TUTl

DEPARTMENT OF INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Information Systems

Using Smart Contracts for Digital Services:
A Feasibility Study based on Service Level
Agreements

Stephan Zumkeller

DEPARTMENT OF INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Information Systems

Using Smart Contracts for Digital Services:
A Feasibility Study based on Service Level
Agreements

Nutzung von Smart Contracts fiir Digitale

Services: Eine Machbarkeitsstudie iiber
Service Level Agreements

Author: Stephan Zumkeller
Supervisor: Professor Dr. Florian Matthes
Advisors: Ulrich Gallersdorfer, M.Sc.

Elena Scepankova, Mag. jur.
Submission Date: August 16th, 2018

I confirm that this master’s thesis in information systems is my own work and I have
documented all sources and material used.

Munich, August 16th, 2018 Stephan Zumkeller

Abstract

The blockchain can facilitate trustworthy business relations by acting as a digital
institution for trust. Its features, the immutable ledger of transactions as well as the
distributed storage and execution of code (so-called smart contracts), offer a great
potential for diverse ways of applications, e.g., the enforced fulfillment of obligations.
In spite of the vast potential of the blockchain and smart contracts, they are on a quest
for enriching their scope of utilization.

We regard digital services as a prospective application domain for the blockchain.
Smart contracts could solve domain-specific challenges, such as the non-fulfillment of
obligations, infeasible enforcement of rights, and missing readiness for future demands
of cloud computing as well as the Internet of Things.

To gain knowledge about the use of blockchain in the application domain, we study the
feasibility of smart contracts for supporting service level agreements (SLA) of digital
services.

In this master’s thesis, we conduct design science research by designing, developing and
evaluating a prototypical, blockchain-based application that aims at solving challenges
of SLAs of digital services.

The results of the evaluation show that the developed prototype is a technically viable
blockchain-based application, which fulfills the designed requirements. Experts from
the digital service domain recognize capabilities of smart contracts to solve challenges
of SLAs, as the prototype automates processes and establishes trust among service
partners by acting as an escrow. Simultaneously, experts hold concerns against the
blockchain technology that decrease their tendency of employing smart contracts. The
prototype’s practicability is further impaired by the blockchain’s high cost and latency.

We conclude that SLAs of digital services present a viable domain for support by
smart contracts. The practicability can be increased by improvements of the blockchain
technology and a growing acceptance among service partners.

1ii

Contents

Abstract

1. Introduction

1.1.
1.2.
1.3.
1.4.

Motivation e e e e
Research Questions i i i it e
Research Method
Outline e e

2. Fundamentals

2.1.

2.2.

2.3.

24.

2.5.

2.6.

Service Level Agreements L.
211, Typesof SLAs
212, Contentof SLAS
Blockchain Technology
221, Definition e
222. Cryptography
2.2.3. Structure of a Blockchain
224. Consensusand Mining
2.2.5. Characteristics of Blockchains
2.2.6. Blockchain Implementations
Smart Contracts e
2.3.1. Definition e
2.3.2. Technical Concept
Oracles e e
2.4.1. CharacteristicS e
242, Limitations
2.4.3. OracleServices e
Decentralized Storage
25.1. On-chainStorage
2.5.2. InterPlanetary File System
253, Swarm e e
State Channels

iii

O W N~ =

O O NN O o

v

Contents

3. Related Work

3.1. Oracles in Academic Literature
3.2. Software Patterns
3.3. Smart Contract enhanced SLAs

. Theoretical Considerations

4.1. Application Domain

41.1. People
41.2. Organizational Systems
41.3. Technology

4.2. Problem identification
42.1. General Challenges towards Digital Services
422, Challengesof SLAs.

4.3. Specification of Design Objectives
4.3.1. Motivation for Blockchain Usage

. Development of the Artifact

5.1. Scopeof the Prototype

5.2. Design of the Prototype
52.1. Functional Requirements
522. DesignDecisions
5.2.3. Entities of the Prototype

5.3. Implementation of the Prototype
53.1. Structure of the Smart Contracts
5.3.2. Implementation of the Oracle as a State Channel
5.3.3. Realization of the Web Frontend
5.3.4. Technology Selection
5.3.5. Fulfillment of Functional Requirements

. Evaluation of the Artifact

6.1. Design of the Evaluation
6.2. Functional Evaluation
6.2.1. Findings from a Customer’s Perspective
6.2.2. Findings from a Provider’s Perspective
6.3. Technical Evaluation
6.4. Critical Review of the Application
6.4.1. Quantitative Application Evaluation
6.4.2. Qualitative Application Evaluation

24
24
25
25

28
28
28
29
31
32
32
34
37
37

41
41
41
41
45
47
47
47
48
49
49
50

Contents

7. Result
7.1. Discussion
7.2. Answers to the Research Questions . .
73. Conclusion
7.4. Implications and Outlook

A. Appendix
Al UseCases
A.2. Architecture of the Web Frontend . . .
A.3. Screenshots of the Web Frontend
A.4. Architecture of the Smart Contracts . .
A.5. Sequence Diagrams
A.5.1. UC1: Browse Service Offerings .
A.5.2. UC2: Order a Service
A.5.3. UC3: Handle Service Payment .
A5.4. UC6: Terminate Service Contract

Acronyms
List of Figures
List of Tables

Bibliography

60
60
62
64
65

67
68
69
70
73
74
74
75
76
77

78

79

80

81

Vi

1. Introduction

1.1. Motivation

The blockchain is a technology on a quest for enriching its scope of application that
exceeds its initial creation for cryptocurrencies. During the decade since its inception,
there has been numerous research and practical experiments to identify potential use
cases for the decentralized ledger of transactions, which enables trustworthy interaction
among its users and tamper-proof digital assets [93].

The blockchain achieves these features by combining multiple advances in computer
science (e.g., Merkle trees, distributed systems, and cryptography). It forms a unique
data structure of cryptographically linked blocks that contain verifiable transactions
of digital assets. The network employs a consensus mechanism to agree on a single
version of the data, thereby preventing manipulation and double-spending of assets.
[75]

Newer blockchain implementations enable smart contracts. A smart contract is
program code, that is stored and executed on the blockchain. This code can specify
contractual obligations and fulfill them by transferring digital assets (e.g., cryptocurren-
cies), thus allowing entities to form relationships by deploying code on the blockchain.
When specified conditions are met, the obligations can automatically be fulfilled. [10]
Researchers from the field of Information Systems (IS) explore the blockchain’s potential
of distributed data storage and code execution to alter and support existing business
processes, enable new business models and facilitate service provision [93, 111].

The possibility of automated fulfillment of obligations enabled by smart contracts
attracts legal scholars to the blockchain technology, who research the legal potential of
this code as a supplement of traditional contracts or replacement thereof [62].

We are interested in the combination of these two domains (IS and legal) and research
the capability of blockchain technology for Service Level Agreement (SLA) in digital
services. We chose this topic as we assume a good fit between smart contracts and SLAs.
We examine challenges towards SLA of digital services and employ smart contracts to
solve them.

To examine the feasibility of this solution, we apply Design Science Research (DSR)
[81] by designing and implementing a prototypical, blockchain-based application. It
facilitates contractual fulfillment of obligations of SLA and supports the underlying

1. Introduction

business processes of an exemplary hosting provider. We then evaluate this prototype
based on functional and technical expert interviews and gain knowledge about the
applicability of blockchain technology for the domain of SLA in digital services.

1.2. Research Questions

In this thesis, we seek to answer the following four research questions.

RQ1: How can smart contracts support SLAs of digital services?

To find possibilities for support, we conduct a literature review on general issues with
digital services, analyze challenges of SLAs and examine the capabilities of smart
contracts. Based on this fundamental knowledge, we identify possible ways of smart
contracts to enable SLAs.

RQ2: How can required information about service performance be made
available to smart contracts?

The execution of SLAs relies on information about the service performance, which
needs to be transferred to smart contracts on a blockchain. It is an enclosed network
that requires particular applications (so-called oracles) to access external information.
We perform a literature review on the current state of transferring data to a blockchain,
determine the characteristics of oracles, and analyze existing oracles as guidance for
our implementation.

RQ3: What are approaches for the design and development of a
blockchain-based application which supports SLAs of digital services?

The innovative technological concepts of the blockchain (esp., smart contracts, oracles,
state channels) require different approaches to software design and development than
established technologies. Its distributed nature demands suitable architectures, tools,
and technologies.

We examine the status quo of design and development approaches based on available
academic literature and publications of the blockchain community. We apply the gath-
ered information to design and develop a prototypical, blockchain-based application to
support SLAs of digital services.

1. Introduction

RQ4: How feasible is the prototypical application for supporting SLA of
digital services?

We perform a functional and technical evaluation by interviewing experts to evaluate
the practicability and technical implementation of the blockchain-based application.
Additionally, we critically review the application by measuring system parameters (e.g.,
latency, cost of use) and identifying limitations of the application.

1.3. Research Method

DSR seeks to answer questions of a problem domain by generating knowledge from the
creation and evaluation of an innovative artifact that provides a possible solution [45,
81]. In IS research, typical artifacts are models, methods, and prototypical systems [45].
This thesis follows the Design Science Research Methodology (DSRM) of Peffers et
al. [81] (see Figure 1.1). Its nominal process sequence consists of six process steps,
beginning with the problem identification and motivation followed by an iterative
process of objective definition, design and development, demonstration, evaluation,
and communication. The methodology can be entered from different research points.

The applied DSRM process of this thesis started with the identification of digital service
SLA challenges and their importance, followed by the definition of solution objectives.
We iterate three times through the design, development, demonstration and evaluation
stages to conceive a prototypical, blockchain-based application and communicate our
findings in this thesis.

Problem Identification and Motivation

The activities in this process step overlap with the ones describes for the first research
question. We present the problem domain of this DSR and conduct a literature review
to identify and motivate problems of digital services and of their SLAs.

Objective of the Solution

We examine the capabilities of smart contracts in this process step and thus perform
the other activities of the first research question. Based on this examination, we define
the objectives of a solution to the previously identified problems.

1. Introduction

Process Iteration

Identify > ‘Delline > Design & Demonstration > Evaluation > Communication
Problem Objectives of Development P
& Motivate a Solution 23 y . 3 Observe how >0
)) 3 > Aot 2 Find suitable 3 % effective, g §: Scholaﬂy
Nominal process Define problem e What would & ifa L context g3 etficient £ publications
2 at would a =
saquence Show 2 better artifact | = 2 i & g2
importance E accomplish? ¥4 Use artifact to E g lterate backto | O ¥ Professional
o solve problem g design Ppublications
g
-

Problem-
Centered

Initiation

Objective-
Centered

Solution

Design &
Development
Centered
Initiation

Client/
Context
Initiated

Possible Research Entry Points

Figure 1.1.: DSRM process by Peffers et al. [81]

Design and Development

We transfer the objectives of the solution into the application’s desired functionality by
formulating use cases. This process step relates to the activities of the second and third
research question, as we obtain guidance for the design and development of the appli-
cation from a literature review on blockchain technology. We develop the application
and provide the underlying code, Unified Modeling Language (UML) diagrams (class,
sequence, components) as documentation for the design and development process.

Demonstration

To demonstrate the developed artifact, we define a simulated environment that exhibits
the previously identified problems and apply the artifact to solve those problems.

Evaluation

This process step correlates with the fourth research question, as we evaluate the
artifact with expert interviews regarding its functionality and technical implementation.
Additionally, we critically review the artifact in two dimensions. We describe its
limitations in an qualitative evaluation and quantitatively measure parameters of the
system. The evaluations result in two iterations that restart the process at the design
and development stage. The first iteration aims at reducing the amount and thus

1. Introduction

cost of transactions and the second iteration aims at introducing a state channel as a
trustworthy oracle.

Communication

We summarize the results of this DSRM process in this thesis.

1.4. Outline

The overall structure of this thesis consists of seven chapters, including this introductory
chapter. We build the knowledge base in chapter 2 and introduce the necessary concepts
of this thesis, such as SLAs, the blockchain, and its corresponding technologies. Chapter
3 gives an overview of related work with the focus on oracles, patterns for smart
contract development and publications regarding the implementation of blockchain
technology for SLAs. We state our theoretical considerations in chapter 4 and present the
application domain of this design science research, its problems, and we specify design
objectives for the artifact. In chapter 5, we summarize the design and implementation
process and present the prototypical application. Chapter 6 concerns its evaluation and
our critical review of the implementation. We discuss our findings, present answers to
the research questions, conclude this thesis and give an outlook in chapter 7.

2. Fundamentals

This chapter introduces the important concepts of this thesis with introductions to
SLAs, the blockchain technology, smart contracts, oracles, distributed storage and
state channels. It appends the knowledge base of this research. To gain knowledge,
we prefer the study of academic literature where possible, yet also refer to websites,
discussion boards, and blogs, as the blockchain community shares its knowledge on
these mediums.

2.1. Service Level Agreements

Originating from Information Technology (IT) practice, SLAs are a widely used tool in
multiple service sectors (e.g., logistics [94], customer care [91], facility management [8],
and healthcare [3]). They are agreements between a service provider and its customer on
the content and quality of the provided service and are usually supplementing a service
contract [5]. SLAs assist the co-creation of services by declaring roles, responsibilities,
and expectations [50]. Service Level Objective (SLO) define objectives for the condition
of a service [52], by declaring expressions about SLA parameters as well as their
validity period and evaluation characteristics. These parameters are Quality of Service
(Q0S) metrics, also named Service Level Indicators SLI, that express the quality of a
service. This could be the availability of a web hosting service or a call center’s count
of served customers per hour [91]. Action guarantees describe a party’s obligation
based on preconditions [65], which connect to SLOs. To give an example, an action
guarantee defines that a provider is obliged to reimburse 15% of the service fee when
the availability is below 99.9%. Thus, the availability is a QoS metric and the expression
of "availability below 99.9%" describes an SLO. In this thesis, the term SLA refers to
SLA in digital services. We define digital services in this thesis as services, which are
performed and delivered digitally over the internet as well as require little human
involvement. We primarily focus on hosting services, such as web application or server
hosting services.

2. Fundamentals

2.1.1. Types of SLAs

Depending on the contracting parties, one differentiates between three types of SLAs
[5].

External SLAs are agreements between two independent parties, such as two inde-
pendent companies or private individuals.

Group SLAs are concluded between two companies that are part of the same cor-
porate group. While being legally independent, both companies are economically
related.

Internal SLAs constitute agreements between entities of the same corporation. These
SLAs are mostly used for internal controlling and coordination without the priority of
being legally enforceable.

2.1.2. Content of SLAs

SLAs consist of multiple provisions that belong to four categories: general, legal, service,
and management (see Figure 2.1). The provisions of an SLA differ depending on the
use case and the negotiation result of the contract parties. We present the elements of
each type of SLA provision in the following. The description of the content is based on
the publications of [5, 79, 80, 91, 102, 103].

General

The general part of an SLA includes the contracting parties, a service provider, and a
service customer. A preface describes the purpose of the SLA and the goals, which the
parties aim to achieve with the SLA. Regarding the context of the SLA, its scope, as
well as regional and organizational limits, are defined. The effective date and duration
of the agreement are set in the general section which also contains document related
information such as version number and authors.

Management

The section of an SLA concerning its management describes procedures for a variety
of actions. For the evaluation of service level compliance, the frequency, content,
and form of reports are defined. There can be different types of reports, such as
frequent reports with up-to-date information, reports with aggregated information
which summarize service quality over a more extended period and reports that are
automatically created on incidents. The SLA contains a section that describes the
reporting needs of the customer and duties of the provider in creating these reports. In
the case of service level violations, the parties agree on an escalation procedure and

2. Fundamentals

General

Management

Legal

= Contracting parties

= Purpose / Goal / Preface
= (Context

= Effective date, duration
= Version Number

» Reporting (Frequency,
Content, Types, Form)

= SLA Change Procedure

= SLA Control Procedure

= Invoicing and Payment

= Escalation Levels

= Dispute Resolution

Applicable jurisdiction
Arbitration procedure
Termination policy
Warranty

Liability
Confidentiality
Damage reimbursement

Service

Service Quality of Service Metrics
= Description / ID = Definition
= Scope = Measurement Method
= Framework / Environment |= Service Objects
= Service Levels = Customer responsibilities
= Exceptions (e.g.

maintenance)

Figure 2.1.: Content of Service Level Agreements [5, 79, 80, 91, 102, 103]

define consequences such as penalty payments. Bonuses for over-performance can also
be defined in this section. To efficiently handle disputes, the parties might include a
resolution process in the SLA that declares valid dispute types and instances for their
resolution. The management section also contains a procedure for SLA control with
provisions that regulate audits of the SLA to verify its effectiveness. This enables a
reaction to advances in technology or organizational transformations and contributes
to the long-term success of the SLA. Possible changes in the context of the SLA make
it necessary to include a change procedure that enables the parties to adjust the SLA
to new circumstances. The management section includes descriptions of the invoicing
and payment modalities.

Service

The central part of an SLA describes the underlying services with their content, SLOs,
SLIs and action guarantees. To specify the content of a service, the SLA contains a
description, lists required sub-services for its execution in addition to informing about
how the service is performed and consumed. The service’s scope is defined, and the
context of performance is specified by including necessary technical infrastructure,

2. Fundamentals

consumer obligations and basic conditions, such as the language for communication.
For specifying service quality, metrics for its quantification need to be agreed upon.
Those metrics should indicate achievement concerning the customer’s goals. It is
possible to define multiple metrics that indicate the quality of one service, such as
latency and availability to measure the performance of a web hosting service. Each
definition of an SLI is appended with a measurement method that specifies its type,
location, time and the responsible entity. This is necessary as the QoS value might
depend on the type, location and time of its measurement. Both parties need to agree
on meaningful QoS metrics and their measurement methods.

After the definition of QoS metrics, the core of the SLA contains SLOs with expres-
sions for these SLI to classify the expected quality of the service. The parties might
include exceptions to those SLOs, for example in case of regular maintenance or events
that the provider cannot account for.

The cost of the service often relates to the agreed upon SLOs. The service costs
are set according to the desired SLO and penalty, or bonus payments are specified to
accommodate for variations in the performed service quality.

Legal

Since SLAs are mostly legally binding agreements, they contain sections with legal
clauses. In those, the parties specify the applicable jurisdiction, arbitration procedures in
case of disputes and termination policies. They also describe confidentiality agreements,
warranty and liability clauses as well as provisions for damage reimbursement.

2.2. Blockchain Technology

The goal of this section is the introduction of the blockchain technology. We first define
the term blockchain before introducing two essential cryptographic concepts: hash
functions and public-key cryptography. These concepts are relevant for the subsequent
conception of a blockchain’s core processes, namely mining and consensus building.
We proceed with an overview of different blockchain technologies, the properties of
blockchains as well as potential applications.

2.2.1. Definition

A blockchain is a distributed data structure of a chronological, linked sequence of
blocks which contain transactions that are verifiable with public-key cryptography [76,
78, 93]. Participants of the peer-to-peer network validate new transactions, bundle these
in a new block and employ a consensus mechanism to append the block to the linked

2. Fundamentals

sequence. This chaining of blocks prevents modifications to existing ones and results
in an immutable distributed ledger of transactions. As there is no central authority,
the network agrees on a set of rules for its governance. These regulate the consensus
mechanism, the process for appending new blocks, the validity of transactions and how
the network and rules can adapt over time [76]. These rules, the distributed nature
of the ledger and cryptographic security allow the blockchain to replace traditional
institutions (e.g., banks) by constituting a technical institution on its own.

Similar to traditional institutions, blockchains exist in multiple forms. One differenti-
ates between permissioned and permissionless blockchains [112, 117] as well as private
versus public ones [59, 112].

