.
cr - cs = [Overall time needed till client receives the request]

The core components for distributed tracing include the instrumented applications,
that generate new spans on the one hand, and the distributed tracing system, that
collects the data on the other hand [10]. Figure 2.6 depicts this connection between a
set of instrumented applications (client and server in this example) and the distributed
tracing system.

Distributed
Tracing Service

UI

API

Storage

Collector

Transport

Instrumented server
(Reporter)

Instrumented client
 (Reporter)

Figure 2.6.: Distributed tracing architecture [18]

Every instrumented application creates a Tracer that lives inside the service and
records timestamps and other meta-data of occurring operations [18]. See in Figure 2.7
an architecture consisting of two instrumented services, where one is the client and
the other a server. The spans are generated in the instrumented client and server and
exported via a transport to the distributed tracing system. The distributed tracing
system receives the spans via its collector component. It moreover entails a storage,
Application Programming Interface (API) and User Interface (UI) component to store,
query and visualise the data.

Figure 2.7 depicts a sequence diagram which explains the process of how a HTTP
request, arriving at a instrumented service, is recorded. After the request arrives at
the service, the Tracer first records incoming tags, generates a new span_id and stores
it to a possibly already existent trace_id in-band to the HTTP header, to assure little

16

2.2. Distributed tracing

overhead. After the request is forwarded and processed, the duration is recorded by the
Tracer and sent (out-of-band) along with more detailed metadata to the distributed
tracing collector component asynchronously within a transport which could be for
instance handled via HTTP or buffered via Kafka1. The collector component then reads
the transports and puts them into a data store (storage component).

Trace
Instrumentation

HTTP Client CollectorClient

GET /request record tags

add trace header

record timestamp

GET /request
X-B3-TraceID: aa
X-B3-SpandID: 6b invoke

request

200 OK

record
duration

200 OK

asynchronously report span

{
"traceId": "aa",
"id": "6b",
"name": "get",
"timestamp": 1483945573944000,
"duration": 386000,
"annotations": [...

Figure 2.7.: Exemplary trace generation explained in sequence diagram [10]

The specifics of the data generation (data format, types of annotations) are dependent on
the the instrumenting tracing library [31]. To overcome this problem, the OpenTracing2

initiative aims to establish an open standard for application level instrumentations. The
community provides vendor neutral APIs for various programming languages and
frameworks. The standard is adopted by many distributed tracing tools and makes it
therefore possible to uncouple the system from a particular instrumentation. By that,
the distributed tracing tools can be switched easily. Furthermore, software artefacts
written in different programming languages can continue traces through a common
"lingua franca". With that, no knowledge about the underlying language-specific
instrumentation library is needed to describe and propagate trace information.

1https://kafka.apache.org
2https://opentracing.io

17

2. Foundations of microservice architectures, distributed tracing and process mining

2.3. Business process mining

A technique that provides visibility for the business layer is process mining, which is a
still very young but already well-established research discipline. Its development in
recent years, amplified through the industries’ huge interest, yielded in multiple process
mining techniques and tools. Process mining can be located between computational
intelligence and data mining on the technical side and process modelling and analysis
with the origin from business on the other side [1]. It can be described as the interface
between traditional business process management (BPM) and data mining. Therefore,
process mining should not be seen as a type of data mining, but more like an extension
to it [1]. Business process mining is also often used as a term but it only restricts
the areas of interest to processes out of a business context. In the remainder of the
work, the term process mining will be used, although the business context is apparent
through the whole work.

2.3.1. Use cases of business process mining

The applications of process mining are manifold [3]. Its main usage is to automatically
discover processes of an organisation without applying any prior modelling in order to
capture the real occurring system behaviour [1]. Moreover, process mining is generally
applied to find process weaknesses and their root causes. Process weaknesses can be
classified into process inefficiencies as for instance bottlenecks, rework and changes and
into deviations from a to-be process like for example compliance violations. Process
mining is used to continuously measure outcomes of process improvement initiatives
like fundamental re-engineering as well as incremental improvement [5]. Mature PMTs
recommend actions for strategic and operational decisions and can predict costs, risks
and delays.

2.3.2. Types of process mining

Van der Aalst [3] distinguishes between four types of process mining that can also be
understood as stages since they partly build upon each other:

Discovery Process discovery constructs a process model without any previous knowledge
and is solely built on the three basic attributes of an event log (case id, activity
and sorting) as an input. It is the most used technique in process mining and
has several advantages over classical techniques for discovering an organisation’s
process. It is superior to other process discovery techniques such as interviewing
in terms of accuracy because it generalises a model from real-life data and is
therefore an abstraction of the reality instead of a desired to-be model that was
used during design time.

18

2.3. Business process mining

Conformance The second type of process mining is conformance checking where a
normative or descriptive to-be model is checked against the as-is reality. The goal
is to find deviations between the process model and the event log that might
indicate inefficiencies or compliance violations. A distinction is made between
global conformance measures and local diagnostics. The first ones interpret the
overall conformance of a process (e.g. 38% of all cases are conform to the given
model) while the latter one gives detailed insights where a violation occurs (e.g.
activity X is followed by activity Y although the model forbids this sequence).
Deviations from the to-be model cannot per se be seen as something undesired.
If for instance additional activities are being performed to retain a customer, this
single process instance might have violations that are desirable. Therefore, the
viewpoint of interpreting violations is of importance. In the described scenario,
the model could be possibly adapted to achieve a higher fit to reality.

Enhancement As in conformance checking, enhancement also makes use of a a priori
model. The aim of the third type of process mining is to either extend or repair
the existent model through data coming from the event log. In repair, the process
model is altered so that it reflects the reality better then the a priori model, e.g.
a sequential order is modelled in parallel since that is how the case is being
processed in reality. Extension on the other hand extends the model by a new
aspect or perspective. An example could be performance indicators such as
throughput times that are being calculated and shown in the model.

Operational support The fourth type, operational support seeks to not analyse process
instances offline but online (or in near real-time). Through historical data from
the event log, predictions on how a case will be processed in the future can be
made. With these insights the future processing of a case can be influenced.

2.3.3. Description of the α-Algorithm

The α-algorithm is one of the first algorithms that was used to discover control-flows
while being able to handle concurrency [4]. Therefore, it can be classified to the
aforementioned process discovery techniques. It comes with limitations such as livelocks
and deadlocks [6, 2] but is in general very suitable to understand the core concepts of
process mining, since various more advanced algorithms incorporate concepts of the
alpha miner [2].

The aim of the α-algorithm is to automatically learn a petri net model from a simple
event log L. A simple event log L consist of a multi-set of traces, while a trace is sequence
of ordered activity names [4]. Find an example of a simple event log comprising of six
cases in total with three unique sequences below:

L1 = [〈a, b, c, d〉3, 〈a, c, b, d〉2, 〈a, e, d〉]

19

2. Foundations of microservice architectures, distributed tracing and process mining

Depart from the event log described in Table 2.1, no timestamps are included in the
data of L1. Only ordering relations, that lead to the different sets of sequence, are given.
The indices indicate how often a unique trace is found. Moreover, a case id also does
not exist explicitly but is implicitly given through having sets of activity traces.

The algorithm scans [4, 5] the event log for four basic ordering relations that occur
between two activities.

Direct succession A >W B holds true iff there is at least one ordering relation where
B is directly followed by A. But A and B do not necessarily have to have a
dependency relation since A and B can also have a parallel relation.

Causality A →W B holds true iff A >W B and B ≯W A .

Parallelism A ‖W B holds true iff A >W B and B >W A.

Choice A #W B holds true iff A ≯W B and B ≯W A.

These described relations are used to learn patterns in the event log. So called footprints
of a Log L1 can be created that map the relationship of two activities in a matrix. The
activities tuples all have one of the four described relationship.

The actual algorithm is performed in eight steps:

1. The event log L is checked on activities that appear in an event log. The activities
will correspond to transitions in the workflow petri net and will be saved to a set
T.

2. Starting activities, meaning those who appear first in a trace are saved in set T1.

3. Final activities, meaning those who appear as last in a trace are saved in set T0.

4. The algorithm determines the positions of activities and their connections in the
graph. Pairs (A,B) of sets of activities are found, where

a) every element a ∈ A and every element b ∈ B are causally related meaning
(i.e. a →L b) and,

b) two arbritrary activities from A (or B) never follow each other or one activity
never follows itself i.e. a1 #L a2 and b1 #L b2.

5. From the sum of all possible places, the ones are removed that also appear in
other relations. So only maximum pairs of (A, B) remain in the set.

6. The remaining places are now being stored in PL and a unique source and sink
place is added.

7. Now the connections (arcs) between the activities are defined. A connection is
made between each place of P(A, B) and the elements a ∈ A of source transitions
and each elements b ∈ B of target transitions. Moreover, arcs are drawn from the

20

2.3. Business process mining

source place to each start transition and from the sink to each end transition.

8. Finally, the petri net is returned with places PL, transitions TL and arcs FL.

2.3.4. Structure of an event log

The basic element needed for process mining is the event log [5]. It is filled with all
events that took place during a specified time frame and consists of three minimum
attributes: activity, case id and sorting (usually a timestamp) [5]. An event is a well defined
activity of a process that shares the same characteristics in the whole system and refers
to a single process instance (case id), also described as a case. The third basic attribute
that every row of the event log possesses is some sort of sorting indicator that gives the
events of a case an order in a process sequence. Often timestamps as for example the
start or the end of an activity are included in the event log and one of the two is then
used to indicate an order. Table 2.1 shows an example of a basic event log.

Table 2.1.: Sample event log

Case id Activity Timestamp

273826 Register request 15.08.2017 13:30:43

273826 Examine thoroughly 15.08.2017 14:23:24

273826 Check ticket 17.08.2017 18:12:45

273826 Decide 17.08.2017 23:19:03

273826 Reject request 19.08.2017 17:57:12

192893 Register request 03.08.2017 08:17:37

192893 Check ticket 04.08.2017 06:27:24

192893 Examine thoroughly 04.08.2017 15:18:58

192893 Decide 05.08.2017 19:42:25

192893 Examine casually 09.08.2017 23:38:42

192893 Pay compensation 10.08.2017 01:37:31

283902 Register request 05.06.2017 17:59:44

283902 Check ticket 06.06.2017 14:45:23

Event logs can be further extended by an arbitrary amount of attributes [2]. Often a
resource column is added, that indicates which person or what user type has conducted
the activity. Through the ratio of activities performed by an automated user (e.g. batch
user) compared to the amount of all activities an automation rate per process activity
can be calculated easily.

21

2. Foundations of microservice architectures, distributed tracing and process mining

In situations were no case table is linked to the event log, other additional attributes
typically contain case specific data such as volumes, costs, product or customer specific
information. In terms of redundancy, this is not a desired approach for modelling the
data but sometimes applied to keep the data model compact.

2.3.5. Strategies of data acquisition

Data acquisition in business process mining is one of the most challenging tasks [3, 2].
The minimum requirements for generating a process visualisation, as stated before, are
a case identifier, an activity name and an ordering attribute. The aforementioned techniques
of process mining (see 2.3.2) are based on an event log, where each activity refers to
exactly one case. The three attributes are often only available jointly in so called process
Process-Aware Information Systems (PAIS) such as Enterprise Resource Planning (ERP),
Customer Relationship Management (CRM) or Workflow Management System (WFM)
where audit trails are often produced [5]. In such systems, the event log can be directly
employed as an input for process mining. In the Process Mining Manifesto [1], van der
Aalst et. al describe how event data has to be regarded as "first-class citizens" meaning
that information systems should be able to write event logs of high quality, since the
quality of the process mining results heavily depends on the quality of the input data.

However, in many of the systems events have to be correlated manually from traditional
databases [3]. The concept of a case and corresponding activities in such systems "only
exists implicitly" [3]. Therefore, we focus on those settings in the following, where
no event logging functionality is implemented natively and real process awareness
does not exist. In such cases, the input for the event log can be dispersed in different
information system, possibly spanning across organisations, being present in various
unstructured formats in complex data models [66]. If data warehouses exist, they might
be a promising source for process mining as they include data from different operational
sources and transform them into a consistent format [5]. Unfortunately, they often lack
relevant information that is required for an end-to-end view of a process. First, due
to the warehouse’s focus on a certain scope, e.g. vendor information, which excludes
possibly necessary information on customers, for instance, in a Order-to-Cash process.
Second, data warehouses, with their focus on Online Analytical Processing (OLAP) of
multi-dimensional data models, do not necessarily include the appropriate data that
relates to process instances and their execution [5]. For instance, meta data such as
timestamps, which are crucial for the activity generation, are often not included in such
systems. Furthermore only current states are recorded and no historical data about
when a certain entry was created, altered or deleted [3]. However, this type information
would be useful to understand the history of a case and to generate corresponding
change activities.

22

2.3. Business process mining

2.3.6. Transforming the multi-dimensional reality into a flat event log

The techniques of process mining require a ’flat’ event log (described in the previous
subsection) as an input, meaning that every activity refers to a single case [3, 1]. This
assumption is also the underlying concept in common process modelling languages
such as Business Process Model and Notation (BPMN), Business Process Execution
Language (BPEL) or activity diagrams in Unified Modeling Language (UML).

In reality, a process would not be flat: For instance information for the event creation
in an order process could come from multiple tables. Imagine an order table acts as a
header document with a unique order id while possibly multiple order lines per order
exist that are stored together with an unique orderline id in the orderline table [3] .
Furthermore, each order can have 0..1 deliveries and each delivery could take multiple
(0..*) attempts to be delivered. Now, the perspective from which the order process
should be analysed needs to be defined, either on the order (header) or orderline (item)
level [3]. Furthermore, one could also analyse deliveries, and define the delivery id as
the case id. However, timestamps from different process activities could come from
different tables. E.g. the payment date of an invoice would sit in the order table while
the backorder date of an item would come from the orderline table.

To create the event log, this multidimensional data model needs to be flatten into a
single file. Focusing on one level, either order or orderline would cause the loss of
timestamps coming from the table that is not seen as a case and therefore the basis for
activity creation [1]. In the described scenario, a solution could be to concatenate the
order number with the item number and thus create a global case id with the possibility
to join the tables to receive the required timestamps. The perspective would be set
on a order item level. The availability of consistent links between different tables and
levels need to be taken into consideration when choosing the perspective and creating
the event log for process mining. The present analysis questions should indicate what
process lifecycle and type of case id needs to be chosen.

2.3.7. Challenges in extracting data and generating event logs

Van der Aalst [5] maps out multiple challenges that occur during the data extracting
and event log generation which are discussed below.

Correlation An important task that has to be conducted in order to link different
activities to a single process instance (i.e. cases) is the event correlation. This correlation
is applied through a shared identifier, often called case id, which could be for instance a
document number of a purchase order in a purchasing process or the order number in
a sales process of a standard ERP system. This id must span through all source systems
from which activities are generated. In a scenario where certain parts of the processes

23

2. Foundations of microservice architectures, distributed tracing and process mining

are handled through a different system, e.g. a sub-process in a supply chain process,
a case has to be correlateable through the same id or a concatenation that results in
a system-wide, cross-system or even cross-enterprises id. Ferreira and Gillblad [25]
present a probabilistic approach to find process models in event data where a case id
is missing. Through an iterative expectation–maximization algorithm they were able
to derive a general process model and also correlate unlabelled event logs to a certain
process instance.

Timestamps To sort events in their order of occurrence either a sorting attribute
or timestamp is necessary. When multiple systems are used as a source for the
event log generation, timestamps might not be accurate since clocks are probably
not synchronised. This can become a problem if accuracy is of high significance and
execution times of events appear within a very short time. Unsynchronized clocks
could then lead to a wrong order of events. It also might occur that some events are
executed concurrently. In that case a sorting can be applied that acts as a ’tie breaker’
in case that two or more events share the same timestamp. This sorting is a guessed
order of events, following a to-be sequence, which needs to defined with the required
domain knowledge. Another issue timestamp accuracy entails, is that some systems
only log dates and not times. In that case one has to work with partial ordering or
again predefine a sorting with the required knowledge.

Snapshots A further challenge or characteristic that one has to address is that every
data extract from a source system is only a snapshot and captures process instances that
1) might have started before the extraction period and/or 2) are not finished at the time
of the extraction. In the first scenario, activities, that belong to a case where a starting
activity is missing could just be completely deleted from the event log. In the latter
case, one could delete the activities but it could also present a desired modelling, for
instance if open cases should be analysed e.g. open payments in a accounts receivable
process.

Scoping Process start and end is something that has to be defined and that depends
on the perspective and underlying questions. Again domain knowledge is needed to
choose the appropriate data and scope the process according to the needs. Depending
on the analysis question, only certain parts of a process for instance (e.g. supply chain
sub-process) would be in model.

Granularity Next to the scoping, that defines the process start and end also granular-
ity, meaning the level of detail to which activities are generated, plays an important
role during the shaping of the activity log. Furthermore, different layers of granularity
in event logging systems strengthen the need to limit activities to a level that is still

24

2.3. Business process mining

relevant for a user. Too many activities that represent the process in a granular way
might distract the user and lower the chance of generating insights from the process
[30].

25

3. Description of the system under survey

The sample architecture (i.e. SUS) was built using common patterns and best practices
to simulate a most realistic setting that could be found in the real world and especially
in the context of the TUM LLCM project. This chapter describes the sample architecture
and elaborates upon which design aspects it was built on and why certain technologies
and frameworks were chosen.

The first part of the chapter gives an overview of the system architecture including
its system components. Moreover, the available user activities are listed and it is
exemplarily described, how a user activity is processed by the system. Moreover, a
definition for user and system activities is given, that will be used throughout this work.

In the second section, the implemented business functionalities are described in detailed.
Therein, the functional scope of each business microservice is presented, which includes
the service’s broader role in the system together with its provided endpoints.

The third section provides a description of the software architecture. This includes the
service communication architecture, a description of the implemented infrastructure
microservices as well as an exemplary setup of one business microservice.

3.1. General system architecture

Within the course of the LLCM project, a mobility platform was developed as a reference
architecture. Since this thesis leans on the project, a similar functional context as well
as an architectural approach was chosen to develop the prerequisite SUS for this work.

The SUS mocks a car sharing platform that provides typical functionalists as for instance
searching and booking of available cars, calculating routes, booking packages, reporting
issues and more.

To resemble the reference architecture of the LLCM project also from a technical
perspective, the same framework, namely Spring Cloud1, was employed. Spring Cloud
is often used for building microservice architectures, since it gives the system engineers
a brought tool set for building distributed applications relatively fast. These tools help
to tackle the challenges of developing applications in distributed systems (as described
in the 8 Fallacies of Distributed Computing [58]). Moreover, multiple libraries exist for

1http://projects.spring.io/spring-cloud/

27

3. Description of the system under survey

Spring Cloud, many of them from the Netflix OSS stack2, that provide implementations
for modern patterns of microservice architectures like configurations management,
gateways, load balancing, service discovery and many more, that are also applied in
the SUS.

The architecture, depicted in Figure 3.1 consists of three types of services, that are
clustered according to the following taxonomy [55]: First, a front-end service, that
renders the UI for performing user requests. Second, six business services, that provide
the actual business functionality and support business operations. And third, three
infrastructure microservices, that provide non-functional tasks and help to apply
architectural patterns and best practices that are typically found in a microservice
architecture.

EUREKA
DISCOVERY
SERVICE

:8761

CONFIGURA-
TION

SERVICE

:8888

API

ACCOUNTING
SERVICE

:6060

CARS
SERVICE

:9090

MAPS
SERVICE

:6061

NOTIFICA-
TIONS

SERVICE

:6063

PAYMENTS
SERVICE

:5050

USER
SERVICE

:5050

API

API

API

API

API

API

ZUUL
EDGE

SERVICE

:8762

API

WEBUI
SERVICE

:5050

API

API
Business services

Infrastructure services

HTTP

Front-end services

Database access

Figure 3.1.: Architectural overview of SUS

Business functionality is exposed via an edge service, that provides an external API to
multiple clients and hides the business services’ complexity behind the proxy. In the
described architecture, only one client, namely the web front-end (rendered through the
webui service), is accessing resources provided by the edge service. After an incoming user
request, the edge service initially calls one of the six business services. From there, further

2https://cloud.spring.io/spring-cloud-netflix/

28

3.1. General system architecture

interaction between the business services is maintained via a point-to-point interaction
style. The approach of "dumb pipes and smart endpoints" [28] is applied, where every
service entails its own business logic, can request resources from downstream services if
required and processes received requests at the controller according to defined business
logic in the service.

Moreover, all services are connected with the configurations service, from where each
service requests its configurations during startup. A third technical service is the Eureka
discovery service, to which all services register initially and afterwards constantly send
status information. Through Eureka, service addresses do not have to be hard-coded in
each application, since it takes care of managing the service’s physical locations.

