

Automated Documentation of Business Domain Assignments and Cloud Application Information from an Application Development Pipeline

Master Thesis: Final presentation Nicolas Corpancho Villasana 08.02.2019

Chair of Software Engineering for Business Information Systems (sebis) Faculty of Informatics Technische Universität München wwwmatthes.in.tum.de Agenda

1. Motivation
2. Research
2.1 Research questions
2.2 Existing tools with related functionality
2.3 Literature review
3. Solution
3.1 Solution architecture
3.2 Concept
3.3 Sample scenario
3.4 Class diagram
3.5 Live Demo
4. Evaluation
5. Conclusion

1. Motivation

How can architecture documentation and assessment be integrated in the software development process?

Agenda

1. Motivation

2. Research

- 2.1 Research questions
- 2.2 Existing tools with related functionality
- 2.3 Literature review

3. Solution

- 3.1 Solution architecture
- 3.2 Concept
- 3.3 Sample scenario
- 3.4 Class diagram
- 3.5 Live Demo
- 4. Evaluation
- 5. Conclusion

2.1 Research Questions

2.2 Existing tools with related functionality* LeanIX

- Rest API for integration of different information sources
- R&D Pivio integration
- No Continuous Delivery integration
- No focus on cloud environments
- No focus on runtime information

Txture

- Meta-model can be adapted at runtime
- Automated import mechanisms from various data sources
- Cloud environments integration
- No Continuous Delivery integration

https://wwwmatthes.in.tum.de/pages/1wdia0twywb0w/Enterprise-Architecture-Management-Tool-Survey-2008-EAMTS-2008, https://txture.io, https://www.leanix.net, https://wwwmatthes.in.tum.de/pages/lw3g9moh1o0c/Enterprise-Architecture-Management-Tool-Survey-2014-Update

2.3 Literature review

Year	Author	Title	CD	СС	RI
2012	Hauder et al.	Challenges for automated enterprise architecture documentation			Х
2013	Roth et al.	Enterprise Architecture Documentation: Current Practices and Future Directions			
2010	Farwick et al.	Towards Living Landscape Models: Automated Integration of Infrastructure Cloud in Enterprise Architecture Management		Х	Х
2012	Buschle et al.	Automating Enterprise Architecture Documentation using an Enterprise Service Bus			Х
2014	Holm et al.	Automatic data collection for enterprise architecture models			
2015	Välja et al.	A requirements based approach for automating enterprise it architecture modeling using multiple data sources			
2015	Farwick et al.	A situational method for semiautomated enterprise architecture documentation			
2016	Johnson et al.	Automatic probabilistic enterprise IT architecture modeling: A dynamic bayesian networks approach			
2018	Landthaler et al.	A Machine Learning Based Approach to Application Landscape Documentation			
2016	Bogner et al.	Towards Integrating Microservices with Adaptable Enterprise Architecture		Х	

Current research endeavours lack in integrating cloud aspects (PaaS and SaaS) for a continuously automated EA documentation

CD: Continuous Delivery, CC: Cloud Computing, RI: Runtime Instrumentation

Agenda

3	. Solution
	3.1 Solution architecture
	3.2 Concept
	3.3 Sample scenario
	3.4 Class diagram
	3.5 Live Demo
4	

3.1 Solution – Solution Architecture

3.2 Solution - Concept

PPM: Project Portfolio Management, CD: Continuous Delivery, CI: Continuous Integration, EA: Enterprise Architecture, EAD: Enterprise Architecture Documentation, optional*

3.3 Solution - Sample scenario

ПП

3.4 Solution – Class diagram

- Every artifact is stored as a **Document** in the database
- Every Document can contain a Runtime object which gets updated by the cloudcrawler
- Every document can contain a **Service** object
- A Service can contain buildpacks (software dependencies) and Provides objects
- A Provides object represents a connected artifact
- Specific links are modelled as attributes of a Document
- Link to other tools are stored in a key-valuepair attribute
- Business information is also modelled as individual attributes in a Document