The first property determines the governing entities of a blockchain. Permissionless

blockchains (e.g., Bitcoin) allow every participant to validate transactions by appending
new blocks and thereby contribute to the network. These blockchains employ consensus
mechanisms for appending blocks that ensure a correct state of past activity and prevent
manipulation by malicious nodes. [117]
In contrast, permissioned blockchains employ a central authority (e.g., a consortium)
that regulates which nodes are allowed in the consensus mechanism to validate trans-
actions by adding blocks and thereby defining the valid state of the chain. While write
access is limited, every node is still able to conduct transactions and access the whole
data set of the blockchain to retrace the validity of existing blocks. [14]

The second property refers to the access rights to a blockchain’s network, as public
blockchains allow anyone to join, while private blockchains regulate the access to their
networks [117].

2.2.2. Cryptography

Cryptography plays an essential role in its functionality by providing necessary security
features [76], especially in signing transactions and chaining blocks. Since the field of
cryptography is extending far beyond the requirements of blockchains [26], we focus
on introducing hash functions and public-key cryptography as being fundamental to
blockchain technology [76].

Hash Functions

Hash functions serve to prove the integrity of data [26]. A hash function H() receives
data x as input and transforms its content into the the hash value H(x): the fingerprint
of data x. Any modification to data x, regardless of its extent, results in a different
fingerprint with H(x) # H(x'). Thus, the integrity of data is comprehensible by
applying the hash function and comparing the resulting fingerprint with the expected

10

2. Fundamentals

one. Narayanan et al. [76] state three requirements of blockchain technology for hash
functions: collision-resistance, hiding, and puzzle friendliness. As this exceeds the
scope of this thesis, we motivate the interested reader to find definitions and example
of these requirements in [76].

Public-Key Cryptography

Public-key cryptography is a method for digital signature. An identity owns a pair of
corresponding keys: a privately held signature key and a public verification key. To
sign data, one combines it with the signature key in a signing algorithm to receive a
digital signature. Anyone is then able to verify the authenticity of data by employing a
validation function that receives the data, digital signature, and verification key. When
these inputs match, the verification of the signature is positive and proofs the signage
of data by the identity that is associated with the public key. [26]

2.2.3. Structure of a Blockchain

The above introduced cryptographic concepts are essential to the data structure of a
blockchain, which consists of blocks and therein contained transactions. The following
gives an overview of the structural elements of a blockchain, as described by Buterin
[10].

Transactions

Transactions are messages with information to change the blockchain’s state. Senders
cryptographically sign these messages, which contain transfers of cryptocurrency
or calls to smart contract functions. When a node initiates a transaction, the node
broadcasts the transaction to the entire network to add it to the pool of unprocessed
transactions.

Blocks

Mining nodes create blocks. They contain a header, a set of valid transactions from the
pool of unprocessed transactions and the most recent state after these transactions were
applied. The header includes the block number, the previous block’s hash value, the
creation timestamp and information for the consensus mechanism. The miner executes
the included transactions to migrate the previous block’s state to the current state.
After creating a block, the miner broadcasts it to the network which then validates and
accepts it based on the consensus mechanism.

11

2. Fundamentals

Blockchain

Cryptographic pointers between blocks create a blockchain. Beginning with the genesis
block, which is defined by the founder of a blockchain, each subsequent block includes
the hash value of the previous block. These hash pointers result in the fact that the
current block implicitly contains information about all previous blocks. This, any
manipulation in the blockchain results in a different hash of the current block, virtually
making the blockchain tamper-proof. [105]

2.2.4. Consensus and Mining

With the blockchain’s ledger of transactions being distributed among the network
nodes, they are required to build a consensus on the valid state of the blockchain and
its extension with new blocks. Consensus mechanisms are sets of rules to determine
which blocks to include in the blockchain.

The most notable one is the proof-of-work mechanism, which demands miners to solve
cryptographic challenges that require a massive computational effort, yet are easily
verifiable. When creating a new block, the miner includes a solution to the challenge
and, if the block is incorporated in the blockchain, receives a reward for the conducted
effort. The reward consists of transaction fees as well as the gratification for the new
block, which constitutes the creation of additional cryptocurrency, thus named mining.
The appendix of a block happens when miners accept this block as the most recent one
by mining based on it [76]. Since it is possible that multiple, valid blocks are created at
the same time and forks of the blockchain develop, the network agrees on the correct
version of the blockchain by selecting the longest one, based on the number of blocks
weighted by the complexity of their solved challenges. [105]

Other consensus mechanisms include (1) proof-of-activity, (2) proof-of-publication, as
well as (3) proof-of-stake, which is a contender to the proof-of-work mechanism of the
Ethereum blockchain. [105]

The proof-of-stake mechanism favors those validating nodes to write the next block,
which have a high stake in the success of a blockchain network. The assumption is that
nodes with high stakes are motivated to behave correctly not to devalue their own stake.
Multiple variants of proof-of-stake exist with each defining different stakes or methods,
yet regarding a node’s cryptocurrency assets is a common notion of a stake. [105]
Compared to proof-of-work with its cryptographic challenges, the benefits are reduced
energy consumption due to missing computational efforts, increased security and less
risk of mining centralization [10]. In contrast to these benefits, the mechanism poses
some issues: (1) nothing-at-stake leads to validating nodes simultaneously creating
(possibly malicious) blocks for competing forks, as mining is effortless; (2) missing

12

2. Fundamentals

transaction finality because validating nodes might secretly build own chains that
reverse transactions and (3) the random selection of the validating node, as randomness
stems from the blockchain’s content and is therefore influenced by the validating nodes
[100].

2.2.5. Characteristics of Blockchains

After introducing various vital concepts regarding blockchains, we proceed with the
characteristics of blockchain technology. The two main properties of blockchain tech-
nology are trust and decentralization. The core of blockchain technology revolves
around distributing the ledger of transactions among the network with methods for
tamper-proofing and maintaining identical versions on each node. We base the follow-
ing description of blockchain characteristics on the results of Seebacher and Schiiritz
[93], that match the publications of [19, 48, 76].

Three features establish the core principle of trust. The first one is transparency, as
transactions in the network are public, shared with all nodes and thereby simplify
the collection of information, such as the whole blockchain or individual blocks and
transactions. The integrity of data is the second feature and aims at validating this infor-
mation by employing cryptographic functions for digital signatures and manipulation
identification. As multiple nodes perform validations of the information, the integrity
of data is further secured. Related to the distributed validation is the application of a
consensus mechanism to share a common view of the blockchain’s state and tamper-
proof the data structure against malicious actors. Thus the immutability is the third trust
providing feature.

The second core principle of blockchain technology, its decentralized form, generates
three main characteristics. Blockchain technology employs public-key cryptography
to identify entities in the network, thus providing the public key as a pseudonym and
increasing privacy for participants. A second aspect of decentralization is reliability.
Miners provide the whole data structure without interruption by partial network losses,
and since the blockchain is a digital technology, it offers the potential of automated
actions to remove manual interaction and human error. A third characteristic is the
versatility of blockchain technology which allows the integration with other applications
to develop new systems.

Both core principles, trust, and decentralization supplement and require each other.
Immutability and proof-of-data integrity establish the trust required by participants
to interact and form the decentralized network cooperatively. At the same time,
the decentralization offers reliability and thereby complements trust by providing
information sharing and distributed verification of a blockchains correctness.

13

2. Fundamentals

2.2.6. Blockchain Implementations

Since the introduction of the Bitcoin blockchain, there has been ongoing development
of new blockchain technologies that offer additional features (e.g., smart contracts) or
target other audiences (e.g., businesses). We subsequently present the most important
implementations of the blockchain principle with their core features.

Bitcoin

Bitcoin [75] is the first blockchain and the foundation of this technology. It is designed
as a "peer-to-peer electronic cash systems" to solve the double spending problem of
digital currencies and created the Bitcoin cryptocurrency. The public network is open
for participation and governed by the rules of its protocol (e.g., proof-of-work). While
offering the ability to execute scripts for controlling transactions, Bitcoin does not
provide an environment for complex smart contracts.

Ethereum

The Ethereum blockchain [11] was designed to enable smart contracts with a Turing-
complete bytecode language that is compiled from high-level languages (e.g., Solidity).
These smart contracts are on-chain accounts with the ability to compute, manipulate
data and transfer ether, which is the cryptocurrency of Ethereum. The blockchain is
open to public participation and relies on the proof-of-work algorithm while transi-
tioning to proof-of-stake. Mining nodes validate new transactions and execute smart
contracts during the creation of a new block.

Corda

Corda [85] is a blockchain implementation with smart contracts similar to Ethereum.
They differ twofold: (1) Corda employs Java as the high-level language of smart
contracts, which run in a Java virtual machine and (2) the blockchain is permissioned
instead of public. The goal of Corda is the development of a blockchain following
business’ needs.

Hyperledger Fabric [14]

Hyperledger Fabric [14] implements a blockchain with smart contracts (Go language).
To address business needs, it contains certificate authorities to increase security and
provide identity proofs. These certificate authorities allow for identity management and
therefore limit the blockchain’s participants, resulting in a permissioned blockchain.

14

2. Fundamentals

2.3. Smart Contracts

With the concept of blockchains introduced in the previous section, we build upon
this knowledge by describing the blockchain’s feature of smart contracts in the subse-
quent section, beginning with their definition and followed by their opportunities and
challenges.

2.3.1. Definition

While the blockchain is fundamentally defined by a shared consensus of its correct state,
the research community and practitioners have yet to agree on a shared definition of
smart contracts [16, 22]. We approach a definition by taking into account the historical,
technical and legal perceptions of smart contracts.

The first formal mentioning and definition of smart contracts is attributed to Szabo
[98], who describes smart contracts as a "set of promises, specified in digital form,
including protocols within which the parties perform on these promises" [98].

While this definition mentions the digital form of smart contracts, Szabo [98] did
not specify their actual form. Since the development of the Ethereum blockchain,
which included smart contracts as first-world citizens, their definitions gained a more
technical perspective. Several authors regard smart contracts as software code on a
distributed ledger [22, 29, 41, 62, 64, 93, 100, 117] which is executed and computed
on the blockchain [57, 64, 69, 95, 111, 117]. Further, the processing of this code is
automated [16, 19, 22, 58, 111]. Other authors define smart contracts as distributed
state machines [27, 40] or software agents, that control digital assets, fulfill obligations
and exercise rights [16, 19].

These technical definitions are complemented by other authors, including some from
the legal domain, who apply a more legal view on smart contracts. Similar to their
paper-based predecessors, smart contracts formalize elements of a relationship [19,
93, 95, 98, 113] and constitute codified agreements [95]. The agreement is not only
enforceable Clack, Bakshi, and Braine, however, automatically executes the included
terms [15, 19, 22, 111, 113, 116] without human intervention [116] and thus represents a
self-enforcing contract [57, 113, 116]. In contrast to this definition of a self-enforcing
legal contract, Cuccuru [19] regard smart contracts not as binding agreements, but
rather as means to execute agreements. According to Frantz and Nowostawski [40], it
is possible that smart contracts do not include contractual obligations at all.

The bandwidth of definitions ranges from a technical perspective to legal notions.
Similar to the form of written text being defined by its content, as lyric verses form a
poem and obligations form a contract, the embodiment of programming code is defined
by its content as well. Thus, we argue that the inclusion of formalized contractual

15

2. Fundamentals

terms of an agreement is essential to regard code on a distributed ledger as a smart
contract. From the first definition by Szabo [98], recent technical developments [10] and
the different definitions of smart contracts presented above, we derive the following
definition:

A smart contract is distributively stored and executable code that contains
formalized contractual terms to perform agreements of a relationship.

2.3.2. Technical Concept

Following the above definition of a smart contract, we further introduce the technical
concept of their implementation on the Ethereum blockchain [10]. Being first-class citi-
zens, smart contracts are contract accounts on the blockchain. Compared to externally
owned accounts (controlled by users with private keys), they share the inclusion of a
transaction counter and their balance. Contract accounts additionally contain contract
code and storage. Validating nodes execute smart contracts in their Ethereum virtual
machine (EVM) by processing transactions with a contract account as the recipient.
These transactions contain data for the smart contract and more importantly gas, which
is required for each computational step of a smart contract. The concept of gas was
introduced to limit the code execution since every mining node in the network is
processing these smart contracts, which leads to a high computational effort. Thus,
when calling a smart contract function, it is necessary to include Ether (Ethereum’s
native cryptocurrency) in the transaction, which is then spent during the run-time of
the smart contract. When the provided gas exhausts during run-time, the computation
stops, and the transaction is not processed anymore. A transaction to a smart contract
initializes its transition from the previous contract state to the new one, with data
being written to the smart contract’s storage. During the run-time, the smart contract
performs computations according to its Turing-complete language and can interact
with other accounts by sending messages (to call other smart contracts) or transfer
Ether (to externally owned and contract accounts). The computation and data storage
features of smart contracts allow distributed applications on the Ethereum blockchain.

2.4. Oracles

Smart contracts enable complex use cases by acting based on information that is pro-
cessed within their computational logic. Therefore, the availability of this information is
crucial to the potential of smart contracts [43]. This is challenging since smart contracts
can only access and write information that is stored on the blockchain [41], which is an
enclosed network without direct interfaces to the real world. Oracles bridge the gap

16

2. Fundamentals

between the blockchain and the real-world by feeding data from outside the blockchain
to smart contracts. They are used to report events and data after the smart contract
has been programmed to allow the smart contract to react to future information. As
is the case with regular applications, the usefulness largely depends on the available
data and oracles enable smart contracts to query data similar to an API. Common other
terms for oracle include data feed [29], data carrier [77] or trigger [111].

2.4.1. Characteristics

While all oracles transfer data across the border of the blockchain network, they can
inhibit different characteristics depending on their use case.

Push / Pull Principle

Two principles exist regarding the initiation of a data transfer. With the pull principle,
an oracle reacts to a query by a smart contract and responds with the required data.
This is useful when the point in time for the demand of this data is unknown to the
smart contract developer as it allows the smart contract to query data on-demand.
When oracles apply the push principle, they provide data to the smart contract without
on-demand requests. Oracles can periodically send information to the smart contract
or notify it after an event happened. Smart contracts utilize oracles with the push
principle to react to information as soon as it is available.

Data Source

An important feature of the blockchain is its generation of trust. Since the blockchain
immutably stores all transactions, one can trust the absence of manipulation of those
transactions. Oracles provide data to smart contracts and thereby influence the compu-
tations and the resulting data that is written on the blockchain. Hence, the correctness
of the data provided by an oracle is the basis for an accurate state of the blockchain.
With use cases such as digital twins, business process automation or automatic value
transfers, malicious information on the blockchain can lead to irreversible loss of value.
The data source and its trustworthiness is therefore at the core of oracles. We sub-
sequently describe three different types of data sources that offer different levels of
trustworthiness.

Single-sourced oracles obtain their information from only one source, which needs
to be trusted not to perform maliciously. A single source can, for example, be an
information service, such as for weather data or flight data, an IoT device sending

17

2. Fundamentals

sensor data to the blockchain or a person providing information. Stakeholders of a
blockchain application that implements a single-sourced oracle need to have a high
degree of trust in the source as the provided information can lead to irreversible
transactions and potential losses.

Multi-sourced Instead of relying on a single source of information, oracles can
query multiple sources for the same data. When a majority of sources reports the
same data, the oracle sends this data to the blockchain. The distribution of information
retrieval is designed to increase the trustworthiness of data. This agreement on the
correct information is similar to blockchain nodes agreeing on the correct state of the
blockchain. Multi-sourced oracles are also called consensus-based oracles [7].

Crowd-sourced A particular form of a census-based oracle is a crowd-sourced
oracle where human participants input information. A consensus mechanism then uses
these inputs to create a single point of data about a particular subject. Crowd-sourced
oracles are useful for retrieving information that is not readily available in a digitized
form.

Architecture

Similar to regular applications, oracles exist in a centralized or decentralized archi-
tecture. Oracles running on a single node are centralized. While requiring fewer
resources and complexity, they are prone to targeted attacks and in case of failure cease
to function completely. Decentralized oracles [28] meanwhile employ multiple nodes
with connections to the blockchain and are therefore able to provide their service even
when a single node is not available. The fault-tolerance against outages increases when
the multiple nodes of an oracle access different data sources and thereby reduce the
dependency on individual data sources.

2.4.2. Limitations

While oracles are the core infrastructure for complex smart contract use cases, several
limitations exist. First and foremost, the information delivered by an oracle needs to be
correct. The processing of false information in smart contracts is a high risk because
the result of the processing can lead to the false on-chain representation of real-world
events, thus resulting in losses by transactions that are not reversible. Oracle providers
use different methods to establish trustworthiness. One method is by providing their
code open source for increasing transparency into the operating mode of the oracle.
Another method is an incentive system that motivates oracles to provide correct data

18

2. Fundamentals

Name Architecture Data Source Special features

Chainlink Decentralized Multiple Sources Reputation system

Eventum Decentralized Crowd-sourced

Oraclize Centralized Single Source TLSNotary proof for data authenticity
RealityKeys Centralized Single Source Supports Bitcoin

SchellingCoin Decentralized Crowd-sourced No off-chain components

Town Crier Centralized Single Source Intel SGX proof for authenticity

Table 2.1.: Overview and characteristics of oracle services

by introducing financial rewards and penalties. A third option is the deployment of
technical measures to prove that the data is authentic and has not been manipulated
by the oracle [99, 118]. Aside from the oracle, the source of information needs to
be trustworthy as well. That is because even if the oracle proofs the authenticity of
data, the source is still able to influence smart contract computation by delivering
false information. The use of multiple sources decreases the required trust in a single
source but does not guarantee the correctness of data as multiple concluding sources
can form a census on incorrect information [12]. Kothapalli and Cordi [56] show the
vulnerability of multiple sources to bribery attacks that efficiently change the outcome
to their preferences.

2.4.3. Oracle Services

In the following, we present multiple oracle services (see Table 2.1). The main char-
acteristics of oracles are their architecture and the source of information. Additional
characteristics are technologies for increased security and trustworthiness as well as
reputation or reward systems that motivate honest behavior. Common to these oracle
services is the pull-principle: they provide data on demand instead of autonomously
pushing it to the blockchain.

Chainlink

Chainlink is a decentralized, multi-sourced oracle with nodes that retrieve information
from API and forward this data to Chainlink’s Ethereum smart contract. These nodes
are operated by individuals that provide access to API and are paid for their service
with a special LINK token. A smart contract’s request for data is handled by multiple

19

2. Fundamentals

nodes that query multiple different sources to decrease the possibility of false informa-
tion. SLA and a reputation system are incentives for Chainlink Nodes to relay valid
information reliably. [28]

Eventum

Eventum is a decentralized, crowd-sourced oracle for the Ethereum blockchain. Users
provide information to the Eventum validation nodes, which build a consensus on the
valid data. The validation nodes relay this information to the Eventum smart contract
and store necessary data on Swarm [35]. Developers who require real-world data in
their smart contracts register this request on the Eventum smart contract and add a
reward for data providers. Eventum positions itself as a crowd-sourced oracle that is
suitable to provide all capturable real-world data. [70]

Oraclize.it

Oraclize.it is a centralized, single-sourced oracle service for web APIL. Smart contracts
query the Oraclize Contract for information and can verify that the returned data is
authentically from the source. This authenticity proof rests upon TLSNotary [101], a
technique using the TLS protocol to proof that data persisted from interaction with a
certain server. [77]

Reality Keys

Reality Keys is a centralized, single-sourced oracle service that queries information
from web API. They offer their service to the Ethereum and the Bitcoin blockchain. The
provider implemented multiple data sources to enable queries that expect binary Yes or
No answers (e.g., Did France win the 2018 World Cup?), with a public-private key par
representing each answer. After the creation of such a question, the public keys for its
answer options are published. When the answer is available, Reality Keys will publish
the private key of either the Yes or No answer, which can be used to sign a multi-sig
wallet. In case of disputes about the validity of an API’s information, they offer the
service of manually checking the data to correct the answer. [88]

SchellingCoin

SchellingCoin is a decentralized, crowd-sourced oracle with users providing the neces-
sary information. SchellingCoin builds a consensus on the information to derive one
data point and rewards those users, that contributed to that data. [11]

20

2. Fundamentals

Town Crier

Town Crier is a centralized, single-sourced oracle system that queries HTTPS-enabled
websites. Its main proposition is the serving of authenticated data from trusted websites.
By utilizing hardware conclaves (Intel SGX [49]) in their system, Town Crier attests to
tamper-free data transfer between smart contract and website. [118]

2.5. Decentralized Storage

The previous sections introduced the concepts of blockchain, smart contracts, and
oracles. These technologies cover the protocols for the distributed system, execution
of code therein and querying of information. While the blockchain is a database, its
distributed characteristics of data redundancy and slow processing times prevent it from
being a data storage solution, and smart contracts can offer only basic storage of data.
There are currently multiple solutions for decentralized data storage in development to
overcome the boundaries of on-chain storage since centralized file servers contradict
the nature of a distributed ledger and are therefore not applicable. We present three
main storage solutions for the Ethereum blockchain in the following: on-chain storage,
IPFS, and Swarm.

