Supporting End-Users in Defining Complex Queries
on Evolving and Domain-Specific Data Models

Thomas Reschenhofer, Florian Matthes
Technical University of Munich (TUM)
Munich, Germany
Email: reschenh@in.tum.de, matthes @in.tum.de

Abstract—To define queries on domain-specific data-structures,
end-users have to be familiar with the underlying data model.
This is challenging if the data model evolves continuously and
through collaborative model management. While visual languages
address this issue by providing strong guidance for non-technical
end-users, they suffer from a limited expressiveness due to their
focus on usability. Therefore, they are not applicable in cases
where domain-experts have the need to define complex queries.

This paper proposes an interactive and textual query edi-
tor which focuses on the formulation of complex queries and
the familiarization of the end-user with the underlying data
model during the query definition process. We demonstrate
our approach by this query editor’s application in the domain
of Enterprise Architecture Management, where tech-savvy end-
users need to define complex metrics based on an evolving
enterprise architecture model.

I. INTRODUCTION

End-user development (EUD) [1] is a means to empower
domain-experts to autonomously adapt certain parts of a
software to changes which affect their domain [2]. In data-
driven business applications, adaption of software often refers
to the adaption of the data structures, and the adaption of
queries which are based on these data structures [3] and which
empower end-users to define dynamic views, metrics, data
visualizations, etc.

In recent years, many approaches emerged to support end-
users in defining queries in data-driven business applications.
For example, visual languages provide guidance [4] for non-
technical end-users and ensure that generated queries are
syntactically valid as well as consistent with the underlying
pre-defined and domain-specific data structure [5], [6], [7],
[8]. However, due to the focus on usability, visual language
approaches typically suffer from a limited expressiveness
compared to textual ones [6], [9]. On the other hand, textual
query languages allow technology-savvier domain-experts to
formulate more complex expressions as long as they have
explicit knowledge about the language’s syntax and semantics.

Regardless of the approach, the end-user has to be familiar
with the underlying data structure in order to be able to define
respective queries [7]. In cases of continuously evolving data
models, this is a challenging task, which becomes even harder
if the data model is defined collaboratively by a group of
domain-experts and not by the user who is performing the
query. For example, in the domain of Enterprise Architecture
Management (EAM), multiple stakeholders collaboratively

978-1-5090-0252-8/16/$31.00 (©2016 IEEE

and iteratively define a conceptual data model for the enter-
prise architecture (EA) [10], on the basis of which enterprise
architects define EA metrics by formulating respective model-
based queries [11], [12]. Because of the evolving nature of the
EA model, architects have to familiarize themselves with the
data model each time they are defining a metric.

In the paper at hand, we address this issue by proposing an
interactive query editor which provides a means to familiarize
the end-user with the underlying data model during the query
formulation process. For this purpose, the editor displays a
relevant excerpt of the current domain-model (cf. [6] and [13]),
whereas the relevance is determined by the end-user’s input.
In contrast to visual language approaches, we focus on a
textual query interface which does not impose usability-driven
restrictions to the expressiveness of the query. Thereby we tar-
get tech-savvy domain-experts which have the need to define
complex queries based on a continuously evolving data model.
As a concrete example, we demonstrate how our approach can
support enterprise architects in defining complex metrics based
on a collaboratively managed EA model [12]. In Section II we
describe the key features of the query language and technical
platform which form the foundation for the interactive query
editor. The query editor as this paper’s main contribution as
well as its evaluation are presented in Sections III and IV
respectively, while in Section V we discuss related work and
how our approach compares to existing ones.

II. THE MODEL-BASED EXPRESSION LANGUAGE

Our query editor builds on the foundations of a Web 2.0-
based concept for content and model management—Hybrid
Wikis [14]—and a corresponding query language named
model-based expression language (MxL) [15].

The Hybrid Wiki approach enables end-users to iteratively
and collaboratively enrich wiki pages with structure, e.g.,
types, attributes, and relations. Thereby, wiki pages represent
data objects, whereas the wiki page metaphor enables user-
friendly and intuitive data management. Through collaboration
among editors of those wiki pages as well as data model-
ing experts, domain-specific models emerge and continuously
evolve over time. The Hybrid Wiki approach was already
successfully applied in different domains in which data models
cannot be defined beforehand, but emerge over time through
collaboration, e.g., in Enterprise Architecture Management
(EAM) [16] and New Product Development (NPD) [17].