3.5 Live Demo			Cloud EA Analytics	Overview	ES Query	Visualizations	Feed	last update: 2019-01-30 20:12	:24 Export to EA Tool					ПП
	✓ Name	X De	escription									× Actions		
	Market Analysis	*oro *ma *pri	er processing Irket analysis cing analysis									☆ ∎	Ō	
			Sources	Va	lidating Config		Build	Get Basic Jira Information	Get Business Jira	Dep	ploy	Get Runtime Information	Doo	Push cumentation

			Conng		Information	Information		mormation	Documentation	I
Avorado	in the second	00	156mc	100	118mc	170mc	1min Oc	50	816mc	
lecho										

[Pipeline] echo

JSONSTRING: {"id": "10100", "key":"ED", "name": "EA Documentation", "owner": "kleehaus", "description": "This is the jira project for the EA Documentation", "short_name": "ED", "type": "software", "domain": "IT", "subdomain": "IT-2", "product": "EA Documentation", "status":"running", "runtime": {"ram": "169.6M of 1G", "cpu": "149.8%", "disk": "142.3M of 1G", "host_type": "cloudfoundry" },"github:":"https://github.com/Nicocovi/Microservice2","jira:":"http://vmmatthes32.informatik.tu-

muenchen.de:6000/rest/ani/2/project/ED" "jeskins:":"http://131.159.30.173:8081/job/Masterarbeitssoftware-frontend","iteraplan:":"http://vmmatthes32.informatik.tu-

muenchen.de:8080/iteraplan/client/#/single/InformationSystem/1705", "service": { "buildpacks":["client-certificate-mapper=1.8.0_RELEASE","container-security-provider=1.16.0_RELEASE","javamain","java-opts","java-security","jvmkill-agent=1.16.0_RELEASE","open-jd..."],"provides": [{"service_name": "Masterarbeitssoftware-backend"}]}}

Agenda

4. Evaluation

5. Conclusion

4. Evaluation (1/5)

Goal:

- Evaluate literature findings (requirements and challenges)
- Evaluate the approach to see if it is a valuable solution for improving the automation of Enterprise Architecture Documentation
- Evaluate the implemented prototype
- Identify improvements for the prototype

D	Role	Exp. years	Enterprise
EA1	Enterprise Architect and Chief Architect	20	E1
EA2	Enterprise Architect	2	E1
EA3	Enterprise Architect	17	E1
EA4	Enterprise Architect and Product Owner	10	E1
EA5	Enterprise Architect	3	E1
EA6	Enterprise Architect and IT Management Expert	20	E2
EA7	Enterprise Architect	18	E1
PO1	Product Owner and Head of Product Architecture	11	E1
PO2	Product Owner	1	E1
PO3	Product Owner	3	E1
EA8	Enterprise Architect and Chief Architect	16	E3
EA9	Enterprise Architect and Chief Architect	30+	E4

Experts with different roles and from different enterprises were interviewed to eliminate bias

4. Evaluation (2/5) - Enterprise Architecture

Information in EA Tool is outdated (N=12)

Information sources containing possible EA information (N=12)

Literature findings were validated in case study

4. Evaluation (3/5) - Approach

All experts stated that the presented process automates the EAD of applications running on a cloud-based environment

4. Evaluation (4/5) – Prototype sections

Useful 4	General section Services section	General section Services section
	Software dependencies	Software dependencies Jenkins section Runtime section
	Governance section	Governance section
	Runtime section	
	Github section Jenkins section	Github section Jira section
	Jira section	
Not useful		
	Enterprise Architects	Product Owners

Different sections are perceived as valuable regarding the roles of the user

4. Evaluation (5/5) - Prototype

Not expected results:

How can enterprise architects decide if changes are outdated if changes are not considered useful?

All interviewed industry partners showed a high interest in software dependencies for management of software frameworks.