2.5.1. On-chain Storage

Storing data accessible to smart contracts on the Ethereum blockchain is possible in
two ways: (1) as data included in a transaction or (2) as part of a smart contract.

The first alternative allows to include arbitrary binary data into a transaction, as the
technical structure of a transaction includes a data field for smart contract calls. This
data field can be independently used for adding data to be stored in the blockchain
as part of this transaction. The retrieval of information is complex as it requires the
knowledge of the transaction identifier, or multiple ones if the data is distributed among
multiple transactions.

The second alternative employs the storage of contract accounts. Compared to data in
transactions, smart contracts allow for getter- and setter-functions to ease data access
and manipulation while also enabling rights management for data access. Another
advantage are variable types that indicate whether data is a string, integer, list or
bytecode. Hitchens [46] offers patterns for storage in smart contracts.

The advantage of on-chain storage is its low complexity as data is included on-chain
and thus trivially accessible by smart contracts.

The decentralized nature of the blockchain and its data redundancy dictates the limita-
tions, as every node stores a copy of the data structure. Any data stored in transactions

21

2. Fundamentals

or smart contracts is thus replicated among all participants of the network, leading to
huge storage demand. Didil [23] exemplify the resulting cost thereof and calculates,
that saving one kilobyte of data to the Ethereum blockchain in October 2017 would have
cost about 5 United States Dollars (USD) and one gigabyte amounts to approximately
tive Million USD.

2.5.2. InterPlanetary File System

A proposed solution to the challenges of on-chain storage is the InterPlanetary File
System (IPFS). The peer-to-peer system allows computers to share a common file system
that is accessible similar to the current web while being distributed on participating
nodes instead of central servers. Files are split into multiple blocks that are identifiable
by their fingerprint (i.e., hash value). Each node in the network stores and provides
those blocks, that are relevant for it, and offers indexes of its storage to the network. To
access a file, IPFS searches its network to find the nodes holding the necessary blocks
which then distributively deliver the file similar to BitTorrent technology. Files are
stored with their version history (comparable to Git) to provide past versions of the
content. In order to point to recent files, IPFS includes a naming system that allows
static links to changing content, similar to "https://www.tum.de" leading to the most
recent web content. The static links of this changing data can be included in smart
contracts to access the distributed data of IPFS in distributively performing smart
contracts on the blockchain. [60]

2.5.3. Swarm

Similar to IPFS, the Swarm project aims at developing a distributed storage solution
based on peer-to-peer services. Swarm distributes content among its nodes and employs
an incentive system, integrated with Ethereum blockchain, for redundant and fault-
tolerant content provisioning. The incentives are paid for storage and distribution
services and act as a "content availability insurance". The integrated naming systems
provide static links to content, which can thereby be referenced in smart contracts or
used as a traditional uniform resource identifier. [35]

2.6. State Channels

Transactions and smart contract computations on the blockchain require a fee to process,
which reimburses miners for their effort of creating new blocks. Depending on the
network’s utilized capacity and demanded fees by miners, these costs vary significantly,
with for example Bitcoin transactions costs reaching a high of 36 USD in January

22

2. Fundamentals

2018 and current (July 2018) prices of around 0.19 USD [6]. The current price for
Ethereum transactions is 0.11 USD [30]. While these fees do not severely impact
single transactions, they become relevant for blockchain-based payment systems and
distributed applications, as it is necessary to issue a high volume of transactions in both
cases, which would be impaired by the costs. A proposed solution to the high costs
of on-chain transactions are state channels [20], also called payment channels, which
allow off-chain transactions with the security features of the blockchain (i.e., prevention
of double-spending) by employing the same cryptographic functions. These off-chain
transactions work similar to banking cheques, which are a signed paper with a value
and the reference to a bank.

When two parties, Alice and Bob, agree on using a uni-directional state channel for
transactions, they initialize a smart contract with necessary logic for the channel, and
Alice transfers a deposit. To send an off-chain transaction, Alice signs the hashed
combination of a reference to the smart contract and a value with her private key and
sends the signature to Bob. Each time Alice wants to send more value (e.g., due to a
subscription to Bob), she increases the value, signs it with the contract reference and
sends the signature to Bob. When Bob decides to retrieve the value on-chain, he sends
the received signature and his signature of contract reference and value to the smart
contract, which then transfers the funds to Bob as both parties signed the value.
These state channels enable distributed applications and payment methods by reducing
the number of on-chain transactions. Aside from the above stated smart contract based
uni-directional state channel, they also exist in bi-directional and multi-participant
forms. Implementations of such state channels are the Raiden network [87] and the
Bitcoin Lightening Network [82].

23

3. Related Work

The goal of this section is to present academic literature that relates to the application of
smart contracts in the domain of SLAs. We first introduce academic works regarding the
implementation of an oracle, then depict academic contributions of Solidity software
patterns and conclude with a review of publications about smart contract enabled
service level management.

3.1. Oracles in Academic Literature

Weber et al. [111] utilize the blockchain for business process monitoring and execution.
The blockchain stores business logic, execution state, partial data and participant ac-
counts. They regard oracles as triggers that keep track of the executing process as well
as its representation on the blockchain. Weber et al. [111] implement these triggers not
as oracles that provide a wide variety of information, but as agents of an organization
which interact with specific external APIs and send updates to smart contracts in the
context of the monitored process. Triggers allow communication in both ways and
therefore inhibit the push and the pull principle.

Murkin, Chitchyan, and Byrne [73] follow a similar approach. In their peer-to-peer
electricity trading system, oracles receive energy production and consumption amounts
from electric meters and push this information to a registry on the blockchain. House-
holds trade electricity by transferring tokens over the registry smart contract. The oracle
in this system constitutes an interface for an IoT device (smart meter) to allow their
participation in the electricity market.

Another oracle implementation following the push-principle is PriceGeth developed
by Eskandari et al. [29]. An off-chain application tracks several exchange prices every
second and updates the on-chain smart contract with each new block. Eskandari et al.
[29] note that the advantage of near real-time information on the blockchain comes at
the cost of gas, rendering this an inefficient oracle.

24

3. Related Work

3.2. Software Patterns

The most common programming language for Ethereum smart contracts is Solidity.
As with other programming languages, code snippets are shared on various websites,
yet there is a lack of a solid knowledge base with best practices and proven designs.
Few publications To generate knowledge about developing Solidity, there are a few
publications that address this gap [2, 63, 109, 115].

Liu et al. [63] identified eight design patterns of the categories: creational patterns,
structural patterns, inter-behavioral patterns and intra-behavioral patterns. These
patterns include amongst others interfaces to mask contract functions, observers to
update on data changes, factories to create instances, decorators to enable the upgrade
of contracts and a multi-signature pattern to implement co-signage contracts.

Bartoletti and Pompianu [2] describe functional patterns (e.g., tokens, oracles) of smart
contracts and did not publish code examples.

Volland [109] employed the grounded theory method to derive a catalog of software
patterns from academic literature, existing smart contracts and online communication
platforms. The catalog contains 14 patterns in four sections: behavioral, security,
upgradeability and economical. Each pattern is thoroughly presented with, amongst
others, a motivation, its applicability, a sample, consequences and known usages. The
corresponding code repository contains these patterns and their examples [110].

Wohrer and Zdun [115] recognize the consequences of error-prone smart contracts due
to their permanent transfer of digital assets and thus infer the demand of software
patterns for Solidity. They contribute six security-related patterns that offer solutions to
smart contract vulnerabilities. A corresponding code repository contains code snippets
of these security patterns as well as additional patterns for Solidity [114].

3.3. Smart Contract enhanced SLAs

There have been few works on facilitating blockchain technology for SLAs. The
following describes related work which either directly implements SLAs or researches
collaborative process execution with smart contracts.

Di Pascale et al. [22] research smart contracts to support growing networks of small
cell-service providers, as mobile network operators increasingly use these providers to
gain access to radio capacities.

To approach the problem of increasing negotiation effort in the growing network,
they propose smart contract as a solution that offers automatic contract enforcement, a
trustless environment, decreased legal costs as well as quicker and cheaper transactions.

25

3. Related Work

They developed a smart contract that pays the service fee to cell-service providers
based on their delivered performance [21]. The smart contract penalizes SLA violations
by reducing the withdraw-able service fee. Acting as an oracle, the mobile network
operator supplies all relevant information to the smart contract, including the data
of providers, SLA terms, and QoS measurements. Di Pascale et al. [22] integrate a
database of cell-service providers with QoS-based service fee calculation and payment
thereof. Manual interaction by the mobile network operator is still required for the
smart contract to perform the calculations and allow providers to access their payments.

While they aim at establishing a trustless environment, the authors provide an imple-
mentation where trust is bundled in mobile network operators as they control the QoS
monitoring, the information provided to the smart contract and thereby the payout
for providers. The implementation thus lacks the goal of balancing the trust between
service participants.

Klems et al. [54] developed a prototype decentralized service marketplace with trust-
less intermediation between co-creators of IT services. They regard the dependency
on intermediaries and entry-barriers of centralized marketplaces as challenges to IT
services and propose a blockchain-based market that offers service-related processes
without a trusted third party. Their motivation for using blockchain stems from its
decentralized architecture and the potential to program rules of interaction between
service participants into smart contracts, which then execute to enforce these rules.

In their implementation [53], a service registry contract facilitates market activities
for match-making of a service provider and consumer while a service contract supports
transaction settlement with SLA calculation, payment and refund operations. IPFS
stores additional service metadata. Supporting actors monitor the Quality of Service,
relay this information to a monitoring contract which notifies the service contract
to trigger refunds on SLA violations. To decrease the amount of trust required in
supporting actors, Klems et al. [54] chose to pseudo-randomly select the single or
multiple agents which monitor a service. The implementation offers a decentralized
service marketplace that replaces intermediaries with smart contracts to automatically
enforce the rules of a service.

This thesis differs from the publication as we research digital services with the aim
of enforcing SLAs and evaluate our DSR artifact with members of the digital service
domain.

Weber et al. [111] research the blockchain’s potential for collaborative business process
monitoring and execution. While they do not specifically implement SLAs, their work is
important due to the collaborative conduction of SLA processes. Instead of integrating
a third party to build trust between process participants, they utilize the blockchain to
control the process flow, create an immutable audit trail and store shared data. This

26

3. Related Work

way, neither process party bundles disproportional trust.

Weber et al. [111] developed a translator that uses BPMN diagrams as input to create
Solidity smart contracts containing the logic of the process. The proposed system of
smart contracts is twofold, as (1) a choreography monitor watches messages and stores
the process execution state while (2) an active mediator is actively engaging in the
process execution by performing data transformations as well as sending and receiving
messages.

To interact with off-chain systems, Weber et al. [111] implement oracles, called
triggers, which relay information, query external API and update the process state of
the blockchain. These oracles are interfaces for off-chain systems with the blockchain
and are not general oracle solutions that query and API on a smart contracts demand.
The limited functionality of these triggers is justified due to their specific use case of
supporting a specific process.

The authors demonstrate the usage of blockchain technology to establish trust in
collaborative processes with mutually distrustful participants that would otherwise
require a trusted third party. They also indicate that such a use case could be limited to
public blockchains due to their high latency, cost, and privacy issues.

27

4. Theoretical Considerations

This chapter first introduces the application domain according to the structure of
A. Hevner [44]. Then, we identify and motivate challenges within that domain to
accomplish the first step of the DSRM process. In the third section, we define design
objectives for the DSR artifact to resolve these challenges, according to the second
process step of the applied DSRM.

4.1. Application Domain

The domain of SLAs for digital services consists of multiple actors that interact within
organizational systems with the support of technical systems. To narrow down the
scope of this thesis, we assume that a service is delivered by a single provider and does
not depend on other services or providers. The following description of the application
domain draws from [4, 5, 80, 104].

4.1.1. People

The people within this domain belong to two different parties: the provider and the
customer. While people within these parties inhibit different roles, responsibilities, and
skills, we forgo this detailed description and combine these characteristics on the party
level.

Provider

The people belonging to this party cooperate to provide a service. They are typically
employees of one company, such as a hosting provider. Their roles mainly are service
providing and SLA management. Their capabilities are special skills in providing such
a service, e.g., the knowledge and required skills to maintain a data center. Providing
the service is part of the provider’s business model.

Consumer

The consumer party consists of one or more people, such as a private individual or
employees of a company. Consumers lack the knowledge and skills of providing the

28

4. Theoretical Considerations

service on their own or to the same cost as offered by a provider. The consumer holds
multiple roles, such as service usage and SLA management. The economically minded
consumer desires low service costs while being willing to pay more for a better service.
When a digital service is at the core of a company’s business model, they are motivated
to pay extra for increased service quality. When consumers lack the knowledge to
provide a service on their own, they might be disadvantages in SLA negotiations with
a knowledgeable provider.

In the course of this thesis, we interchangeably use the term ‘consumer” and ’customer’
to increase textual variety.

4.1.2. Organizational Systems
Life cycle of an SLA

There are multiple stages in the life cycle of SLAs. [4, 5, 67, 92] each sort the SLA life
cycle activities into multiple stages with different levels of detail, yet their content is
similar. A brief overview of the stages and activities according to Berger [5] is given
below.

1. Definition During the first phase, the contracting parties identify suitable service
characteristics according to customer needs. This leads to the definition of the service,
its scope and the development of QoS metrics that measure the fulfillment of customer
requirements and goals. The contracting parties negotiate service levels depending
on QoS values and set penalties for the violation of service levels. For adherence or
over-performance of service levels, the parties might agree on bonuses. At the end of
the definition state, an SLA describing a service and its performance metrics have been
negotiated and agreed upon.

2. Implementation The second stage is the preparation for the service delivery and
consists of organizational, technical and staff activities that lead to the implementation
of the service according to the SLA. This includes the allocation of resources, employee
training and setting up processes for monitoring and reporting the service quality.

3. Application The consumption of the service is the third phase of the SLA life cycle.
While the service is performed and consumed, the main activities are the monitoring of
QoS metrics, the evaluation of service level compliance and the processing of violations.
Violations of SLOs lead to action guarantees as specified in the SLA. These action
guarantees depict obligations of a party. The application of an SLA is a continuous

29

4. Theoretical Considerations

cycle with the goal of controlling the service to ensure its performance according to the
SLA.

4. Control The last phase of the SLA life cycle is the evaluation of the effectiveness
and goal achievement of the SLA itself. The customer satisfaction is determined, and
both parties analyze the economic feasibility of the SLA. This is done to analyze the
efficiency and effectiveness of the defined QoS metrics, the assumptions made in the
definition phase and the impact of unforeseen changes in the environment of the SLA.
The control phase marks the end of the SLA term and could lead to an extension of the
SLA, an extension with changes or the termination of the business relationship between
the contracting parties.

Strategies

During the life cycle of an SLA, the consumer and provider cooperate to co-create the
value of the service [107]. In this cooperation, both parties pursue different strategies
to achieve their objectives.

Its business goals influence the provider’s strategy. The provider aims at delivering
the required quality of service with the lowest possible cost in order to maximize its
profit. It might even be economically viable to violate an SLA when the cost savings
exceed the contract penalty and possible subsequent damages, such as loss of the public
image. This profit-oriented strategy might lead to specific behavior patterns, including
the negotiation of vague SLAs with loopholes to avoid penalties and intentionally
delivering an overload of reporting information that exceeds the consumer’s ability
to process, which results in unrecognized SLA violations. The provider strives to
get around penalty payments by interpreting the service delivery in compliance with
requirements

A consumer aims at maximizing the proportion of the benefit of service quality and
its cost. The consumer applies SLAs to maintain that cost-to-benefit ratio. When the
quality of a service decreases and violates a defined SLO, the resulting action guarantee
simultaneously lowers the cost (e.g., by reimbursement) or offers additional benefits.
During the service delivery and application of the SLA, the consumer aims at lowering
its cost by filing complaints with the provider to receive indemnification. The consumer
improves its proportion of benefit and cost by interpreting the service delivery as
violating certain service levels. [45]

30

4. Theoretical Considerations

Legal context

Digital services operate in the legal context of their jurisdiction. This context describes
laws, regulations and best practices for digital services. Laws define the validity of SLA
terms, customer rights and procedures for arbitration and litigation. The delivery of
digital services across borders enhances the legal context for international laws and the
legislation of the respective states. This increases the complexity for arbitration and
litigation as it involves the consideration of multiple legislation. [116]

4.1.3. Technology

In the application domain of SLAs for digital services, the technical systems com-
prise of the infrastructure required for the service, applications for interaction and
communication systems for the exchange of information.

Communication Systems

Websites, electronic mail, telephony and video conferences are common technologies
for communication. A provider’s website contains information about the company
and its services, aiding the consumer in discovering a suitable provider and service.
Providers also publish nonnegotiable SLAs on their website for consumers with small
business volume which do not warrant the effort of SLA negotiations (e.g., [1, 24]).
Electronic mail, telephony, and video conference technology are utilized for personal
communication in stages such as contract negotiation, SLA application, and control.

Infrastructure

The underlying infrastructure of the communication systems is a part of this application
domain. More important however is the required infrastructure for the service delivery
and consumption. Digital services are by their nature performed in conjunction with
electronic devices, thereby rendering electrical power and its delivery systems as the
most important underlying infrastructure. The second crucial infrastructure is the
Internet with its connections, hubs, and protocols. Many digital services (e.g., server
hosting, video or music streaming, web API or communication services) rely on the
Internet to work or to add value, as a video streaming service commonly does not
work without the Internet, and a web server in a data center does not offer much value
without an Internet connection. For hosting services, in particular, a well-connected
and steadily working data center is essential. Incidents with the data center directly
affect the service provided by it and result in wrong performance measurements even
though the service (e.g., a server) works without problems.

31

4. Theoretical Considerations

Applications

Regarding the financial processes of invoicing and payment, the applications in the
domain of digital services equal those of other business relationships and mainly resort
to online banking and usage of payment providers, such as Visa or PayPal. For ordering
the services, the providers typically utilize web applications with store systems, mobile
applications or RESTful API when targeting software developers [24].

Monitoring the performance of services requires more complex applications. In-
frastructure monitoring applications (e.g., Nagios [74]) observe multiple performance
indicators of applications, servers, and networks. Other forms of monitoring are
possible as well, for example, servers regularly updating an application with their
current status or frequent bandwidth tests to determine the throughput of Internet
connections. The provider often conducts the monitoring, e.g., for media streaming
or hosting services, due to the proximity of the provider to its infrastructure and its
superior know-how. A consumer who is lacking the necessary skills to generate the
service on its own is not capable of setting up the monitoring for such a digital service.

When the consumer is not monitoring the service on its own, it requests a perfor-
mance report from the provider. The applications for this purpose are data sheets,
dashboards, web applications or notifications that attest to the compliance of service
levels.

4.2. Problem identification

In the following section, we present several challenges in the domain of SLAs of
digital services. We identified these challenges from literature. First, we describe chal-
lenges that are generally apparent in digital services. Second, we describe challenges
concerning SLAs of digital services.