Trough an arbitrary front-end, the user can perform multiple user activities like for
instance the search for an available car or a car booking. A set of user activities represents
a user’s click path in the front-end and is defined as the business process. Each user
activity is followed by a composition of synchronously invoked inter-service requests,
where each is defined as system activity. A sequence of system activities, is defined as a
business transaction.

In the implemented web front-end, a user can perform ten activities in total, that
correspond to the ten endpoints the edge service provides. A dependencies matrix (see
Table 3.1) lists all user activities together with the in the request involved business
services. The End car rental activity for instance invokes the cars, accounting, payment as
well as notification service in order to deliver the user the requested functionality.

29

3. Description of the system under survey

Table 3.1.: Dependency matrix between user activities and microservice involvement

M
ap

s
se

rv
ic

e

A
cc

ou
nt

in
g

se
rv

ic
e

N
ot

ifi
ca

ti
on

s
se

rv
ic

e

Pa
ym

en
ts

se
rv

ic
e

U
se

r
se

rv
ic

e

C
ar

s
se

rv
ic

e

List available cars x x

Reserve car x x

Book car x x

Unlock car x

End car rental x x x x

Show balance x

Book package x x x

Show driving history x x x

Report issue x x

Find route x

An example of how a front-end request (i.e. user activity) is routed using synchronous
communication between the services of the architecture can be found in Figure 3.2
below, where a business transaction triggered by the End car rental activity.

30

3.2. Description of the business functionalities

CARS
SERVICE

locks
car

ACCOUNTING
SERVICE

PAYMENT
SERVICE

ZUUL
SERVICE

NOTIFICATION
SERVICE

GET /lockCar

User

GET /endRental

GET /handlePayment

PUT /notifyUser

GET /finalizeBooking

notifies
user

handles
payment

finalizes
booking

Figure 3.2.: Call flow for /endRental request at the front-end (i.e. End car rental user activity)

The /endRental request arrives at the zuul service from where the cars service is called
via its /lockCar endpoint. The service processes the request which leads in further
consequence to the actual locking of the car followed by a response message. Parallel
to that, the accounting service is invoked via GET /finalizeBooking in order to end the
car booking, calculate a fee and further process it from an accounting perspective. From
the accounting service in turn, a payment process is triggered via GET /handlePayment
to the payment service. After the payment has been processed successfully, a GET
/notifyUser request is sent to the notification service from where the user is eventually
notified about the status of the transaction via possibly multiple channels. Call flows
for the remaining nine user activities can be found in the appendix (see section A.1).

3.2. Description of the business functionalities

In the following, the business functionalities of the SUS are described by sketching the
roles of the business microservices including their provided endpoints.

As described above, the system provides functionality in form of ten user activities, that
can be performed in an arbitrary sequence. In a real application, not every sequence of
activities would be executable (e.g. an End car rental would not be allowed before a Book
car activity was performed). A sequence of performed activities in an user session yields
in a user click path, which is defined as the business process. In general, the presented
approach is not limited to analysing user focused processes. See subsection 5.1.5 for a

31

3. Description of the system under survey

more extensive discussion on process perspectives.

Webui service

The webui service renders a web front-end (see Figure 3.3) where all the implemented
user activities as for instance a Search for available cars, a Book package or End rental can
be performed. With that, one can simulate user clicks that would, in an operational
setting, originate from real users either via a real web application, mobile app or any
other front-end. The resulting click paths will be analysed later with the techniques of
process mining by correlating the distributed tracing data.

All provided user activities can be triggered through the different buttons 1 of the
user interface that is depicted in Figure 3.3. After performing a click on a user activity, a
console output 2 logs, what services are being called after triggering a certain request.
The output is not generated through any instrumentation but represents a composition
of return attributes of each called endpoint. Since every endpoint returns its service
name, a sequence of called services is being displayed.

32

3.2. Description of the business functionalities

Figure 3.3.: Web front-end rendered by the webui service

User clicks and therefore user activities occur during a user session in the front-end. A
session is usually generated by the web service in form of a session cookie that is stored
in the user’s browser to recognise a user between page visits. A session is unique and
entails an id.

The thesis aims to discover user click paths from the SUSs front-end. This is achieved
through transforming tracing data that is recorded by the distributed tracing instrument-
ation. With that, user activities, consisting of an activity name and a timestamp, can
be generated. In order to analyse click paths of an unique user and session, moreover,
some sort of case id is required, that correlates the activities to a single process instance
and gives the activities a shared context. The before mentioned availability of a session
id in most web applications and the use case of analysing user sessions lead to choosing
the session id as the case id. Alternatives to the session id would change the context which
will be described more extensively in subsection 5.1.5.

A session’s durability would be in general defined individually by the service. In

33

3. Description of the system under survey

the SUS one can generate a new probabilistic unique session id manually, through a
Representational State Transfer (REST) call at the webui service 3 . Furthermore, a
random user 4 can be linked to a unique session. By requesting one, the webui service
generates a random user id (User 1 - 10) and persists it together with the session id as
well as the device type in a sessions database table. Creating a new user automatically
creates a new session which does not hold true vice versa. The relationship between a
user and a session is a one-to-many relationship.

Alternatively to a random user generation, the feature could have been implemented
with a regular user login where for a predefined group of users, unique sessions would
have been generated automatically after login. For the purpose of generating click
paths for users within a reasonable amount of time, a random user generation linked
to a virtual session generation was preferred over a login functionality.

Table 3.2 shows all available endpoints, including their description in which user
activity the endpoint is involved. For the webui service, endpoints can be translated
one-to-one to user activities. The ten endpoints listed below also present the functional
scope of the SUS.

Table 3.2.: Webui service endpoints and their usage in user activities

Endpoint Description User activity
involvement

GET /getCars Return all available cars and dis-
plays them on a map.

List available cars

GET /reserveCar Lets the user reserve a car. Reserve car

GET /bookCar Lets the user book a car. Book car

GET /openCar Lets the user unlock a car. Unlock car

GET /endRental Lets the user end a car rental. End car rental

GET /showBalance Shows the user’s balance. Show balance

GET /bookPackage Books a driving or parking pack-
age.

Book package

GET /showHistory Shows the history of the last
routes.

Show driving history

GET /reportIssue Lets the user report a malfunc-
tion.

Report issue

GET /findRoute Lets the user find a route. Find route

34

3.2. Description of the business functionalities

Maps service

The maps service is mainly responsible for rendering a map in different contexts and dis-
playing additional information e.g on layers on the map. Moreover, route calculations,
address searches and display available cars within a defined service area are further
functionalities that the map service entails. The service provides three endpoints (see
Table 3.3) that are used for the List available cars, Show driving history and Find route user
activities.

Table 3.3.: Maps service endpoints and their usage in user activities

Endpoint Description User activity
involvement

GET /generateMap Renders a map of available cars. List available
cars

GET /getHistoricalRoutes Displays historical routes on a map. Show driving
history

GET /getRoutes Calculates available routes on a
map.

Find route

Accounting service

The accounting service provides all functionality that is needed for billing services offered
by the platform. It provides endpoints for initialising and finalising a booking, querying
the user’s balance and handling a package booking (see Table 3.4).

Table 3.4.: Accounting service endpoints and their usage in user activities

Endpoint Description User activity
involvement

GET /initilizeBooking Prepares and initialises a car
booking.

Book car

GET /finalizeBooking Finishes a car booking. End car rental

GET /getBalance Queries the database for the user’s
current balance.

Show balance

GET /newPackage Initiates the booking of a package. Book package

Notifications service

The notifications service provides the user with different types of notifications. These
include push notifications for smartphones, inbox messages for various front-ends as
well as e-mail and SMS notifications. The notification service only provides one single

35

3. Description of the system under survey

endpoint /notifyUser that is called by the activities Reserve car, End car rental, Report
issue, and Book package and is typically called as the last endpoint (see Table 3.5).

Table 3.5.: Notifications service endpoints and their usage in user activities

Endpoint Description User activity in-
volvement

GET /notifyUser Notifies user via different channels. Reserve Car

End car rental

Report issue

Book package

Payments service

The payments service provides functionality for processing payments internally and
passing transactions to external payment providers. Both activities End car rental as
well as Book package use the service’s single /handlePayment endpoint (see Table 3.6).

Table 3.6.: Payments service endpoints and their usage in user activities

Endpoint Description User activity
involvement

GET
/handlePayment

Processes a payment internally or
externally.

End car rental

Book package

User service

The user service handles user identities through providing login functionality and
manages both master as well transition user data. In the SUS, it only provides a
/getUserHistory endpoint that is called to retrieve a history of the user’s past routes
(see Table 3.7).

Table 3.7.: User service endpoints and their usage in user activities

Endpoint Description User activity
involvement

GET /getUserHistory Query historical trips that are attached
to the user.

Show driving
history

36

3.3. Description of the software architecture

Cars service

The cars service keeps track of the different states of a car like location, availability,
reservation or maintenance. It also provides access to master data as id, car name, car
type and more. It is a substantial service providing endpoints to seven user activities in
total (see Table 3.8).

Table 3.8.: Cars service endpoints and their usage in user activities

Endpoint Description User activity in-
volvement

GET /getAvailableCars Query a list of all available cars. List available cars

GET /allocateCar Reserve a car. Reserve car

GET /handleCarBooking Start booking of a car. Book car

GET /unlockCar Unlock a car. Unlock car

GET /lockCar Lock a car. End car rental

GET /getCarHistory Query driving history of a specific
car.

Show driving his-
tory

GET /createIssue Create an issue and attach it to a
car.

Report issue

3.3. Description of the software architecture

In the following, a general description of the system’s architecture is given. First, the
communication between the services is characterised. Thereafter, the role of the three
infrastructure microservices is described. Finally, an exemplary setup of one business
microservice is given, that shows in what manner the application and the controller is
built for all business microservices.

3.3.1. Service communication architecture

Subsection 2.1.2 has already given an overview of patterns present for microservice
composition and the execution of business logic across services. Thereby, the two main
distinctive patterns, orchestration and choreography, have been discussed including
the benefits and drawbacks of each. The service composition architecture applied in
the SUS conforms to a point-to-point pattern. In point-to-point, every service contains
its own orchestration logic in the endpoints and services communicate directly with
each other [20, 65].

The in section 3.1 demonstrated call flow for a user’s /endCar request shows the

37

3. Description of the system under survey

synchronous request/response inter-service communication. In the SUS, every service
has its own logic implemented and decides what additional resources need to be
requested in order to return a response back to the its upstream service. The pattern is
applied for all user requests and inter-service call sequences appearing in the SUS.

The following rationale led to the implementation of a point-to-point communication
architecture in the SUS: First, the point-to-point is a often applied and popular pattern,
which is due to its intuitive applicability [20, 67]. However, the pattern comes with a lot
of drawbacks that create complexity. This emerging complexity makes the architectural
style a suitable object of investigation for applying techniques of distributed tracing
and process mining on it. Second, one of the goals of this work is to discover process
flows from information systems that are per default process-unaware. The presented
SUS, which uses elements of orchestration, does not have a notion of process awareness
implemented. Architectures with choreography patterns also do not fall into the
definition of a process aware system, but they do create events. These events can give
insights about the state of a process and could theoretically be correlated to user or
business activities. While this could be a further promising source of activity generation
for process mining, this work focuses on architectures written in an orchestration
pattern that do not write any events. The only source for the generation of high level
event logs is distributed tracing data from an instrumented service.

3.3.2. Infrastructure microservices

Three infrastructure microservices are implemented in the SUS. First, a configuration
service, that provides configurations in a consistent and maintainable manner to all
other microservices. Second, a discovery service, to which all other microservices register
and that keeps track of locations and different states. And last, an edge service, that
works like a micro-proxy which forwards requests coming from different clients to the
corresponding services.

Configuration service Microservices require a much higher demand for configuration
management compared to monolithic-styled architectures [38, 46]. In such, there
is also a need for pushing new configurations across multiple environments for
different versions during runtime. A new configuration can be pulled by a service
through its /refresh endpoint. In the sample architecture, a Spring Cloud Config4

service was implemented that centralises configuration files in a local repository
for each microservice and provides them in a maintainable and consistent manner.

Discovery service A discovery service keeps track of the service’s different network
locations and states. Such a component is needed in environments where the
locations of services change and are dynamically assigned e.g. in cloud settings
where replications of instances are dynamically booted [55]. The used component
for the discovery service is Eureka3 which is also part of the Netflix OSS stack. It

38

3.3. Description of the software architecture

implements a client-side discovery pattern. Within this pattern, clients register
during startup to the discovery service. During runtime they periodically send
their status through heartbeats till they are deregistered after termination. Before
requesting a service, the client queries the discovery service to obtain the locations
of a service or its replications. In this pattern the client also chooses between the
different instances that are replicated through Netflix Ribbon by applying a load
balancing algorithm.

Edge service An edge service can be described as the "front door" [17] for all devices
that are accessing services of a system’s back-end. Thereby, a unified interface for
consumers is created, that proxies request to multiple back-end services. In the
sample architecture, Netlix’s Zuul3 is used as an edge service.

One force for using an edge service is, that the APIs of services often provide
high granularity and clients would have to retrieve data from multiple services
for receiving a desired single user request [46]. Another challenge is that the
content of a response might vary from consumer to consumer [49]. A mobile
client might expect a different response than a web application. He might for
instance receive a different composition compared to a web application. This
is accomplished through rules that can be defined in form of filters in the edge
service. By applying routing logic individually for each type of client various
APIs are exposed. Lastly, the partitioning of services might change over time
while interfaces to the front-end should remain stable [47]. Complexity in general
should be hidden from the client [46].

3.3.3. Exemplary setup of a business microservice

The six business microservices are all built in a similar manner. Therefore, only one,
namely the accounting service, will be extensively described by its core elements. It is
suitable for an exemplary description since it is used as an intermediate as well as an
last called service of a user request.

All services are build as Spring Boot applications using different modules from Spring
Cloud in its Dalston Service Release 1 (Dalston.SR1). The dependencies xmlspring-
boot-starter-web and spring-boot-starter-test are thereby used by each application.
The main application is implemented as a regular spring boot application, indicated
through the @SpringBootApplication annotation (Listing 3.2, l. 2).

The aforementioned configuration service is used by every application for receiving its
own configurations. Therefore, in the application’s local configurations only the own
application name for the look-up at the server and the URI of the configurations service
are defined (see Listing 3.1).

3https://cloud.spring.io/spring-cloud-netflix/

39

3. Description of the system under survey

Listing 3.1.: The application’s local bootstrap.properties

1 spring.application.name=accounting-service
2 spring.cloud.config.uri=http://localhost:8888

The actual configurations are stored in the configurations service and pulled by the re-
spective service on start-up. To enable a central configuration management, the depend-
encies spring-cloud-starter-config and spring-boot-starter-actuator have to
be added in the Project Object Model (POM).

In lines 5 - 9 (Listing 3.2), a default REST template method is defined, that will be used
by the controller.

Listing 3.2.: Class definition for the accounting application

1 @EnableDiscoveryClient
2 @SpringBootApplication
3 public class AccountingApplication {
4

5 @Bean
6 @LoadBalanced
7 RestTemplate restTemplate() {
8 return new RestTemplate();
9 }

10

11 public static void main(String[] args) {
12 SpringApplication.run(AccountingApplication.class, args);
13 }
14

15 }

The architecture also makes use of the service registry and discovery component Netflix
Eureka (as described in subsection 3.3.2), which is implemented as an own microservice.
To communicate with the discovery service, all business services are configured to act
as a discovery clients, indicated through the @EnableDiscoveryClient annotation.

All services further apply Netflix Ribbon for client side load balancing. An integration
with Eureka is provided in the library. To configure a load balanced REST template,
the bean is annotated with a @LoadBalanced qualifier (see Listing 3.2, l. 6).

40

3.3. Description of the software architecture

Listing 3.3.: Endpoints definition in the accounting controller

1 @RestController
2 public class AccountingController {
3

4 private final RestTemplate restTemplate;
5 private static final Logger log =

LoggerFactory.getLogger(AccountingApplication.class.getName());↪→

6 private static final String app_name = "Accounting Service";
7

8 public AccountingController(RestTemplate restTemplate) {
9 this.restTemplate = restTemplate;

10 }
11

12 @RequestMapping("/getBalance")
13 public String getBalance() throws InterruptedException {
14 String msg = app_name;
15 // query database for user's balance
16 Thread.sleep(300);
17 log.info(msg);
18 return msg;
19 }
20

21 @RequestMapping("/finalizeBooking")
22 public String finalizeBooking() throws InterruptedException {
23 String msg = app_name;
24 // process booking internally
25 Thread.sleep(200);
26 msg += " --> " +

restTemplate.getForObject("http://payments-service/handlePayment",
String.class);

↪→

↪→

27 log.info(msg);
28 return msg;
29 }
30

31 // further endpoint definitions ...
32

33 }

Listing 3.3 shows an excerpt of the accounting service controller, that handles incoming
HTTP requests. The controller is established through a @RestController annotation
(l. 1). The class contains three variable definitions. The first is a RestTemplate that is

41

3. Description of the system under survey

necessary for synchronous client-side http requests (l. 4), the second is a Logger object
for printing logs in the console (l. 5) and the last one is a String object for returning
the application name (l. 6). Furthermore, a constructor is defined that references an
instance of the RestTemplate.

The controller also defines the two endpoints /getBalance and /finalizeBooking.
Web requests are mapped to a method through the @RequestMapping annotation. The
/getBalance endpoint would only query its database to provide the requested balance
for a user. In the sample architecture this functionality is not implemented. However, a
Thread.sleep() is implemented that pauses the thread in order to simulate a database’s
request latency. The method and therefore the request only returns the name of the
application. The /finalizeBooking endpoint by contrast triggers further inter-process
communication by calling its downstream payments-service for initialising a transaction.
This synchronous communication is performed through the above defined RestTemplate
with the method getForObject that stands for a HTTP GET request. The received
object (if any) is rendered to a String class and appended to the msg String defined
above. The endpoint returns the application name as a message.

42

4. Description of the automated process
discovery prototype

The development of the prototype was carried out in six steps (see Figure 4.1). First,
an initial architecture design had to be developed that identifies how the existent SUS
needs to be extended by additional components. In a second step, one tool for collecting
distributed tracing data and another for the process mining part was selected. As a third
step, the existent SUS was instrumented with a distributed tracing library. In a followed
fourth step, a persistence strategy was developed for the tracing data. Moreover, a data
platform including a data model was established on which the log generation algorithm
could be executed. With theses prerequisites, the actual log generation algorithm was
developed and implemented in an own microservice in the fifths step. Finally, the PMT
was configured to load the previous created tables. The relations and roles of the tables
were setup in a data model. On top of the data model, four different analysis were
created. Each answers unique analysis questions and thereby proofs the applicability
of the presented approach.

Tool selection

4.2

Event log
generation

4.5
Description
of extended
architecture

4.1

Instrumentation
of the SUS

4.3
Data

persistence and
table structure

4.4 PMT
configuration
and analyses
creation

4.6

Figure 4.1.: Overview of the prototype development process

4.1. Extended system under survey architecture

In the first step, the six business services of the prerequisite architecture were instru-
mented with a distributed tracing library (see section 4.3), that creates the trace data.
Afterwards, the SUS was extended by four additional components. See Figure 4.2 that
depicts the extended sample architecture.

43

4. Description of the automated process discovery prototype

EUREKA
DISCOVERY
SERVICE

:8761

CONFIGURA-
TION

SERVICE

:8888

API

ACCOUNT-
ING

SERVICE

:6060

CARS
SERVICE

:9090

MAPS
SERVICE

:6061

NOTI-
FICATIONS
SERVICE

:6063

PAYMENTS
SERVICE

:5050

USER
SERVICE

:5050

API

API

API

API

API

API

ZUUL
EDGE

SERVICE

:8762

API

WEBUI
SERVICE

:5050

API

API
Business services

Infrastructure services

HTTP

Front-end services

Database access

ACTIVITIES
GENERATION
SERVICE

:6064

API

CELONIS
PROCESS
MINING
TOOL

:9000

ZIPKIN
DISTRIBUTED
TRACING
SERVICE

:9411

API

MySQL
Database

Extended services

1

2

3
4

Figure 4.2.: Architectural setup for the data processing

The first component added is the Zipkin distributed tracing service 1 , that collects the
trace data created at and sent from each instrumented business service. Besides the
collector, the distributed tracing service also entails a storage and API element and
moreover provides an UI for visualising the traces. The typical architecture of the
distributed tracing system has already been depicted in Figure 2.6.

For the event log generation, an additional activities generation service 2 was build
that transforms the raw low level events recorded through Zipkin to a high level event
log existing of system and user activities (see section 4.5). The component entails the
activity generation algorithm in form of Structured Query Language (SQL) scripts and
manages its execution.

The actual correlation is performed on a MySQL database, that was added as a third
component 3 . The data base is the persistence layer for two described components
above: It stores the original trace data from Zipkin and moreover serves as an execution
and persistence platform for the activities generation service.

