
Chair of Software Engineering for Business Information Systems (sebis)

Faculty of Informatics

Technische Universität München

wwwmatthes.in.tum.de

Automated documentation of Business Domain assignments and

cloud application information from an application development

pipeline
Master Thesis: Kickoff

Nicolas Corpancho Villasana 10.09.2018

Agenda

2

1. Motivation

2. Literature review

3. Derivation for EAM

4. Research questions

5. Evaluation environment

7. Timeline

8. Next steps

6. Solution

1. Motivation: Major technology trends that have an impact on EAM

1. Agile development and continuous delivery (CD) approaches are becoming more important in todays enterprises. CD leads to short lifecycles which implies a

quicker update of the EA Tool information

2. Cloud migration reduces infrastructure and maintenance costs. Cloud reduces transparency and increases complexity of EA documentation

3. Modularization of legacy systems into application components and microservices causes a higher number of applications

3

Monolith

??? ??? ??? ???

EA Tools

?????

Automation

2. Literature review

4

Year Author Title Outlook CD CC Mod.

2010 Matthias Farwick, Berthold Agreiter, Ruth Breu,

Matthias Häring, Karsten Voges, Inge Hanschke

Towards Living Landscape Models: Automated

Integration of Infrastructure Cloud in Enterprise

Architecture Management

Cloud Integration (PaaS

and SaaS)

2012 Buschle, M., Ekstedt, M., Grunow, S.,Matheus

Hauder, Florian Matthes, Sascha Roth

Automated Enterprise Architecture

Documentation using an Enterprise Service Bus

Modeling EA

transformations

2013 Matthias Farwick, Ruth Breu, Matheus Hauder,

Sascha Roth, Florian Matthes

Enterprise Architecture Documentation:

Empirical Analysis of Information Sources for

Automation

Automation opportunities

2013 Sascha Roth, Matheus Hauder, Felix Michel,

Dominik Münch, Florian Matthes

Facilitating Conflict Resolution of Models for

Automated Enterprise Architecture

Documentation

Combination of approach

with other automated EA

documentation approaches

2013 Sascha Roth, Matheus Hauder, Matthias

Farwick, Ruth Breu, and Florian Matthes

Enterprise Architecture Documentation: Current

Practices and Future Directions

Automation mechanisms to

improve EAD

2018 J•org Landthaler, Ömer Uludag, Gloria Bondel,

Ahmed Elnaggar, Saasha Nair, and Florian

Matthes

A Machine Learning Based Approach to

Application Landscape Documentation

Research in automated

EAD

Research in automated EA documentation integrating todays Cloud (PaaS and SaaS) is needed

CD: Continuous Delivery, CC: Cloud Computing, Mod.: Modularization, EAD: Enterprise Architecture Documentation

3. Derivation for EAM

5

EAM Use cases

Application

Portfolio

Management

Information

Management

Technology and

Risk

Management

IT Controlling
Business/ IT

Transformation

Decommission

based on usage

metrics

Automated EA

Documentation

Challenges of current EA

documentation
• No single automated EA documentation standard

• Many documenting approaches exist, mostly manual

data collection

• Helps to manage information complexity due to higher

number of applications in different environments

• Increases support fast changing environments (multi

environments) and technologies

Improved EAM use cases can be derived from an automated EA documentation process

Consequences
• High error rate documenting and collecting EA

information

• Time consuming collection of information

• Expensive tasks maintaining and gathering

information of the EA

Cloud

4. Research Questions

6

How to obtain EA relevant information from the runtime
behaviour of cloud based environments?

How to assign the application landscape to business
domains?

How to automate the assignment process with an
integrated toolchain?

How does a prototype implementation of the automated
documentation process of cloud applications look like?

RQ1

RQ2

RQ3

RQ4

5. Evaluation environment

7

EA Tool

CMDB Wiki

Insurance company

Excel Other

repositories

Classic environment

Cloud 1 Cloud 2

Non documented applications

Documented applications

• Manual collection of EA information with Excel

• Integration of other repositories into EA Tool

• Import of Excel into EA Tool

• Federated approach relating EA Tool to other

Tools such as a CMDB and a Wiki

• Integration of application inventory to Group EA

Tool due to VAIT-regulation

(Versicherungsaufsichtliche Anforderungen an

die IT)

• No cloud application documentation

• Modularization of legacy systems into

application components and microservices

• Migration of application components and

microservices to cloud environments

Group

EA Tool

EA Tool

6. Solution: High level architecture

8

Pivio 2.0

DB

Web client

Business-specific

Information Source

Retrieved information

exported to EA Tool

Static data

Dynamic data

Continuous

Integration

crawler

Version control service1

2

3

45

5

6

7

6. Solution: Information collection process

CIO

takes strategic decisions

KPIs

Enterprise Architect

Pivio 2.0

verifies

9

Web client

IT Governance

Enterprise Architect

MonitorAnalyseEvaluateExecute

DevOps
DevOps PO

controls

script

Automatic process

Manual process

Dynamic data

Static data

Crawler job

Plan Develop Build Deploy Run Document

6. Solution: Data model

10

• Attributes structured in 4 parts:

1. Required fields in Pivio

2. Business specific information

3. Technical specifications

4. Application performance
metrics

1. Required fields from data model of
Pivio

2. Business specific information is
gathered from JIRA

3. Technical information is retrieved
from the cloud environments

4. Application performance metrics
collected from monitoring systems
such as Prometheus

➢ Attributes extend existing
“Anwendung-Service (IS)”-object in
EA Tool (iteraplan)

7. Timeline

11

August September October November December January February

Literature

review

Prototype

development

Prototype

evaluation

Prototype

adjustments

Writing

Registered Date: 15.08.2018

Submission Date: 15.02.2019

Today

8. Next Steps

1. Integration of JIRA as a

business specific

information source

2. Integration the EA Tool

(iteraplan)

3. Implementation of crawler

jobs (Cloudfoundry and

Openshift)

4. Alignment on Monitoring-

KPIs

5. Implementation of

additional visualizations

(if needed)

6. Extend data model

Enterprise Architect

Pivio 2.0

verifies

Web client

Enterprise Architect

MonitorAnalyseEvaluateExecute

DevOps
DevOps PO

controls

script

Automatic process

Manual process

Dynamic data

Static data1

2

3

4 5

IT Governance

Plan Develop Build Deploy Run Document

6

Live Demo

13

Thank you for your attention!

Do you have any questions?

14

Backup

15

Evaluation process

• Solution approach will be implemented

in an insurance company

• Tools used during the development:

▪ Project management: Jira

▪ Continuous Delivery: Jenkins

▪ EA Tool: iteraplan

▪ Monitoring: Pivio 2.0

• Cloud environment: CloudFoundry and

Openshift

16

Integration of
solution into
development
pipeline and

tools

Test solution
approach in
pilot project

Evaluation

Solution
approach

adjustments

Monitoring KPIs

• Cloud clustering as additional visualization

• Backlog-items KPI: How many items are missing. Application portfolio purposes

• Status of applications: running, stopped or crashed.

• Number of deployments per time unit: Which applications change frequently?

• Traffic KPI: Decommission purposes

• Traffic heatmaps: Which applications are important. Relevant for planification and costs. Ratio costs

maintenance and costs

• LOC: Maintenance vs Complexity (related to maintenance costs)

• Additional KPIs

17

Groovy script

18

stage('Deploy') {

def branch = ['master']

def name = "sping-microservice1"

def path = "build/libs/gs-spring-boot-0.1.0.jar"

def manifest = "manifest.yml"

if (manifest == null) {

throw new RuntimeException('Could not map branch ' + master + ' to a manifest file')

}

withCredentials([[

$class : 'UsernamePasswordMultiBinding',

credentialsId : '98c5d653-dbdc-4b52-81ba-50c2ac04e4f1',

usernameVariable: 'CF_USERNAME',

passwordVariable: 'CF_PASSWORD'

]]) {

sh 'cf login -a https://api.run.pivotal.io -u $CF_USERNAME -p $CF_PASSWORD --skip-ssl-validation'

sh 'cf target -o ga72hib-org -s masterarbeit'

sh 'cf push sping-microservice1 -f '+manifest+' --hostname '+name+' -p '+path

}

}

stage("Push Documentation"){

try {

callPost("http://192.168.99.100:9123/document", "{\"id\": \"0987654321\", \"name\": \"Kick-off-App\",

\"owner\": \"Nico\", \"description\": \"bla\", \"short_name\": \"serviceAZ12\", \"type\": \"service\"}") //Include protocol

} catch(e) {

// if no try and catch: jenkins prints an error "no content-type" but post request succeeds

}

}//stage

}

}

def callPost(String urlString, String queryString) {

def url = new URL(urlString)

def connection = url.openConnection()

connection.setRequestMethod("POST")

connection.doInput = true

connection.doOutput = true

connection.setRequestProperty("content-type", "application/json;charset=UTF-8")

def writer = new OutputStreamWriter(connection.outputStream)

writer.write(queryString.toString())

writer.flush()

writer.close()

connection.connect()

new groovy.json.JsonSlurper().parseText(connection.content.text)

}

node {

deleteDir()

stage('Sources') {

checkout([

$class : 'GitSCM',

branches : [[name: "refs/heads/master"]],

extensions : [[$class: 'CleanBeforeCheckout', localBranch: "master"]],

userRemoteConfigs: [[

credentialsId: 'cbf178fa-56ee-4394-b782-36eb8932ac64',

url : "https://github.com/Nicocovi/MS-Repo"

]]

])

}

dir("") {

stage("Build"){

sh "gradle build"

}

stage("Get Jira Information"){

//TODO

}

4. Solution: Sequence diagram

19

Pivio.io

• What is Pivio ?

Pivio is a service registry for humans.

• Why Pivio ?

▪ Overview for platforms, especially for microservice environment.

▪ Reusability of services

▪ A growing number of services means also a challenge not only for developers.

▪ Which service runs where? What does it do? Who is responsible for that?

• Concept of pivio:

20

Pivio data model

21

Pivio needs certain mandatory fields:

• id: Unique id in pivio.

• name: The name of the artefact.

• short_name: A very brief name for the service.

• type: The type of this artefact. Values could be service, library or mobile_app.

• owner: Which team is responsible for this artefact.

• description: What does this service do?