4.2.1. General Challenges towards Digital Services

A general issue with business relationships is the necessary trust between partners.
Providers rely on their customers to pay the invoices while customers trust on receiving
the service in return. Uncertainties such as insolvency of a contracting party further
complicate these relationships. In case of such conflicts, SLAs and service contracts
define clauses with obligations, arbitration procedures and penalties. However, the
enforcement of these rights is not trivial.

32

4. Theoretical Considerations

Challenge Description of the challenge

Barrier to business relationships due to uncertainty of re-

C1: Online fraud turned performance

Enforcement of small disputes is waived due to misaligned

C2: Small disputes -
cost-to-benefit ratio

International relationships hindered by complexity of for-

C3: Cross-border enforcement . .
eign law and uncertainty of enforcement

Effort in SLA management might not be economically vi-

C4: SLA cost-to-benefit ratio able

C5: Cloud services Dynamic digital services challenge the current static SLA

Machine2Machine relationships require machine-usable

Ce: IoT SLA

Integrated customer view is missing due to fragmented

C7: Fragmented systems .
& Y customer-oriented processes

C8: Unclear SLA specifications Defined SLI and SLO leave room for interpretation

C9: Ineffective problem solving SLA describe effort to solve incident and not the desired
activities result

SLA are not transparent enough to analyze individual ser-

C10: SLA governs set of services . .
vice performance and optimize cost

C11: Heterogeneity of SLAs Complexity of overload of different SLA overburdens
challenges providers providers processing ability

C12: SLA management complex- SLAs effectively useless as consumers are overburdened by
ity for consumers management

C13: Performance reports de-

pend on provider Reporting on their own performance allows for fraud

C14: SLA as dead-end document SLA tend to be filed away and not used

Table 4.1.: Challenges in the domain of digital service SLA

33

4. Theoretical Considerations

C1: Online fraud

Online fraud is an issue with digital services, especially because of the global nature
of the Internet that enables transactions between unacquainted individuals. The
contractual obligations, such as payment and returned service, are separately executed
and thus exposed to fraud due to voluntary performance [19]. There is no certainty in
receiving compensation for prior performance. This uncertainty and the risk of online
fraud impede the formation of business relationships.

C2: Small disputes

An example of enforcement challenges are disputes with small claims [97]. Their
disputed amounts are less than the legal costs and the profit for lawyers is not attractive
enough for their engagement, resulting in one contractual party not receiving fair
reimbursement while the other party continues violations with no enforcement to
fear. This is observable in the flight industry. Airlines deny their customers delay
compensations and gamble on them waiving their rights as the effort for enforcement
is not proportional to the small claim amount [38]. Similar behavior is possible when
the indemnification for QoS violations is not worth the trouble of enforcing it [57].

C3: Cross-border enforcement

International services comprise another challenge to the enforcement of contracts. This
challenge intensifies with the prevalence of globalization and increasing international
trade that is enabled by the Internet [57]. Enforcing contracts in other countries requires
knowledge about the applicable law, which is mostly not available in digital service
relationships. Similar to the issue of small claims, cross-border enforcement is impaired
by the unprofitable cost-to-benefit ratio of litigation [57].

4.2.2. Challenges of SLAs

In the following section, we present problems with SLAs as described in the literature.
We structure this section into general challenges with SLAs and those per step in an
SLA’s life cycle.

General challenges

C4: Cost-to-benefit ratio A general problem with SLAs is their cost-to-benefit ratio.
[50] presents examples showing that exorbitant effort in drafting and applying an SLA
does not lead to benefits in the same order, but might impede the potential of SLAs.

34

4. Theoretical Considerations

Berger [5] supports this view and states, that SLAs might not be economically viable in
relation to their development, application and control costs.

C5: Cloud services The importance of a useful cost-to-benefit ratio is especially
apparent in today’s cloud services [61]. One of the virtues of cloud services is the
high variability of service volume to enable on-demand scaling. Manually drafting an
SLA before receiving additional service volume requires an effort that contradicts the
dynamic nature of cloud services. Buyya [13] states the need for dynamic negotiations
of SLA. Aside from the negotiation of an SLA, its application for cloud services is
also challenged by the variation of service volume. As this changes during the service
contract, the monitoring of service levels and enforcement of the SLA needs to adapt to
the variation to enable compliance for each point in time and each service [96]. The
dynamic characteristics of cloud service challenge the manual efforts in the monitoring,
reporting, and compliance checking processes [68].

Cé6: IoT Another modern technological trend is the IoT (IoT). Devices, such as
machines, sensors, utilities, are connected and communicate with each other. This
machine to machine (M2M) communication allows self-organizing capabilities among
the devices [71]. When machines not only communicate but also cooperate in service
relationships, they require methods to utilize SLAs without manual human intervention
to ensure QoS as well as to enforce the SLA [66]. The current static, legal-text oriented
SLA are not suitable for IoT and M2M technology.

C7: Fragmented systems prevent integrated customer view When providers deploy
multiple applications to communicate with customers, send invoices, handle incidents
and report service levels, they receive an imperfect view of the customer. This missing
integration of SLA management systems into customer relationship management is a
deficiency with providers [86].

Challenges in the life cycle of SLA

Multiple challenges arise during the life cycle of an SLA, which are subsequently
specified.

Definition

C8: Unclear specifications During the definition of an SLA, the involved parties
might define unclear specifications [104] that lead to interpretation disputes. As an
example, a common metric for Internet-connected services is availability. Defining

35

4. Theoretical Considerations

that the availability of the underlying service should exceed 99% is not sufficient. The
SLA should also describe what 100% means in this context, how and during which
time the measurement is made and if the outage of 1% is allowed for a single incident
or accumulated over multiple incidents with each limited to a maximum duration.
Without these specifications, the availability metric would be measured and interpreted
differently by the contracting parties and conflicts about SLA compliance would arise
during service performance.

C9: Ineffective problem-solving activities SLAs often specify an effort by the provider
instead of a certain result in case of service interruptions [104, 106]. Problem-solving

activities are declared successful if a provider invests the specified effort rather than

measuring the effectiveness of that effort. For example, when a provider restores

a network, the services on that network might need time to restart their operation,
and the problem is only effectively solved when the supported business processes are

restored. The gap between the provider’s effort and the actual problem solving is

underrepresented in SLAs [104, 106]. [5] adds that important QoS metrics and service

levels are required to address the supported business process instead of the effort by

the provider.

Application

C10: Definition for a set of services SLAs are often part of contracts for a set of
services. The associated service cost is due for the whole set, and it is not possible to
map the costs to individual service’s quality. This makes it difficult for the customer to
calculate the optimal price-performance ratio for individual services and hinders cost
management [104].

C11: Heterogeneity of SLAs challenges providers Providers offer their different ser-
vices to numerous customers with varying SLA. This heterogeneity in QoS requirements
and management of SLAs poses a complex challenge for providers which is not solvable
manually [5, 79]

C12: Consumer is overburdened by SLA As with the provider’s heterogenous col-
lection of SLAs, consumers face a similar challenge. They often use different services
from multiple providers which requires them to keep track of multiple SLAs [106]. Not
only do consumers face the challenge of managing multiple SLA; private consumers
are also most likely to lack the technical knowledge to understand technical content of
SLAs, as consumers often demand services that they cannot perform themselves. The
overburdening amount of services and lack of domain knowledge indirectly prevents

36

4. Theoretical Considerations

consumers to enforce the compliance of SLAs, therefore rendering these agreements
effectively useless for consumers.

C13: Performance reports depend on provider In order to control SLA compliance,
customers need the service monitoring data which is often generated and controlled
by the provider [102]. The customer, therefore, depends on the grace of the provider
to receive this data timely and with correct information [106] which complicates the
customer’s ability to enforce SLA compliance.

Control

C14: SLA as dead-end document After signing an SLA during service performance,
the document only becomes relevant again in case of issues, such as non-compliance.
When that happens, the content of the SLA with its technical terminology and concepts
might be difficult to understand for non-technical managers and hinder its application
[104]

4.3. Specification of Design Objectives

Based on the identified challenges, we subsequently describe design objectives for the
artifact. The main goals of the artifact are the reduction of manual effort for service
participants, the enforced fulfillment of obligations by automating SLA actions and
the enabling of machine-to-machine contract interaction. The reduction of manual
effort supports the scalability of SLAs for cloud computing. We also aim at creating a
common worldview among the service co-creators to increase transparency, establish
trust and facilitate interaction.

4.3.1. Motivation for Blockchain Usage

We motivate the use of the blockchain technology for the following design objectives
with its promising features: Weber et al. [111] indicate an increased efficiency of collab-
orative processes by employing a blockchain. This is supplemented by its "streamlined
data sharing" ability that creates a shared view on the service among service partners
[47]. The use of the blockchain as an intermediary could reduce costs of third-party
agents [108]. Kruijff and Weigand [58] describe the reduction of manual efforts with
smart contracts compared to traditional contracts. This could increase the efficiency,
speed and performance of contracts [37]. Enforcement of contractual obligations by
smart contracts could reduce the need for disputes and litigation [19].

37

4. Theoretical Considerations

Design Objective

Description of design objective

DO1: Synchronize obligation
fulfillment

Reduce risk of advanced performance by coupling obliga-
tion fulfillments

DO2: Remove enforcement costs

Reduce costs for court litigation with smart contract en-
forcement

DO3: Guarantee enforcement

Employ smart contract enforcement to reduce foreign law
unambiguity

DO4: Re-usable SLA patterns

Software patterns oriented SLA smart contract program-
ming

DO5: On-demand SLAs

Smart contracts enable SLA scaling with dynamic demand

DOG6: Enable SLA interaction
for machines

Smart contracts allow devices to sign and utilize SLAs

DO7: Integrate
oriented processes

customer-

Smart contracts integrate multiple aspects of customer-
oriented processes

DO8: Code unambiguous met-
rics

Smart contract’s need for coded service levels forces unam-
biguous metrics

DQO9: Measure incident solu-
tion effectiveness

The monitoring service measures meaningful metrics

DO10: Modularize SLA to in-
crease detail

A service in a set is represented by an own smart contract
to allow specific SLA and detailed analysis

DO11 & DO12:
SLA management

Automate

Smart contracts are deployed to trustfully monitor compli-
ance of the SLA and automate contract actions

DO13: Externally monitor per-
formance

By implementing a monitoring service, required trust is
more evenly distributed

DO14: Revive SLA by deploy-
ing as smart contract

Smart contracts execute without user interaction thus keep-
ing the SLA alive

Table 4.2.

: Design objectives for the IT artifact

38

4. Theoretical Considerations

DO1: Synchronize obligation fulfillment To counter fraud, we propose to synchro-
nize the fulfillment of obligations thus eliminating the need for one party to risk going
into advance. In a deal with an asset exchange for payment, the transfer of the asset
and the payment happen at the same time. This consideration is translated to services
by introducing a turn-by-turn system. The fulfillment of obligations approximates to a
synchronized transfer by increasing the frequency of transfers and thus reducing the
potential loss of each turn in case of non-compliance. Smart contracts are employed to
increase the frequency of transfers without increasing the effort for the contract parties.

DO2: Remove enforcement costs Smart contracts can increase efficiency in litigation
by automating the enforcement of contractual obligations. Their programmed contrac-
tual logic judges the present information to enforce the actions of an SLA. Employing
smart contracts saves the need for costly arbitration and thus lowering the barrier to
contract enforcement. We introduce the required logic for enforcement into smart
contracts.

DO3: Guarantee enforcement Similar to decreasing the costs for litigation as stated
above, smart contracts provide a shared basis of legal logic that is enforceable without
the need of international courts. As SLA partners define their obligations and actions
in a smart contract, they rely on the enforcement of their contract which is executed
independently from the cross-border law. We include provisions in the smart contract,
which reduce the need for cross-border litigation.

DO4: Re-usable SLA patterns Programmable SLAs decrease the complexity of draft-
ing SLAs by offering re-usable patterns. Comparable to software patterns, these SLA
patterns offer standardization for routine use cases. As an example, the same pattern
could be applied to monitor the availability of a web service and server hosting. We
aim at developing re-usable patterns for SLAs.

DO5: On-demand SLAs For today’s dynamic cloud services, we propose smart
contracts that scale with the service volume. The SLA terms are programmed, but
the monitoring and enforcement of obligations dynamically adapts to the number of
services.

DO6: Enable SLA interaction for machines To enable devices in the IoT to act on
their own, the smart contract SLA offers interfaces to machines [4, 89]. These interfaces
support the transfer of SLA information and allow the devices to use services that are

39

4. Theoretical Considerations

enforceable by them. We propose a smart contract that offers service interactions to IoT
devices including indemnification without human intervention.

DQO?7: Integrate customer-oriented processes For a holistic view of a customer [86],
we integrate multiple processes into the artifact by supporting sales, invoicing, perfor-
mance reporting and enforcement workflows.

DO8: Code unambiguous metrics The design objective for countering this challenge
is implied in the nature of programming SLA terms. In order to develop code that
monitors the compliance of service levels, it is necessary to define the metrics and
measurement methods unambiguously without any lack of definition.

DQO9: Measure incident solution effectiveness We propose that the smart contract
validates the effectiveness of incident solutions by measuring performance indicators
that reflect the business process and not an underlying infrastructure.

DO10: Modularize SLA to increase detail For a set of services, such as combined
web hosting and electronic mail offers, we yield the modularization of these individual
services and their SLA. The SLA enforcement of individual services offers a more
detailed analysis of each service that increases transparency for the consumer.

DO11 & DO12: Automate SLA management In order to remove complexity for both
the provider (DO11) and the consumer (DO12), we automate SLA actions and decrease
required manual tasks. Providers and consumers thereby reduce their effort with
monitoring and enforcing multiple SLAs.

DO13: Externally monitor performance By including an independent monitoring
service, or enabling a service to report its own performance, we automate the reporting
of performance data. Consumers will be able to transparently access this information
to validate the correct enforcement of an SLA [9].

DO14: Revive SLA by deploying as Smart Contract In order to increase the usage
of SLAs, we develop them as smart contracts that are executable on the blockchain.
This way, they provide the benefit of regulating the service even if they lose attention
after their negotiation.

40

5. Development of the Artifact

In the last chapter, we demonstrated the relevance of this artifact by identifying chal-
lenges of this problem domain and designed objectives for a solution to its challenges.
We follow these goals in the subsequent sections, where we draw from the knowledge
base of chapter 2 and chapter 3 to design and develop a prototypical, blockchain-based
application as the design science artifact.

5.1. Scope of the Prototype

The prototypical application is developed for a particular environment to confine its
magnitude to the capacity of this master’s thesis. We selected server hosting as an
appropriate representative for a digital service, as it matches the identified problems of
uncertain SLA enforcement, untrustworthy contract partners, the on-demand nature of
cloud computing and required service interaction between devices. Further, we define
the availability of a server as the metric for its performance. As we are IS scholars, we
do not assume to hold the legal knowledge required to assess the legal validity of the
prototype. Therefore, we exclude legal considerations in the design and development
of this artifact.

5.2. Design of the Prototype

First, we define the functional requirements for the system by describing use cases. We
then describe design decisions, construct an architecture and specify components of
the system.

5.2.1. Functional Requirements

The application has two different types of users: providers and customers. Typically for
digital services, a provider (e.g., a data center operator) offers at least one service, pro-
vides the service and manages billing and monitoring of SLA compliance. Customers
browse the offerings, buy services and pay for consumption.

We reason that SLAs and the financial aspect of their actions (e.g., violation reimburse-
ments) are entwined with other processes in the service provisioning (e.g., billing) and

41

5. Development of the Artifact

cannot exist in an application on their own. We include the user activities as mentioned
above in the application and derive the following use cases (see Figure A.1) from the
life cycle of SLAs and the specified design objectives (see Table 4.2).

UC1: Browse service offerings

Name Browse service offerings

Goal Oftered services are presented in the application

A provider generates a service portfolio by adding service
offerings to the system. These offerings are presented in a

Description .
P human and machine-readable form that allows a consumer
to gather information on services and their SLAs.
Pre-condition No pre-conditions

Connection to other
use cases

No connections

e DO4: Data model allows SLA to be re-usable

e DOS8: Machine-readable form requires unambiguous
SLA metrics

e DO10: Modularized service offerings with own SLAs

Design Objectives

UC2: Order a service

Name Order a service

Goal The system allows customers to order a service

Customers are able to order a service via the application. The
Description system processes the order, initiates a service contract and
relays necessary information to the provider.

Pre-condition The portfolio of UC1 contains service offerings.

Connection to other
use cases

No connections

42

5. Development of the Artifact

Design Objectives

e DO5: SLA are connected to on-demand orders

e DO6: System allows machines to place orders

e DO14: Order creates smart contract that implements
SLA

UC3: Handle service payment

Name

Handle service payment

Goal

Payment for the service is handled by the system

Description

The application acts as an escrow by holding consumer funds
and transferring them to the provider. It reduces the pay-
ments by the reimbursement amount, which is derived from
enforcing the SLA. Thereby, the payment is connected to
the fulfillment of contract obligations. A customer interacts
with the system to deposit the service fee and retrieve re-
funds. Providers are able to withdraw their payment from
the application.

Pre-condition

Ongoing service contract between provider and consumer

Connection to other
use cases

Includes Enforce SLA (UC4)

Design Objectives

UC4: Enforce SLA

Name

e DO1: Fulfillment of obligations is connected

e DO?7: Billing, enforcement and performance validation
are integrated

e DO11/12: The system automated the SLA enforcement
and payment

Enforce SLA

Goal

Actions defined in the SLA are automatically executed to
enforce the contract

43

5. Development of the Artifact

The system evaluates the service performance data in compar-
ison with the SLA to check compliance. Actions due to SLA

Description violations are executed and the system utilizes the herein
calculated reimbursements in the payment process to refund
the consumer.

Pre-condition System contains service performance data

Connection to other

LSe Cases Included by Handle service payment (UC3)

e DO2: The application handles enforcement without
extra cost

DO3: Enforcement is guaranteed by the application
DO6: Contracts between devices are enforced
DO11/12: No manual trigger required

DO14: SLA actively ‘lives” as part of the application

Design Objectives

UCS5: Validate service performance

Name Validate service performance
Goal Actors and the system are able to validate the service perfor-
mance
The application stores service performance data and provides
- it to internal processes as well as external actors. Consumers
Description . . .
and providers are thereby able to verify the service perfor-
mance.
Pre-condition Service performance data is monitored

Connection to other

Included by Enforce SLA (UC4)
use cases

e DO7: Performance data is integrated with other cus-
tomer information

e DO9: Monitoring includes measurement of incident
solution effectiveness

e DO13: External agents monitor the service’s perfor-
mance

Design Objectives

44

5. Development of the Artifact

UC6: Terminate service contract

Name Terminate service contract

The system terminates service contract at the end of its dura-

Goal .
tion or upon request by an actor

According to the specified end date of the service contract,
Description the system ends the contract and its supporting processes.
This can also be initiated by a provider or consumer.

Pre-condition Ongoing service contract

Connection to other
use cases

No connections

Design Objectives e DO11/12: Ending of service contract is automated

UC7: Consume service

Name Consume service

This use case is independent from the application. It is
Description included in the diagram as it is the core activity of a service
between consumers and providers.

5.2.2. Design Decisions

The characteristics of blockchain-based applications demand a specific design process.
We used the design process of Xu et al. [117] as an orientation to derive the subsequent
decisions.

On-chain / Off-chain Data Storage

The decentralized nature of the blockchain favors data integrity and reliability over
storage space, as nodes replicate the entire state of the blockchain. This affects the
design of our blockchain-based application as the storage of data on public blockchains
is limited and requires costly transactions.

The prototype’s data is twofold: (1) static data contains information about the contract,
actors, and the SLA and (2) a frequently increasing dataset includes the performance
measurements.

45

5. Development of the Artifact

For the first type of data (static), we propose on-chain storage. Storing data on the
blockchain requires an initial transaction that writes the metadata to the blockchain.
There are no numerous modifications afterward, and by saving this information on-
chain, smart contracts can access the data without requests to external data sources,
thereby increasing the speed of their functions. The storage of data in smart contract
also allows to include access management.