Based on the evolving data models and an increasing
amount of data managed in the Hybrid Wiki system, domain-
experts use the model-based expression language (MxL) to
formulate queries, e.g., to define metrics, derived attributes,
or constraints [18], [15]. MxL is a functional language and
is inspired by the Object Constraint Language (OCL) [19].
OCL was already discussed in related research as an obvious
choice for a model query language [20]. While the Hybrid
Wiki system also provides an intuitive search interface to
empower non-technical end-users to find specific information,
MxL allows tech-savvy end-users to define more complex
queries by applying different kinds of operations, e.g., standard
query operations [21] or arithmetic and conditional operations.

In EAM, enterprise architects as representatives for tech-
savvy end-users [22] use MxL for the definition of complex
metrics [12]. For example, based on an enterprise architecture
model capturing Functional Domains, their Business Appli-
cations, and Databases, an enterprise architect can define a
metric to calculate the heterogeneity of used database systems
per domain [12]. With MxL, it can be formally defined as:

find ’Functional Domain’.select(
entropy(Applications.selectMany(Databases)))

The find construct retrieves all functional domain objects and
maps them to an entropy measure [23] based on the databases
used in each domain’s business applications. In this example,
entropy is a reusable function which is implemented in MxL.
In order to be able to define this metric in an ad-hoc manner,
the enterprise architect has to have at least knowledge about
the model elements Functional Domain, Applications, and
Databases. This can be a challenging task considering that
enterprise architecture models usually contain many types,
attributes, and relations [13], that those models continuously
evolve over time [16], and that metrics can be more complex
than the demonstrated example [12].

III. INTERACTIVE QUERY EDITOR FOR DOMAIN-MODELS

To support end-user in the definition of complex queries
based on an evolving domain-specific data model, we extended
the existing interactive MxL code-editor [15].

The web-based MxL code editor implements useful Ul
features, e.g., syntax highlighting, error localization, and auto-
completion support. With regard to the latter feature, the editor
provides a list of hints including applicable operations (e.g.,
query functions), language constructs (e.g., find), and elements
from the underlying user-generated data model (e.g., types like
Functional Domain, attributes like Function points, or rela-
tions like Applications). However, the application of the MxL
code editor, e.g., for the definition of EA metrics [12] or data-
driven views in NPD [17], revealed that the auto-completion
feature is not enough to provide a holistic perspective of the
data model. This makes it difficult for end-users to understand
how they can navigate through the model, and to determine
starting points for the definition of queries. To address this
issue, we extended the MxL code editor by an augmented
view of the data model. We have chosen the Unified Modeling

o fil
find
first find
Retrieves all instances of a specified type.

Basic types (e.g., Number, String, Boclean) are not
allowed.

Information Flow Functional Domain

P .
Source [1..1] e Located in [1.]
Target [1..1] Applications [0..%]
— é____.f"
Business Application
|
Databases [0.."]

Location

Database

|
Category [1..1]

Database Category
Fig. 1. The query editor with support for auto-completion and with an

augmented view of the underlying data model. If the user has not yet entered
any input, the model view shows a holistic perspective of the data model.

find 'Functional Domain®

Functional Domain
— —
Applications [0..%] Located in %‘]
Business Application Location

Fig. 2. As soon as the user provides a (partial) expression which refers to
a data model element, the augmented model view focuses on related model
elements and only shows a local excerpt of the data model.

Language (UML) [24] as form of representation because of
this notation’s widespread adoption in related EUD research
areas [13], [7], [25], and because of MxL’s similarity to
OCL [19] which is also based on UML.

As long as the user does not provide any input to the query
editor, the augmented model view provides an overview of the
data model as shown in Figure 1. This means that it shows
all domain-specific types as well as relations between them.
The attributes of the classes are hidden to reduce the visual
complexity. In this way, the model view provides a holistic
perspective on the data model and thus a potential indication
for the user of how and where to start the query.