Consequently, also the fourth component, the PMT 4 , has been connected to the
database. The PMT, which is deployed as a web application, calculates the process
model and provides further functionality, similar to a Business Intelligence (BI) tool for
creating process-related analysis. The PMT uses the database as a primary data source
for importing tables that are necessary for the process mining. In the tool, the relation
between the imported tables has to be mapped in a data model. The data model is the
foundation of every analysis and will be further described in subsection 4.6.2.

44

4.2. Distributed tracing and process mining tool selection

Through the web front-end, it is possible to trigger the whole workflow for generating
the event log as well as for reloading the PMT’s data model in order to update the
analysis. This workflow, which is also configured to run automated, will be more
thoroughly described in subsection 4.6.1.

4.2. Distributed tracing and process mining tool selection

Choosing distributed tracing and process mining as core techniques for the proposed
approach, a tool for each had to be selected first.

For the distributed tracing part, Zipkin was chosen as a tool for collecting and visualising
trace data. Zipkin is a java-based distributed tracing system that is based on the
architecture described by Google [64]. It was initially developed by Twitter in 2010 and
open sourced in 2012 with the official name OpenZipkin. However, the name Zipkin
will be used to refer to the OpenZipkin project in the remainder of this work. Since
then, the project matured and is supported by an active developer community. Zipkin
was chosen over other tools for various reasons. First, it is the biggest open-source
project for distributed tracing in terms of active users and developers, therefore free to
use, well documented and supported through various channels. Second, it is widely
adopted by technologically leading companies [44], which manifests its applicability for
the usage in a production environment. Third, it implements the OpenTracing standard,
already described in subsection 2.2.2. The log generation, that will be described in
section 4.5, is dependent on the implementation regards to the data format in which the
tracing data is stored. By choosing a well-adopted standard, the scripts developed for
this proof-of-concept remain valid and are agnostic to the instrumentation used. Lastly,
and most importantly, by choosing Zipkin together with the OpenTracing standard, an
existent architecture can be instrumented with minimal code change which will be
shown in the next section.

For the process mining part, the software Celonis Process Mining was chosen. Celonis is
a web-based enterprise solution that provides real-time process discovery techniques,
connects to operational source systems (e.g ERP, CRM) and is capable of handling
large volumes of data. Since distributed tracing creates high data volumes, this was an
important aspect for choosing Celonis over others tools. Moreover, the tool does not only
provide means for generation process models, it combines it with OLAP functionalities,
known from traditional BI. Thus, it is possible to add different component types to an
analysis and enhance the process visualisation with charts, tables and selection elements
[21]. Celonis provides an own Process Query Language (PQL) to define complex KPIs
in the dashboards and stores process data along with additional data in a process cube.
The described functionalities are required for the proof-of-concept prototype. Besides
the functional fit, Celonis is widely adopted in industry and can be used within an
academic license for free.

45

4. Description of the automated process discovery prototype

4.3. Instrumentation of the system under survey

This section first describes how a Zipkin microservice, that collects, persists and visual-
ises traces was created. In the second part, it is explained how the services of the sample
architecture were instrumented using Spring Cloud Sleuth1, which is an adaptation of
the Zipkin’s instrumentation library for Spring Cloud applications. In the third part it
is explained, what additional modifications were applied for the webui service, which
generates the front-end and is thus the starting point for all process activities.

To establish a Zipkin server, a standard Spring Boot application was built first, that
was extended with the dependencies zipkin-server and zipkin-autoconfigure-ui.
For persisting the data in a MySQL database, three further dependencies zipkin-
autoconfigure-storage-mysql, mysql-connector-java and mysql-connector-java
had to be added. Configurations for the database connection are applied in the
applications configurations file of the configurations service. The Zipkin server is finally
established through the @EnableZipkinServer annotation (see listing 4.1).

Listing 4.1.: Class definition for ZipkinApplication.java

1 @SpringBootApplication
2 @EnableZipkinServer
3 public class ZipkinApplication {
4 public static void main(String[] args) {
5 SpringApplication.run(ZipkinApplication.class, args);
6 }
7 }

Zipkin provides a collector, a storage component, an UI and an API. For performing dis-
tributed tracing through all services, a Zipkin client needs to be installed on each spring
boot application that is supposed to be instrumented. The Zipkin client is added as a
dependency for each business service by appending spring-cloud-starter-zipkin
to the classpath. The sampling rate can be adjusted in the application’s configuration
file. The rate is independent from the actual generation of spans. That means by
adding Spring Cloud Sleuth, spans are generated in the application per default but
only attached to the HTTP request according to the sampling rate. Therefore, the rate
only defines the ratio of traces attached and exported. A higher rate subsequently leads
to a higher application overhead.

For the proof-of-concept architecture, the sampling rate was set to 100% for all instru-
mented services, which samples every request. Since only little amounts of data are
produced in the proof-of-concept, performance issues that potentially emerge through

1https://cloud.spring.io/spring-cloud-sleuth

46

4.4. Data architecture

a high sampling rate, can be neglected at first stage. The aspects of overhead and
sampling rate will be discussed more thoroughly in subsection 5.2.3.

Besides the just described configurations that must be undertaken for instrumenting
a microservice additional modifications of the system only need to be made in the
endpoints of the webui service. As described in subsection 2.3.7, an integral part of the
modelling in process mining is the case_id, that relates activities to a single process
instance. Since the process as a whole is defined as user clicks that emerge from the
front-end and the temporal context is defined as one session, a session_id was chosen
to serve as the case_id. The session_id is part of all user requests from the front-end
as they are passed along as a parameter to the mapped controller method. From there
the session_id needs to be stored to the span.

In addition to the default annotations that are stored per span it is possible to append
custom annotations, so called tags to a span. To achieve this, a Tracer object needs to be
initialised in the controller first (see listing 4.2, l. 1). Afterwards, the session id, received
through the parameter in the endpoint, is added to the tracer (see l. 5). With that, an
additional annotation is written to the span.

Listing 4.2.: Appending the session_id to the span

1 @Autowired Tracer tracer;
2

3 @RequestMapping("/bookCar")
4 public String bookCar(@RequestParam(value="sessionID", required=false,

defaultValue="null") String sessionID, Model model) {↪→

5 tracer.addTag("sessionID", sessionID);
6 String msg = "sessionID = " + sessionID + " || WebUI ";
7 msg += " --> " + restTemplate.getForObject("http://cars-service/handleCarBooking",

String.class);↪→

8 model.addAttribute("msg", msg);
9 return "index";

10 }

4.4. Data architecture

In the following, an overview of the applied data architecture is given. This includes a
persistence strategy for the tracing data as well an general description of the created
tables and their roles in the data model. A description of the full data model, which
shows the table’s relationships in an UML diagram, can be found in the appendix
(Figure A.11).

47

4. Description of the automated process discovery prototype

4.4.1. Tracing data persistence data

Zipkin per default does not persist the tracing data. The UI queries the API to access
the data which is stored in its storage component in-memory. To persist traces, a Zipkin
server module can be utilised that supports the three storage types Cassandra, MySQL
and Elasticsearch natively. Elasticsearch is a full-text indexing/search engine that helps
querying data but is not best suitable as a data store due to the limited support for
data manipulation. From the remaining two default data stores, MySQL was chosen
over Cassandra for two reasons: First, the used PMT requires a relational databases for
a continuous data loading. Second and subsequent to the first, the event logs need to
be in a flat table structure (see subsection 2.3.6). Since the data has to be pre-processed
before it can be imported by the PMT, a platform is needed on which the event log can
be generated (see section 4.1). Moreover, the correlation of low level distributed tracing
log files in order to create a high-level event log can be easily accomplished through
joins, which are standard constructs of SQL and thus relational databases in general.
At the same time, drawbacks emerge when choosing MySQL as a data storage. For
instance a lower write speed compared to Cassandra would affect the prototype in a
real-world setting with millions of spans stored per day. Limitations of the prototype,
emerging of the requirement of real-time are further discussed in subsection 5.1.6.

4.4.2. General table structure

This section classifies and describes the database tables used in the prototype. In
the following, the structure of the spans, annotations and activities table is explained
extensively, since they are the central tables used in the whole prototype, while the
remaining tables (see Table 4.1) will only be described by their role.

Table 4.1.: Database tables usage classification

Distributed
tracing

Activity
generation

Data model
in PMT

Data
loading

zipkin_spans x x x

zipkin_annotations x x x

activities x x

technical_activities x x

activity_mappings x

trace_span x

sessions x

reload_trigger x

48

4.4. Data architecture

spans and annotations tables

The spans and annotations tables structure and relationship to each other is predefined
through Zipkins data model, where they are used to store the tracing data. They are
furthermore used as the two main source tables in the activity generation for the
process mining. Third, they will be imported in the PMT to extend the data model and
provide additional information for the analysis. Next to the two, a third table is created
automatically by Zipkin which is the zipkin_dependencies table, that stores parent child
relationships between the spans that are used for a dependency visualisation in the
Zipkin UI but will not be used further in this work.

In the zipkin_spans table (see Table 4.2), each row provides information about exactly one
span whereas in the zipkin_annotations table multiple annotations, providing additional
information through multiple key value pairs, are stored per span. Thus, a one-to-many
relationship between zipkin_spans and zipkin_annotations exists.

Table 4.2.: zipkin_spans table definition

Column Data type Key

trace_id_high bigint(20) x

trace_id bigint(20) x

id bigint(20) x

name varchar(255)

parent_id bigint(20)

debug bit(1)

start_ts bigint(20)

duration bigint(20)

The zipkin_spans table has four attributes as a primary key which are the trace_id_high,
the trace_id, the id, and the name. For the log generation, the trace_id and id will be used
for joining with the zipkin_annotations table. The attributes name, parent_id, start_ts, and
duration will serve to filter and fill the event log attributes like activity name, timestamp
and duration.

49

4. Description of the automated process discovery prototype

Primary keys in the zipkin_annotations table are the trace_id_high, the trace_id, the span_id,
the a_key, and the a_timestamp. Further attributes of interest are the a_value, which
stores the actual value of a key, for example the message of an error annotation or the
endpoint_service_name, which indicates from which service the information of each row
originates from.

Table 4.3.: zipkin_annotations table definition

Column Data type Key

trace_id_high bigint(20) x

trace_id bigint(20) x

span_id bigint(20) x

a_key varchar(255) x

a_value blob

a_type int(11)

a_timestamp bigint(20) x

endpoint_ipv4 int(11)

endpoint_ipv6 binary(16)

endpoint_port smallint(6)

endpoint_service_name varchar(255)

50

4.4. Data architecture

activities table

As already described in subsection 2.3.4, the three minimum attributes that are required
for process mining are the case_id, the activity name and some sort of ordering which is
typically a timestamp. As described in section 4.3, for the proof-of-concept the session_id
is used as a case_id. The activity table, that will be used as the main input for the process
mining is extended by additional attributes, like the activity_type, that indicates whether
an activity is a user or system activity or a failure attribute, that indicates if an activity
has been executed successfully. More attributes are part of the table that are described
along with the define data type in table 4.4.

Table 4.4.: Description of the activites table

Attribute Datatype Description

session_id varchar(30) Determines the level and scope of a process.
Correlates activities to a process instance.

activity varchar(50) Name of the activity.

start_ts datetime(3) Determines the start of an activity.

end_ts datetime(3) Determines the end of an activity.

start_ts_edges datetime(3) Same as start_ts but used for the calculation
of durations between user activities.

end_ts_edges datetime(3) Same as end_ts but used for the calculation
of durations between user activities.

duration bigint(20) Indicates the duration of an activity.

trace_id bigint(20) Foreign key to the annotations table.

trace_id_hex varchar(30) Foreign key to the trace of an activity. Hexa-
decimal used for external link to the Zipkin
UI.

span_id bigint(30) Foreign key to spans table.

activity_type varchar(20) Type of activity: user or system activity

device_type varchar(20) Device type: indicates the origin of a front-
end request

service_name varchar(20) Indicates which service is called.

failure tinyint(1) Indicates whether an activity is faulty or not.

sorting int(11) Indicates an order when two activity share an
identical timestamp.

51

4. Description of the automated process discovery prototype

technical_activities table

This table is a sub-set of the before described full activities table and serves for displaying
system activities that belong to a distinct user activity. The duplicate table, comprising
of system activities only, had to be created due to circumstance of modelling both
activity types equally in the same event log. To display technical events that relate to a
user activity in a second component, the technical activities table was created.

activity_mappings table

The activity_mappings table is solely used during the activity generation and is not part
of the data model in the PMT. In the table, ’pretty names’ are defined for the span names,
that imply an inter-service request. E.g. the technical span name http:/getcars is
a request to the webui service and therefore modelled as an user activity. It would be
mapped to List available cars in order to provide human-friendly activity names in the
process visualisation. Moreover, a is_activity flag is set, that indicates if an activity
should be created and be part of the process. The table’s last column calls_service
indicates to which service the request is directed to.

The columns pretty_name, type and is_activity would have to be configured once by an
domain expert that is able to map service calls to process activities.

trace_span table

The trace_span table is solely used in the PMT’s data model to dissolve the many-to-
many relationship that occurs between the activities and the spans table.

sessions table

The sessions table is filled by the webui service and logs sessions (session_id) to users
(user_id) together with a timestamp (session_start) device type (device) of a session.
Through connecting the sessions in the PMT’s data model, analysis cannot only be
made on a session but also on a user and device level.

reload_trigger table

The last table utilised is the reload_trigger table, that triggers a complete reload of
the PMT’s data model. For that, an entry consisting of the concerned data model
(data_model_name) and date of request (reload_request_time) is written after every
new event log generation by the event log generation service. During the data model
load, the PMT itself writes a reload_start_time and possibly a reload_success_time
and reload_message in the columns of the request. The structure is determined by the
PMT’s requirements.

52

4.5. Event log generation

4.5. Event log generation

For creating the event log, a two-step approach containing of

1. scoping the event data, and
2. binding the events to instances,

was applied based on [3]. The original approach includes three steps with an original
third phase, where the process instances are classified. The authors propose that in
that phase, the process log should be split into smaller groups of process instances, to
analyse them separately. This step is not conducted since the used PMT is capable of
slicing the process cube which enables using a single activity log.

The event log generation as a whole was performed in an iterative process to understand
the necessary level of granularity and abstraction [2]. A traces-centric, technical view
on a low level was applied first, where the state of a process instance is reflected by
REST calls between the microservices, manifested through spans. Coming from that
detailed layer with rich information at hand, abstractions were made to derive business
relevant activities that represent the business layer. In the SUS, regards to the use case
of analysing user click paths in a car sharing system, a session id was chosen as a case id.
Through that, one can analyse all activities respectively clicks a user performed during
one session. As described in section 3.2, such a session could for example expire after
30 minutes of inactivity. This definition gives the process a natural scope that is being
described in the next subsection.

4.5.1. Scoping the event data

By scoping the event data, one first needs to decide which events are of importance
and need to be correlated and transformed to activities of relevance for answering the
analysis questions [5]. This activity is typically performed by an domain expert [7].

In the context of distributed tracing data, every span is a type of a low level event.
A span stands for a service invocation or procedure call and entails a timestamp.
Moreover, multiple annotations are written per span that provide more fine grained
information. Since each annotation, as for example a client receive, entails a timestamp,
an annotation also embodies an event, but on higher level of detail. The amount of
annotations written per span varies between the type of span (method call versus service
invocations) but is also dependent on the actual implementation of the architecture. In
the SUS up to 14 annotations per spans are written and therefore only a small subset
of these evets will serve as an information basis for the creation of an activity. In the
following, it will be described how these low level events of the spans and annotation
table, both from different hierarchy levels, are being transformed to events of higher
level, namely system and user activities.

53

4. Description of the automated process discovery prototype

The process’ functional scope lies on analysing user click streams, therefore all events
that stand for a user click in the front-end will be merged into a user activity, since it
reflects user behaviour. The event that constitutes a user activity can be found in the
spans table and is defined as the initials span of a trace. This first span (parent span),
is typically followed by a plethora of child spans. Child spans that represent a inter-
service request, are defined as system activities, as they reflect system behaviour. The
mapping table, in which every possible user or system activity is listed, is used to filter
activities that are not relevant for the analysis and therefore should not be contained
in the event log. The two types of activities, originating from the two layers, can both
be viewed independently or conjunct in the process graph of the PMT. For making
the event log appropriate for a PMT to work with, both event types were modelled
as activities, so the PMT does not distinguish between the types of activities during
the generation of the process model through the algorithm. To be able to separate and
filter the two layers in the PMT, an extra column was added that indicates the activity
type. For a better distinction of these in the process, user activities were translated to
human-readable activity names, using the mapping table. System activities were not
altered and keep the original span’s name to indicate their technical origin.

User as well as system activities can both fail. A failed invocation between two services,
e.g. a timeout, is indicated through an error tag in both the corresponding span as well
as in the parent spans of a trace. The creation of failed user and system activities is
described below.

4.5.2. Transformation of low level events to activities and binding to
process instances

In this step the transformation of low level events into activities together with the
correlation to a single case (i.e. process instance) is performed. The so far empty
activities table, will be subsequently filled with the activities of the four types. The
activity types include

1. healthy user activities,
2. failed user activities,
3. healthy system activities, and
4. failed system layer activities.

For each type, the event log algorithm provides a distinctive SQL script, that scans the
spans and annotations tables for events that match the respective activity definition. The
following description, that defines the activity types, is supported by sample tracing
data of the SUS that was recorded from a random /bookCar request. The sample data
from the spans and annotation table can be found in the appendix (see Table A.1 and
Table A.2). Due to simplification, the 64 bit trace_id, span_id and parent_id from
both tables have been altered to single character IDs. Furthermore not the complete

54

4.5. Event log generation

tables but only attributes of relevance (cf. 4.4.2) are shown.

Healthy user layer activities

As described in the data structure section (subsection 2.2.2), a request in the front-end
(e.g. a /bookCar request) may yield to multiple service invocations in the back-end,
that all share the same trace_id. For every of these downstream service calls, a new
span is written. Additionally, also method calls can trigger a new span.

The existence of a user activity is defined by the first span of a trace. To verify that
only user activities are recorded where no technical failure occurred, an inner join
between the spans and annotations table on the trace_id and span_id (see ll. 17 - 25)
is executed.

Listing 4.3.: Creation of healthy user activites

1 INSERT INTO activities (
2 session_id, activity, start_ts, end_ts, start_ts_edges, end_ts_edges, duration,

trace_id, trace_id_hex, activity_type, failure, sorting↪→

3)
4 SELECT DISTINCT
5 a1.a_value AS session_ID,
6 m1.pretty_name AS activity,
7 FROM_UNIXTIME((s1.start_ts * 0.000001)) AS start_ts,
8 FROM_UNIXTIME((s1.start_ts + s1.duration) * 0.000001) AS end_ts,
9 FROM_UNIXTIME((s1.start_ts * 0.000001)) AS start_ts_edges,

10 FROM_UNIXTIME((s1.start_ts + s1.duration) * 0.000001) AS end_ts_edges,
11 s1.duration * 0.001 AS duration,
12 s1.trace_id AS trace_id,
13 LOWER(HEX(s1.trace_id)) AS trace_id_hex,
14 'user' AS activity_type,
15 FALSE AS failure,
16 1 AS sorting
17 FROM zipkin_spans AS s1
18 INNER JOIN zipkin_annotations AS a1 ON
19 s1.trace_id = a1.trace_id
20 AND s1.id = a1.span_id
21 AND s1.parent_id IS NULL
22 AND a1.a_key = 'sessionID'
23 AND a1.trace_id NOT IN (SELECT trace_id
24 FROM zipkin_annotations
25 WHERE a_key = 'error')
26 INNER JOIN activity_mappings AS m1 ON s1.name = m1.technical_activity AND

m1.is_activity = TRUE;↪→

55

4. Description of the automated process discovery prototype

Only the initial span of every trace is joined, namely all entries that do not have a
parent_id (l. 21). To only generate activities that are processed successfully within a
trace, a second filter (ll. 23 - 25) is applied. Only such traces remain that don’t have
a error tag in any of span’s annotations. The third filter that is applied on this join is
the look up of the sessionID key from the annotations table (l. 22). The session_id
is passed along as a tag in the initial request and is stored as a custom tag in the
annotations of the first span, which is created from the edge service. With this join
between the spans and annotations table, all distinct user activities are selected.

The session_ID, that is the first attribute for which a value needs to be allocated, can
be extracted from the above described result set via the a_value attribute. Furthermore,
information for creating all relevant timestamps are part of the result. The 16 digit
microsecond start_ts timestamp from the spans table is multiplied by 0.000001 to
receive a value in datetime(6) format that is suitable for further processing in the PMT.
The end_ts is defined through adding the spans duration to the start_ts. Through
this definition from a single span perspective, one can make sure that effects such as
clock skew do not appear. Effects like these would materialise by using timestamps
from the annotations tables, since they origin from multiple services with possibly
synchronised clocks. Therefore, it is recommended to work with local measurements
as the start_ts and duration from the spans table to calculate an end_ts.