The second type of data in this prototype, the set of performance measurements, prolif-
erates over time. This data is required by consumers and providers to verify the service
performance, and by the prototype to check compliance with the SLA. The continuous
service monitoring in this prototype generates regular updates (e.g., per second), which
are small in size but the amount of these updates poses a high cost at 0.11 USD per
transaction (July 2018 [30]).

Off-chain storage provides a possible solution to the high amount of transactions, yet
introduces complexity into the application as data is not readily available for processing
in smart contracts.

Therefore, we decide on a compromise and employ on-chain storage of service per-
formance data by concentrating the set of measurements into a single data point for
a specified period (e.g., one day). Instead of sending multiple transactions (86,400
for a day with measurements every second) to the blockchain, we design the moni-
toring agent to aggregate all measurements over a reasonable time span into a single
value. The benefit of this single value is its small size and the reduced frequency of
transactions (e.g., one per day).

Identities and Roles

This application contains data and functions whose access should be limited to certain
roles and identities. The Ethereum blockchain employs cryptographic keys so that
a public key represents an individual. While this does not reveal the identity of a
person, it is an adequate way to identify and authorize individual blockchain accounts.
Therefore, we employ the integrated role and identity management of the blockchain to
enable access management in smart contracts by restricting access to specified identities.

Oracle for Monitoring Data

The application requires SLIs to facilitate the validation of service performance in
accordance to the SLA. Blockchain utilize oracles to retrieve information from outside
their network. Services, such as Chainlink or Oraclize.it, operate smart contracts
that can be called to query specific web APIs and return the gathered data. For the
development of this prototype, we decided to design an own oracle that provides QoS

46

5. Development of the Artifact

measurements to smart contracts.

5.2.3. Entities of the Prototype

The functionalities of the system are distributed among multiple entities, which include
the blockchain, a frontend and an agent for service monitoring.

Blockchain

The blockchain is the central part of the system as it contains the data and the program
logic. Smart contracts implement the functionality of the use cases, control access rights
of data and transfer funds between consumers and providers.

Web Frontend

The user interface of this prototype is a lightweight web frontend that interacts with
the blockchain. The frontend does not perform complex functions but merely displays
the blockchain’s data, enables submission of performance data and transactions to the
blockchain to control the smart contracts.

Monitoring Agent

The monitoring agent is a standalone application without a graphical user interface. It
only sends information to the blockchain, the provider, and the consumer and does not
perform program logic of use cases aside from its monitoring function. The agent can
also be part of the service itself, such as a daemon that runs in the background of a
hosted server.

5.3. Implementation of the Prototype

In this section, we describe the structure of the developed smart contracts, our im-
plementation of the integrated oracle and state channel, and the views of the web
frontend. We follow with presenting the selection of the employed technology and list
the implementation status of the use cases.

5.3.1. Structure of the Smart Contracts

We developed the smart contracts based on existing patterns [63, 72, 109, 114] and
separated the functionality into multiple contracts: controller, database, and logic.
Controller contracts provide constructors as well as getter and setter functions. They

47

5. Development of the Artifact

inherit logic smart contracts, which include the application’s logic and themselves
inherit the database smart contracts. The database smart contracts contain variables,
modifiers, and events.

An overview of the developed smart contracts is included in Figure A.6.

The Provider.sol smart contract implements the logic and data, that is necessary for
representing a provider on the blockchain. It contains the offered services, customers,
and their contracts as well as functions to add service offerings and to buy a service.
The "buyService" method of ProviderLogic.sol creates new instances of the Service.sol
smart contract, which represents a service contract between a provider and consumer.
This smart contract offers functions and data for contract management, verification of
service performance, SLA execution and payment.

The Hosting.sol contract includes the data model (as structs) for SLAs and service
offerings.

5.3.2. Implementation of the Oracle as a State Channel

A first implementation of the monitoring agent acted as an oracle by frequently (1-
second intervals) sending the service status to the smart contract. An evaluation of
the costs of these numerous transactions revealed that this approach is financially not
viable.

Instead, we integrated the oracle function into a state channel to enable verifiable off-
chain transactions that contain information on the service performance. The monitoring
agent generates an off-chain transaction for each turn (e.g., one day) to verifiably send
the performance data to the customer and the provider. These parties validate the data
and, when approved, sign the off-chain transaction with their identity and send it to the
other party. If the data does not match the expectations, the disapproving party does
not sign the transaction and closes the state channel with the last approved transaction
instead of entering the next turn.

The state channel closes when the signed off-chain transactions of both parties are
transmitted to the Service smart contract. This triggers the smart contract to determine
the SLA compliance, possibly execute SLA actions and transfer the resulting service fee
to the provider.

Our implementation of a uni-directional state channel differs from existing solutions
(e.g., [82, 87]), that employ state channels for off-chain cryptocurrency transfers and
offer multi-participant, bi-directional channels. The state channel in this prototypical
application enables the verifiable off-chain broadcast of monitoring data and acts as a
multi-sourced, push-principled oracle.

48

5. Development of the Artifact

5.3.3. Realization of the Web Frontend

The web frontend’s base is the App.js component. It imports the views, web3.js and
smart contract ABI. Its state contains the fundamental data for the web frontend, such
as the service offerings, active service contracts and the address for the Provider smart
contract. The App.js component connects to a blockchain node via the web3.js API
and executes calls to receive data from the Provider smart contract and Service smart
contracts based on the selected account in MetaMask. A footer displays the currently
selected account in MetaMask as well as the address of the Provider smart contract.
The navigation bar offers access to the three views, which are child components of
App.js: Home, Store, and Billing.

The Home view (see Figure A.3) is the web frontend’s landing page and contains a
brief introduction to the usage of the web application.

The Store view (see Figure A.4) gives an overview of the provider’s service offerings
and allows consumers to buy services. The displayed service offerings and their
corresponding SLAs originate from the Provider smart contract. Consumers input
the desired duration for the contract and buy the service via the "Buy"-button, that
shows the price for the selected duration and effects the "buyService" transaction of the
Provider smart contract.

The Billing view (see Figure A.5) contains information on individual service contracts
and offers the submission of monitoring data for the state channel. The top area shows
contract related information and enables the user to extend or shorten the contract
duration. The area ’'Bill Calculation” displays the compliance with the SLA for the
selected time span and lists the associated costs and refunds due to SLA actions. The
subjacent collapsible area provides input fields for the submission and validation of
off-chain transactions that include monitoring data. This is the frontend for the state
channel, which integrates the oracle.

5.3.4. Technology Selection

In this section, we present the employed technologies of this prototype for each entity.

Ethereum as Blockchain technology

We chose Ethereum [10] as a blockchain technology as it allows the deployment of
smart contracts for distributed execution of code. We selected Solidity as programming
language for smart contracts, since it is the prevailing language for Ethereum [33]. As
a development blockchain, we used the Truffle Framework that includes a simulated
Ethereum blockchain [18]. To simulate the behavior of the prototype on the Ethereum

49

5. Development of the Artifact

Mainnet, we employed the Ropsten test network with a light-syncing geth node [31].

React as Web Frontend

We developed the web frontend with the React library [36]. It allows re-usable com-
ponents and uncomplicated state management for data storage that refreshes page
content without reloading. Being based on JavaScript, the React library easily integrates
the web3js API [32] to directly communicate with Ethereum nodes or interact with
the MetaMask browser extension that handles interactions with blockchain nodes. A
Node.js server [39] hosts the React-based single-page application. Figure A.2 displays
the architecture of the web frontend with its three views (Home, Store, Billing) and
components.

Node.js as Monitoring Agent

Another use for the Node.js JavaScript runtime [39] is for the entity of the monitoring
agent. This Node.js application integrates web3js [32] to communicate with an Ethereum
node and runs without a graphical user-interface while continuously monitoring the
service performance. The monitoring agent produces simulated measurements, as the
implementation of suitable measurement methods is beyond the scope of this thesis.

5.3.5. Fulfillment of Functional Requirements

We implemented the prototype according to the functional requirements specified in
5.2.1. The core functionality of enforcing the specified SLA by deducting a reimburse-
ment from the service fee is implemented as part of a smart contract. To focus on
this core functionality, we decided to only partially implement the use cases "UC1:
Browse service offering" and "UC2: Order a service" as their missing features do not
essentially limit the potential of the prototype. The table 5.8 gives an overview on the
implemented use cases.

50

5. Development of the Artifact

Use Case Implementation status

UC1: Browse service of- Partially implemented: lacks interface for provider to
ferings add service offerings

UC2: Order a service Partially implemented: lacks provider app that handles

orders
UC3: Handle service Fully implemented
payment
UC4: Enforce SLA Fully implemented

UC5: Validate service

performance Fully implemented

UC6: Terminate service

contract Fully implemented

Table 5.8.: Status of the implementation of use cases

51

6. Evaluation of the Artifact

In this chapter, we proceed to step five in the DSRM process with the evaluation of the
developed prototypical application. The following sections present the design of the
evaluation and its results. Insights from evaluations led to two subsequent iterations of
the design and development process.

6.1. Design of the Evaluation

We design the evaluation of the artifact according to the framework of Pries-Heje,
Baskerville, and Venable [84]. Their strategic DSR evaluation framework includes three
characteristics to formulate a strategy: the timing of the evaluation (ex-ante or ex-post),
the type of the artifact (product or process) and the setting of the evaluation (artificial
or naturalistic). The artifact in this thesis is a software application, which constitutes
a product type. To evaluate the application, we first need to develop it; therefore we
choose an ex-post evaluation. Due to the simulated setting of the artifact, with its
exemplary hosting provider, the artifact needs to be evaluated in an artificial context.
Therefore, we apply an artificial ex-post strategy by evaluating in a simulated setting
after the artifact’s creation.

We base the evaluation on the criteria of Prat, Comyn-Wattiau, and Akoka [83] to
measure the artifact’s goal achievement, its utility, the applicability in its environment
and the validity of its design and development.

There are multiple methods for the evaluation of DSR artifacts, including simulations,
theoretical arguments, case studies and satisfaction surveys [42, 45, 81, 84]. Due to the
innovative nature of the blockchain-based artifact, we concede us a flexible selection
of methods to gather diverse results. This selection includes expert interviews with
demonstrations of the application [42], a review of the design and development process
[83] and our critical review that includes quantitative system measurements and a
qualitative evaluation [81].

52

6. Evaluation of the Artifact

6.2. Functional Evaluation

We evaluate the artifact by interviewing experts in the domain of digital services. The
following section depicts the interviews with an expert in the role of a customer, and
an expert in the role of a provider of digital services.

6.2.1. Findings from a Customer’s Perspective

We evaluate the artifact from the customer’s viewpoint by interviewing Mr. Kauk, an IT
Business Analyst in a global industrial company with around 1,900 employees, where
he oversees IT service contracts. The following information is based on the interview
[51].

We first validated our theoretical considerations (see Table 4.1) and found support
for multiple challenges, which are indicated in the following with their number in
parentheses. During service delivery, the customer is monitoring the performance
of services for two reasons: (1) to quickly identify and solve possible problems and
(2) to verify the performance of the service, as those measurements are otherwise
held by the provider (C13). When performance issues occur, the customer decides on
whether to enforce contractual rights from an SLA against the provider or not to. This
consideration is necessary especially for small disputes (C2), as the effort to enforce
contractual rights might not be viable in comparison to the expected reimbursement
(C4). This effort is increased as SLA documents are often forgotten after signing and
thus need to be found, understood (C8) and applied to the prevailing issue (C14). The
management of multiple SLA for multiple different services further complicates their
usage (C11).

The concept of the artifact and the demonstrated prototype offer the potential to
reduce manual effort in SLA management as the smart contract-based SLA verifies
service performance and enforces obligations on its own (DO12, DO14). This artifact
thus removes the need to consider enforcement (DO3). As the enforcement of SLA pro-
visions runs according to its predefined terms, legal support for individual incidents is
not required and the artifact thus decreases enforcement costs (DO2). The implemented
turn-by-turn based service delivery and payment reduce the risk of not receiving the
service when paying in advance (DO1) and offers an escrow-like system that establishes
trust in the provider. Another perceived benefit of the prototypical application is its
support of business growth, as the automation of SLA enforcement enables scaling of
employed digital services. This scaling is supported as the administrative efforts of
automated SLAs does not grow on the same scale as the use of digital services with
SLAs.

Despite of these benefits, the interviewee raises concerns about the practicability of

53

6. Evaluation of the Artifact

the artifact. Decision makers in companies lack the technical knowledge regarding
blockchains and associate the technology with financial gambling and marketplaces for
illegal goods. This leads to concerns about the reliability, effectiveness, efficiency and
legality of this artifact. To gain the trust-establishing benefits of the blockchain, they
would rather commission an external escrow service and employ bank transfers instead
of cryptocurrency transactions. The SLA of this prototype, with its reimbursements
as SLA actions, limits the usability of the artifact. These reimbursements do not cover
damages that arise from ineffective digital services that fail to support their business
process and thus impact the customer’s business. Therefore, the artifact is limited to
digital services with low associated risks.

Aside from the practicability of the artifact, its web frontend poses a suitable interface
that intuitively allows to order services and verify their performance. The area where
customers submit monitoring data is too complicated for users due to the required
input value. Aside from these complex inputs, the knowledge requirements of using a
blockchain-based application could be supplied to users with appropriate training.

6.2.2. Findings from a Provider’s Perspective

We evaluated this artifact from a provider’s perspective with Mr. Dillinger, a self-
employed, small provider of root servers, virtual servers and web hosting space with
about 200 customers. The following information is based on the interview [25].

Several identified challenges (see Table 4.1) received recognition in the interview.
Disputes about service performance require an administrative and legal effort, that does
not always relate to the acclaimed value. Thus, the enforcement of an SLA might not
be economically viable for the provider (C4), which especially holds true for services
with a small marginal return (C2). Some customers are technically not knowledgeable
enough to monitor the performance of their service and depend on measurements of
the provider. This delivery of information is an additional effort for the provider (13).
To ease the own administrative effort, the provider employs similar SLAs for the offered
services (C11). While there has not been a severe legal dispute with international
customers yet, the provider operates under legal uncertainty about his rights and
enforcement possibilities abroad (C3).

The provider positively regards the automatic SLA enforcement of the artifact, as
this could remove enforcement costs and enable the application of SLAs for service
with small marginal returns (DO2). The on-demand nature of the prototype’s SLA
enforcement could enable short-term services, such as dynamic cloud computing
(DO5), as the automatic application of SLA provisions reduces the manual effort for
SLA management (DO11). As the use case of ordering a service is implemented within
a smart contract, it allows devices to order services autonomously (DO6), which could

54

6. Evaluation of the Artifact

further support automatic scaling of services. The prototype’s integration of billing and
SLA reimbursement supports the unification of these data points into a single view
(DO7).

Aside from the implementation of the design objectives as described above, the
interview showed other benefits of the artifact. Some of the provider’s customers
appreciate privacy and would prefer the payment with cryptocurrencies instead of
PayPal or bank transfers. The blockchain-based application could reduce administrative
work of the provider in regards to customers, that tend to abuse the SLA by repeatedly
tiling unsubstantiated claims of lacking service performance with the provider. These
claims need to be addressed by the provider with proof of service performance. This
effort could be reduced by the artifact, as it holds the monitoring data, automatically
verifies SLA compliance and thereby proves the service performance.

Our interview partner recognized the artifact’s trust-enabling features of automated
SLA enforcement. Employing these features into the business model could allow a
novel value proposition for offering SLAs that are guaranteed by smart contracts.

The implemented web frontend with its store and billing view suitably offers the
functionality of a provider’s website.

The interview also highlighted issues of the blockchain-based prototype. The ar-
tifact’s turn-by-turn principle leads to a manual effort for the provider, as he must
validate the monitoring data for each service every turn (day). Instead, the provider
would prefer to hide the state channel functionality behind an interface that automat-
ically handles these transactions, as the current implementation is too complicated
and existing monitoring data might be unavailable to the web frontend. In Germany,
the turn-by-turn principle of service delivery and payment is restricted by laws that
prohibit providers to directly shut down servers on missed payments. An automated
stop of service delivery by smart contracts is thus legally not valid.

A second legal obstacle are data protection laws as data is distributed on the blockchain
and thus out of control of the provider.

Similar to the findings of the interview with a customer, the provider noted the rep-
utation of cryptocurrencies as another issue, as these currencies are often associated
with criminal activities, financial gambling and security vulnerabilities. The skepticism
against cryptocurrencies impedes the feasibility of blockchain-based applications, es-
pecially in Germany where customers prefer traditional payment methods (e.g., cash,
bank transfers).

Another problem with the blockchain is the complexity of its technology. The provider
stated missing trust in the reliability and security of the blockchain as reasons against
its use. The exchange rate fluctuations of cryptocurrencies increase the entrepreneurial
risk and lead to additional effort for the provider.

55

6. Evaluation of the Artifact

6.3. Technical Evaluation

We obtained an expert review of the technical aspects of the artifact, to evaluate
the design, development, and implementation of the prototypical, blockchain-based
application. The following insights stem from a review by a Mr. Kénig, a blockchain
developer for a software company with about 400 employees [55].

The use of blockchain technology in this artifact presents an innovative development
that allows new functionality when compared to existing IT solutions. The innovative
functionality of the artifact is the trustworthy recordkeeping of contract signing and
service performance on the blockchain, which prevents the manipulation of service
performance data. Therefore, the architecture of the artifact, with the blockchain for
data storage and application logic, and a web frontend as a user interface, present
itself suitable for this functionality. A possible improvement to the architecture could
be distributed storage (e.g., IPFS, Swarm) for storing the data. This leads to less and
smaller transactions to the Ethereum blockchain; thus reducing the costs for using the
prototype.

The selection of technology, with Ethereum as blockchain, the React framework for
the web frontend and MetaMask to interact with the blockchain, conforms to the
current state of blockchain-based applications. While MetaMask is not trivial to use,
its utilization is reasonable for this artifact. The Angular framework would have been
an equally suitable choice, allowing personal preference as a deciding factor between
both frameworks. Ethereum is the proper blockchain technology for the artifact, as it
allows smart contracts as well as tokens. Bitcoin supports neither, and the Hyperledger
blockchain allows smart contracts but lacks provisions for tokens. These tokens could be
used for an improvement of the artifact by implementing subscription-based payment
(see ERC-948 [17]) instead of requiring the user to provide a deposit.

6.4. Critical Review of the Application

The following critical review of the application consists of a qualitative and quantitative
evaluation which has been performed by the research team.

6.4.1. Quantitative Application Evaluation

Since we research the feasibility of smart contracts in this thesis and are interested in
the implications of blockchain as an architectural design choice, we focus on measuring
blockchain-related metrics. The characteristic differences of blockchains, compared to
traditional programs and databases, are the occurring monetary cost of transactions as
well as the high latency of processing due to the creation time of blocks [90]. Hence,

56

6. Evaluation of the Artifact

we measure the cost and the latency of the prototypical application to execute the use
cases, based on the interactions presented in the sequence diagrams of section A.5.
We measure the developed prototype on the Ethereum test-network Ropsten, which
offers real-world conditions similar to the Ethereum Mainnet without real costs. As a
premise, we set the price of a single unit of gas to the current average of the Ethereum
Mainnet of 3.5 Gwei (July 2018 [34]).

Cost of Execution

We observe the execution costs in units of gas, as each programmatical operation of
smart contracts costs a fixed amount of gas, which is independent of the underlying
Ethereum network. This gas amount is then multiplied by the gas price (3.5 Gwei)
to estimate the current execution cost in Ether on the Ethereum Mainnet. We finally
convert that value to USD by applying the current exchange rate (461 USD/ETH, July
2018 [34] to derive a financial value. We observe the highest costs when instantiating
new smart contracts by deploying the Provider smart contract or buying a service. The
functions of adding a new service offering to the provider smart contract and handling
the payment by adding monitoring data also incur relatively high costs due to the
data attached to their transaction. Extending or shortening the contract duration are
relatively cheap functions. Table 6.1 lists the costs per use case. These costs relate to the
characteristics of the Robsten test-network, which is publicly accessible and employs a
work-intensive proof-of-work consensus mechanism.