If the user enters a MxL expression which refers to an
element of the data model, the model view is automatically
updated and only shows a related excerpt of the data model.
This is enabled by MxL’s static type-safety, i.e., the static
semantics of MxL expressions can be validated at build-time.
This includes the resolution of references to data model ele-
ments. Based on this, the code editor creates a local perspective
of the model view which only includes directly referenced
model elements as well as adjacent elements and sub-elements
which improves the navigability through the data model. For
example, if the expression refers to a type (cf. Figure 2), the
model view also shows all related types as well as attributes of

find ‘Functional Domain’
.select(entropy(Applications
.selectMany(Data

STEEOTY Databases

Attribute of type Sequence, belongs to 'Business
Application’

These are the databases which are used by the
business application

Information Flow Functional Domain
e ,_/ ~
T”glet [1__1]S°“’°e o1 Applications [0.."] Located in [1.]
A
Business Application

Fimection points - Mumber [1.1] Location

Go-live Date : Date [1..1]
TIIF : Mumber
|
Databases [0..%]

Database

Fig. 3. The model view provides a holistic perspective on the currently
relevant excerpt of the data model and thus provides contextual information
to the hints provided by the auto-completion mechanism.

find 'Functional Domain’
.selecte ntropy(Applications
.selectMany(Databases) :}

Information Flow Functional Domain
= /./ S
Targlet e T Applications [0..”] Located in [1.7]
~a
Business Application

Fumetion points - Numher [1.1] Location

Go-live Dhate : Diate [1.1]
TIIF : Mumber

|
Databases [0..*]

Databaze
|
Category [1..1]

Database Category

Fig. 4. Model elements which are referred within the current expression are
highlighted within the augmented model view.

the directly referenced type (cf. Figure 3). Referenced model
elements are visually highlighted, e.g., classes representing
directly referenced types are colored blue, while the names
of directly referenced attributes and relations are bold (cf.
Figure 3 and 4). The augmented model view responds to each
change within the code editor, i.e., as soon as the user provides
an expression referencing a different set of model elements, the
model view is automatically reduced or extended by respective
elements. A similar feature is implemented by Storrle [13] for
a visual query editor. In this sense, the model view improves
the usefulness of the auto-completion hints by enriching them
with contextual information, i.e., hints representing model
elements can be localized with the data model (cf. Figure 3).

Let us consider again the example of an enterprise architect
who wants to define a heterogeneity metric [12] as defined
in Section II. Based on the overview of the data model as
provided by the model view (cf. Figure 1), the enterprise

architect identifies the model elements of interest, namely
Functional Domain, Business Application, and Database. Due
to the need of calculating the database heterogeneity metric
for each functional domain, the enterprise architect enters
an MxL expression to gather all entities of type Functional
Domain. Based on this input, the model view is automatically
regenerated to only show the referenced type as well as
adjacent types, namely Business Application and Location.
If the type Functional Domain would have attributes (which
is not the case), they would be shown too. In this way, the
model view provides a local perspective of the data model. It
is minimal in the sense that model elements are hidden which
are not reachable from the current point within the data model,
but sufficient enough to determine the model elements which
can be referred to within the MxL code editor. As depicted in
Figure 3, the model view automatically adapts based on the
query provided by the user. Therefore, new model-elements
become visible within the view, including its attributes as well
as the adjacent types of Business Application (Information
Flow and Database). Figure 4 shows the final MxL expression
for the heterogeneity metric [12] and the corresponding local
model view.

IV. EVALUATION

To evaluate the augmented model view, we performed an
interactive online experiment with four information systems
researchers, three computer science students, one enterprise
architect from a Swiss Bank (10,001+ employees), and one
enterprise architect from a German IT services provider (5,000
- 10,000 employees). All of them already know the expression
language MxL in different levels of detail.

We defined two scenarios for which the experimentees had
to define 4 queries each, namely a sales scenario (including
customers, products, orders) as well as an EAM scenario
(including business applications, functional domains, business
supports). The data models and queries for those scenarios are
isomorphic, i.e., they only differ in names of types, attributes,
and relations. In a first step, test persons had to define four
queries for the sales scenario, in a second step they had to
formulate four analogous queries for the EAM scenario. Half
of the experimentees used the augmented model view only
for the first step, the other half only for the second step. After
those steps, they were asked about the usefulness, weaknesses,
and potential improvements of the augmented model view.