The start_ts_edges and end_ts_edges timestamps are created in the same manner
as the just described ones and only serve for defining durations on the edges between
activities in the PMT.

The trace_id and trace_id_hex can also be found in the result set of the applied join.

Lastly, a third join (l. 26) is applied with the activity_mappings table on spans name in
order to receive a more user friendly ’pretty name’ for the activity name that can be
understood without possible required domain knowledge. Furthermore, only activities
that have a is_activity flag are created. With that, one can define relevant activities
in one single repository.

Three attributes remain that are inserted statically. With activity_type = ’user’ it
is indicated from which layer the activity originates from. It is mainly implemented
to later filter the event log during the process mining. The failure attribute indicates
if a activity is healthy or not and is set to FALSE for this activity. Lastly, the sorting
attribute is inserted which is is implemented as a ’tie breaker’ for the process mining
algorithm in case two activities share the same timestamp. This behaviour occurs
between the user activity and the first system activity, since it reflects the users activity
execution on a technical level. Since the user activity should stand chronologically
before the system activity, a lower sorting is applied for the user activity.

56

4.5. Event log generation

Failed user activities

Failed business layer activities are created in the same manner as their healthy counter-
parts that were just described above except two alterations:

First, in line 6 from the original script (see Listing 4.3), the activity name is appended
by a "failed" annotation (see Listing 4.4) to indicate the failed state.

Listing 4.4.: Activity name alteration

CONCAT(m1.pretty_name, ' failed') AS activity,

Second, the filter described before is now applied on the opposite, so that all traces
are selected that have at least one error key for a span in the annotations table. These
activities are labelled as failed user activities. See below the difference from the original
code in line 23 - 25.

Listing 4.5.: Filter alteration on join

AND a1.trace_id IN (SELECT trace_id FROM zipkin_annotations WHERE a_key = 'error')

In the following, the generation of system activities from the application layer will be
described.

Healthy system activities

System layer activities in the SUS reflect inter-service communication. In comparison to
user activities, each one is not manually executed but represents downstream calls that
are initially triggered by manual user requests from the front-end. The data foundation
for the creation of a system activity is also found in the spans table. In comparison to
an user activity, the creation of a system activity is more complex due to the different
types of errors that lead to various forms of tags written in the annotations table.

As for the user activities, system activities stem from the spans table. During the first
self join (Listing 4.6, ll. 15 - 29) all those entries are filtered, that are inter-service
request, indicated by a http:/ prefix in the span’s name attribute. Additionally two
filters (ll. 16 - 22 and 23 - 29) are applied that filter the spans so that no failed requests
are part of the results set.

Two types of error occur in the SUS. In the first one, a service tries to request a resource
from a non-active downstream service. Here, in the last span written in the trace, the
attempt of calling the downstream service is recorded. In the annotations of this last
span a client sent (cs) to the potential server is written but no response is received. As

57

4. Description of the automated process discovery prototype

a consequence, no client receive (cr) for this span is recorded in the annotations table.
In the code, a self join of the annotations table is applied to find all spans that share
the aforementioned attributes (ll. 16 - 22). This set of span_ids is then used in the join
attribute (l. 16) for the above described self join of the spans tables to filter on spans
that are not part of the annotations join result set, which entails the faulty spans of the
first error type.

The second error type that the system possibly produces is a 500 server failure. For
this type of failure, error tags are written not only in the concerned span but to all
upstream spans. To only filter the actual source span of the failure, all spans that have
the a_key = error tag and at the same time do not have a server send (ss) annotation
are selected (ll. 26 - 29). Since all upstream spans record the error, the filter on spans
without the server send annotation indicates that it is not a first or intermediate but
the last span of a trace. As for error type one, the resulting span_id’s of the described
annotations table self join are also filtered on the span_id of the one hierarchy higher
lying span self join (ll. 15).

Listing 4.6.: Creation of healthy user activites

1 INSERT INTO activities (
2 session_id, activity, start_ts, end_ts, duration, span_id, activity_type,

service_name, failure, sorting↪→

3 SELECT
4 a5.a_value AS session_id,
5 s1.name AS activity,
6 FROM_UNIXTIME(s1.start_ts * 0.000001) AS start_ts,
7 FROM_UNIXTIME((s1.start_ts + s1.duration) * 0.000001) AS end_ts,
8 s1.duration * 0.001 AS duration,
9 s1.id AS span_id,

10 'system' AS activity_type,
11 am.calls_service AS service_name,
12 FALSE AS failure,
13 2 AS sorting
14 FROM zipkin_spans s1
15 INNER JOIN zipkin_spans s2 ON s1.id = s2.id AND s1.name LIKE 'http:/%'
16 AND (s1.id NOT IN (SELECT DISTINCT a1.span_id
17 FROM zipkin_annotations a1
18 JOIN zipkin_annotations a2
19 ON a1.a_key = 'cs' AND a1.span_id = a2.span_id AND
20 a2.span_id NOT IN (SELECT span_id
21 FROM zipkin_annotations
22 WHERE a_key = 'cr'))
23 AND s1.id NOT IN (SELECT DISTINCT a3.span_id
24 FROM zipkin_annotations a3

58

4.5. Event log generation

25 JOIN zipkin_annotations a4
26 ON a3.a_key = 'error' AND a3.span_id =

a4.span_id AND↪→

27 a4.span_id NOT IN (SELECT span_id
28 FROM zipkin_annotations
29 WHERE a_key = 'ss')))
30 INNER JOIN zipkin_spans s3 ON s3.trace_id = s1.trace_id AND s3.parent_id IS NULL
31 INNER JOIN zipkin_annotations a5 ON a5.span_id = s3.id AND a5.a_key = 'sessionID'
32 INNER JOIN activity_mappings am ON s2.name = technical_activity AND is_activity =

TRUE;↪→

The so far described result set is joined with a second spans table (l. 30) on the
trace_id in order to receive the initial span of the trace, from where the session_id
tag can be obtained. Here, the so called log correlation is applied, since events that
are linked via the trace_id are correlated to the session_id which can be found in
the initial span. This attribute is located in the annotations of the initial span and is
attained through a join on the span_id with the session_ID key.

The described joins (ll. 15 - 30) lay the foundation for an activity existence. With
the result set, the attribute’s activity, start_ts, end_ts, duration, span_id can be
inserted. To derive the session_id, an additional join has to be applied (l. 31).

To only receive system activities of interest in the result set and in order to derive the
service_name attribute, a last join with the mapping table is applied via the span’s
name attribute.

Failed system activities

As for the failed user activities before, only little changes in the script have to be applied
to generate failed system activities. First of all, the activity name has to be appended
via a CONCAT(m1.pretty_name, ' failed') suffix. Moreover, the applied filters have
to be reversed. In essence, both filters that capture the two distinct error types remain
the same but the resulting set of span_ids is inverted in its lookup with the spans table.

For failures of the first type, see the alteration in the original code (Listing 4.6, l. 16)
from a NOT IN to to a IN.

59

4. Description of the automated process discovery prototype

Listing 4.7.: First filter alteration on join for failed system activities

AND (s1.id IN (SELECT DISTINCT a1.span_id

The same applies for the second filter’s IDs (see original code Listing 4.6, l. 23). The
lookup is inverted and the AND is changed to a OR in order to record a failure for any of
the two cases.

Listing 4.8.: Second filter alteration on join for failed system activities

OR s1.id IN (SELECT DISTINCT a3.span_id

4.6. Process configuration and analysis creation in the process
mining tool

4.6.1. Process mining workflow

One goal of the proof-of-concept was to design a prototype that allows the monitoring
of business processes with distributed tracing data in near real-time. To achieve this
goal, the process of log generation and data loading was automated. As depicted in
Figure 4.3, the workflow starts with an user that performs activities in the front-end.
From the front-end it is possible to trigger the whole process manually. Alternatively,
the log generation service is scheduled to start the process every five minutes. The
interval is adjustable. After the activity generation algorithm is started, which is stored
in the log generation service, the data base executes the algorithm and writes data
to several tables. It is important to note, that for the activities, technical_activities and
trace_span table a complete re-write is performed. For the reload_trigger table, a new
entry is inserted for every execution. The PMT is configured to watch the reload_trigger
table and to check for new entries every 5 minutes. If a new entry exists that has no
value for the reload_start_time, which indicates if a reload started, a new data load
of the complete data model is performed.

60

4.6. Process configuration and analysis creation in the process mining tool

User

Perform clicks
in front-end

Trigger manual
activity
generation

Log generation service

Trigger
scheduled
activity
generation

~ 5

min

Execute
activity
generation
algortihm

MySQL

Write
activities

table

Write
trace_span

table

Write
technical_
activities

table

Insert new
entry into

reload_trigger
table

PMT

Check for
new entry in
reload_trigger

table

Reload
data model

~ 5
min

Figure 4.3.: End-to-end process mining workflow

4.6.2. Data model and activity table configuration

Every analysis in the PMT must be connected to one data model, that defines the relations
of imported tables to each other. The connected tables are later accessible from the PMT
to define dimensions, build KPIs and apply filters. One data model thereby can serve
multiple analysis but one analysis can only make use of one data model at a time.

As described in subsection 2.3.3, the central and minimum required table for generating
a process model is the activities table. The table is configured by assigning it the role of
the activity table. To interpret the table by the process mining algorithm, the three basic
required attributes case_id, activity and timestamp have to be mapped to the columns of
the source table (see Table 4.5). Further process configurations, as for example a sorting
or resource columns, are also defined here and can be found in Table 4.5.

61

4. Description of the automated process discovery prototype

Table 4.5.: Activities table configuration in the PMT

Attribute Value

Case ID column session_id

Activity column activity

Timestamp column start_ts

End Timestamp column none

Show resource column false

Respect Sorting Column true

Sorting column sorting

Besides the activities table, the data model for the proof-of-concept consists of four more
tables, that are connected via several foreign key - primary key relationships. The
activities table builds the centre of the data model and is directly connected with the
sessions, trace_span and system_activities table and indirectly with the zipkin_spans and
zipkin_annotations table.

Figure 4.4.: Data model configuration in the PMT

In order to use span and annotation data in the analysis, the trace_span helper table
had to be setup and put between the activities and spans table. It provides a mapping
for the multiple spans that exist per traces. The activities table and trace_span table
have a one-to-many relationship and are connected via the trace_id. Since only user
activities are modelled with a trace_id, a join is only realised for this type of activities.
The trace_span table is connected with the zipkin_spans table via the span_id. They also

62

4.6. Process configuration and analysis creation in the process mining tool

share a one-to-many relationship.

One span again has multiple annotations. Therefore, the zipkin_annotations table is
connected with the zipkin_spans table via the span_id having a one-to-many relationship
that builds another second hierarchy.

A second system_activities table is connected to the activities table, that only contains
technical activities but besides resembles the activities table. This is necessary to
establish a relationship between a calling user activity and its called system activities.
However, the process visualisation only builds on the regular activities table.

The last table connected is the sessions table, that has a one-to-many relationship to the
activities table, since one session can contain multiple user and system activities. The
tables are connected via the session_id.

4.6.3. Process visualisation

The PMT applies a fuzzy mining algorithm for generating the process model. Fuzzy
models are well suited for expressing complexity, that arises for example through a
high number of distinct activities and edges [29]. In the context of mining user click
paths, complexity appears through the high amount of edges, since a user can perform
almost any activity at every step of the process. This leads to a potentially high number
of edges (i.e. connections) in the process model. Early process mining algorithms
were not able to control this complexity, since they assumed a more structured and
controlled process [30]. To handle this complexity, fuzzy mining techniques simplify
complex process typologies by using aggregation and abstraction mechanisms, as
applied for geographic maps [4]. The complexity of the model can be influenced with
two parameters that increase or decrease the amount of activities and edges shown
in the model, which is called the process coverage. Starting with a low coverage, one
would see a high level view of the process with the most common paths and activities.
By increasing the process coverage, one could step-by-step analyse less frequently
occurring patterns of a process.

Figure 4.5 shows a fuzzy model in which activities are displayed as nodes and trans-
itions between activities as edges. The coverage is not set to 100%, so only the most
important activities and edges are displayed in the visualisation. Moreover, it is possible
to hide certain activities in the process visualisation. In this view, only user activites are
shown.

63

4. Description of the automated process discovery prototype

Figure 4.5.: User click path visualisation in the PMT

The prototype provides two perspectives on a process with two types of activities that
originate from two domains: The first is a user-centric click path visualisation, that
displays user activities only. The second is a technical application layer perspective, in
which system activities define the process model. For the visualisation it is possible
to include both activity types in the model, in order to analyse the process from a
cross-domain perspective.

Besides the two perspectives, the analysis provides four different KPIs that enhance
(see subsection 2.3.2) the process model by adding them on the activities and edges of
the model. The Case Frequency and Activity Frequency KPIs are provided by default by
the PMT. The Duration and Conversion Rate KPIs were implemented individually for
the specifics of the data model and the analysis questions that the work imposes. The
meaning of all four is being described in the following.

Case Frequency The Case Frequency KPI represents the total amount of cases that
pass a certain activity or connection between two activities. In Figure 4.6, one can
see that out of 25 sessions in total (source), in 19 cases the user clicked on List
available cars at least once. A followed car reservation (Reserve car) was performed
directly after the List available cars in exactly 13 cases, but is in total part of 15
cases. This discrepancy is due to the aforementioned process coverage, that is not
set to 100% for the model excerpt. For two cases, Reserve car has a different direct
predecessor activity then list available cars. This could for example be another

64

4.6. Process configuration and analysis creation in the process mining tool

activity that is not part of the process model yet.

Figure 4.6.: Model excerpt showing the case frequency KPI

Activity Frequency In contrast, the Activity Frequency KPI describes how often a
certain activity was executed in total and not per case. The perspective is switched
from a case to an activity perspective. If the user for instance searches for available
cars more than once during one session, the case frequency would only count it
once while the activity frequency would note two executions and sum it up to
derive the total amount of called activities.

Duration The Duration KPI enhances the process model with two types of dura-
tions. The first is tied to each activity and represents the average time the
system needs to process an activity. The formula implemented for the activ-
ity calculates the average value for all equal activities and is defined in PQL as
AVG("activities"."duration").

The second duration is laid over the edges and represents the time between two
activities. The duration between an activity a that is directly followed by activity b
is calculated as the date difference between the start timestamp of activity a and
the end timestamp of activity b, which is implemented as follows:

Listing 4.9.: Definition of edge durations

AVG(1.0*DATEDIFF(ms, SOURCE("activities"."end_ts_edges"),
TARGET("activities"."start_ts_edges")))*0.001↪→

65

4. Description of the automated process discovery prototype

Figure 4.7.: Model excerpt showing the durations KPI

The durations on edges are only implemented between activities of the user type.
In this case, they for example represent the time a user needs for navigating in
an app or the time between a car reservation and a booking. Durations between
technical activities are not implemented which is due to the fact that they are
calling each other and an end timestamp of activity a, followed by activity b, is
higher then the end start timestamp of activity b, which follows activity a. This
and further issues of visualisation of two hierarchies in one model will be further
discussed in subsection 5.2.2.

Conversion Rate The Conversion Rate KPI calculates a probability of how likely it is,
that performing a concerned activity ultimately leads to a conversion during a
session. This probability is calculated from historic sessions, where it is checked
how often the concerned activity led to a conversion. With that information one
could estimate how critical an activity is for business success. The Conversion Rate
for the activities is defined in Listing 4.10.

Listing 4.10.: Definition of activity conversion rate

SUM(CASE WHEN process equals 'Book car' THEN 1.0 ELSE 0.0
END)/COUNT_TABLE("activities_CASES")↪→

66

4.6. Process configuration and analysis creation in the process mining tool

The conversion rate for edges is define in Listing 4.11.

Listing 4.11.: Definition of edge conversion rate

AVG(
CASE

WHEN TARGET(PU_COUNT("activities_cases", "activities"."activity",
"activities"."activity" = 'Book car')) > 0 THEN 1.0↪→

ELSE 0.0
END

)

See below Figure 4.8 a model excerpt, where additionally colour mappings where
applied to support the visualisation of the conversion rate.

Figure 4.8.: Model excerpt showing the conversion rate KPI

4.6.4. Description of created analyses

In the following, four different analyses are presented and described. All of them
address unique analysis questions that arise from the business, system operations and
user experience domains. They serve to proof the two central themes that the approach
presented in this work proposes:

1. Event logs generated from distributed tracing data are suitable for analysing
business processes of a microservice architecture, and

67

4. Description of the automated process discovery prototype

2. distributed tracing data can be employed to enhance traditional business process
mining with technical performance data.

While the Business Analysis and Application Analysis both only possess a single
domain perspective on the process, the Cross-domain Analysis and Single User Activity
Analysis provide a multi-perspective view on the process that enable answering analysis
questions that span over multiple layers.

The following description of the analysis is realised using the following structure:

Table 4.6.: Structure of analysis description

Structure
element

Explanation

Aim Describes the objective of the analyis. Which questions does it try to
answer?

Perspective Describes the perspective taken on the process.

Components Describes the components used to reach the objective of the analysis.
Components specifics (applied filters, defined dimensions and KPIs) are
documented in the appendix.

Value add Describes how value is created beyond traditional business process
mining.

Every analysis consist of multiple components. A component can be comprised of a set
of sub-components. A technical documentation of the implemented (sub-)components,
including defined dimensions, KPIs and filters, can be found in the appendix (sec-
tion A.1). Every component and sub-component is numbered according the following
syntax:

{analysis abbreviation}_{component number}.{subcomponent number}?

Analysis 1 - Business Analysis (BA)

Aim The analysis aims to investigate the user’s click paths in order to understand
important activities that lead to a conversion (booking of a car or booking of a package)
along with basic business KPIs, that measure the business success of the car sharing
platform, as for example the total amount of sessions or bookings. Moreover, the
analysis provides means to investigate time-related aspects like the durations between
two user activities.

Perspective The perspective applied for the analysis focuses on user activities only.

68

4.6. Process configuration and analysis creation in the process mining tool

Components The header 1 consists of seven components, that are business-relevant
single KPIs, described in Table 4.7.

Table 4.7.: KPIs of header component in the BA analysis

KPI Name Description Token

Conversion
Rate

Indicates the ratio between amount of session
with at least one conversion (Book car or Book
package activity) compared to the total amount
sessions.

BA_1.1

Package
Bookings

Total amount of packages booked. BA_1.2

Car Bookings Total amount of cars booked. BA_1.3

Reservation +
Car Booking

Ratio of sessions where a car was reserved and
subsequently booked compared to all sessions.

BA_1.4

Ratio Car
Reservations
Only

Ratio of sessions where only a car reservation but
no booking was conducted compared to all
sessions.

BA_1.5

AVG Session
Length

Average length of a session from the (Duration
from first to last activity).

BA_1.6

AVG Rental
Length

Average length of a car rental (Duration from
Unlock car to End car rental).

BA_1.7

The click path component 2 is the actual process visualisation that was described
earlier (see subsection 4.6.3). For this analysis, one can choose between displaying the
durations and conversion rates KPIs for the activities and edges. The durations can be
interpreted for multiple purposes like e.g. as the time the user needs to navigate in the
application (Activity Search for available cars to Reserve car), that would help to optimise
the UI from an User Experience (UX) point of view. Other durations, e.g. between the
start of a booking (Book car) and the locking of the car (Lock car) lead to typical business
related KPIs, like an average car rental time. Moreover the conversion rate KPI can be
displayed, which has already been described above.

The chart component 3 shows time series data for the total amount of bookings
and total amount of sessions per day. Moreover, the conversion rate is displayed on a
secondary axes. Through that, one can see how business success has developed over
time.

The table component 4 lists all available activities and their impact for a conversion.
This again gives an indication of importance per activity of the process.

69

4. Description of the automated process discovery prototype

Component 5 , which is also a table component, breaks down the amount of sessions
and bookings of cars and packages on either a user or device dimension. This is
achieved by using the dropdown field. Through the user dimension, one can conduct
user segmentations and compare how for instance ’heavy’ users navigate through
the application compared to users that only use the service rarely. Multiple types of
segmentations are possible e.g. one could distinguish between the total amount of
bookings, the total time spent on the platform or the duration of bookings as well as
combinations as for instance users who spend a lot of time on the platform without
actually booking. Furthermore, one can compare statistics for different device types
(e.g. mobile vs. web) and again filter, to spot deviations in the usage of the service (e.g.
less clicks till conversion in a mobile app compared to the web application).

The last component of the analysis is a chart that displays the time between two user
activities in predefined buckets 6 . The start and end activities can be thereby chosen
freely. In the diagram, the amount of sessions that fall into a specific duration are
displayed as a column. This gives an indication about the distribution of durations
between activities. One could for instance filter on all sessions, where the time between
a reservation and booking was above average.

Value add For this analysis, no additional value add beyond traditional business
process mining is shown. Instead, the created analysis proofs that the derived data
from the distributed tracing system is suitable for answering typical analysis question
that arise from the business domain.