System Latency

We define the system latency of a use case as the duration between issuing the trans-
action to the network and receiving the receipt of the transaction being included in a
block. This is the earliest possible moment to provide feedback to a user of the system.
The deployment of a new provider smart contract instance presents the highest latency
of almost 2 minutes. Handling the service payment also display a high latency of 97
seconds. Since this use case includes two transactions, each from the provider and
consumer, its latency per transaction is comparable to the functions of extending and
shortening a service contract (53 seconds, 42 seconds). The measurement results are
displayed in Table 6.1.

57

6. Evaluation of the Artifact

Use Case Consumed gas Cost in ETH Cols;sill)l Lat;l;(c)};ui;;
UC1: Deploy provider instance 5,147,875 0.01802 $8.31 119.7
UC1: Add service offering 487,929 0.00171 $0.79 18.7
UC2: Order a service 2,729,743 0.00955 $ 4.40 24.7
UC3: Handle service payment 1,455,864 0.0051 $235 97.0
Extend contract duration 624,168 0.00218 $1.01 53.8
UC6: Shorten contract duration 492,154 0.00172 $0.79 422

Table 6.1.: Cost and latency measurement results of the prototype

6.4.2. Qualitative Application Evaluation
Limitations of the Prototype

This section presents limitations of the prototypical application, that arise due to the
defined scope of the artifact as well as the inherent characteristics of the blockchain
technology.

Limitations of SLA Integration

The prototype limits possible SLA actions to a refund of the service fee, which depends
on the reached service level. This is a minor, financial action while SLA in practice
can contain other actions (e.g., increasing workforce to resolve incidents). This action
is further limited by the employed data model which only allows the specification of
three SLOs (high, middle, low) and action guarantees (as refunds) for the two lower
SLOs (middle, low).

The applications form of SLAs limits them to the specification of the service levels
mentioned above. They do not contain the typical clauses (see Figure 2.1), such as legal
or managerial provisions.

Limitations of the Blockchain

During development, the prototypical application was deployed to a development
blockchain based on the truffle framework [18]. This Ethereum blockchain instantly cre-
ates new blocks on transactions without the latency of public blockchains. Transactions

58

6. Evaluation of the Artifact

and the processing of smart contract costs gas, which is available in an unlimited capac-
ity in this development blockchain. The low latency and missing costs are unrealistic
parameters for a distributed application.

Limitations with User Interaction

The first limitation of the prototype regarding user interaction is a core issue of the
blockchain’s use of public-key cryptography. Since individuals identify themselves
with their private key, the loss if this key is irreversible and thus restricts their access to
their assets or smart contracts. If a consumer or provider loses their private key, the
application remains in the current state, and the individual cannot control it anymore.

The implemented state channel distributed the power of providing the monitoring
data among the participants and adds safeguards so that neither provider nor consumer
can manipulate the application to their gain. While this is an advantage, the complicated
handling of the state channel limits the ease-of-use of the prototype.

Limitations of the Monitoring Agent

The implemented monitoring agent produces simulated measurements of service
performance based on the metric of server availability. This simulation of measurements
limits the practical validity of this prototype, primarily since the availability metric
offers only limited expressiveness on the performance of a server.

59

7. Result

In this chapter, we discuss the findings of this thesis, give answers to the research
questions, conclude this thesis and give an outlook for future work.

7.1. Discussion

We found multiple challenges in the problem domain of SLAs of digital services (see
Table 4.1). These relate to the possible non-fulfillment of obligations, the uncertainty of
enforcement of fulfillment, the high effort for SLA processes, the low cost-to-benefit
ratio, the lack of scalability for cloud computing and the lack of effectuation by IoT
devices. These identified challenges lead to objectives of a solution that establishes trust
among the service partners by enforcing the fulfillment of obligations in an automated
way, thus reducing the manual effort and costs associated with SLAs. The automation
of the SLA process supports the scalablility of cloud computing. Implementing an SLA
as a smart contract is a possible solution to enable contractual interaction among IoT
devices.

The implemented prototypical application utilizes smart contracts to create a perma-
nent record of service performance and fulfill obligations, thereby supporting SLA of a
digital service.

We implemented a prototypical application that effects service contracts and SLAs.
Being IS scholars, we forwent the legal validity of these contracts and agreements as we
do not presume to have substantiated legal knowledge. The uncertain legal soundness
of smart contracts as service contracts and SLAs impedes the realization of such a
blockchain-based application for service partners [25].

While the prototype demonstrates the possibility of implementing SLAs as smart
contracts, it does so in a simulated setting with a very basic SLA that neglects provisions
from real SLAs. To implement richer SLAs as smart contracts, additional research is
required to transfer legal agreements to smart contract code (such as Surden [97]) and
find unambiguous performance metrics that are interpretable by smart contracts.

With both application logic and data storage distributed in smart contracts on the
blockchain, the application withdraws from the central control of a single service party
and thus establishes trust in the execution of SLA actions and the validity of the service

60

7. Result

performance data [25, 51]. The reduced risk of obligation non-fulfillment lessens the
required trust to enter into service contracts when service performance and the chance
of legal rights enforcement are uncertain. We regard the blockchain and its smart
contracts as a useful technology to support services, where multiple parties interact
with mutual distrust. Weber et al. [111] support this assessment by indicating the
usefulness of the blockchain to support collaborative business processes.

Additionally, the prototypical application demonstrates the possibility of IoT devices to
autonomously effect service contracts that employ SLAs to enforce service quality [25,
51]. The underlying smart contracts enable this business process without manual input.

The blockchain’s benefits of establishing trust between service partners come at a

cost. As shown in Table 6.1, the execution of each use case necessitates fees to pay the
blockchain network for its service. As an example, ordering a service in our application
would incur a transaction fee of $ 4.40, which the consumer pays. While we did not
measure the execution cost of these use cases on a cloud-based application, Rimba et al.
[90] showed that the execution of their business process is two times of magnitude
more expensive with a blockchain when compared to cloud services. The calculated
cost of the prototypical application relates to its execution on a public, proof-of-work
Ethereum network. As the technical review indicates [55], other consensus mechanisms
and the use of private or commissioned blockchain networks could lower these costs
and render the application economically more feasible.
Aside from possible improvements by employing a different blockchain technology;,
the design of the prototype and its implementation with Ethereum as blockchain and
the React framework as web frontend are suitable for blockchain-based applications
[55]. The use of the MetaMask browser extension for interactions with the blockchain
follows current practice [55]. It also demonstrates a flaw of the application due to its
complex handling that expects users to possess the blockchain-related knowledge, thus
adversely influencing user experience for uninformed users [25, 51].

A second complex concept of the prototype is the implemented state channel, which
is a useful tool in need of an improved implementation with a user interface, that does
not expose the technical functionality to the user [25, 51]. The state channel requires
users to input arbitrary looking data to enable verifiable off-chain transactions. This
concept decreases the amount of required on-chain transaction to save transaction fees
on the payment handling use case of the prototype.

The state channel also serves as an oracle by transmitting off-chain transactions to
the blockchain, as these transactions include the service performance data and thus
transfer off-chain information to smart contracts. By integrating the oracle as part of the
state channel, we save on transaction fees that are usually required for oracle services.
A disadvantage of this push-based oracle is the lack of data in the web application
when desired information has not been transferred to the smart contract [25]. Using a

61

7. Result

distributed storage (e.g., IPFS, Swarm) could improve the artifact in this relation and
lower the application’s usage cost due to storing less data on the blockchain [55].
Another limiting factor of our developed application is its high latency on feedback
for user interactions. Table 6.1 shows the long duration of about 25 seconds until
a consumer receives a confirmation on buying a service. This latency stems from
the blockchain’s proof-of-work consensus mechanism and presents improvement op-
portunities for (1) accelerating the consensus mechanism and block creation as well
as (2) developing mitigation strategies to decrease the impact of latency on the user
experience.
Next to these two technical limitations, the current maturity of the blockchain tech-
nology impedes the use of smart contracts. The expert interviews [25, 51] show that
providers and customers are not ready to embrace the technology. They lack the
technical understanding and trust in the distributed system in addition to citing legal
uncertainty and currency fluctuations as issues.
These disadvantages of our blockchain-based application show existing barriers to the
practicability of employing blockchains and smart contracts for digital services.

7.2. Answers to the Research Questions

RQ1: How can smart contracts support SLAs of digital services?

Based on challenges identified within a literature review, we determined three central
concepts on how smart contracts can support the execution of SLAs. Firstly, smart
contracts can include obligations and corresponding actions in their program code. They
execute these actions based on predefined conditions. Secondly, smart contracts serve
as a data storage, that immutably stores service level information on the blockchain
for secure record keeping and traceability of service performance. Thirdly, the digital
nature and interface of smart contracts support its application for modern technologies:
the automated execution of SLAs supports the scalability needed for cloud computing,
and enables IoT devices to enter into service contracts, due to ensured fulfillment of
obligations.

Chapter 4 describes the theoretical considerations that lead to these three concepts.

RQ2: How can required information about service performance be made
available to smart contracts?

We researched information from academic literature and publications of the blockchain
community to find oracles as a technology to provide information to smart contracts
(see section 2.4). Current oracle solutions differ in characteristics of their data source,

62

7. Result

their architecture and their use of the push or pull principle. The oracle implementation
of Weber et al. [111] is described as an agent of a process participant with a predefined
flow of information to specific smart contracts. This selective, push-based solution is
suitable for the requirements from a service partner’s perspective. Thus, we follow
Weber et al. [111] and implement an oracle in our application that transmits information
to the application as ordered by a service partner (see subsection 5.3.2).

RQ3: What are approaches for the design and development of a
blockchain-based application which supports SLAs of digital services?

We evaluated multiple blockchain technologies and related work to derive information
for the design and development of our artifact (see chapter 2). We design the applica-
tion’s architecture with smart contracts for data storage and program logic in addition
to a web frontend as a user interface. This offers the benefits of distributed data storage
to create an immutable record of service performance and the distributed program
execution to ensure the exercise of an SLA. For the implementation, we select Ethereum
as blockchain technology, Solidity for smart contracts and React as the framework for
the web frontend. We enable off-chain transactions with a state channel that integrates a
push-principled, consensus-based oracle. The technical evaluation regards this selected
approach as suitable for the design and development a blockchain-based application
(see section 6.3). Chapter 5 describes the design and development of the artifact.

RQ4: How feasible is the prototypical application for supporting SLA of
digital services?

The prototypical application is feasible for supporting SLAs with smart contracts by
enabling their enforced execution, an immutable record of service performance and a
turn-by-turn system for obligation fulfillment (see subsection 6.2.2). The technological
implementation of the prototype demonstrates sound design decisions and presents
a viable blockchain-based application, that includes the innovative concepts of smart
contracts, oracles, and state channels (see section 6.3). The effectiveness of the prototyp-
ical application is reduced by its missing consideration of the legal validity of smart
contract-based SLAs in addition to the high costs and high latency of the blockchain-
based application. Further, the lack of knowledge about blockchains, fluctuations of
cryptocurrency and distrust of the blockchain further impede the practicability of the
developed artifact.

63

7. Result

7.3. Conclusion

This thesis set out to determine the feasibility of smart contracts for supporting SLAs
of digital services. We applied DSR according to the methodology of Peffers et al. [81].
Founded on a knowledge base generated from literature reviews, we identified the
following three most relevant challenges in the problem domain: (1) the uncertainty
regarding the fulfillment of obligations and enforcement of rights, (2) the low cost-to-
benefit ratio of SLAs, and (3) the lacking support of SLAs for modern technologies (e.g.,
cloud computing, IoT).

The blockchain technology provides new prospects for the secure transfer of digital
value and smart contracts that offer the enforced fulfillment of therein programmed
obligations, interfaces to machines and are more flexible than regular textual contracts.

We designed and developed a prototypical, blockchain-based application as DSR
artifact to generate knowledge on employing smart contracts for supporting SLAs of
digital services. Our viable implementation draws on the current practice of blockchain-
based applications and presents a technologically innovative artifact, which employs a
state channel as a multi-sourced oracle to enable turn-by-turn service delivery.

With our prototype, we demonstrated a possible application domain for the blockchain
technology. Our solution achieved two objectives: the first one is the automated, en-
forced fulfillment of SLA obligations to reduce the uncertainty of contract performance
and to improve process efficiency. The second objective is to equip SLAs with the re-
quired functionalities for supporting cloud computing and the IoT, meaning to improve
scalability of SLAs and enabling of contractual device interaction. Thus, the blockchain
in our prototype acts as a digital institution to facilitate service relationships in digital
service co-creation.

Additionally, the evaluation of our artifact highlighted issues with employing smart
contracts for supporting SLAs of digital services. The practicability of our blockchain-
based application is restricted by its high usage costs and its high latency, as well as
user concerns against the technology.

In conclusion, this thesis implies that the feasibility of utilizing smart contracts for
supporting SLAs of digital services is limited by the inadequate maturity of blockchain
technology and user’s scepticism. The presented use cases are valid solutions to
the problem domain. Overcoming the limitations requires (1) the improvement of
blockchain technology, (2) the training of users to generate an understanding of the
technology as well as (3) the reduction of risks of legal uncertainty and cryptocurrency
fluctuations.

64

7. Result

7.4. Implications and Outlook

The following section presents five implications for research and practice. It finished
with an outlook on the future progress of blockchain technology.

Implications

Sales argument for service providers The developed artifact in this thesis demon-
strates a unique sales argument for providers. By incorporating the trust-enabling
features of the blockchain technology and automated fulfillment of obligations of SLAs
into his business model, a provider could offer the guaranteed enforcement of SLAs as
a value proposition.

Suitable domain for future research We developed a prototypical application within
a simulated context to research the feasibility of smart contracts. To gain more insights
into the practicability of such an application, we recognize the necessity for real-world
tests. The server hosting domain of this thesis appears as a suitable testing domain for
future research as it contains technologically minded people that might hold knowledge
about blockchain technology and are interested in this innovative technology.

Further development of the artifact In this thesis, we designed and developed a
viable blockchain-based application. While our prototype is limited in its scope and
functionality (see chapter 5), its code is extensible for additional features and use cases.
The generated artifact, its design and development approach can guide researchers as
well as practitioners in their efforts to develop blockchain-based applications. Therefore,
the source code is available on GitHub [119].

Improvement of user experience An inherent issue of the technology is its complexity.
The concept of blockchains is tough to understand for peers in the IS domain and even
tougher for non-technologically minded people. Current interfaces to the blockchain
(e.g., MetaMask) require the handling of cryptographic keys and lack a standard for
interaction with distributed applications. The evaluation shows that the state channel
of our prototype is too complex for users. Hence, future research could focus on
building an intuitive user interface as layer on top of the technical concepts to reduce
the complexity for users.

Further legal research The evaluation of our artifact highlighted the experts” concerns
of the legal validity of smart contract-based SLAs,their actions and compliance with

65

7. Result

data protection laws. Therefore, we regard legal research as important future work. We
encourage legal scholars to establish a legal assessment of the blockchain technology,
especially of smart contracts and their legal status as well as the validity of their
executed actions. Future studies on translating legal text to smart contract code could
allow rich contractual actions effected the blockchain.

Outlook

The blockchain originated from solving problems related to cryptocurrencies [75]. On
its quest for applications, it evolved to feature smart contracts, which enable the exe-
cution of distributed code [10]. The blockchain technology shows promising features
to facilitate service relationships and collaborative processes. The rapid development
of blockchain technology improves its maturity and finds solutions to current prob-
lems. We are eager to follow the future progress of blockchain technology and the
accompanying development of innovative applications to see where the quest leads.

66

67

A. Appendix

A. Appendix

A.1. Use Cases

Prototype application

UC1: Browse service offerings

TS |
.—-—-""—‘—"-’—H_

UC3: Handle service p@

iinclude»

UC4: Enforce SLA\\ %
i«include»
1 F__/f' i
/ Provider

X

Consumer

/A

UCS5: Validate

service
\ performance /

UCB6: Terminate service
contract

UC7: Consume service

Figure A.1.: Designed use cases of the prototypical application

68

A. Appendix

A.2. Architecture of the Web Frontend

index.js

App.js

Home.js Store.js Billing.js
. v
g StoreCard.js g ServiceSelector.js MonthSelector.js

Vi

DayslInput.js S : Labeledinput.js

T

4

Figure A.2.: Architecture of the web frontend

69

A. Appendix

A.3. Screenshots of the Web Frontend

myHostingCompany

dApp Hosting

Please submit a valid address of a Provider Smart Contract into the footer's input field. Service offerings and their corresponding SLA are listed in the Store
view. The Billing shows information on active service contracts and offers inputs for submitting monitoring data.

Contract address 0x345ca3e014aaf5dca488057592ee47305d9b3e10
Your address 0xf17f52151EbEF6C7334FAD080c5704D77216b732

Figure A.3.: Screenshot of the Home view

70

A. Appendix

myHostingCompany Store

Store

Select a Service

Server S Server M Server L
CPU: 1vCPU CPU: 2 vCPU CPU: 8 vCPU
Memory: 2GB Memory: 4GB Memory: 16 GB
SSD: 25GB SSD: 50 GB SSD: 100 GB

Price: 2 wei/day Price: 5 wei/day Price: 10 wei/day

Goal Availability Refund
High >90%
Middle >75% 25%
Low <75% 100%
Details
SSH Key optional input 6 30 wei - Buy
Contract address 0x345ca3e014aaf5dcad488057592ee47305d9b3e10
Your address 0xf17f52151EbEF6C7334FAD080c5704D77216b732

Figure A.4.: Screenshot of the Store view

71

A. Appendix

myHostingCompany Billing

Billing

Service: Server M 8 v 0x9e1d7910a1bb953256892cb4a70b14efId0cIb76
Bill Calculation From: 04.08.2018 Until: 06.08.2018
Goal Compliance Cost Refund Sum
High 50% 5 wei 0 wei
Middle 50% 3.75 wei 1.25 wei
Low 0% 0 wei 0 wei
8.75 wei

Submit and validate Monitoring data

Please input the monitoring data (separate values with comma)

Monitoring data 99,75

Generate signed Hash

Hash 0xa484255b02ec3e912d16159d1b2e6fb747e51d0928980b84f92aaf1d2c836e76

\" 28
r 0x24376cf1bba3d1526ae57eeb127d4afa6498751de5f10132bb7844c657e89%a1a
S 0x76b19e465f3fcf1778193e4811280c05405c619866ba4a98879503d2bf09cd92

Signed by 0xf17f52151EbEF6C7334FAD080c5704D77216b732

Validate Submit to Smart Contract

Contract address 0x345ca3e014aaf5dca488057592ee47305d9b3e10
Your address 0xf17f52151EbEF6C7334FAD080c5704D77216b732

Figure A.5.: Screenshot of the Billing view

72

A. Appendix

A.4. Architecture of the Smart Contracts

Provider.sol

+getName()

+setName onlyOwner(_name)

+getProduct(_id)

+getAllContractsOfCustomer onlyOwnerOrCustomer(_customer): [*]

Service.sol

+constructor payable(_serviceld, _provider, _customer,
_monitoringAgent, _providerContract, _customerPublickey, _name,

_costPerDay, uint, _productid)
+getAvailabilityHistory onlyPartners(): [*]
+getWithdrawableForProvider onlyProvider()
+getStartDate onlyPartners()

+getEndDate onlyPartners()

+getBalance onlyPartners()

ProviderLogic.sol

Hosting

+buyService payable(_id, _customerPublicKey)
+addProduct onlyOwner(_name, _costPerDay,
_specs[4], _sla[5])

ProviderDatabase.sol

-owner: address

-monitoringAgent: address

+name: string

-customerToContracts: mapping(address —> address[*])
-customers: address[*]

-isCustomer(_person: address): bool

ServiceLogic.sol

+terminateContract onlyPartners()
+withdrawProvider onlyProvider()
-calculatePenalty(_achievedServiceQuality)

+addAvailabilityData(h, v. r, s, availabilityData[*])
+changeContractDuration onlyPartners payable(_changeDays)

ServiceDatabase.sol

-provider: address
-customer: address
-monitoringAgent: address
-providerContract: address
-costPerDay: uint
-productid: uint

-serviceld: uint

-isActive: bool

-startDate: uint

-endDate: uint

-name: string

-specs: uint[4]

-sla: uint[s]
-customerPublicKey: string
-withdrawableForProvider: uint

-availabilityHistory: uint[*]
-lastBillDate: uint

-signatures: mapping(bytes32 => address)

Figure A.6.: Diagram of solidity Smart Contracts

73

A. Appendix

A.5. Sequence Diagrams

The following presents the sequence of interactions between components of the appli-
cation for each use case in the style of UML sequence diagrams.