The key findings of the evaluation are as follows:

o Six respondents explicitly stated that the augmented
model view accelerates query formulation, particularly if
the user is not familiar with the underlying data model,
or if the data model is subject to frequent changes.

« At the same time, six respondents expressed the opinion
that showing the full data model would be as useful as
showing only a local view. However, they admitted that
this might be no longer true for larger data models.

o Three respondents noted that the model view should be
interactive, e.g., that types could be expanded manually

by clicking on them, or by inserting the model element
to the textual query editor on selecting them.

e One respondent mentioned that there might be a scaling
issue with the augmented model view for large models.

« Four respondents highlighted that the augmented model
view (obviously) only gives an overview over the under-
lying data model, but that it does not help users to learn
the query language and its syntax and semantics.

V. RELATED WORK

There are many approaches to visual query languages and
systems based on user-definable ontologies or conceptual data
models [5], [6], [9], [13], [26], [27]. Thereby, domain-specific
ontologies are a means for defining an end-user-friendly
representation of a domain-specific data model as well as a
mapping to the physically stored data. They form the basis
for visual query user interfaces which empower non-technical
end-users to formulate queries in an end-user-friendly way.
Due to their focus on usability, visual query languages usually
suffer from limited expressiveness [6], [9]. In contrast, the
paper at hand focuses on a high expressiveness and targets
different use-cases, e.g., the definition of complex metrics.
Nevertheless, there are visual design principles which were
inspired by visual query editors and adopted to our approach,
e.g., the responsive view of the user-model by Storrle [13].

Valencia-Garcia et al. [7] propose a natural language and
a corresponding query editor named OWLPath. A query
expressed in natural language is translated to SPARQL as
the de-facto standard for querying ontologies. Similar to the
query editor as described in our work, OWLPath provides
helpful features which improve the usability of the editor, e.g.,
grammar checking and auto completion. However, while using
a natural language lowers the hurdle for non-technical end-
user to define queries compared to formal languages, there is
still the need to familiarize the end-user with the underlying
data model. Therefore, we think that applying our approach of
automatically generating a relevant excerpt of the data model
or ontology based on the current textual user input would be
a valuable addition to OWLPath.

Cunha et al. [28], [8] describe a spreadsheet-based query
approach. Thereby, end-users define the structure of a spread-
sheet by using ClassSheets [29]. They choose ClassSheet
models to present the data model which has to be queried
instead of ontologies, which allows end-users to formulate
queries in their preferred environment—namely within the
spreadsheet [30]. Although they follow a visual language
approach, the integration into spreadsheets and thus the possi-
bility to apply further spreadsheet formulas to the query results
potentially enables more complex calculations. Nevertheless,
they do not discuss the challenge of familiarizing the user with
the underlying ClassSheet model during the query formulation
process. Again, integrating the approach by Cunha et al.
with the approach of the paper at hand—which addresses the
familiarization issue—might yield interesting results.

VI. CONCLUSION

This paper presents our work on improving the usability of
a textual query editor for end-users with a focus on the user’s
familiarization with the underlying data model during the
query formulation process. It is based on previous research on
Hybrid Wikis [14] for collaborative information management
on the one hand, and on the model-based expression language
MxL [15] as functional query language on the other hand.
The improvements of the corresponding query editor by the
integration of an augmented model view are motivated by the
application of Hybrid Wikis and MxL in different contexts,
e.g., EAM [12] and NPD [17].

The code editor as proposed in this work integrates an
augmented model view which provides a holistic perspective
to the data model which has to be queried. The model view
automatically responds to the user’s query input in the sense
that it only shows model parts which are currently relevant for
the user. The proposed code editor is particularly helpful in
domains with continuously evolving data models, e.g., EAM.
It is not only applicable in other domains, but also to other
query languages, provided that the language’s static semantics
can be analyzed and thus references to data model elements
can be resolved at build-time.