٦Ш

Agenda

5. Conclusion	

5. Conclusion (1/3) – Summary

Research questions:

- **RQ1**: How to obtain EA relevant information from the runtime behavior of cloud based environments?
- **RQ2**: How to assign the application landscape to business domains?
- **RQ3**: How to automate the assignment process with an integrated toolchain?
- **RQ4**: How does a prototype implementation of the automated documentation process of cloud applications look like?

Most cloud infrastructures provide runtime information without agents, shadow IT is prevented. However installing agents unveil further information like API requests.

Either add information in config file or integration of PPM tool in Build-Deployment pipeline. **Assumption:** PPM tool provides domain information

Assignment through configuration file or name mapping **Result**: Config file produces further overhead. Mapping via name is more popular, however name needs to be stable!

5. Conclusion (2/3) – Limitations and key findings

ТШ

Limitations:

- Web-browser does not support ECMAScript 6
- Database component was not supported (MongoDB and ElasticSearch6)
- Server component adaptation for MySQL database component
- No fully EA cloud discovery possible due to access rights

Key findings:

- Several possibilites to (semi-)automate the EAD process
- IT Governance is needed to enable automated EAD (project structure definition, toolchain definition, etc.)

5. Conclusion (3/3) – Outlook

Outlook:

- Integration of a Continuous Inspection Tool (Sonarqube)
- Integration of other cloud environments

Future Use Cases:

- **Cloud readiness** verfication though a complete implementation of 12 factor app criteria
- Elasticity evaluation through a complete implementation of resilience pattern
- **Data privacy compliance** (GDPR compliance): analysis of stored information
- Business Impact Analysis (BIA) of applications via mapping of Business Process and Business Capabilities

References (1/2)

- [1] M. Hauder, F. Matthes, and S. Roth. "Challenges for automated enterprise archi-tecture documentation." In: Lecture Notes in Business Information Processing 131 LNBIP (2012), pp. 21–39. ISSN: 18651348. DOI: 10.1007/978-3-642-34163-2_2.
- [2] M. Farwick, R. Breu, M. Hauder, S. Roth, and F. Matthes. "Enterprise architecture documentation: Empirical analysis of information sources for automation." In: Proceedings of the Annual Hawaii International Conference on System Sciences(2013), pp. 3868–3877. ISSN: 15301605. DOI: 10.1109/HICSS.2013.200.
- [3] S. Roth, M. Hauder, M. Farwick, R. Breu, and F. Matthes. "Enterprise architecture documentation: Current practices and future directions." In:Wi2013 (2013),pp. 912–925. ISSN: 00219673. DOI:10.1148/rg.327125019.
- [4] M. Farwick, B. Agreiter, R. Breu, M. Häring, K. Voges, and I. Hanschke. "Towards living landscape models: Automated integration of infrastructure cloud in En-terprise Architecture Management." In:Proceedings - 2010 IEEE 3rd InternationalConference on Cloud Computing, CLOUD 2010(2010), pp. 35– 42. ISSN: 2159-6182. DOI:10.1109/CLOUD.2010.20.
- [5] M. Buschle, S. Grunow, F. Matthes, M. Ekstedt, and S. Roth. Automating Enterprise Architecture Documentation using an Enterprise Service Bus Americas Conference onInformation Systems Automating Enterprise Architecture Documentation using anEnterprise Service Bus. Tech. rep. 1. 2012.
- [6] H. Holm, M. Buschle, R. Lagerström, and M. Ekstedt. "Automatic data collection for enterprise architecture models." In:Software and Systems Modeling13.2 (2014),pp. 825–841.issn: 16191374.doi:10.1007/s10270-012-0252-1.