A.5.1. UC1: Browse Service Offerings

When a user opens the web frontend, the React component App js first queries the
count of service offerings and then requests each product. When all products have
been retrieved, App.js forwards these to its child component Store.js, which handles
the display of these service offerings in the web frontend.

sd UC1 Browse service offerings)

App.js Provider.sol Store.js

1 : countProducts()

e :

2 : countOfProducts

loop getAllProducts)

Lid= coun'tOfProducts] X
3 : getProduct(_id: uint) :

S 4

4 : productinformation

5: setStat:e(prod Lcts) '

® ® ®

Figure A.7.: Sequence diagram of use case 1: Browse service offerings

74

A. Appendix

A.5.2. UC2: Order a Service

Ordering a service is initiated by a user in the Store.js view, which triggers the deployed
Provider contract with the function buyService. The Provider contract initializes a new
Service contract for that order and continues with setting the necessary service and SLA
details. By calling the function changeContractDuration() with an attached value, the
Provider contract transfers funds to the Service contract which calculates the contract
duration based on the transmitted value and daily cost of the service.

sd

Service.sol

UC2: Order service)
Store.js Provider.sol
: 1: buyService payahle() .._E_ 2 : constructor()
: e nannan
' 3 : address
4 : setServiceDetails onlyProvider()
; 5 : setSla onlyProvider()
| 6 : changeCaontractDuration onlyPartners payableg
< e 7iendDate
8 . return Service
L L J

-

[

Figure A.8.: Sequence diagram of use case 2: Order a service

75

A. Appendix

A.5.3. UC3: Handle Service Payment

The service payment rests upon the monitoring data. Provider and consumer sign the
monitoring data in the Billing.js view of the web frontend and provide it to the state
channel via the addAvailabilityData function, which verifies that both parties agreed to
the data. The Service contract then initiates the payment to the provider by calculating
possible penalties based on the provided monitoring data. If the service performed
beneath a service level goal, the associated reimbursement penalty is deducted from the
service fee. This function implements the use cases of "Validate service performance
(UC5)" and "Enforce SLA" (UC4). After the calculation, the Service contract applies
the Withdrawal-Pattern and internally holds the payment until the provider requests a

withdrawal.
sd UC3: Handle payment)
Billing.js Service.sol : Provider %

' 1 : addAvailabilityData() :
2 : paymentToProvider()
3 : calculatePenalty()
Service.sol calculates &

: the SLA compliance and]

resulting payment to Pl
' provider based on the |.--~ '
' performance data from L '
: addAvailabilityData. The . i . ; '
: amount is kept in b 4 : withdrawProvider onlyProvider() :
| escrow for a withdrawal b
by the provider. This | || S:transfer) >
function includes UC4 : '
and UC5. ! '

e ° ¢

Figure A.9.: Sequence diagram of use case 3: Handle service payment

76

A. Appendix

A.5.4. UC6: Terminate Service Contract

The changeContractDuration function implements the termination of a service contract
by setting the end date to tomorrow and transferring the remaining funds back to the
consumer. The Billing.js view in the web frontend provides access to this function.

sd

UCGE: Terminate service contract)

Billing.js Service.sol %
: Consumer

I changeContractDuration(endDate - now +1 day)

!

!
- !
|

L 2 : transfer()
g i

3 : endDate

Figure A.10.: Sequence diagram of use case 6: Terminate service contract

77

Acronyms

DSR Design Science Research
DSRM Design Science Research Methodology
EVM Ethereum virtual machine
IPFS InterPlanetary File System
IS Information Systems

IT Information Technology

QoS Quality of Service

SLA Service Level Agreement

SLI Service Level Indicator

SLO Service Level Objective

UML Unified Modeling Language

USD United States Dollar

78

List of Figures

1.1. DSRM process by Peffersetal. [81] 4
2.1. Content of Service Level Agreements [5, 79, 80, 91,102,103] 8
A.1. Designed use cases of the prototypical application. 68
A.2. Architecture of the web frontend 69
A.3. Screenshot of the Home view 70
A.4. Screenshot of the Store view L., 71
A.5. Screenshot of the Billing view 72
A.6. Diagram of solidity Smart Contracts 73
A.7. Sequence diagram of use case 1: Browse service offerings 74
A.8. Sequence diagram of use case 2: Order aservice 75
A.9. Sequence diagram of use case 3: Handle service payment 76
A.10.Sequence diagram of use case 6: Terminate service contract 77

79

List of Tables

2.1. Overview and characteristics of oracle services 19
4.1. Challenges in the domain of digital service SLA 33
4.2. Design objectives for the IT artifact 38
5.8. Status of the implementation of usecases 51
6.1. Cost and latency measurement results of the prototype 58

80

Bibliography

Amazon. CloudFront SLA. 2018. URL: https://aws.amazon.com/de/cloudfront/
sla/ (visited on 08/09/2018).

M. Bartoletti and L. Pompianu. An empirical analysis of smart contracts: platforms,
applications and design patterns. Cagliari, Italy, Mar. 18, 2017.

R. G. Berbée, P. Gemmel, B. Droesbeke, H. Casteleyn, and D. Vandaele. “Eval-
uation of hospital service level agreements.” In: International journal of health
care quality assurance 22.5 (2009), pp. 483—497. 1ssN: 0952-6862. por: 10.1108/
09526860910975599.

D. Berberova and B. Bontchev. “Design of Service Level Agreements for Software
Services.” In: Proceedings of the International Conference on Computer Systems and
Technologies and Workshop for PhD Students in Computing. Ed. by B. Rachev. New
York, NY: ACM, 2009. 1sBN: 9781605589862.

T. Berger. “Konzeption und Management von Service-Level-Agreements fiir
IT-Dienstleistungen.” Dissertation. Darmstadt: TU Darmstadt, 2005.

bitcoinfeesinfo. Bitcoin Transaction Fees. 2018. URL: https://bitcoinfees.info/
(visited on 07/17/2018).

BlockchainHub. Blockchain Oracles. 2018. URL: https://blockchainhub.net/
blockchain-oracles/ (visited on 07/03/2018).

M. Braun. Ergebnisorientierte Leistungsvereinbarungen im Technischen Gebiudeman-
agement: Ergebnisorientierte Leistungsvereinbarungen im Technischen Gebiaudemanage-
ment. Saarbriicken: VDM Miiller, 2008. 1sBN: 9783836456753.

H. Brocke, F. Uebernickel, and W. Brenner. “Customizing IT Service Agreements
as a Self Service by means of Productized Service Propositions.” In: 2011 44th
Hawaii international conference on system sciences. Piscataway, N. J.: IEEE, 2011,
pp- 1-10. 1sBN: 978-1-4244-9618-1. po1: 10.1109/HICSS.2011.134.

V. Buterin. A next-generation smart contract and decentralized application platform.
2014.

81

https://aws.amazon.com/de/cloudfront/sla/
https://aws.amazon.com/de/cloudfront/sla/
https://doi.org/10.1108/09526860910975599
https://doi.org/10.1108/09526860910975599
https://bitcoinfees.info/
https://blockchainhub.net/blockchain-oracles/
https://blockchainhub.net/blockchain-oracles/
https://doi.org/10.1109/HICSS.2011.134

Bibliography

(1]

[12]

[13]

V. Buterin. SchellingCoin: A Minimal-Trust Universal Data Feed. 2014. URL: https:
//blog . ethereum . org /2014 /03 /28 /schellingcoin - a - minimal - trust -
universal-data-feed/ (visited on 07/12/2018).

V. Buterin. The Meaning of Decentralization — Vitalik Buterin — Medium. 2017. URL:
https://medium.com/@VitalikButerin/the-meaning-of-decentralization-
a0c92b76a274 (visited on 07/05/2018).

R. Buyya. “Market-Oriented Cloud Computing: Vision, Hype, and Reality of
Delivering Computing as the 5th Utility.” In: 9th IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid, 2009. Ed. by F. Cappello. Piscataway, NJ:
IEEE, 2009, p. 1. 1sBN: 978-1-4244-3935-5. po1: 10.1109/CCGRID. 2009.97.

C. Cachin. “Architecture of the hyperledger blockchain fabric.” In: Workshop on
Distributed Cryptocurrencies and Consensus Ledgers. Vol. 310. 2016.

C. D. Clack, V. A. Bakshi, and L. Braine. Smart Contract Templates: essential
requirements and design options. Dec. 15, 2016.

C. D. Clack, V. A. Bakshi, and L. Braine. Smart Contract Templates: Foundations,
design landscape and research directions. 2016.

ConsenSys. Subscription Services on the Blockchain: ERC-948 — ConsenSys Media.
2018. URL: https://media.consensys.net/subscription-services-on-the-
blockchain-erc-948-6ef64b083a36 (visited on 07/13/2018).

ConsenSys. Truffle Suite - Your Ethereum Swiss Army Knife. 2018. URL: https :
//truffleframework.com/ (visited on 07/28/2018).

P. Cuccuru. “Beyond bitcoin: An early overview on smart contracts.” In: Inter-
national Journal of Law and Information Technology 25.3 (2017), pp. 179-195. 1ssN:
0967-0769. por: 10.1093/ij1it/eax003.

M. Di Ferrante. Ethereum Payment Channel in 50 Lines of Code — Matthew Di Ferrante
— Medium. 2017. URL: https://medium. com/@matthewdif /ethereum- payment -
channel-in-50-1lines-of-code-a94fad2704bc (visited on 06/17/2018).

E. Di Pascale. SLA-solidity. 2017. URL: https://bitbucket.org/edipascale/sla-
solidity/overview (visited on 07/13/2018).

E. Di Pascale,]. McMenamy, I. Macaluso, and L. Doyle. Smart Contract SLAs for
Dense Small-Cell-as-a-Service. 2017.

Didil. Off-Chain Data Storage: Ethereum & IPFS — Didil — Medium. 2017. URL:
https://medium. com/@didil/off - chain- data- storage - ethereum- ipfs-
570e030432cf (visited on 07/17/2018).

82

https://blog.ethereum.org/2014/03/28/schellingcoin-a-minimal-trust-universal-data-feed/
https://blog.ethereum.org/2014/03/28/schellingcoin-a-minimal-trust-universal-data-feed/
https://blog.ethereum.org/2014/03/28/schellingcoin-a-minimal-trust-universal-data-feed/
https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274
https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274
https://doi.org/10.1109/CCGRID.2009.97
https://media.consensys.net/subscription-services-on-the-blockchain-erc-948-6ef64b083a36
https://media.consensys.net/subscription-services-on-the-blockchain-erc-948-6ef64b083a36
https://truffleframework.com/
https://truffleframework.com/
https://doi.org/10.1093/ijlit/eax003
https://medium.com/@matthewdif/ethereum-payment-channel-in-50-lines-of-code-a94fad2704bc
https://medium.com/@matthewdif/ethereum-payment-channel-in-50-lines-of-code-a94fad2704bc
https://bitbucket.org/edipascale/sla-solidity/overview
https://bitbucket.org/edipascale/sla-solidity/overview
https://medium.com/@didil/off-chain-data-storage-ethereum-ipfs-570e030432cf
https://medium.com/@didil/off-chain-data-storage-ethereum-ipfs-570e030432cf

Bibliography

[24] DigitalOcean. Droplet Policies and Procedures | DigitalOcean Product Documenta-
tion. 2018. URL: https://www.digitalocean.com/docs/accounts/policies/
droplet-policies/ (visited on 08/09/2018).

[25] A. Dillinger. Interview with a provider. 2018.

[26] C. Eckert. IT-Sicherheit: Konzepte - Verfahren - Protokolle. 8. Aufl. Miinchen: De
Gruyter, 2013. 1sBN: 9783486721386. por: 10.1524/9783486735871.

[27] B. Egelund-Miiller, M. Elsman, F. Henglein, and O. Ross. “Automated Execu-
tion of Financial Contracts on Blockchains.” In: Business & Information Systems
Engineering 59.6 (2017), pp. 457—467. 1ssN: 2363-7005. po1: 10.1007/s12599-017-
0507-z.

[28] S. Ellis, A. Juels, and S. Nazarov. Chainlink: A Decentralized Oracle Network. Sept. 4,
2017.

[29] S. Eskandari, J. Clark, V. Sundaresan, and M. Adham. On the feasibility of decen-
tralized derivatives markets. 2017.

[30] ETH Gas Station. ETH Gas Station. 2018. URL: https://ethgasstation. info/
index.php (visited on 07/17/2018).

[31] Ethereum Foundation. ethereum/go-ethereum. 2018. URL: https://github.com/
ethereum/go-ethereun (visited on 08/07/2018).

[32] Ethereum Foundation. ethereum/web3.js. 2018. URL: https : / / github . com/
ethereum/web3. js/ (visited on 07/28/2018).

[33] Ethereum Foundation. ethereum/wiki. 2018. URL: https://github.com/ethereum/
wiki/wiki/Programming-languages-intro (visited on 08/14/2018).

[34] Etherscan. Ethereum Charts and Statistics. 2018. URL: https://etherscan.io/
charts (visited on 08/01/2018).

[35] Ethersphere. Swarm: distributed storage platform. 2016. URL: https://github.com/
ethersphere/swarm (visited on 06/03/2018).

[36] Facebook Inc. React - A JavaScript library for building user interfaces. 2018. URL:
https://reactjs.org/ (visited on 07/28/2018).

[37] S. Farrell, H. Machin, and R. Hinchliffe. Lost and found in smart contract translation
— considerations in transitioning to automation in legal architecture. 2016.

[38] Flightright. Fluguverspitung? Jetzt Entschidigung sichern | Flightright. 2018. URL:
https://www.flightright.de/ihre-rechte/flugverspaetung-entschaedigung
(visited on 07/09/2018).

[39] N. Foundation. Node.js. 2018. URL: https : / /nodejs . org/en/ (visited on
07/28/2018).

83

https://www.digitalocean.com/docs/accounts/policies/droplet-policies/
https://www.digitalocean.com/docs/accounts/policies/droplet-policies/
https://doi.org/10.1524/9783486735871
https://doi.org/10.1007/s12599-017-0507-z
https://doi.org/10.1007/s12599-017-0507-z
https://ethgasstation.info/index.php
https://ethgasstation.info/index.php
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/web3.js/
https://github.com/ethereum/web3.js/
https://github.com/ethereum/wiki/wiki/Programming-languages-intro
https://github.com/ethereum/wiki/wiki/Programming-languages-intro
https://etherscan.io/charts
https://etherscan.io/charts
https://github.com/ethersphere/swarm
https://github.com/ethersphere/swarm
https://reactjs.org/
https://www.flightright.de/ihre-rechte/flugverspaetung-entschaedigung
https://nodejs.org/en/

Bibliography

[40]

[48]

C. K. Frantz and M. Nowostawski. “From Institutions to Code: Towards Au-
tomated Generation of Smart Contracts.” In: IEEE 1st International Workshops
on Foundations and Applications of Self-* Systems. Ed. by S. Elnikety, P. R. Lewis,
and C. Miiller-Schloer. Los Alamitos, California, Washington, and Tokyo: Con-
ference Publishing Services, IEEE Computer Society, 2016, pp. 210-215. 1sBN:
978-1-5090-3651-6. por: 10.1109/FAS-W.2016.53.

G. Greenspan. Why Many Smart Contract Use Cases Are Simply Impossible -
CoinDesk. 2016. URL: https://www . coindesk . com/three - smart - contract -
misconceptions/ (visited on 12/18/2017).

S. Gregor and A. Hevner. “Positioning and Presenting Design Science Research
for Maximum Impact.” In: Management Information Systems Quarterly 37.2 (2013),
pp. 337-355.

Z. Hess, Y. Malahov, and J. Pettersson. Aeternity Blockchain: The trustless, decen-
tralized and purely functional oracle machine. 2017. URL: https://aeternity.com/
(visited on 02/15/2018).

A. Hevner. “A Three Cycle View of Design Science Research.” In: Scandinavian
Journal of Information Systems 19.2 (2007).

A. R. Hevner, S. T. March, J. Park, and S. Ram. “Design Science in Information
Systems Research.” In: MIS Quarterly 28.1 (2004), pp. 75-105. 1ssn: 02767783.

R. Hitchens. contract development - Are there well-solved and simple storage pat-
terns for Solidity? - Ethereum Stack Exchange. 2017. URL: https : //ethereum.
stackexchange.com/questions/13167/are-there-well-solved-and-simple-
storage-patterns-for-solidity (visited on 07/17/2018).

R. Hull. “Blockchain: Distributed Event-based Processing in a Data-Centric
World.” In: DEBS’17. Ed. by Unknown. New York, New York: The Association
for Computing Machinery, 2017, pp. 2—4. 1sBN: 9781450350655. po1: 10.1145/
3093742.3097982.

R. Hull, V. S. Batra, Y.-M. Chen, A. Deutsch, F. F. T. Heath III, and V. Vianu.
“Towards a Shared Ledger Business Collaboration Language Based on Data-
Aware Processes.” In: Service-Oriented Computing. Ed. by Q. Z. Sheng, E. Stroulia,
S. Tata, and S. Bhiri. Cham: Springer International Publishing, 2016, pp. 18-36.
ISBN: 978-3-319-46295-0.

Intel Corporation. Intel SGX for Dummies (Intel SGX Design Objectives) | Intel
Software. 2013. URL: https://software.intel.com/en-us/blogs/2013/09/26/
protecting-application-secrets-with-intel-sgx (visited on 07/12/2018).

84

https://doi.org/10.1109/FAS-W.2016.53
https://www.coindesk.com/three-smart-contract-misconceptions/
https://www.coindesk.com/three-smart-contract-misconceptions/
https://aeternity.com/
https://ethereum.stackexchange.com/questions/13167/are-there-well-solved-and-simple-storage-patterns-for-solidity
https://ethereum.stackexchange.com/questions/13167/are-there-well-solved-and-simple-storage-patterns-for-solidity
https://ethereum.stackexchange.com/questions/13167/are-there-well-solved-and-simple-storage-patterns-for-solidity
https://doi.org/10.1145/3093742.3097982
https://doi.org/10.1145/3093742.3097982
https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx

Bibliography

[50]

[51]
[52]

[57]

[58]

N. Karten. “With Service Level Agreements, Less is More.” In: Information
Systems Management 21.4 (2004), pp. 43—44. 1ssn: 1058-0530. por: 10.1201/1078/
44705.21.4.20040901/84186.5

M. Kauk. Interview with a customer. 2018.

A. Keller and H. Ludwig. “The WSLA Framework: Specifying and Monitor-
ing Service Level Agreements for Web Services.” In: Journal of Network and
Systems Management 11.1 (2003), pp. 57-81. 1ssn: 10647570. po1: 10.1023/A:
1022445108617.

M. Klems. DESEMA: Prototype of a blockchain-based decentralized service marketplace.
2017. URL: https://github.com/markusklems/desema (visited on 07/13/2018).

M. Klems, J. Eberhardt, S. Tai, S. Hartlein, S. Buchholz, and A. Tidjani. “Trustless
Intermediation in Blockchain-Based Decentralized Service Marketplaces.” In:
Service-oriented computing. Ed. by E. M. Maximilien. Vol. 10601. LNCS sublibrary.
SL 2, Programming and software engineering. Cham, Switzerland: Springer,
2017, pp. 731-739. 1sBN: 978-3-319-69034-6. pOI1: 10.1007/978-3-319-69035-
3_53.