Based on the findings of a first evaluation, our work on
supporting the familiarization of the end-user with the data
model during the query formulation process requires further
improvements and elaboration. Particularly an application of
the interactive code editor in a practical environment and
a corresponding evaluation would encourage our claim of
improving the usability of query editors. To this end, we
are establishing a network of industry partners which plan to
prototypically implement the Hybrid Wiki system, MxL, and
the query editor. In this context, we plan to conduct empirical
studies on the usefulness and usability of the query editor.

As revealed by the evaluation as described in Section IV,
there are further conceptual and technical design aspects which
should be improved. For example, although the model view
helps users to familiarize themselves with the underlying data
model, formulating complex queries is still a difficult task.
Consequently, there still has to be research about how to make
the definition of complex queries easier, particularly for non-
technical end-users. On a more technical note, by strengthen-
ing the interrelation between the auto-completion feature and
the model view, users could be enabled to insert references
to model elements by clicking on the respective element in
the model view. Another suggestion by a respondent was to
make the model view manually explorable, i.e., to allow the
manual and explicit expansion of a local data model view by
clicking on certain model elements. Moreover, showing and
highlighting recent changes of the data model within the data
view would improve the awareness of which model elements
changed in which way. Finally, as rightfully mentioned by
one of the respondents, there still has to be research about
large-scale data models and the performance of the augmented
model view with this kind of models.

[1]

[2

—

[3

=

[4

=

[5

=

[6

[7

—

—
x

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21

REFERENCES

H. Lieberman, F. Paterno, M. Klann, and V. Wulf, “End-User Develop-
ment: An Emerging Paradigm,” in End User Development, ser. Human-
Computer Interaction Series, H. Lieberman, F. Paterno, M. Klann, and
V. Wulf, Eds. Springer, 2006, pp. 1-8.

G. Fischer, E. Giaccardi, Y. Ye, A. G. Sutcliffe, and N. Mehandjiev,
“Meta-Design: A Manifesto for End-User Development,” Communica-
tions of the ACM, vol. 47, no. 9, pp. 33-37, 2004.

M. Burnett and B. A. Myers, “Future of End-User Software Engineering:
Beyond the Silos,” Proceedings of the International Conference on
Software Engineering, pp. 201-211, 2014.

J. Hvorecky, M. Drlik, and M. Munk, “The Effect of Visual Query Lan-
guages on the Improvement of Information Retrieval Skills,” Procedia-
Social and Behavioral Sciences, vol. 2, no. 2, pp. 717-723, 2010.

M. Giese, D. Calvanese, P. Haase, 1. Horrocks, Y. Ioannidis, H. Kllapi,
M. Koubarakis, M. Lenzerini, R. Moller, and M. Rodriguez-Muro,
“Scalable End-user Access to Big Data,” Big Data Computing, pp. 205—
245, 2013.

A. Soylu, E. Kharlamov, D. Zheleznyakov, E. Jimenez-Ruiz, M. Giese,
and I. Horrocks, “Ontology-Based Visual Query Formulation: An In-
dustry Experience,” in Advances in Visual Computing. Springer, 2015,
pp. 842-854.

R. Valencia-Garcia, F. Garcia-Sanchez, D. Castellanos-Nieves, and J. T.
Ferndndez-Breis, “OWLPath: An OWL Ontology-guided Query Editor,”
Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, vol. 41, no. 1, pp. 121-136, 2011.

J. Cunha, J. P. Fernandes, R. Pereira, and J. Saraiva, “Graphical Query-
ing of Model-Driven Spreadsheets,” Proceedings of the International
Conference on Human-Computer Interaction, 2014.

F. Haag, S. Lohmann, S. Siek, and T. Ertl, “Visual Querying of Linked
Data with QueryVOWL,” Joint Proceedings of SumPre, pp. 2014-2015,
2015.

S. Buckl, F. Matthes, C. Neubert, and C. M. Schweda, “A Lightweight
Approach to Enterprise Architecture Modeling and Documentation,” in
Information Systems Evolution. Springer, 2010, pp. 136-149.

F. Ahlemann, E. Stettiner, M. Messerschmidt, and C. Legner, Strategic
Enterprise Architecture Management. Springer, 2012.