70

4.6.
Process

configuration
and

analysis
creation

in
the

process
m

ining
tool

Figure 4.9.: Business Analysis in PMT

71

4. Description of the automated process discovery prototype

Analysis 2 - Application Analysis (AA)

Aim The Application Analysis aims to give an overview of relevant KPIs for mon-
itoring the performance of the application layer. Besides the performance, also the
criticality of a service, meaning how involved it is in the service composition for a
business process, is a subject of interest.

Perspective The perspective applied is focusing on the application layer of the system.
The performance of user activities is analysed as well; but not from an order perspective
as in click path for the user activities, but rather by comparing the durations for
processing the user requests in the back-end. Performance is measured for three objects:
a microservice, a user activity (service compositions of multiple request) and a system
activity (single intra-service request).

Components The header 1 gives a quick overview of relevant performance indicat-
ors and consists of three single KPI components, described below (Table 4.8).

Table 4.8.: KPIs of header component in the AA analysis

KPI Name Description Token

AVG Duration
of User Activity

Average duration it takes in total to process a
user request (i.e. user activity) by the back-end.

AA_1.1

User Activity
Success Rate

Ratio between user activities that are processed
without an error compared to total amount of
user activities.

AA_1.2

System Activity
Success Rate

Ratio between system activities that are processed
without an error compared to total amount of
system activities.

AA_1.3

The bar chart of component 2 lists all user activities and compares their duration in
percentage to the mean of durations for all activities.

Component 3 , in comparison focuses on system activities. The bar chart shows the
amount of requests arriving at a microservice and the amount of these requests that
cannot be processed successfully through the service.

Component 4 is a line chart that displays historical performance data for each
microservice. It represents the successful system activities arriving at the service
compared to all request and is calculated as AA_1.3.

Table component 5 lists all system activities together with the total amount of how
often the activity was called and the average execution time for the request. Since

72

4.6. Process configuration and analysis creation in the process mining tool

technical activities might call downstream services, their duration can span across
multiple requests respectively multiple system activities. This has to be taken into
consideration when analysing and comparing performance.

Component 6 condenses information from component 3 and 4 in a table view.

The last component 7 shows different error types that occurring and a count on the
amount of cases. Again it can be filtered on all cases with the specific failure type.

Value add This analysis only serves as a dashboard and and does not include any
visualisation of a process model. Therefore it does not address the typical analysis
questions of process mining.

Nevertheless, it proves that the data derived from the activity log can be used with
the techniques of process mining, to illustrate relevant information for monitoring
performance on the application layer.

73

4.
D

escription
ofthe

autom
ated

process
discovery

prototype

Figure 4.10.: Application Analysis in PMT

74

4.6. Process configuration and analysis creation in the process mining tool

Analyis 3 - Cross-Domain Analysis (CDA)

Aim The aim of this analysis is to find correlations between business and application
performance. One exemplary analysis question could be, if the root causes for decreased
business performance (e.g. less bookings) are due to technical performance issues like
delays or microservice failure in the application layer. Moreover, it is possible to
deduce a criticality per microservice within a business process. This is accomplished
through first analysing most critical user activities through calculating their impact
for a conversion (see subsection 4.6.3). In a second step, involved system activities,
that are triggered through the user activity and each invoke a microservice endpoint
are totalled. The aim is to get an overview in which user requests a microservice is
involved and how often its resources are requested. With both information, a business
criticality can be derived.

Perspective The Cross-Domain Analysis aims to combine the business and application
layer perspective in one analysis.

Components The analysis also provides a header component 1 that displays the
most relevant KPIs but from both an application as well as business perspective. They
are described in Table 4.9.

Table 4.9.: KPIs of header component in the CDA analysis

KPI Name Description Token

Conversion rate same as BA_1.1 see BA_1.1

User Activity
Failure Rate

Shows the ratio of failed user activities compared
to all user activities.

CDA_1.2

AVG Clicks to
Conversion

Depicts how many clicks in the front-end are
needed on average till a conversion, meaning a
car booking, is accomplished.

CDA_1.3

Session
Duration w/ c

Indicates the average time of a session (duration
from first to last activity) for all cases where a
conversion did occur.

CDA_1.4

Session
Duration w/o c

Indicates the average time of a session (duration
from first to last activity) for all cases where no
conversion did occur.

CDA_1.5

Component 2 is the user click path. Like in the Business Analysis, one can choose
between the durations and conversion rate KPIs, that enrich the process model. Again,
only user activities are displayed for this analysis.

75

4. Description of the automated process discovery prototype

Component 3 shows a line chart that compares the historical development of the
conversion rate with the user activity failure rate. This component is used to find
correlations between the two indicators.

Component 4 is a bar chart that compares the duration from start of a session to
conversion for different device types. With that, differences in UX but also system
performance become apparent. This component can be used to filter on specific device
types and analyse the device dimensions using all other components of the analysis.

The bar chart of component 5 displays microservices by the amount of requests that
arrive at their endpoints.

The table component 6 shows all user activities, their total number of invocations,
their average durations and the actual impact for a successful conversion. For both
duration and conversion rate, colour mappings are applied to indicate a context for the
performance.

By filtering on the activities with highest conversion impact and activity count, compon-
ent 5 adapts automatically and presents the most critical microservices as formulated
in the exemplary analysis question.

Value add The value add to business process mining is manifested through the
described integration of performance indicators from the application layer that help to
find root causes for anomalies in business performance.

76

4.6.
Process

configuration
and

analysis
creation

in
the

process
m

ining
tool

Figure 4.11.: Cross-Domain Analysis in PMT

77

4. Description of the automated process discovery prototype

Analysis 3 - Single User Activity Analysis (SUAA)

Aim The aim of this analysis is to twofold. First, technical performance for unique
user activity requests can be compared to the mean of all user activities of that type
(e.g. Reserve car) to identify long-running activities and select them for further analysis.
Second, the relation between a user activity and its followed system activities can be
analysed, to for instance find out what system activity led to a failed user activity.

Perspective For the analysis, not only user activities but also system activities are
displayed in the graph. Therefore a business as well as technical view is applied in the
process.

Components In the Single User Activity Analysis, the header component 1 contains
three KPIs that are described more detailed below (see Table 4.10).

Table 4.10.: KPIs of header component in the SUAA analysis

KPI Name Description Token

Variance of
Duration for
Selected User
Activity

The variance of a user activity, that can be
selected within component 6 , gives a hint, how
the durations for all of the selected user activities
deviate from their mean.

SUAA_1.1

AVG Duration
for Selected
User Activity

Shows the average duration of a type of user
activity, that can be selected within component
6 .

SUAA_1.2

AVG User
Activity
Duration

Depicts the average duration over all user
activities.

SUAA_1.3

Moreover, component 2 shows the user click path including user and technical
activities. As a KPI for the activity and edges, the durations KPI is chosen. As described
in subsection 4.6.3, the durations for the edges of system activities are not calculated as
it is the case for the user activities.

Components 3 and 4 can be described together since they serve the aim to represent
the relationship between user and system activities. Table 3 lists all available user
activities together with a trace id. By selecting one of them, table 4 displays the
corresponding technical activities together with a count that belongs to the user activity
in general or to the specific trace in particular. With that, it can be analysed for instance,
what (failed) system activities are typically involved in a failed user activity.

78

4.6. Process configuration and analysis creation in the process mining tool

Component 5 is equal to component 6 from the Cross-Domain Analysis but ex-
tended with a variance column that indicates how the durations for user activities
deviate from the mean. User activities with high variance are a starting point for further
investigation in component 6 , that displays user activities for single trace ids, their
duration and a percentage that shows the duration compared to the mean. Moreover,
a dropdown menu is implemented, that filters the component on different types of
activities (e.g. Reserve car). Through applying appropriate filters, one can derive a set of
traces where performance differs significantly from the mean. These traces can be now
further analysed in the distributed tracing tool, to find root causes for the long running
user activities.

After identifying patterns poor system performance and filtering on set of concerned
traces, root causes can be analysed with Zipkin. This is possible by clicking on the trace
id, that opens a new tab in the browser with the visualisation of the trace in Zipkin.

Value add The value added to business process mining lies in the connection between
a criticality of a user activity for business success (conversion) and its analysis of a
technical performance (duration). Since those two measures are in general correlated
[51], a performance analysis can be conducted on a single trace level to find root causes
for long running activities.

79

4.
D

escription
ofthe

autom
ated

process
discovery

prototype

Figure 4.12.: Single User Activity Analysis in PMT

80

5. Discussion

Following the design science approach, this chapter evaluates the developed artefact
and the general approach presented. Thereby, benefits and limitations are discussed
that became apparent during the creation of the prototype. Moreover, the work is
compared and set in the context of existing research.

5.1. Benefits of the proposed solution

The upcoming section points out the benefits that the proposed solution entails. They
can be clustered into monetary advantages (5.1.2), facilitating advantages (5.1.3, 5.1.4,
5.1.5) and advantages that extend the functional capabilities of existent solutions (5.1.1,
5.1.6, 5.1.7).

5.1.1. Cross-domain analysis

One of the main benefits the described proof-of-concept offers, is a tool for answering
cross-domain analysis questions. Through providing a technical as well as business
view on a process, root causes for poor performance can be analysed inter-disciplinary.
Through that, potential correlations between business performance and system per-
formance can be detected.

This is made possible through utilising distributed tracing data, that records fine
grained events occurring in a system. The proof-of-concept tool tries to enable a holistic
process view that cuts down information silos between the layers of an enterprise
architecture. While the focus of traditional business process mining lies in finding
inefficiencies or compliance violations (see subsection 2.3.1), extended process mining
with distributed tracing data provides the means for integrating service availability and
service performance together with business performance like for example successful
conversions.

The approach is supported by three practices. First, by generating an event log that
includes two activity types. User activities on the one hand, that represent requests a
user manually performs in an arbitrary front-end and system activities on the other hand,
that represent inter-service communication and provide a detailed understanding of
how the system processes business transactions (e.g. How does the business transaction

81

5. Discussion

for a failed user activity look like?). The event log was used to discover a process model
with the the techniques of process mining. As a second practise, the event log was
extended with performance data from the distributed tracing instrumentation (e.g.
durations for user requests), to analyse the application performance directly referring
to activities. The process model is extended by throughput times between two user
activities and durations of activities. Hereby, one can distinguish between the amount
of time it takes for the back-end to process a user request, and the the time that passes
between two completed user activities. Through that a clear segregation of throughput
times that describe either system ore user behaviour is provided. As a third practise,
the data model was extended in the PMT with the original distributed tracing data
sources (spans and annotations table), in order to calculate complex KPIs, define analysis
dimensions and filter the analysis on the basis of attributes from the distributed tracing
data (e.g. filter all cases where an error 500 occurred).

5.1.2. Resource efficient data source for generating event logs

Another central benefit the approach constitutes is the utilisation of distributed tracing
data as a resource efficient input source for process mining. The suitability of this novel
type of data input was proven within the the proof-of-concept, where different process
mining techniques were tested on an event log that utilises distributed tracing data.

Compared to other approaches and inputs for event log generation (see subsection 2.3.5)
the proposed method comes with relatively little implementation effort - both for the
instrumentation of a SUS (see section 4.3) as well as for the event log generation (see
section 4.5).

5.1.3. Portability

The aforementioned limited implementation effort is furthermore extended by the
portability of the proposed solution that relates to the question of How much effort it
takes to implement the same approach for another system? An answer to the question is
split into the steps instrumentation, event log generation process configuration and analysis
creation in the PMT.

Instrumention First, the system would need to be instrumented with a tracing library.
The effort for instrumenting a new component is minimal but scales naturally
with the total amount of components in a system. For each component, an instru-
mentation library has to be chosen according to the component’s programming
language and framework used. OpenTracing already provides ready instrumenta-
tions for the most prominent programming languages (therof Go, JavaScript, Java,
Python, Ruby, Objective-C, C++, C#, PHP). SUSs written in different programming
languages using different frameworks produce tracing data in an equal structure.

82

5.1. Benefits of the proposed solution

Event log generation Most customisations have to be applied for the log generation
algorithm in order to adhere to the specifics of the system. Some customisations
only refer to the contents of logged attributes (e.g. how is the content of an
error tag defined) and can be customised relatively easy. The overall data struc-
ture (spans, annotations) would also remain the same through the OpenTracing
standard. However, the architectural style and inter-process communication (see
subsection 5.2.1) substantially determine the way activities are defined. Therefore
one needs to redefine what constitutes a healthy or unhealthy user or system
activity.

Process configuration and analysis creation in the PMT When using the same PMT
with a different architecture, various other Relational Database Management
Systems (RDBMSs) beside the used MySQL could be connected to the tool. It is
possible to export the data model and the analysis and reuse them for any other
system. Changes possibly need to be applied to the data model (e.g. change
table names, import additional tables) but the core tables (activites, spans, and
annotation table) and their relations to each other in the data model would remain
the same. Same applies for the analysis where possibly table and attribute names
would need to be customised but the defined components would remain the same.
It is also possible to use the generated event log with other process mining tools
than the selected. The event log created is in a general form so that it can be used
by any PMT.

5.1.4. Ubiquity

The in section 2.1 described characteristics of microservice architectures make distrib-
uted tracing becoming a standard tool for gaining visibility during the development
and operation of microservice architectures [63]. With this source data for an event
log generation already at hand, process mining techniques for instrumented systems
could be applied relatively fast. Moreover, costly initiatives to instrument a system
with custom business logging functionality would become obsolete.

5.1.5. Flexibility on process perspectives

The case id, as already discussed in subsection 2.3.5, defines the perspective from how
business activities are viewed and correlated into one sequence, which determines the
process. For the sake of analysing user paths of a mocked car sharing application, a
session id was chosen as the case id in the proof-of-concept SUS, which constitutes a
distinct session that expires within a defined time interval. Using a user id instead,
would create life-long running processes that span across one session for instance.

The distributed tracing instrumentation per default records inter-process communic-

83

5. Discussion

ation for instrumented services. An initial request is correlated with its downstream
request to a unique trace, while its source is often a user activity. However, the presented
approach is not limited on analysing user paths and subsequent business transactions.

Imagine for instance a credit application scenario where a customer’s application
is followed by a semi-automated workflow that includes manual as well as system
activities that together constitute a process. An appropriate case id for this scenario
would be for instance an application id. Let us assume that an user activity is somehow
related to a manual request that arrives at any front-end. In order to correlate this
activity now to a sequence of other activities that belong to the distinct credit application
process, the initial request needs to be annotated with the application id, like it was
the case in the instrumented SUS. A domain expert, could now decide if subsequent
requests between services should also appear in the process or not. This is initially
defined in the mapping table. The log generation algorithm could also be customised,
so that only a set of inter-service requests define what a business relevant activity
is and if it will be part of the model. For correlating different traces, it is sufficient
that only one span of the trace is annotated with a case id, since all spans are already
correlated through the trace id. As a consequence, the case id does not necessarily need
to be annotated for the initial request at the front-end, and could be added at any later
point where its availability is assured.

Scheduled activities or such that start through any other trigger than a user, can be
instrumented in the same way. Instead of distinguishing between user and system
activities, as it has been done done in the prototype, one could create activities of one
type only or differentiate between automated and manual activities. It is moreover
possible to manually define spans at a method level, which makes it possible to define
activities with a even higher level of granularity.

5.1.6. Foundation for real-time process mining

The approach presented in this work, and thereby especially the event log algorithm,
can serve as a foundational strategy to generate event logs in order to discover process
models from microservice architectures in real-time. For that, feasible adjustments, that
will be described below (subsection 5.2.4), would have to be made in order to realise
real-time business process discovery.

5.1.7. Bottom-up process discovery in legacy systems

The presented approach is not limited to greenfield implementations. Distributed sys-
tems that do not provide business event log functionalities can be instrumented with a
tracing library retrospectively. Therefore, business process models from legacy systems,
where documentation is often missing, could be derived with the presented approach.

84

5.2. Limitations of the proposed solution

5.2. Limitations of the proposed solution

In the following, limitations of the proposed solution are discussed. One domain of
limitations arise through the employed SUS. Other limitations can be attributed to the
areas of visualisation, sampling rates and real-time usage.

5.2.1. System under survey

A general limitation that appears is evaluating the approach with one SUS only. There-
fore not every scenario that would appear in a real world system can be captured. For
instance, only failures that are producible in the SUS (e.g. through shutting down
services) could be captured. This does not necessarily cover the full scope of possible
system failure. The following domains contribute to a general bias that emerges through
using a laboratory SUS.

Software architecture The content of the tracing data is dependent on the architecture
of the instrumented system [41]. The log generation algorithm is customised to
generate activities that are specific to the architecture (e.g. what departs a healthy
from a failed activity). To overcome this problem, common patterns and best
practises in developing microservice architectures, as for example a centralised
configuration management, service discovery, client-side load balancing and
tunnelling user requests through an API gateway have been applied, to provide
an architecture that is as close to a real world setting as possible. During the
different phases of developing the system, the event log algorithm was customised
multiple times to adhere to the changes of the system. During theses iterations
it became clear that the approach is still valid if architectural alterations appear,
even if little changes have to be applied to the original algorithm.

Data volume Limitation through using a laboratory SUS also appear in terms of data
volume produced. Since user requests were performed manually, the amounts of
tracing and event log data were comparably low to a real-world setting, where
possibly millions of requests per day occur and huge amounts of tracing data is
generated. The system could therefore not be tested under heavy loads and high
volumes. Since architectural bottlenecks of the proposed solution are apparent, a
solution that adheres to high data volumes is presented in subsection 5.2.4.

Data contents The tracing data was created through simulating user clicks in a front-
end that was designed for the purpose of generating data. Therefore, the user
activities created do not display any real user interaction (e.g. cycle times between
the begin of a car rental (Unlock car) end the end (End car rental) do not represent
realistic time frames). Since the objective of the work is not on analysing click
streams from a real data set in order to discover real insight but in presenting a
tool that enables these analysis questions, this limitation is less important.

85

5. Discussion

5.2.2. Suitability of applied process visualisations

One of the objectives of this work was to find correlations between business and system
behaviour. Therefore, one strategy applied (see subsection 4.6.3), was to model business
transactions (system activities) together with the triggering user activity in the process
model. Nested business transactions (i.e. system activities), where interpreted as a
sub-processes of a user activity and translated into fuzzy model visualisation.

The applied fuzzy model visualisation, is in general very suitable in the contexts of user
click path mining [30]. Nevertheless, it does not provide sufficient means for visualising
technical sub-processes, as it will be shown below. This visualisation approach comes
with the following limitations.

Ambiguous visualisation of distinct system activities Petri nets display distinct activ-
ities (identifiable through an distinct activity name) only once in a process model.
System activities, as for example a /notifyUser activity, is used for multiple user
activities (see section 3.2), typically at the end of a business transaction. This leads
to confusion in the process graph, since it is not clear where the activity is placed.
Moreover, the model becomes complex through the fact that a system activity has
many connections to predecessor and successor activities. This issue can be seen
in Figure 5.1, where the /notifyUser activity is placed in the sequence of a Reserve
car user activity. This is only due to the fact, that the Reserve car activity in total
was called more often then for example the Book car or End car rental activity, that
also makes use of notifyUser. Therefore, the algorithm puts the /notifyUser close to
the Reserve car activity.

86

5.2. Limitations of the proposed solution

Figure 5.1.: Ambiguous placement of system activities

To overcome this problem, system activities could have been made distinct, e.g.
through giving them a prefix from its calling user activity. A downside of that
approach is, that system activities would not be comparable among themselves.

Visualisation of hierachies A general issue that occurs through modelling business
transaction as system activities is the fact, that representing nested traces in
a petri net-like process model leads to ambiguity. In the example (Figure 5.2)
see a trace of a /bookPackage request from the front-end. In this synchronous
request/response mechanism, the calling service blocks and waits for an answer
of its downstream services.

Figure 5.2.: Waterfall-like visualisation of a trace in Zipkin, triggered through the /bookPackage
request from the front-end

Now when visualising the trace in a petri net-like process model questions like In
which order should activities be modelled? or What do durations between two system
activities stand for?. See Figure 5.3, where system activities are displayed as a
process in the consecutively order of how they are called.

87

5. Discussion

Figure 5.3.: Process visualisation of a the Book package user activity and the called system
activities in the PMT

Through comparing the two visualisations with the same underlying system
behaviour, one can conclude that waterfall diagrams provide a more precise
and content-rich presentation of system behaviour that are moreover scaling
better. Hierarchies, parallelism and aspects of timing are easier to convey in a
waterfall representation compared to the process diagram. Especially for finding
perpetrators of latency and a a critical path waterfall diagrams are more suitable.

During the creation of the event log algorithm, multiple alternative visualisations were
tested in the PMT.