A. Konig. Technical review of the artifact. 2018.
A. Kothapalli and C. Cordi. A Bribery Framework using Smart Contrats. 2017.

R. Koulu. “Blockchains and Online Dispute Resolution: Smart Contracts as an
Alternative to Enforcement.” In: SCRIPTed 13.1 (2016), pp. 40-69. por: 10.2966/
scrip.130116.40.

J. de Kruijff and H. Weigand. “Ontologies for Commitment-Based Smart Con-
tracts.” In: On the Move to Meaningful Internet Systems. OTM 2017 Conferences.
Ed. by H. Panetto, C. Debruyne, W. Gaaloul, M. Papazoglou, A. Paschke, C. A.
Ardagna, and R. Meersman. Cham: Springer International Publishing, 2017,
pp- 383-398. 1sBN: 978-3-319-69459-7.

J. de Kruijff and H. Weigand. Towards a Blockchain Ontology. Tilburg, 2017.

P. Labs. IPFS is the Distributed Web. 2014. URL: https://ipfs.io/ (visited on
07/17/2018).

S. Leimeister, M. Bohm, C. Riedl, and H. Krcmar. “The Business Perspective of
Cloud Computing: Actors, Roles and Value Networks.” In: ECIS 2010 Proceedings
(2010).

C. Lim, T. Saw, and C. Sargeant. Smart Contracts: Bridging the Gap Between
Expectation and Reality. Oxford Business Law Blog, 2016.

85

https://doi.org/10.1201/1078/44705.21.4.20040901/84186.5
https://doi.org/10.1201/1078/44705.21.4.20040901/84186.5
https://doi.org/10.1023/A:1022445108617
https://doi.org/10.1023/A:1022445108617
https://github.com/markusklems/desema
https://doi.org/10.1007/978-3-319-69035-3_53
https://doi.org/10.1007/978-3-319-69035-3_53
https://doi.org/10.2966/scrip.130116.40
https://doi.org/10.2966/scrip.130116.40
https://ipfs.io/

Bibliography

[63]

Y. Liu, Q. Lu, X. Xu, L. Zhu, and H. Yao. “Applying Design Patterns in Smart
Contracts.” In: BLOCKCHAIN - ICBC 2018. Ed. by S. Chen, H. Wang, and L.-J.
Zhang. Vol. 10974. Lecture Notes in Computer Science. [S.L.]: Springer, 2018,
pp. 92-106. 1sBN: 978-3-319-94477-7. poI1: 10.1007/978-3-319-94478-4_7.

T. Locher, S. Obermeier, and Y.-A. Pignolet. When Can a Distributed Ledger Replace
a Trusted Third Party?

H. Ludwig, A. Keller, A. Dan, R. P. King, and R. Franck. Web Service Level
Agreement (WSLA) Language Specification. 2003.

Machina Research. Service Level Agreements in M2M and IoT. 2014. URL: https:
//machinaresearch. com/report/service-level - agreements-in-m2m-and-

iot/ (visited on 07/09/2018).

E. Marilly, O. Martinot, S. Betge-Brezetz, and G. Delegue. “Requirements for
service level agreement management.” In: 2002 IEEE workshoop on IP operations
and management. IEEE, 2002, pp. 57-62. 1sBN: 0-7803-7658-7. por: 10.1109/IPOM.
2002.1045756.

E. Marilly, O. Martinot, H. Papini, and D. Goderis. “Service level agreements:
a main challenge for next generation networks.” In: ECUMN 2002. IEEE, 2002,
pp- 297-304. 1sBN: 0-7803-7422-3. por: 10.1109/ECUMN. 2002.1002118.

J. Mendling, I. Weber, W. van der Aalst,]. Vom Brocke, C. Cabanillas, F. Daniel,
S. Debois, C. Di Ciccio, M. Dumas, S. Dustdar, et al. “Blockchains for busi-
ness process management-challenges and opportunities.” In: arXiv preprint
arXiv:1704.03610 (2017).

M. Mikeln and L. Perovi¢. Eventum: Platform for Decentralized Real-World Data
Feeds. 2018. URL: https://eventum.network (visited on 02/16/2018).

D. Miorandi, S. Sicari, F. de Pellegrini, and I. Chlamtac. “Internet of things:
Vision, applications and research challenges.” In: Ad Hoc Networks 10.7 (2012),
pp- 1497-1516. 1ssn: 15708705. por: 10.1016/j.adhoc.2012.02.016.

Monax. The Five Types Model. 2016. URL: https://github.com/monax/monax/
blob/master/docs/solidity/solidity_1_the_five_types_model.md (visited
on 05/29/2018).

J. Murkin, R. Chitchyan, and A. Byrne. “Enabling peer-to-peer electricity trad-
ing.” In: 4th International Conference on ICT for Sustainability. 2016, pp. 234-235.

Nagios. Nagios - The Industry Standard In IT Infrastructure Monitoring. 2018. URL:
https://www.nagios.org/ (visited on 08/09/2018).

S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008.

86

https://doi.org/10.1007/978-3-319-94478-4_7
https://machinaresearch.com/report/service-level-agreements-in-m2m-and-iot/
https://machinaresearch.com/report/service-level-agreements-in-m2m-and-iot/
https://machinaresearch.com/report/service-level-agreements-in-m2m-and-iot/
https://doi.org/10.1109/IPOM.2002.1045756
https://doi.org/10.1109/IPOM.2002.1045756
https://doi.org/10.1109/ECUMN.2002.1002118
https://eventum.network
https://doi.org/10.1016/j.adhoc.2012.02.016
https://github.com/monax/monax/blob/master/docs/solidity/solidity_1_the_five_types_model.md
https://github.com/monax/monax/blob/master/docs/solidity/solidity_1_the_five_types_model.md
https://www.nagios.org/

Bibliography

A. Narayanan,]J. Bonneau, E. Felten, A. Miller, and S. Goldfeder. Bitcoin and
Cryptocurrency Technologies. 2016.

Oraclize. Oraclize - blockchain oracle service, enabling data-rich smart contracts. 2016.
URL: http://www.oraclize.it/ (visited on 07/11/2018).

G. Oswald, D. Soto Setzke, T. Riasanow, and H. Krcmar. “Technologietrends in
der digitalen Transformation.” In: DIGITALE TRANSFORMATION. Ed. by G.
Oswald and H. Krcmar. Informationsmanagement und digitale Transformation.
[S.L]: Gabler, 2018, pp. 11-34. 1sBN: 978-3-658-22623-7. por: 10.1007/978-3-658-
22624-4_3.

A. Paschke and M. Bichler. “Knowledge representation concepts for automated
SLA management.” In: Decision Support Systems 46.1 (2008), pp. 187-205. 1sSN:
01679236. po1: 10.1016/j.dss.2008.06.008.

A. Paschke and E. Schnappinger-Gerull. “A Categorization Scheme for SLA
Metrics.” In: Service Oriented Electronic Commerce 80.25-40 (2006), p. 14.

K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee. “A Design
Science Research Methodology for Information Systems Research.” In: Journal of
Management Information Systems 24.3 (2007), pp. 45-77. por: 10.2753/MIS0742-
1222240302.

J. Poon and T. Dryja. Lightning Network: Scalable, Instant Bitcoin/Blockchain Trans-
actions. 2016. URL: https://lightning.network/ (visited on 07/17/2018).

N. Prat, I. Comyn-Wattiau, and J. Akoka. “ARTIFACT EVALUATION IN INFOR-
MATION SYSTEMS DESIGN-SCIENCE RESEARCH — A HOLISTIC VIEW.” In:
PACIS 2014 Proceedings (2014).

J. Pries-Heje, R. Baskerville, and J. Venable. “Strategies for Design Science
Research Evaluation.” In: ECIS 2008 Proceedings (2008).

r3 cooperation. corda: The open source blockchain for business. 2017. URL: https :
//www .corda.net/ (visited on 07/17/2018).

A. Rai and V. Sambamurthy. “Editorial Notes—The Growth of Interest in Services
Management: Opportunities for Information Systems Scholars.” In: Information
Systems Research 17.4 (2006), pp. 327-331. por: 10.1287/isre.1060.0108.

raidenNetwork. Raiden network: Fast, cheap, scalable token transfers for Ethereum.
2018. URL: https://raiden.network/ (visited on 07/17/2018).

Reality Keys. Reality Keys: Facts about the future, cryptographic proof when they come
true. 2016. URL: https://www.realitykeys.com/ (visited on 02/15/2018).

87

http://www.oraclize.it/
https://doi.org/10.1007/978-3-658-22624-4_3
https://doi.org/10.1007/978-3-658-22624-4_3
https://doi.org/10.1016/j.dss.2008.06.008
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://lightning.network/
https://www.corda.net/
https://www.corda.net/
https://doi.org/10.1287/isre.1060.0108
https://raiden.network/
https://www.realitykeys.com/

Bibliography

[91]

[92]

[93]

[94]

[95]

[96]

A. Reyna, C. Martin,]J. Chen, E. Soler, and M. Diaz. “On blockchain and
its integration with IoT. Challenges and opportunities.” In: Future Generation
Computer Systems 88 (2018), pp. 173-190. 1ssN: 0167739X. por: 10.1016/j . future.
2018.05.046.

P. Rimba, A. B. Tran, I. Weber, M. Staples, A. Ponomarev, and X. Xu. “Comparing
Blockchain and Cloud Services for Business Process Execution.” In: ICSA 2017.
Ed. by I. I. C. o. S. Architecture. Piscataway, NJ: IEEE, 2017, pp. 257-260. 1SBN:
978-1-5090-5729-0. por: 10.1109/ICSA.2017.44.

M. Schmidt. Zufriedenheitsorientierte Steuerung des Customer Care: Management von
Customer Care Partnern mittels Zufriedenheits-Service Level Standards. Wiesbaden:
Gabler, 2008. 1sBN: 978-3-8350-0917-2. po1: 10.1007/978-3-8349-9641-1.

R. Scholderer. Management von Service-Level-Agreements: Methodische Grundlagen
und Praxislosungen mit COBIT, ISO 20000 und ITIL. 2., aktualisierte und erweiterte
Auflage. Heidelberg: Dpunkt.verlag, 2016. 1sBN: 978-3-86490-397-7.

S. Seebacher and R. Schiiritz. “Blockchain Technology as an Enabler of Service
Systems: A Structured Literature Review.” In: Exploring services science. Ed. by
S. Za, M. Dragoicea, and M. Cavallari. Vol. 279. Lecture Notes in Business
Information Processing. New York NY: Springer Berlin Heidelberg, 2017, pp. 12—
23. 1sBN: 978-3-319-56924-6. po1: 10.1007/978-3-319-56925-3_2.

M. A. Sieke, R. W. Seifert, and U. W. Thonemann. “Designing Service Level
Contracts for Supply Chain Coordination.” In: Production and Operations Manage-
ment 21.4 (2012), pp. 698-714. 1ssN: 10591478. por: 10.1111/j.1937-5956.2011.
01301.x.

C. Sillaber and B. Waltl. “Life Cycle of Smart Contracts in Blockchain Ecosys-
tems.” In: Datenschutz und Datensicherheit - DuD 41.8 (2017), pp. 497-500. 1ssN:
1862-2607. po1: 10.1007/s11623-017-0819-7.

E. Solaiman, I. Sfyrakis, and C. Molina-Jimenez. “A State Aware Model and
Architecture for the Monitoring and Enforcement of Electronic Contracts.” In:
18th IEEE Conference on Business Informatics. Ed. by E. Kornyshova, G. Poels,
and C. Huemer. Piscataway, NJ and Piscataway, NJ: IEEE, 2016, pp. 55-63. 1SBN:
978-1-5090-3231-0. por: 10.1109/CBI.2016.15.

H. Surden. Computable Contracts. 2012.
N. Szabo. Smart Contracts: Building Blocks for Digital Markets. 1996. URL: http://

www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/
LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html (visited
on 11/17/2017).

88

https://doi.org/10.1016/j.future.2018.05.046
https://doi.org/10.1016/j.future.2018.05.046
https://doi.org/10.1109/ICSA.2017.44
https://doi.org/10.1007/978-3-8349-9641-1
https://doi.org/10.1007/978-3-319-56925-3_2
https://doi.org/10.1111/j.1937-5956.2011.01301.x
https://doi.org/10.1111/j.1937-5956.2011.01301.x
https://doi.org/10.1007/s11623-017-0819-7
https://doi.org/10.1109/CBI.2016.15
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html

Bibliography

[99]
[100]

[101]

[102]
[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

P. Szalachowski. Blockchain-based TLS Notary Service. 2018.

S. Tikhomirov. “Ethereum: State of Knowledge and Research Perspectives.” In:
Foundations and practice of security. Ed. by A. Imine. Vol. 10723. LNCS sublibrary:
SL4 - Security and cryptology. Cham, Switzerland: Springer, 2018, pp. 206-221.
ISBN: 978-3-319-75649-3. por: 10.1007/978-3-319-75650-9_14.

TLSNotary. TLSNotary - prove an https page was in your browser. 2014. URL: https:
//tlsnotary.org/ (visited on 07/12/2018).

TM Forum. SLA Management Handbook: Volume 4 Enterprise Perspective. 2004.

P. Tonks and H. Flanagan. “Positioning the Human Resource Business Using
Service Level Agreements.” In: Health Manpower Management 20.1 (1994), pp. 13—
17. 1ssN: 0955-2065. por: 10.1108/09552069410053777.

J. J. Trienekens, J. J. Bouman, and M. van der Zwan. “Specification of Service
Level Agreements: Problems, Principles and Practices.” In: Software Quality
Journal 12.1 (2004), pp. 43-57. 1ssN: 0963-9314. por: 10.1023/B:SQJ0.0000013358.
61395.96.

E. Tschorsch and B. Scheuermann. “Bitcoin and Beyond: A Technical Survey on
Decentralized Digital Currencies.” In: IEEE Communications Surveys & Tutorials
18.3 (2016), pp. 2084-2123. por: 10.1109/COMST.2016.2535718.

P. Unterharnscheidt and A. Kieninger. “Service Level Management-Challenges
and their Relevance from the Customers’ Point of View.” In: AMCIS. 2010, p. 540.

S. L. Vargo and R. F. Lusch. “Service-dominant logic: continuing the evolution.”
In: Journal of the Academy of Marketing Science 36.1 (2008), pp. 1-10. 1ssn: 0092-0703.
DOIL: 10.1007/s11747-007-0069-6.

W. Viryasitavat, L. Da Xu, Z. Bi, and A. Sapsomboon. “Blockchain-based business
process management (BPM) framework for service composition in industry 4.0.”
In: Journal of Intelligent Manufacturing 12.2 (2018), p. 133. 1ssN: 0956-5515. por:
10.1007/s10845-018-1422-y.

E. Volland. “Identification of Programming Patterns in Solidity.” Master’s thesis.
Munich: TUM Faculty of Informatics, 2018.

E. Volland. Solidity Patterns. 2018. URL: https://github.com/fravoll/solidity-
patterns (visited on 07/16/2018).

I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, and J. Mendling.
“Untrusted Business Process Monitoring and Execution Using Blockchain.”
In: Business Process Management. Ed. by M. La Rosa, P. Loos, and O. Pastor.
Vol. 9850. Switzerland: Springer, 2016, pp. 329-347. 1sBN: 978-3-319-45347-7. poTI:
10.1007/978-3-319-45348-4_19.

89

https://doi.org/10.1007/978-3-319-75650-9_14
https://tlsnotary.org/
https://tlsnotary.org/
https://doi.org/10.1108/09552069410053777
https://doi.org/10.1023/B:SQJO.0000013358.61395.96
https://doi.org/10.1023/B:SQJO.0000013358.61395.96
https://doi.org/10.1109/COMST.2016.2535718
https://doi.org/10.1007/s11747-007-0069-6
https://doi.org/10.1007/s10845-018-1422-y
https://github.com/fravoll/solidity-patterns
https://github.com/fravoll/solidity-patterns
https://doi.org/10.1007/978-3-319-45348-4_19

Bibliography

[112]

[113]
[114]

[115]

[116]

[117]

[118]

[119]

C. Welzel, K.-P. Eckert, E. Kirstein, and e. al et. Mythos Blockchain: Herausforderun-
gen fiir den Offentlichen Sektor. Berlin, 2017.

K. D. Werbach and N. Cornell. Contracts Ex Machina. 2017.

M. Wohrer. Solidity Patterns. 2018. URL: https://github. com/maxwoe/solidity_
patterns (visited on 07/16/2018).

M. Wohrer and U. Zdun. “Smart Contracts: Security Patterns in the Ethereum
Ecosystem and Solidity.” In: 1st International Workshop on Blockchain Oriented
Software Engineering @ SANER 2018. 2018.

A. Wright and P. de Filippi. Decentralized Blockchain Technology and the Rise of Lex
Cryptographia. 2015.

X. Xu, I. Weber, L. Zhu, M. Staples, J. Bosch, L. Bass, C. Pautasso, and P. Rimba.
“A Taxonomy of Blockchain-based Systems for Architecture Design.” In: 1st
IEEE International Conference on Software Architecture (ICSA 2017) (2017).

E. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi. “Town Crier.” In: CCS’16.
Ed. by E. Weippl, S. Katzenbeisser, C. Kruegel, A. Myers, and S. Halevi. New
York, New York: The Association for Computing Machinery, 2016, pp. 270-282.
1SBN: 9781450341394. por1: 10.1145/2976749.2978326.

S. Zumkeller. Distributed application for hosting service providers. 2018. URL: https:
//github.com/stzu/hosting-dapp (visited on 08/12/2018).

90

https://github.com/maxwoe/solidity_patterns
https://github.com/maxwoe/solidity_patterns
https://doi.org/10.1145/2976749.2978326
https://github.com/stzu/hosting-dapp
https://github.com/stzu/hosting-dapp

	Abstract
	Contents
	Introduction
	Motivation
	Research Questions
	Research Method
	Outline

	Fundamentals
	Service Level Agreements
	Types of SLAs
	Content of SLAs

	Blockchain Technology
	Definition
	Cryptography
	Structure of a Blockchain
	Consensus and Mining
	Characteristics of Blockchains
	Blockchain Implementations

	Smart Contracts
	Definition
	Technical Concept

	Oracles
	Characteristics
	Limitations
	Oracle Services

	Decentralized Storage
	On-chain Storage
	InterPlanetary File System
	Swarm

	State Channels

	Related Work
	Oracles in Academic Literature
	Software Patterns
	Smart Contract enhanced SLAs

	Theoretical Considerations
	Application Domain
	People
	Organizational Systems
	Technology

	Problem identification
	General Challenges towards Digital Services
	Challenges of SLAs

	Specification of Design Objectives
	Motivation for Blockchain Usage

	Development of the Artifact
	Scope of the Prototype
	Design of the Prototype
	Functional Requirements
	Design Decisions
	Entities of the Prototype

	Implementation of the Prototype
	Structure of the Smart Contracts
	Implementation of the Oracle as a State Channel
	Realization of the Web Frontend
	Technology Selection
	Fulfillment of Functional Requirements

	Evaluation of the Artifact
	Design of the Evaluation
	Functional Evaluation
	Findings from a Customer's Perspective
	Findings from a Provider's Perspective

	Technical Evaluation
	Critical Review of the Application
	Quantitative Application Evaluation
	Qualitative Application Evaluation

	Result
	Discussion
	Answers to the Research Questions
	Conclusion
	Implications and Outlook

	Appendix
	Use Cases
	Architecture of the Web Frontend
	Screenshots of the Web Frontend
	Architecture of the Smart Contracts
	Sequence Diagrams
	UC1: Browse Service Offerings
	UC2: Order a Service
	UC3: Handle Service Payment
	UC6: Terminate Service Contract

	Acronyms
	List of Figures
	List of Tables
	Bibliography