A. W. Schneider, T. Reschenhofer, A. Schiitz, and F. Matthes, “Empirical
Results for Application Landscape Complexity,” Proceedings of the
Hawaii International Conference on System Sciences, pp. 4079-4088,
2015.

H. Storrle, “VMQL: A Visual Language for Ad-Hoc Model Querying,”
Journal of Visual Languages & Computing, vol. 22, no. 1, pp. 3-29,
2011.

F. Matthes, C. Neubert, and A. Steinhoff, “Hybrid Wikis: Empowering
Users to Collaboratively Structure Information,” Proceedings of the
International Conference on Software and Data Technologies, pp. 250—
259, 2011.

T. Reschenhofer, I. Monahov, and F. Matthes, “Type-Safety in EA Model
Analysis,” Proceedings of the International Enterprise Distributed Ob-
Jject Computing Conference Workshops and Demonstrations, pp. 87-94,
2014.

F. Matthes and C. Neubert, “Wiki4dEAM - Using Hybrid Wikis for
Enterprise Architecture Management,” Proceedings of the International
Symposium on Wikis and Open Collaboration, p. 226, 2011.

S. Rehm, T. Reschenhofer, and K. Shumaiev, “IS Design Principles for
Empowering Domain Experts in Innovation: Findings From Three Case
Studies,” Proceedings of the International Conference on Information
Systems, 2014.

1. Monahov, T. Reschenhofer, and F. Matthes, “Design and Prototypical
Implementation of a Language Empowering Business Users to Define
Key Performance Indicators for Enterprise Architecture Management,”
Proceedings of the Trends in Enterprise Architecture Research Work-
shop, 2013.

Object Management Group, “Object Constraint Language (OCL),”
2014. [Online]. Available: http://www.omg.org/spec/OCL/2.4

H. Storrle, “Improving the Usability of OCL as an Ad-hoc Model
Querying Language,” Proceedings of the International Workshop on
OCL, Model Constraint and Query Languages, 2013.

A. Heijlsberg and M. Torgersen, “Standard Query Operators
Overview,” 2013. [Online]. Available: http://msdn.microsoft.com/en-
us/library/bb397896.aspx

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

C. Strano and Q. Rehmani, “The Role of the Enterprise Architect,”
Information Systems and E-Business Management, vol. 5, no. 4, pp.
379-396, 2007.

R. Lagerstrom, C. Y. Baldwin, A. D. Maccormack, and S. Aier,
“Visualizing and Measuring Enterprise Application Architecture: An
Exploratory Telecom Case,” Harvard Business School Working Paper,
no. 13-103, 2013.

Object Management Group, “Unified Modeling Language (UML),”
2015. [Online]. Available: http://www.omg.org/spec/UML/2.5

F. Hermans, M. Pinzger, and A. van Deursen, “Automatically Extract-
ing Class Diagrams from Spreadsheets,” Proceedings of the European
Conference on Object-Oriented Programming, pp. 52-75, 2010.

A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis, and E. Gi-
annopoulou, “Ontology Visualization Methods — A Survey,” ACM
Computing Surveys (CSUR), vol. 39, no. 4, p. 10, 2007.

P. Delfmann, D. Breuker, M. Matzner, and J. Becker, “Supporting
Information Systems Analysis Through Conceptual Model Query—The
Diagramed Model Query Language (DMQL),” Communications of the
Association for Information Systems, vol. 37, 2015.

J. Cunha, J. P. Fernandes, J. Mendes, R. Pereira, and J. Saraiva,
“Querying Model-Driven Spreadsheets,” Proceedings of the Symposium
on Visual Languages and Human-Centric Computing, 2013.

M. Erwig and G. Engels, “ClassSheets: Automatic Generation of Spread-
sheet Applications from Object-Oriented Specifications,” Proceedings of
the International Conference on Automated Software Engineering, pp.
124-133, 2005.

J. Cunha, J. P. Fernandes, J. Mendes, R. Pereira, and J. Saraiva, “Em-
bedding Model-Driven Spreadsheet Queries in Spreadsheet Systems,”
Proceedings of the Symposium on Visual Languages and Human-Centric
Computing, 2014.