Splitting one activity into a start and end activity One alternative way of modelling
would be to generate separate start end end activities instead of one activity
per request as it is the case in the proof-of-concept. This would increase the
accuracy especially for system activities, since the nesting of inter-service request
would become observable. This approach comes also with disadvantages. It
would for instance double the amount of activities which leads to undesired
complexity in the process model. Moreover, duration and performance could not
be displayed per activity anymore, since the activities would only represent a
timestamp without a duration.

Grouping activities One feature the PMT provides is defining groups of activities.
Every user activity could be grouped together with its system activities. By
clicking on the group, all activities would be expanded. A problem that arises

88

5.2. Limitations of the proposed solution

again, is that some system activities are used in more than one sub-process.
Nevertheless one could fix this, by generating distinct system activities that only
belong to one user activity which comes with the before described drawbacks.

Cropping parts of the process Another option for analysing user activities and their
followed system activities conjunct is to crop parts of the process. What fuzzy
models do, is to generalise an event log and generate a model that gives insights
into the most common paths a process contains, with the option to zoom to
derive a detailed view. Cropping the process starting with the to be analysed
user activity to the last system activity, one could analyse the typical path of
a business transaction. This makes especially sense for failed activities (e.g. to
analyse which failed technical activity is the root cause for a failed user activity) or
for architectures where a user activity is followed by diverse sequence of system
activities, and not a static sequence as it is the case in the SUS.

Waterfall component and process visualisation A further visualisation alternative
would be, to introduce a new component that is able to represent traces in
a hierarchical waterfall model as in Zipkin. It would respond through clicking
on a user activity in the click path model and show a generalised view for all
traces that exist for the activity. A typical trace with a generalised view would
give insights beyond a single trace analysis. The waterfall component would
need to be adopted to display average durations together with lower and upper
bounds. For user activities that are followed by varying business transactions, a
visualisation type is required that is capable of displaying different variants of a
trace.

5.2.3. Performance overhead through high sampling rates

On of the main design goals for distributed tracing was to provide minimal instrument-
ation overhead [64]. Sampling all traces from a system of a certain size would create
enormous traffic. For limiting the amount of sampled traces, instrumentations provide
different sampling strategies.

Spring Cloud Sleuth uses a probabilistic approach that samples only fixed fractions of
spans. This does not mean that span data is not created, but rather makes sure that no
tags and events are being attached and exported to the collector, which creates most of
the overhead [18].

Instead of tracing a fixed amount of traces, Uber’s jaeger1 instrumentation for example
provides more sophisticated sampling strategies, that use a rate limiting approach,
where a fixed amount of traces is sampled per time unit [63]. Therefore the rate is
dynamic and adheres to the changing traffic of the service.

1https://github.com/uber/jaeger

89

5. Discussion

In the proof-of-concept prototype, the sampling rate is set to 100% for all instrumented
service. When decreasing the amount of sampled traces, user click flows that represent
a single session would miss certain user activities completely, since only a fraction of
traces (and therefore user activities) is sampled. For using the approach in a productive
setting, a sample rate of 100% would lead to latency issues and huge amounts of
sampling data that needs to be processed. Therefore, the sampling strategy would
need to be adapted so that a Tracer recognises if a trace belongs to a spanning case and
could therefore recognise if it needs to be recorded or not. With this customisation,
it would be possible to not sample on a trace but on a case level. Depending on the
analysis questions to be answered, analysing a fraction of cases only could be sufficient
for identifying patterns.

5.2.4. Real-time event handling, event log generation and process discovery

In the proof-of-concept, span data is sent via REST to the Zipkin collector that persists
the traces in a MySQL database. The log generation service uses the trace data to create
and write a whole new event log every 5 minutes. The service can be configured to
execute the scripts flexibly but is restricted to the time it takes for executing the scripts
and persisting the results in the MySQL database. Moreover, a constraint exists through
the PMT, that can only be configured to reload the data model at most every 5 minutes.

Oliveira [48] describes an approach for discovering business processes in real-time, that
could be applied to the proof-of-concept architecture of this work, too. Especially the
two first phases event production and event processing are areas of influence, since the
PMT itself is a third-party implementation.

Event production Alternatively to collecting traces data via REST and persisting them
in a MySQL database, span data could also be published via a stream binder like
RabbitMQ or Apache Kafka using Spring Cloud Stream.

Event processing As a consumer of the events stream, a so called Event Stream Pro-
cessing (ESP) engine, like the open source tool Esper2, could be implemented
in the log generation service of the proof-of-concept architecture to query the
data and continuously produce events. An ESP can be used to store static query
expressions in an application. Compared to database querying with SQL, ESPs
work with data flows that replace tables. Instead of tuples, events present the
basic unit of data [19]. Static query expressions, that have similar language con-
structs as in SQL, can be stored in the application, while continuously querying
the data and generating activities of the event log. The output again is published
to an event stream. Since ESP works with similar language constructs as SQL, the
presented log generation algorithm could be adapted and used for generating

2http://www.espertech.com/products/esper.php

90

5.3. Related work

business process activities. A restriction appears due to limited RAM, since for the
generation of activities, it is necessary to store the events in-memory. Strategies
that address the challenge are discussed in [4].

Process discovery A PMT would need the capabilities to subscribes to events streams
that are created by the ESP component in order to generate process models in
real-time. In [23, 33, 24] various scalable approaches to discover processes from
streams of events in big data settings are presented, that apply existent process
mining algorithms in map-reduce implementations.

As of today, no open-source or commercial tool exists that is capable of generating
event models from event streams in real-time.

5.3. Related work

In this section, the proof-of-concept prototype is evaluated against related work. Al-
though an extensive literature review was conducted, that manifested the need for a
multi-layer approach [13, 9], only little work was found that applies the techniques of
process mining on tracing data in order to provide a multi-layer view on a process.

In the following, the main characteristics of five research contributions (see Table 5.2)
are classified and described. The analysed literature fulfils at least two of the three
criteria stated below.

1. The research contribution generates run-time process models through process
discovery techniques from process mining.

2. The research contribution uses system logs as an input source for the event log
generation.

3. The research contribution captures user or business as well as system behaviour
in the analysis.

For structuring and making the related work comparable, a classification framework
was developed that is described in Table 5.1.

91

5. Discussion

Table 5.1.: Description of the classification framework for related work

Classifier Description

Log origin Describes the technical log origin type that is used as an input
for generating the event log.

Activity types Describes what types of activities are used in the process.

Captured behaviour Describes what type(s) of behaviour is analysed by the approach.

Type of work Describes the applied methodology of the work.

Evaluation
environment

Describes the evaluation environment of the approach.

System architecture Describes for which system architectures the approach can be
applied.

Language
independency

Describes if the approach is restricted to a certain programming
language.

(Near) real-time Describes if the approach can process data in real- or near
real-time.

Poggi et al. [52] use web logs to generate a user click paths. In their work they discuss
challenges and benefits for using process mining to analyse user behaviour. The authors
provide a methodology for classifying and transforming URLs into business activities.
They also evaluate different process mining algorithms using real-life data from a
e-commerce web shop. Thereby they apply a single-layer perspective where the only
focus is on analysing user behaviour with neglecting system performance and the
underlying business transactions involved.

Abe and Kudo [7] present a monitoring framework that also discovers business pro-
cesses from real-life web logs. In their framework, the viewpoint of the visualised
workflows can be changed dynamically. Contrary to the definition of viewpoint applied
in this work, which is defined as the layer perspective on a system, the authors interpret
it as for instance a temporal aspect (e.g. process performance on weekday vs. weekend).
As it is the case for [52], no cross-layer metrics or process visualisations are provided.
The captured behaviour only focuses on the business layer.

Brückmann et al. [13] describe an approach that enables the real-time monitoring and
controlling of an EA. The authors adapt the "control centre" concept, known from
designing power plant control centres, as an approach for designing the system in order
to provide a real-time view of business process instances together with performance
indicators of involved software systems and services. The proposed solution supports
IT operators in controlling the loads of software services in order to control the flow of
instances of business services. The authors describe several functional components that

92

5.3. Related work

the solution should contain and propose a concept that describes how an architecture
with the presented functionality should look like, without providing a prototypical
implementation. Moreover, the authors approach departs from the approach presented
in this work since it is focusing on controlling and monitoring an EA, while this
works provides means of finding correlations between performance of the business
and application layer, without providing functionality to control process execution or
application performance actively.

Other authors propose solutions that try to establish a cross-domain monitoring without
providing a process visualisation. These approaches rather focus on single KPIs and
local decision making [13]. Therefore, a gap appears between the identification of a
process weakness, which might be achievable with existing tools, and finding a root
cause for the undesired behaviour, since it is not possible to analyse and visualise
processes from an end-to-end perspective [66].

Leemands and van der Aalst [41] also present a bottom-up or reverse engineering approach
to discover operational processes from event logs of a distributed system that shares a lot
of similarities with the approach presented in this work. The formal models generated
through the approach provide a "integrated view, across system components, and across
perspectives (performance, end-to-end control flow, etc)" as it is also the case for the
approach presented in this work. The author’s work also provides an implementation
as well as an instrumentation strategy, where the latter one is based on the joinpoint-
pointcut model from Aspect-oriented Programming (AOP). The strategy aims to add
as little implementation effort and instrumentation impact on the system as possible.
Correlation of system events is not accomplished through a trace id but through a
shared communication channel between two nodes. The level of granularity achieved
from the instrumentation is on method call level and can be specified to provide a
even more detailed context information through specifying interface pointcuts. One
of the main differences to this work is, that their content of analysis lies in business
transactions, defined as the communication between and in components of a system
which are triggered to a specific user request. Using the vocabulary from this work,
only the application layer processes with system activities are analysed. The higher
level of interplay between user activities on level higher are not part of the models
generated. Therefore no correlations between layer of an EA can be detected.

Ruben et al. [59] present an approach, that uses techniques of process mining for
creating feedback loops during agile software development. Their bottom-up approach
takes low level events from a software system in order to analyse runtime behaviour of
the system and user behaviour, for improving the design and usability of the system
together with performance aspects like latency. After each iteration in the development
cycle, the system is tested by users. The tests are analysed in retrospective with the
techniques of process mining to visualise user click paths and system latency in a
process graph. Thus, a new feedback channel is created, that allows early user feedback.

93

5. Discussion

As in the approach of this work, user behaviour as well as system performance are
analysed combined. To obtain the detailed data, an existing instrumentation has been
extended by an inbound adaptor, to capture user as well as system runtime behaviour
on a low level.

In summary it can be stated that only Ruben et al. [59] provide a solution that combines
a multi-layer view on a process together with low level system logs as data input. Other
approaches either do not capture behaviour form multiple layers [53, 7, 41], or do not
use the techniques of process mining [13]. Moreover only [41] provides a prototypical
implementation including an instrumentation strategy that is independent from the
systems programming language(s) and applicable in distributed systems.

94

5.3.
R

elated
w

ork
Table 5.2.: Classification of related work

Log
origin

Activity
types

Captured
behaviour

Type of work Evaluation
environ-
ment

System
architecture

Language
independ-
ence

(Near)
real-
time

Poggi et al. [53] Web logs User
Activities

Business Algorithm
evaluation

Real-life
event logs

No n/a No

Abe & Kudo [7] Web logs User
activities

Business Framework Real-life
event logs

n/a n/a No

Bruckmann et al. [13] n/a User
Activities,
system
activities

Business
and
system

Architecture
proposal

n/a n/a n/a Yes

Leemans & van der
Aalst [41]

Joinpoint-
pointcut
model
instru-
mentation

User
activities

System Instrumentation
strategy,
implementation

Real-life
event logs

Yes Yes No

Rubin et al. [59] Custom
instru-
mentation

User
activities,
system
activities

User and
system

Experimental Real-life
event logs

No n/a No

Proof-of-concept
prototype of this work

Distributed
tracing
instru-
mentation

User
activities,
system
activities

Business,
user and
system

Instrumentation
strategy,
architecture
description,
implementation

Simulated
user
requests
on testing
system

Yes Yes Yes

95

6. Summary and outlook

This last chapter summarises the thesis, highlights potential for solution extensions and
provides open research questions that have emerged throughout the work.

The objectives addressed by the approach are twofold. First, it has been demonstrated
that distributed tracing data from an instrumented microservice architecture generates
suitable low level event logs. These were then correlated to a high level event log
which is used to discover a user-centric business process. This finding contributes to
the area of process mining, in which alternative sources for an event log generation
are constantly evaluated. Furthermore, the presented approach provides a strategy
for correlating activities in systems that do not have the notion of a process natively
implemented. Process discovery in practice is often applied to information systems
that make use of already implemented audit trails (e.g. in WFM). Another strategy is
to create activities by analysing databases that store information about cases along with
change tables, that log any data manipulation related to a single case (e.g. in SAP ERP).
In the presented approach, such capabilities are not present for the SUS. The notion of
a case is introduced through annotating user requests with an appropriate case id. In
the context of analysing user click paths in a front-end, the session id was chosen as a
chase id. The approach thereby provides a strategy for systems in which no audit logs
are written or case ids can be found in the databases of the system. On top of that, this
strategy comes with limited implementation effort.

As a second main objective it has been shown, how the fine grained distributed tracing
data enables the extension of process mining towards a more holistic view of the
application and business layer of an EA. This has been accomplished through two
strategies: First, by utilising technical performance data, expressed in form of the
duration required for processing a user activity in the back-end. This leads to a clear
distinction of throughput times needed for the user to navigate through a process and
the time the system needs to handle a request. Second, it has been accomplished with
the introduction of user and system activities, that enable the combined view of how a
user interacts with the front-end and how the system processes the requests through its
services in the back-end.

The two objectives were achieved through the following steps that are embedded in a
design science research methodology.

In the first chapter, the problem has been motivated and formulated in the form of three

97

6. Summary and outlook

research questions. Moreover, the context of this work and its relation to the overarching
TUM LLCM project was introduced. In addition, the design science approach was
introduced as the applied research methodology, which includes the implementation
and evaluation of a prototype as guiding elements for answering the stated research
questions.

In chapter two, the foundations for microservices, distributed tracing and process
mining were laid. A microservice architecture, as an architectural style that is adopted
by more and more organisations, presents the technical setting in which the work tries
to reach its objectives. Subsequently, an understanding of the techniques and specifics
of both distributed tracing and process mining was given, since they serve as core
elements in the approach.

In the third chapter, a prerequisite SUS was built, that encompasses state-of-the-art
patterns for building microservice architectures.

This SUS has been instrumented and extended as described in chapter four. The
setup includes the instrumented system and three extended components: a distributed
tracing service, a log generation service as well as the configured process mining tool.
Moreover, a central database including a data model has been deployed to which
all extended services connect. The chapter also describes the workflow of how user
activities are performed, captured, transformed to system and user activities and finally
loaded in the PMT. Finally, the four created analysis in the PMT are described. Each
answers a set of unique analysis questions. They serve to proof the applicability of the
approach and correctness of process models generated as well as enable the discovery
of shortcomings of the proposed solution.

In the fifth chapter, the presented approach is evaluated. Thereby, benefits and lim-
itations that became apparent during the development process are presented. Main
benefits include the shown capabilities of analysing a process from a cross-domain
perspective as well as the resource-efficient strategy of employing distributed tracing as
a source for the event log generation. Moreover, the portability, meaning how flexible
the approach can be transferred to other architectures as well as the ubiquity of the
solution are discussed. Furthermore it is reasoned, how perspectives on a process can
be easily changed by altering the case id. Multiple limitations arise, that are naturally
present through applying the approach to one SUS only. Moreover, possible alternative
visualisations are discussed together with their drawbacks. It is stated, that further
visualisations need to be developed in order to better display the relationship between
user and system activities. The third limitation is concerned with performance overhead
issues that appear through sampling every request in the system. For capturing every
trace of a process, new sampling strategies need to be developed. The last limitation
covers the issues of real-time event generation and bottlenecks that the presented
prototype presents. These issues restrict the application from real-time to near real-time.
The third part of chapter 5 relates the presented approach to work from other authors.

98

A classification scheme has been applied to make related work comparable. It has
been found out that little approaches exists that provide a working prototype of similar
scope and functionality as presented in this work.

Resulting from the above described limitations and challenges that have been addressed
in section 5.2, further research needs to be conducted regarding to visualising business
and user activities in a holistic view. Moreover, performance issues, that appear due to
a high sampling rate present a major obstacle to the approach. A sampling strategy
needs to be developed, that is able to sample traces on a case level. Additionally,
the approach needs to be applied to more architectures in order to verify its general
applicability in greater depth.

Furthermore, the solution could be extended towards a real-time process discovery,
which has not been the focus of this work. Other authors [48, 23, 33, 24] have already
described approaches that try to address this challenge.

99

Bibliography

[1] W. van der Aalst, A. Adriansyah, A. K. A. de Medeiros, F. Arcieri, T. Baier, T.
Blickle, J. C. Bose, P. van den Brand, R. Brandtjen, J. Buijs, A. Burattin, J. Carmona,
M. Castellanos, J. Claes, J. Cook, N. Costantini, F. Curbera, E. Damiani, M. de
Leoni, P. Delias, B. F. van Dongen, M. Dumas, S. Dustdar, D. Fahland, D. R.
Ferreira, W. Gaaloul, F. van Geffen, S. Goel, C. Günther, A. Guzzo, P. Harmon,
A. ter Hofstede, J. Hoogland, J. E. Ingvaldsen, K. Kato, R. Kuhn, A. Kumar, M. La
Rosa, F. Maggi, D. Malerba, R. S. Mans, A. Manuel, M. McCreesh, P. Mello, J.
Mendling, M. Montali, H. R. Motahari-Nezhad, M. zur Muehlen, J. Munoz-Gama,
L. Pontieri, J. Ribeiro, A. Rozinat, H. Seguel Pérez, R. Seguel Pérez, M. Sepúlveda,
J. Sinur, P. Soffer, M. Song, A. Sperduti, G. Stilo, C. Stoel, K. Swenson, M. Talamo,
W. Tan, C. Turner, J. Vanthienen, G. Varvaressos, E. Verbeek, M. Verdonk, R. Vigo,
J. Wang, B. Weber, M. Weidlich, T. Weijters, L. Wen, M. Westergaard and M. Wynn.
‘Process Mining Manifesto’. In: Business Process Management Workshops. Ed. by
S. Rinderle-Ma, S. Sadiq and F. Leymann. Vol. 43. Lecture Notes in Business
Information Processing August. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 169–194. doi: 10.1007/978-3-642-28108-2_19.

[2] W. M. P. van der Aalst. ‘Do petri nets provide the right representational bias
for process mining?’ In: CEUR Workshop Proceedings 725 (2011), pp. 85–94. issn:
16130073.

[3] W. M. P. van der Aalst. ‘Extracting Event Data from Databases to Unleash Process
Mining’. In: BPM - Driving Innovation in a Digital World SE - 8 (2015), pp. 105–128.
doi: 10.1007/978-3-319-14430-6_8. url: http://dx.doi.org/10.1007/978-
3-319-14430-6{_}8.

[4] W. M. P. van der Aalst. Process Mining - Data Science in Action. Vol. 5. 2016,
pp. 301–317. isbn: 9783642193453. doi: 10.1007/978-3-642-19345-3. arXiv:
arXiv:1011.1669v3.

[5] W. M. P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer Berlin Heidelberg, 2011. isbn: 9783642193453.

[6] W. M. P. van der Aalst, T. Weijters and L Maruster. ‘Workflow mining: discovering
process models from event logs’. In: IEEE Transactions on Knowledge and Data
Engineering 16.9 (2004), pp. 1128–1142. issn: 1041-4347. doi: 10.1109/TKDE.2004.
47.

101

https://doi.org/10.1007/978-3-642-28108-2_19
https://doi.org/10.1007/978-3-319-14430-6_8
http://dx.doi.org/10.1007/978-3-319-14430-6{_}8
http://dx.doi.org/10.1007/978-3-319-14430-6{_}8
https://doi.org/10.1007/978-3-642-19345-3
http://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.1109/TKDE.2004.47

Bibliography

[7] M. Abe and M. Kudo. ‘Business Monitoring Framework for Process Discovery
with Real-Life Logs’. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 8659
LNCS. 2014, pp. 416–423. isbn: 9783319101712. doi: 10.1007/978-3-319-10172-
9_30.

[8] P. Agarwal. Distributed tracing at Yelp. 2016. url: https://engineeringblog.
yelp.com/amp/2016/04/distributed- tracing- at- yelp.html (visited on
01/08/2017).

[9] F. Ahlemann. Strategic enterprise architecture management : challenges, best practices,
and future developments. Springer, 2012, p. 298. isbn: 3642242235.

[10] Architecture · OpenZipkin. 2017. url: http://zipkin.io/pages/architecture.
html (visited on 13/07/2017).

[11] J. Bloomberg. Are Microservices ‘SOA Done Right’? - Intellyx. 2015. url: https:
//intellyx.com/2015/07/20/are-microservices-soa-done-right/ (visited
on 02/08/2017).

[12] A. Bonham. Microservices — When to React Vs. Orchestrate – Capital One DevEx-
change – Medium. 2017. url: https://medium.com/capital-one-developers/
microservices-when-to-react-vs-orchestrate-c6b18308a14c (visited on
03/08/2017).

[13] T. Brückmann, V. Gruhn, M. Pfeiffer, T. Bruckmann, V. Gruhn and M. Pfeiffer.
‘Towards real-time monitoring and controlling of enterprise architectures using
business software control centers’. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
6903 LNCS (2011), pp. 287–294. issn: 03029743.

[14] R. Bruns and J. Dunkel. ‘Event-Driven Architecture und Complex Event Pro-
cessing im Überblick’. In: 2010, pp. 47–82. doi: 10.1007/978-3-642-02439-9_3.

[15] C Carneiro and T Schmelmer. Microservices From Day One: Build robust and scalable
software from the start. 2016. isbn: 9781484219379.

[16] D. Chappell. Enterprise Service Bus. O’Reilly Series. O’Reilly Media, Incorporated,
2004. isbn: 9780596006754.

[17] M. Cohen and M. Hawthorne. Announcing Zuul: Edge Service in the Cloud –
Netflix TechBlog – Medium. 2013. url: https://medium.com/netflix-techblog/
announcing- zuul- edge- service- in- the- cloud- ab3af5be08ee (visited on
01/08/2017).

[18] A. Cole, S. Gibb, M. Grzejszczak and D. Syer. Spring Cloud Sleuth. url: http:
//cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/1.1.1.
RELEASE/ (visited on 01/08/2017).

102

https://doi.org/10.1007/978-3-319-10172-9_30
https://doi.org/10.1007/978-3-319-10172-9_30
https://engineeringblog.yelp.com/amp/2016/04/distributed-tracing-at-yelp.html
https://engineeringblog.yelp.com/amp/2016/04/distributed-tracing-at-yelp.html
http://zipkin.io/pages/architecture.html
http://zipkin.io/pages/architecture.html
https://intellyx.com/2015/07/20/are-microservices-soa-done-right/
https://intellyx.com/2015/07/20/are-microservices-soa-done-right/
https://medium.com/capital-one-developers/microservices-when-to-react-vs-orchestrate-c6b18308a14c
https://medium.com/capital-one-developers/microservices-when-to-react-vs-orchestrate-c6b18308a14c
https://doi.org/10.1007/978-3-642-02439-9_3
https://medium.com/netflix-techblog/announcing-zuul-edge-service-in-the-cloud-ab3af5be08ee
https://medium.com/netflix-techblog/announcing-zuul-edge-service-in-the-cloud-ab3af5be08ee
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/1.1.1.RELEASE/
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/1.1.1.RELEASE/
http://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/1.1.1.RELEASE/

Bibliography

[19] J Cordeiro, S Hammoudi, L Maciaszek, O Camp and J Filipe. Enterprise Information
Systems: 16th International Conference, ICEIS 2014, Lisbon, Portugal, April 27-30, 2014,
Revised Selected Papers. Lecture Notes in Business Information Processing. Springer
International Publishing, 2015. isbn: 9783319223483.

[20] D’Amore JR. Scaling Microservices with an Event Stream | ThoughtWorks. 2015. url:
https://www.thoughtworks.com/de/insights/blog/scaling-microservices-
event-stream (visited on 09/08/2017).

[21] A. T. Devi. ‘An Informative and Comparative Study of Process Mining Tools’. In:
International Journal of Scientific & Engineering Research 8.5 (2017), pp. 8–10. issn:
2229-5518.

[22] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin
and L. Safina. ‘Microservices: yesterday, today, and tomorrow’. In: March (2016),
pp. 1–17. doi: 10.13140/RG.2.1.3257.4961. arXiv: 1606.04036.

[23] J Evermann. ‘Scalable Process Discovery Using Map-Reduce’. In: IEEE Transactions
on Services Computing 9.3 (2016), pp. 469–481. doi: 10.1109/TSC.2014.2367525.

[24] J Evermann, J.-R. Rehse and P Fettke. ‘Process discovery from event stream data in
the cloud - A scalable, distributed implementation of the flexible heuristics miner
on the amazon kinesis cloud infrastructure’. In: Proceedings of the International
Conference on Cloud Computing Technology and Science, CloudCom. 2017, pp. 645–652.
doi: 10.1109/CloudCom.2016.0111.

[25] D. R. Ferreira and D. Gillblad. ‘Discovering process models from unlabelled
event logs’. In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 5701 LNCS. 2009,
pp. 143–158. isbn: 3642038476. doi: 10.1007/978-3-642-03848-8_11.

[26] R. Fischer, S. Aier and R. Winter. ‘A Federated Approach to Enterprise Ar-
chitecture Model Maintenance’. In: Enterprise Modelling and Information Systems
Architectures 2.2 (2015), pp. 14–22. issn: 1866-3621. doi: 10.18417/emisa.2.2.2.

[27] M. Fowler. Microservice Trade-Offs - Martin Fowler. 2015. url: https://martinfowler.
com/articles/microservice-trade-offs.html{\#}ops (visited on 02/08/2017).

[28] Fowler Martin and Lewis James. Microservices - a definition of this new architectural
term. 2014. url: https://martinfowler.com/articles/microservices.html
(visited on 18/05/2017).

[29] C Günther, A Rozinat, W. van der Aalst and K. van Uden. ‘Monitoring deployed
application usage with process mining’. In: BPM Center Report (2008), pp. 1–8.

[30] C. W. Günther and W. M. P. van der Aalst. ‘Fuzzy Mining – Adaptive Process
Simplification Based on Multi-perspective Metrics’. In: Proceedings of the 5th
International Conference on Business Process Management (BPM 2007). Brisbane,
Australia, 2007, pp. 328–343. doi: 10.1007/978-3-540-75183-0_24.

103

https://www.thoughtworks.com/de/insights/blog/scaling-microservices-event-stream
https://www.thoughtworks.com/de/insights/blog/scaling-microservices-event-stream
https://doi.org/10.13140/RG.2.1.3257.4961
http://arxiv.org/abs/1606.04036
https://doi.org/10.1109/TSC.2014.2367525
https://doi.org/10.1109/CloudCom.2016.0111
https://doi.org/10.1007/978-3-642-03848-8_11
https://doi.org/10.18417/emisa.2.2.2
https://martinfowler.com/articles/microservice-trade-offs.html{\#}ops
https://martinfowler.com/articles/microservice-trade-offs.html{\#}ops
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1007/978-3-540-75183-0_24

Bibliography

[31] S. Hall. OpenTracing Aims for a Clearer View of Processes in Distributed Systems - The
New Stack. 2016. url: https://thenewstack.io/opentracing-aims-clearer-
view-processes-distributed-systems/ (visited on 02/08/2017).

[32] C. Heger, A. van Hoorn, M. Mann and D. Okanović. ‘Application Performance
Management’. In: Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering - ICPE ’17. 2017, pp. 429–432. isbn: 9781450344043. doi:
10.1145/3030207.3053674.

[33] S Hernández, J Ezpeleta, S. J. Van Zelst and W. M. P. Van Der Aalst. ‘Assessing
Process Discovery Scalability in Data Intensive Environments’. In: Proceedings -
2015 2nd IEEE/ACM International Symposium on Big Data Computing, BDC 2015.
2016, pp. 99–104. doi: 10.1109/BDC.2015.31.

[34] A. R. Hevner, S. T. March, J. Park and S. Ram. ‘Design Science in Information
Systems Research’. In: MIS Quarterly 28.1 (2004), pp. 75–105. issn: 02767783. doi:
10.2307/25148625. arXiv: /dl.acm.org/citation.cfm?id=2017212.2017217
[http:].

[35] G. Hohpe and B. Woolf. Enterprise integration patterns : designing, building, and
deploying messaging solutions. Addison-Wesley, 2004, p. 683. isbn: 0321200683.

[36] K. Indrasiri. Microservices in Practice - Key Achitectural Concepts of an MSA. 2016.
url: http : / / wso2 . com / whitepapers / microservices - in - practice - key -
architectural-concepts-of-an-msa/{\#}10 (visited on 02/08/2017).

[37] J. Jackson. Meet Zipkin: A Tracer for Debugging Microservices - The New Stack.
2016. url: https : / / thenewstack . io / meet - zipkin - tracer - debugging -
microservices/ (visited on 13/07/2017).

[38] S. Janser. ‘Konfigurationsmanagement für Microservices mit Spring Cloud Con-
fig’. In: heise Developer (2016). url: https://www.heise.de/developer/artikel/
Konfigurationsmanagement-fuer-Microservices-mit-Spring-Cloud-Config-
3200235.html.

[39] M. Kleehaus, Ö. Uludag and F. Matthes. ‘Towards a Multi-Layer IT Infrastructure
Monitoring Approach based on Enterprise Architecture Information’. In: 2nd
Workshop on Continuous Software Engineering co-located with SE 2017. Vol. i. 2017,
pp. 12–17.

[40] M. Lange and J. Mendling. ‘An Experts’ Perspective on Enterprise Architecture
Goals, Framework Adoption and Benefit Assessment’. In: 2011 IEEE 15th Inter-
national Enterprise Distributed Object Computing Conference Workshops. IEEE, 2011,
pp. 304–313. isbn: 978-1-4577-0869-5. doi: 10.1109/EDOCW.2011.41.

[41] M Leemans and W. van der Aalst. ‘Process Mining in Software Systems: Discov-
ering Real-Life Business Transactions and Process Models from Distributed Sys-
tems’. In: MODELS 2015. Ottawa, ON, Canada, 2015, pp. 44–53. isbn: 9781467369084.

104

https://thenewstack.io/opentracing-aims-clearer-view-processes-distributed-systems/
https://thenewstack.io/opentracing-aims-clearer-view-processes-distributed-systems/
https://doi.org/10.1145/3030207.3053674
https://doi.org/10.1109/BDC.2015.31
https://doi.org/10.2307/25148625
http://arxiv.org/abs//dl.acm.org/citation.cfm?id=2017212.2017217
http://arxiv.org/abs//dl.acm.org/citation.cfm?id=2017212.2017217
http://wso2.com/whitepapers/microservices-in-practice-key-architectural-concepts-of-an-msa/{\#}10
http://wso2.com/whitepapers/microservices-in-practice-key-architectural-concepts-of-an-msa/{\#}10
https://thenewstack.io/meet-zipkin-tracer-debugging-microservices/
https://thenewstack.io/meet-zipkin-tracer-debugging-microservices/
https://www.heise.de/developer/artikel/Konfigurationsmanagement-fuer-Microservices-mit-Spring-Cloud-Config-3200235.html
https://www.heise.de/developer/artikel/Konfigurationsmanagement-fuer-Microservices-mit-Spring-Cloud-Config-3200235.html
https://www.heise.de/developer/artikel/Konfigurationsmanagement-fuer-Microservices-mit-Spring-Cloud-Config-3200235.html
https://doi.org/10.1109/EDOCW.2011.41

Bibliography

[42] J. Lewis and M. Fowler. Microservices - Martin Fowler. 2014. url: https : / /
martinfowler.com/articles/microservices.html (visited on 02/08/2017).

[43] G. Linden. Geeking with Greg: Marissa Mayer at Web 2.0. 2006. url: https://
glinden.blogspot.de/2006/11/marissa-mayer-at-web-20.html (visited on
08/08/2017).

[44] J. Mace. End-to-End Tracing: Adoption and Use Cases. Tech. rep. Chicago: Brown
University, 2017.

[45] B. Michelson. Event-Driven Architecture Overview. Tech. rep. Boston, Massachusetts:
Patricia Seybold Group, 2006. doi: 10.1571/bda2-2-06cc.

[46] S. Newman. Building Microservices: Designing Fine-Grained Systems. O’Reilly Media,
2015, p. 280. isbn: 978-1-491-95035-7. doi: 10.1109/MS.2016.64. arXiv: 1606.
04036.

[47] C. Nissen. [Guide] Implementing API Gateway pattern with Netflix Zuul and Spring
Cloud. 2016. url: http : / / kubecloud . io / apigatewaypattern/ (visited on
14/08/2017).

[48] J. J. Oliveira. ‘Business Process Discovery in Real Time’.

[49] Pelka Carsten and M. Plöd. Microservices à la Netflix — Die Bestandteile von Spring
Cloud Netflix. 2016. url: https://www.innoq.com/de/articles/2016/12/
microservices-a-la-netflix/ (visited on 14/08/2017).

[50] S. Perera. Walking the Microservices Path towards Loose coupling? Look out for these
Pitfalls | My views of the World and Systems. 2016. url: https : / / iwringer .
wordpress.com/2016/03/11/walking- the- microservices- path- towards-
loose-coupling-look-out-for-these-pitfalls/ (visited on 03/08/2017).

[51] N. Poggi, D. Carrera, R. Gavaldà, E. Ayguadé and J. Torres. ‘A methodology
for the evaluation of high response time on E-commerce users and sales’. In:
Information Systems Frontiers 16.5 (2014), pp. 867–885. issn: 13873326. doi: 10.
1007/s10796-012-9387-4.

[52] N. Poggi, V. Muthusamy, D. Carrera and R. Khalaf. ‘Business Process Mining from
E-Commerce Web Logs’. In: BPM’13 Proceedings of the 11th international conference
on Business Process Management. Beijing, China, 2013, pp. 65–80. doi: 10.1007/978-
3-642-40176-3_7. url: http://link.springer.com/10.1007/978-3-642-
40176-3{_}7.

[53] N. Poggi, V. Muthusamy, D. Carrera and R. Khalaf. Business Process Mining from
E-Commerce Web Logs. 2013. doi: 10.1007/978-3-642-40176-3.

[54] M. Postina, J. Trefke and U. Steffens. ‘An EA-approach to Develop SOA View-
points’. In: 2010 14th IEEE International Enterprise Distributed Object Computing
Conference. IEEE, 2010, pp. 37–46. isbn: 978-1-4244-7966-5. doi: 10.1109/EDOC.
2010.25.

105

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://glinden.blogspot.de/2006/11/marissa-mayer-at-web-20.html
https://glinden.blogspot.de/2006/11/marissa-mayer-at-web-20.html
https://doi.org/10.1571/bda2-2-06cc
https://doi.org/10.1109/MS.2016.64
http://arxiv.org/abs/1606.04036
http://arxiv.org/abs/1606.04036
http://kubecloud.io/apigatewaypattern/
https://www.innoq.com/de/articles/2016/12/microservices-a-la-netflix/
https://www.innoq.com/de/articles/2016/12/microservices-a-la-netflix/
https://iwringer.wordpress.com/2016/03/11/walking-the-microservices-path-towards-loose-coupling-look-out-for-these-pitfalls/
https://iwringer.wordpress.com/2016/03/11/walking-the-microservices-path-towards-loose-coupling-look-out-for-these-pitfalls/
https://iwringer.wordpress.com/2016/03/11/walking-the-microservices-path-towards-loose-coupling-look-out-for-these-pitfalls/
https://doi.org/10.1007/s10796-012-9387-4
https://doi.org/10.1007/s10796-012-9387-4
https://doi.org/10.1007/978-3-642-40176-3_7
https://doi.org/10.1007/978-3-642-40176-3_7
http://link.springer.com/10.1007/978-3-642-40176-3{_}7
http://link.springer.com/10.1007/978-3-642-40176-3{_}7
https://doi.org/10.1007/978-3-642-40176-3
https://doi.org/10.1109/EDOC.2010.25
https://doi.org/10.1109/EDOC.2010.25

Bibliography

[55] M. Richards. Microservices vs. service-oriented architecture - O’Reilly Media. 2016. url:
https://www.oreilly.com/learning/microservices-vs-service-oriented-
architecture (visited on 11/08/2017).

[56] Richardson Chris. Introduction to Microservices. 2015. url: https://www.nginx.
com / blog / introduction - to - microservices / ?utm{\ _ }source = building -
microservices-inter-process-communication{\&}utm{_}medium=blog{\&
}utm{_}campaign=Microservices (visited on 22/05/2017).

[57] J. W. Ross, P Weill and D Robertson. Enterprise Architecture as Strategy: Creating a
Foundation for Business Execution. Harvard Business Publishing. Harvard Business
School Press, 2006. isbn: 9781591398394.

[58] A. Rotem-Gal-Oz. ‘Fallacies of distributed computing explained’. In: (2006), p. 11.

[59] V. Rubin, I. Lomazova and W. M. P. van der Aalst. ‘Agile development with
software process mining’. In: Proceedings of the 2014 International Conference on
Software and System Process - ICSSP 2014. February 2015. 2014, pp. 70–74. isbn:
9781450327541. doi: 10.1145/2600821.2600842.

[60] J. Schekkerman and Jaap. How to survive in the jungle of enterprise architecture
frameworks : creating or choosing an enterprise architecture framework. Trafford, 2004,
p. 222. isbn: 141201607X.

[61] M.-T. Schmidt, B. Hutchison, P. Lambros and R. Phippen. ‘The Enterprise Service
Bus: Making service-oriented architecture real’. In: IBM Systems Journal 44.4 (2005),
pp. 781–797. issn: 0018-8670. doi: 10.1147/sj.444.0781.

[62] Shalom Nati. Amazon found every 100ms of latency cost them 1% in sales. | GigaSpaces
Blog. 2008. url: http://blog.gigaspaces.com/amazon-found-every-100ms-
of-latency-cost-them-1-in-sales/ (visited on 20/06/2017).

[63] Y. Shkur. Evolving Distributed Tracing at Uber Engineering - Uber Engineering
Blog. 2017. url: https://eng.uber.com/distributed-tracing/ (visited on
05/08/2017).

[64] B. H. Sigelman, L. Andr, M. Burrows, P. Stephenson, M. Plakal, D. Beaver,
S. Jaspan and C. Shanbhag. Dapper, a Large-Scale Distributed Systems Tracing
Infrastructure. Tech. rep. April. 2010, p. 14. doi: dapper-2010-1.

[65] P. Sylvester. Two Mistakes You Need to Avoid When Integrating Services. 2016.
url: https://www.infoq.com/articles/integration-mistakes (visited on
09/08/2017).

[66] A. Vera-baquero, R. Colomo-Palacios, O. Molloy, R. Colomo-Palacios and O. Mol-
loy. ‘Real-time business activity monitoring and analysis of process performance
on big-data domains’. In: Telematics and Informatics 33.3 (2016), pp. 793–807. issn:
07365853. doi: 10.1016/j.tele.2015.12.005.

106

https://www.oreilly.com/learning/microservices-vs-service-oriented-architecture
https://www.oreilly.com/learning/microservices-vs-service-oriented-architecture
https://www.nginx.com/blog/introduction-to-microservices/?utm{_}source=building-microservices-inter-process-communication{\&}utm{_}medium=blog{\&}utm{_}campaign=Microservices
https://www.nginx.com/blog/introduction-to-microservices/?utm{_}source=building-microservices-inter-process-communication{\&}utm{_}medium=blog{\&}utm{_}campaign=Microservices
https://www.nginx.com/blog/introduction-to-microservices/?utm{_}source=building-microservices-inter-process-communication{\&}utm{_}medium=blog{\&}utm{_}campaign=Microservices
https://www.nginx.com/blog/introduction-to-microservices/?utm{_}source=building-microservices-inter-process-communication{\&}utm{_}medium=blog{\&}utm{_}campaign=Microservices
https://doi.org/10.1145/2600821.2600842
https://doi.org/10.1147/sj.444.0781
http://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
http://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://eng.uber.com/distributed-tracing/
https://doi.org/dapper-2010-1
https://www.infoq.com/articles/integration-mistakes
https://doi.org/10.1016/j.tele.2015.12.005

Bibliography

[67] C. Williams. Is REST Best in a Microservices Architecture? | Capgemini Engineering.
2015. url: https://capgemini.github.io/architecture/is- rest- best-
microservices/ (visited on 14/08/2017).

[68] O. Wolf. Benefits of Microservices - Choreography over Orchestration, Low Coupling
and High Cohesion. 2016. url: https://specify.io/concepts/microservices
(visited on 02/08/2017).

[69] Yale Yu, H. Silveira and M. Sundaram. ‘A microservice based reference archi-
tecture model in the context of enterprise architecture’. In: 2016 IEEE Advanced
Information Management, Communicates, Electronic and Automation Control Conference
(IMCEC) (2016), pp. 1856–1860. doi: 10.1109/IMCEC.2016.7867539.

[70] O. Zimmermann. ‘Microservices tenets: Agile approach to service development
and deployment’. In: Computer Science - Research and Development 32.3-4 (2017),
pp. 301–310. issn: 18652042. doi: 10.1007/s00450-016-0337-0.

107

https://capgemini.github.io/architecture/is-rest-best-microservices/
https://capgemini.github.io/architecture/is-rest-best-microservices/
https://specify.io/concepts/microservices
https://doi.org/10.1109/IMCEC.2016.7867539
https://doi.org/10.1007/s00450-016-0337-0

A. Appendix

A.1. Additional figures and tables

Figure A.1.: List available cars activity, triggered through /getCars request

Figure A.2.: Reserve car activity, triggered through /reserveCar request

Figure A.3.: Book car activity, triggered through /bookCar request

Figure A.4.: Unlock car activity, triggered through /openCar request

109

A. Appendix

Figure A.5.: End car rental activity, triggered through /endRental request

Figure A.6.: Show balance activity, triggered through /showBalance request

Figure A.7.: Book package activity, triggered through /bookPackage request

Figure A.8.: Show driving history activity, triggered through /showHistory request

Figure A.9.: Report issue activity, triggered through /reportIssue request

Figure A.10.: Find route activity, triggered through /findRoute request

110

A.1. Additional figures and tables

Table A.1.: Sample data of a /bookCar request from the spans table

trace_id id name parent_id start_ts duration

a a http:/bookcar NULL 1498134578920000 621682

a b book-car a 1498134578924000 609215

a c http:/bookcar b 1498134578925000 595000

a d book-car c 1498134578935000 578378

a e http:/handlebooking d 1498134578956000 568670

a f handle-booking e 1498134578978000 521484

111

A
.

A
ppendix

Table A.2.: Sample data of a /bookCar request from the annonations table

trace
_id

span
_id a_key a_value a_timestamp

endpoint
_service_name

a a sr 1498134578921000 webui
a b lc unknown 1498134578924000 webui
a b mvc.controller.class WebUIController 1498134578924000 webui
a b mvc.controller.method bookCar 1498134578924000 webui
a b SessionID vjddkk70r03s6lqin86prfc4of 1498134578924000 webui
a c http.host localhost 1498134578925000 webui
a c http.method GET 1498134578925000 webui
a c http.path /bookCar 1498134578925000 webui
a c http.url http://localhost:9090/bookCar 1498134578925000 webui
a c sa 1498134578925000 webui
a c cs 1498134578926000 webui
a c sr 1498134578932000 carmanagement
a d lc unknown 1498134578935000 carmanagement
a d mvc.controller.class CarManagementController 1498134578935000 carmanagement
a d mvc.controller.method bookCar 1498134578935000 carmanagement
a e http.host localhost 1498134578936000 carmanagement
a e http.method GET 1498134578936000 carmanagement
a e http.path /handleBooking 1498134578936000 carmanagement
a e http.url http://localhost:6060/handleBooking 1498134578936000 carmanagement
a e sa 1498134578936000 carmanagement
a e cs 1498134578937000 carmanagement
a e sr 1498134578956000 accounting
a f lc unknown 1498134578978000 accounting
a f mvc.controller.class AccountingController 1498134578978000 accounting
a f mvc.controller.method handleBooking 1498134578978000 accounting
a e cr 1498134579511000 carmanagement
a e ss 1498134579514000 carmanagement
a c cr 1498134579521000 webui
a c ss 1498134579525000 accounting
a a ss 1498134579542000 webui

112

A
.1.

A
dditionalfigures

and
tables

data_model_name: VARCHAR(100)
reload_request_time: TIMESTAMP
reload_start_time: TIMESTAMP
reload_success_time: TIMESTAMP
reload_message: VARCHAR(500)

reload_trigger_table

session_id: VARCHAR(30)
user_id: VARCHAR(10)
session_start: DATETIME
device: VARCHAR(10)

sessions

technical_activity: VARCHAR(255)
pretty_name: VARCHAR(255)
type: VARCHAR(255)
is_activity: TINYINT(1)
calls_service: VARCHAR(255)

activities_mappings

session_id: VARCHAR(30)
activity: VARCHAR(50)
start_ts: DATETIME(3)
end_ts: DATETIME(3)
start_ts_edges: DATETIME(3)
end_ts_edges: DATETIME(3)
duration: BIGINT(20)
trace_id: BIGINT(30)
trace_id_hex: VARCHAR(30)
activity_type: VARCHAR(20)
device_type: VARCHAR(20)
service_name: VARCHAR(30)
failure: TINYINT(1)
sorting: INT(11)
span_id: BIGINT(30)

activities

session_id: VARCHAR(30)
activity: VARCHAR(50)
start_ts: DATETIME(3)
end_ts: DATETIME(3)
start_ts_edges: DATETIME(3)
end_ts_edges: DATETIME(3)
duration: BIGINT(20)
trace_id: BIGINT(30)
trace_id_hex: VARCHAR(30)
activity_type: VARCHAR(20)
device_type: VARCHAR(20)
service_name: VARCHAR(30)
failure: TINYINT(1)
sorting: INT(11)
span_id: BIGINT(30)

technical_activities

trace_id: BIGINT(30)
span_id: BIGINT(30)
session_id: VARCHAR(30)

trace_span

trace_id_high: BIGINT(20)
trace_id: BIGINT(20)
id: BIGINT(20)
name: VARCHAR(255)
parent_id: BIGINT(20)
debug: BIT(1)
start_ts: BIGINT(20)
duration: BIGINT(20)
duration_internal: BIGINT(20)

zipkin_spans

trace_id_high: BIGINT(20)
trace_id: BIGINT(20)
span_id: BIGINT(20)
a_key: VARCHAR(255)
a_value: BLOB
a_type: INT(11)
a_timestamp: BIGINT(20)
endpoint_ipv4: INT(11)
endpoint_ipv6: BINARY(16)
endpoint_port: SMALLINT(6)
endpoint_service_name: VARCHAR(255)

zipkin_annotations

1 has 1..*

1 has 1..*

1 has 1

1 has 1

1 has 1..*

1 has 1..*

1 has 1..*

Figure A.11.: Complete data model in UML notation

113

A. Appendix

A.2. Technical documentation of analyses in the PMT

Business Analysis (BA)

Component BA_3

Title Development of Conversions vs. # Sessions

Filter -

Dimensions Eventtime in Days ROUND_DAY("sessions"."session_start")

KPIs

Conversion Rate SUM(CASE WHEN "activities"."activity"
LIKE 'Book car' THEN 1.0 ELSE 0.0
END)/COUNT_TABLE("activities_CASES")
Sessions COUNT_TABLE("activities_CASES")
Bookings SUM(CASE WHEN "activities"."activity" LIKE
'Book car' THEN 1.0 ELSE 0.0 END)

Component BA_4

Title Activities’ conversion

Filter FILTER "activities"."activity" NOT LIKE 'Book
car';FILTER "activities"."activity" NOT LIKE 'http:/%';

Dimensions Activity Name "activities"."activity")

KPIs

Sessions COUNT_TABLE("activities_CASES")
Car bookings SUM(CASE WHEN "activities"."activity" LIKE
'Book car' THEN 1.0 ELSE 0.0 END)
Package Bookings SUM(CASE WHEN "activities"."activity"
LIKE 'Book package' THEN 1.0 ELSE 0.0 END)
Conversion Rate AVG(CASE WHEN PROCESS EQUALS 'Book car'
THEN 1.0 ELSE 0.0 END)

114

A.2. Technical documentation of analyses in the PMT

Component BA_5

Title Bookings and Sessions

Filter -

Dimensions User <%= business_dim %>

KPIs

Sessions COUNT_TABLE("activities_CASES")
Car bookings SUM(CASE WHEN "activities"."activity" LIKE
'Book car' THEN 1.0 ELSE 0.0 END)
Package Bookings SUM(CASE WHEN "activities"."activity"
LIKE 'Book package' THEN 1.0 ELSE 0.0 END)

115

A. Appendix

Component BA_6

Title Durations between user activities

Filter -

Dimensions Throughput Time CASE WHEN
CALC_THROUGHPUT(FIRST_OCCURRENCE['<%= a_from %>'] TO
FIRST_OCCURRENCE['<%= a_to %>'],
REMAP_TIMESTAMPS("activities"."start_ts", SECONDS)) <= 5
THEN '0 - 5 s' WHEN
CALC_THROUGHPUT(FIRST_OCCURRENCE['<%= a_from %>'] TO
FIRST_OCCURRENCE['<%= a_to %>'],
REMAP_TIMESTAMPS("activities"."start_ts", SECONDS)) <=
10 THEN '5 - 10 s' WHEN
CALC_THROUGHPUT(FIRST_OCCURRENCE['<%= a_from %>'] TO
FIRST_OCCURRENCE['<%= a_to %>'],
REMAP_TIMESTAMPS("activities"."start_ts", SECONDS)) <=
15 THEN '10 - 15 s' WHEN
CALC_THROUGHPUT(FIRST_OCCURRENCE['<%= a_from %>'] TO
FIRST_OCCURRENCE['<%= a_to %>'],
REMAP_TIMESTAMPS("activities"."start_ts", SECONDS)) <=
20 THEN '15 - 20 s' WHEN
CALC_THROUGHPUT(FIRST_OCCURRENCE['<%= a_from %>'] TO
FIRST_OCCURRENCE['<%= a_to %>'],
REMAP_TIMESTAMPS("activities"."start_ts", SECONDS)) <=
25 THEN '20 - 25 s' WHEN
CALC_THROUGHPUT(FIRST_OCCURRENCE['<%= a_from %>'] TO
FIRST_OCCURRENCE['<%= a_to %>'],
REMAP_TIMESTAMPS("activities"."start_ts", SECONDS)) <=
30 THEN '25 - 30 s' ELSE '> 30' END)

Dimensions Case count COUNT_TABLE("activities_CASES"))

Application Analysis (AA)

Component AA_3

Title Microservice processing success rate

Filter -

Dimensions Eventtime in years ROUND_WEEK("sessions"."session_start")

116

A.2. Technical documentation of analyses in the PMT

KPIs

accounting service 1-(SUM(CASE WHEN "activities"."activity"
LIKE 'http:/' AND "activities"."failure" = 1 AND
"activities"."service_name" = 'accounting-service' THEN
1.0 ELSE 0.0 END)/ SUM(CASE WHEN "activities"."activity"
LIKE 'http:/' AND "activities"."failure" = 0 AND
"activities"."service_name" = 'accounting-service' THEN
1.0 ELSE 0.0 END))
payments service 1-(SUM(CASE WHEN "activities"."activity"
LIKE 'http:/' AND "activities"."failure" = 1 AND
"activities"."service_name" = 'payments-service' THEN
1.0 ELSE 0.0 END)/ SUM(CASE WHEN "activities"."activity"
LIKE 'http:/' AND "activities"."failure" = 0 AND
"activities"."service_name" = 'payments-service' THEN
1.0 ELSE 0.0 END))
maps service 1-(SUM(CASE WHEN "activities"."activity"
LIKE 'http:/' AND "activities"."failure" = 1 AND
"activities"."service_name" = 'maps-service' THEN 1.0
ELSE 0.0 END)/ SUM(CASE WHEN "activities"."activity"
LIKE 'http:/' AND "activities"."failure" = 0 AND
"activities"."service_name" = 'maps-service' THEN 1.0
ELSE 0.0 END))
notifications service 1-(SUM(CASE WHEN "activities"."activity"
LIKE 'http:/' AND "activities"."failure" = 1 AND
"activities"."service_name" = 'notifications-service' THEN
1.0 ELSE 0.0 END)/ SUM(CASE WHEN "activities"."activity"
LIKE 'http:/' AND "activities"."failure" = 0 AND
"activities"."service_name" = 'notifications-service'
THEN 1.0 ELSE 0.0 END))
cars service: 1-(SUM(CASE WHEN "activities"."activity"
LIKE 'http:/' AND "activities"."failure" = 1 AND
"activities"."service_name" = 'cars-service' THEN 1.0
ELSE 0.0 END)/ SUM(CASE WHEN "activities"."activity"
LIKE 'http:/' AND "activities"."failure" = 0 AND
"activities"."service_name" = 'cars-service' THEN 1.0
ELSE 0.0 END))

117

A. Appendix

user service 1-(SUM(CASE WHEN "activities"."activity"
LIKE 'http:/' AND "activities"."failure" = 1 AND
"activities"."service_name" = 'user-service' THEN 1.0
ELSE 0.0 END)/ SUM(CASE WHEN "activities"."activity"
LIKE 'http:/' AND "activities"."failure" = 0 AND
"activities"."service_name" = 'user-service' THEN 1.0
ELSE 0.0 END))
webui service 1-(SUM(CASE WHEN "activities"."activity"
LIKE 'http:/' AND "activities"."failure" = 1 AND
"activities"."service_name" = 'webui-service' THEN 1.0
ELSE 0.0 END)/ SUM(CASE WHEN "activities"."activity"
LIKE 'http:/' AND "activities"."failure" = 0 AND
"activities"."service_name" = 'webui-service' THEN 1.0
ELSE 0.0 END))

Component AA_4

Title Most used & failed microservices

Filter FILTER "activities"."activity_type" LIKE 'system';

Dimensions Service Name "activities"."service_name"

KPIs
failed requests COUNT(SUM(CASE WHEN
"activities"."activity" LIKE 'http:/' AND
"activities"."failure" = 1 THEN 1.0 ELSE 0.0 END))
total requests COUNT("activities"."activity")

Component AA_5

Title Technical activity performance

Filter FILTER "activities"."activity" LIKE '/';

Dimensions activity "activities"."activity"

KPIs
Requests COUNT("activities"."activity")
AVG duration AVG("activities"."duration")

118

A.2. Technical documentation of analyses in the PMT

Component AA_6

Title Microservice SLA

Filter FILTER "activities"."activity" LIKE '/';

Dimensions service_name "activities"."service_name"

KPIs

Requests COUNT("activities"."activity")
failed requests: SUM(CASE WHEN "activities"."activity"
LIKE 'http:/' AND "activities"."failure" = 1 THEN 1.0
ELSE 0.0 END)
Service Availability 1-(SUM(CASE WHEN
"activities"."activity" LIKE 'http:/' AND
"activities"."failure" = 1 THEN 1.0 ELSE 0.0
END)/COUNT("activities"."activity"))

Component AA_7

Title Error types

Filter FILTER "zipkin_annotations"."a_key" = 'error';

Dimensions a_value "zipkin_annotations"."a_value"

KPIs Count COUNT_TABLE("zipkin_spans")

Cross-Domain Analysis (CDA)

Component CDA_3

Title Conversion vs. Activity Failure

Filter -

Dimensions Eventtime in years ROUND_DAY("sessions"."session_start")

KPIs
Conversion Rate AVG(CASE WHEN PROCESS EQUALS 'Book car'
THEN 1.0 ELSE 0.0 END)
User Activity Failure Rate AVG(CASE WHEN
"activities"."activity" LIKE 'failed' AND
"activities"."activity_type" = 'user' THEN 1.0 ELSE 0.0
END)

119

A. Appendix

Component CDA_4

Title Duration: Session Start to Conversion

Filter FILTER "activities"."activity_type" = 'user';

Dimensions device_type "sessions"."device"

KPIs Duration in s AVG(CALC_THROUGHPUT(ALL_OCCURRENCE[] TO
LAST_OCCURRENCE['Book car'],
REMAP_TIMESTAMPS("activities"."start_ts", SECONDS)))

Component CDA_6

Title User Process Activity Performance

Filter FILTER "activities"."activity_type" = 'user';

Dimensions Activity "activities"."activity"

KPIs

Activities count COUNT("activities"."activity")
Duration AVG("activities"."duration")
Act. Conversion Impact AVG(CASE WHEN PROCESS EQUALS 'Book
car' THEN 1.0 ELSE 0.0 END)

Component AA_7

Title Most critical services

Filter FILTER "activities"."activity_type" = 'user';

Dimensions technical_activities.service_name
"system_activities"."service_name"

KPIs Activites count COUNT("activities"."activity")

120

A.2. Technical documentation of analyses in the PMT

Single User Activtiy Analysis (SUAA)

Component CDA_3

Title User activities

Filter FILTER "activities"."activity" NOT LIKE 'http:/';

Dimensio
Activitiy "activities"."activity"
trace_id_hex "activities"."trace_id_hex"

KPIs -

Component CDA_4

Title System activities

Filter -

Dimension technical_activities.activity "system_activities"."activity"

KPIs Activities count COUNT("activities"."activity")

Component CDA_5

Title User Process Activity Performance

Filter FILTER "activities"."activity_type" = 'user';

Dimension Activity "activities"."activity"

KPIs

Activities count COUNT("activities"."activity")
Duration AVG("activities"."duration")
Act. Conversion Impact AVG(CASE WHEN PROCESS EQUALS 'Book
car' THEN 1.0 ELSE 0.0 END)

121

A. Appendix

Component CDA_6

Title activity_name performance

Filter FILTER "activities"."activity" LIKE '<%=activity_dim%>';

Dimensions
Activity "activities"."activity"
trace_id_hex "activities"."trace_id_hex"

KPIs
Duration AVG("activities"."duration")
Duration above AVG AVG("activities"."duration")

122

A.3. Installation guide for prototype setup

A.3. Installation guide for prototype setup

Install Celonis

1. Apply for an academic enterprise licence at academic.alliance@celonis.de

2. Download Celonis installer with obtained login credentials at
http://my.celonis.com

3. Download the required additional MySQL driver installer from
https://dev.mysql.com/downloads/connector/j/5.1.html

4. Extract the file and copy it in the following path:
C:\Program Files\Celonis 4 Enterprise\appfiles\app\WEB-INF\lib

5. Install Celonis and configure it to run on port 9000 (default).

6. Activate license.

Deploy a MySQL database

1. Download and install a MySQL database from
https://dev.mysql.com/downloads/mysql/

2. Configure it to run on port 1024, with root as user and password.

3. Create a database with the name zipkin.

4. Start the database.

5. Execute the initialize_datamodel.sql script for initialising the tables of the
database.

Deploy the prototype

1. Deploy and start the the configuration-service first.

2. Continue with the discovery-service. After that, deploy and start all other service
in an arbitrary order.

Configure the analysis in Celonis

1. Import the analysis_full transport, which includes the analysis, the data model
and test data. This is accomplished via clicking on the user name (top left) -> Trans-
port. From here the transport can be imported. The password is EnhancedPM2017.
This analysis can be tested without further configuration.

123

A. Appendix

2. For establishing the live seeting with automatic analysis generation form the SUS,
please import the analysis_operational transport, which includes the analysis,
the data model and test data but is configured for operation usage. The password
again is EnhancedPM2017

3. Configure a new database connection by opening the data model named Datamodel.
Click on Data Sources -> Add new data source. Enter the configuration as de-
scribed below:

4. Now configure the trigger table in the data model. Thereby, in the open data
model to ’Loading’ and enter the configuration as described below:

124

A.3. Installation guide for prototype setup

125

A. Appendix

Usage

1. For creating click paths, open the web UI in a browser at http://localhost:8080.

2. Create a new user and perform random activities.

3. Create more sessions and users in order to create click paths.

4. Optional: Shut down a random service and continue performing activities. When
the request fails go back to the main page.

5. After performing activities, click on "Generate activites & reload Data model" or
wait max. 5 minutes for the log generation service to execute the activity generation
automatically.

6. The process mining tool should now refresh the data model after new activities
are generated. This can take up to 5 minutes. If the automatic refresh does not
work, open the data model and navigate to Status. Click ’Reload from source’ to
refresh the model manually.

7. Go to the main menu and open the Dashboard analysis. See in the different tabs
the four analyses described as in subsection 4.6.4. Start discovering the process
from multiple perspectives!

126

	List of Tables
	List of Figures
	Listings
	Glossary
	Introduction
	Motivation and problem statement
	Research methodology
	Thesis structure

	Foundations of microservice architectures, distributed tracing and process mining
	Microservice architectures
	Characteristics, benefits and challenges of microservice architectures
	Microservice composition styles

	Distributed tracing
	General concept and raison d'être
	Principle function, terminology and tracing architecture

	Business process mining
	Use cases of business process mining
	Types of process mining
	Description of the -Algorithm
	Structure of an event log
	Strategies of data acquisition
	Transforming the multi-dimensional reality into a flat event log
	Challenges in extracting data and generating event logs

	Description of the system under survey
	General system architecture
	Description of the business functionalities
	Description of the software architecture
	Service communication architecture
	Infrastructure microservices
	Exemplary setup of a business microservice

	Description of the automated process discovery prototype
	Extended system under survey architecture
	Distributed tracing and process mining tool selection
	Instrumentation of the system under survey
	Data architecture
	Tracing data persistence data
	General table structure

	Event log generation
	Scoping the event data
	Transformation of low level events to activities and binding to process instances

	Process configuration and analysis creation in the process mining tool
	Process mining workflow
	Data model and activity table configuration
	Process visualisation
	Description of created analyses

	Discussion
	Benefits of the proposed solution
	Cross-domain analysis
	Resource efficient data source for generating event logs
	Portability
	Ubiquity
	Flexibility on process perspectives
	Foundation for real-time process mining
	Bottom-up process discovery in legacy systems

	Limitations of the proposed solution
	System under survey
	Suitability of applied process visualisations
	Performance overhead through high sampling rates
	Real-time event handling, event log generation and process discovery

	Related work

	Summary and outlook
	Bibliography
	Appendix
	Additional figures and tables
	Technical documentation of analyses in the PMT
	Installation guide for prototype setup