References (2/2)

- [7] M. Välja, R. Lagerström, M. Ekstedt, and M. Korman. "A requirements based approach for automating enterprise IT architecture modeling using multiple datasources." In:Proceedings of the 2015 IEEE 19th International Enterprise DistributedObject Computing Conference Workshops and Demonstrations, EDOCW 2015(2015),pp. 79–87. ISSN: 2325-6583. DOI:10.1109/EDOCW.2015.33.
- [8] M. Farwick, C. M. Schweda, R. Breu, and I. Hanschke. "A situational method for semi-automated enterprise architecture documentation (SoSyM abstract)."In:2015 ACM/IEEE 18th International Conference on Model Driven EngineeringLanguages and Systems, MODELS 2015 - Proceedings(2015), p. 448. ISSN: 16191374. DOI:10.1109/MODELS.2015.7338278.
- [9] P. Johnson, M. Ekstedt, and R. Lagerstrom. "Automatic Probabilistic Enterprise IT Architecture Modeling: Dynamic Bayesian Networks Approach." In:Proceedings- IEEE International Enterprise Distributed Object Computing Workshop, EDOCW2016-Septe (2016), pp. 122–129. ISSN: 15417719. DOI:10.1109/EDOCW.2016.7584351.
- [10] J. Landthaler, Ö. Uluda ğ, G. Bondel, A. Elnaggar, S. Nair, and F. Matthes. "Amachine learning based approach to application landscape documentation." In:Lecture Notes in Business Information Processing335 (2018), pp. 71–85. ISSN:18651348. DOI:10.1007/978-3-030-02302-7_5.
- [11] J. Bogner and A. Zimmermann. "Towards Integrating Microservices with Adapt-able Enterprise Architecture." In:Proceedings - IEEE International Enterprise Dis-tributed Object Computing Workshop, EDOCW2016-Septe (2016), pp. 158–163. ISSN:15417719. DOI:10.1109/EDOCW.2016.7584392.

Thank you for your attention!

Do you have any questions?

Backup

Component diagram

Server component

Optional Prerequisites

1. Configuration file containing link to different tools

2. Groovy script in repository to enable build pipeline

Definitions mapping

Groovy script

```
def callPost(String urlString, String queryString) {
                                                                                         stage('Deploy') {
  def url = new URL(urlString)
                                                                                                def branch = ['master']
  def connection = url.openConnection()
                                                                                                def name = "sping-microservice1"
  connection.setReguestMethod("POST")
                                                                                                def path = "build/libs/gs-spring-boot-0.1.0.jar"
  connection.doInput = true
  connection.doOutput = true
                                                                                                def manifest = "manifest.yml"
  connection.setRequestProperty("content-type", "application/json;charset=UTF-8")
                                                                                                  if (manifest == null) {
  def writer = new OutputStreamWriter(connection.outputStream)
                                                                                                  throw new RuntimeException('Could not map branch ' + master + ' to a manifest file')
  writer.write(queryString.toString())
  writer.flush()
                                                                                                  withCredentials([[
  writer.close()
  connection.connect()
                                                                                                                             : 'UsernamePasswordMultiBinding',
                                                                                                                $class
                                                                                                                credentialsId : '98c5d653-dbdc-4b52-81ba-50c2ac04e4f1',
  new groovy.json.JsonSlurper().parseText(connection.content.text)
                                                                                                                usernameVariable: 'CF USERNAME',
                                                                                                                passwordVariable: 'CF_PASSWORD'
node {
  deleteDir()
                                                                                                           ]]) {
  stage('Sources') {
                                                                                                  sh 'cf login -a https://api.run.pivotal.io -u $CF_USERNAME -p $CF_PASSWORD --skip-ssl-validation'
     checkout([
                                                                                                  sh 'cf target -o ga72hib-org -s masterarbeit'
                       : 'GitSCM',
          $class
                                                                                                  sh 'cf push sping-microservice1 -f '+manifest+' --hostname '+name+' -p '+path
                        : [[name: "refs/heads/master"]],
          branches
                        : [[$class: 'CleanBeforeCheckout', localBranch: "master"]],
          extensions
          userRemoteConfigs: [[
                           credentialsId: 'cbf178fa-56ee-4394-b782-36eb8932ac64',
                                                                                              stage("Push Documentation"){
                                    : "https://github.com/Nicocovi/MS-Repo"
                           url
                                                                                                try {
                      ]]
                                                                                                     callPost("http://192.168.99.100:9123/document", "{\"id\": \"0987654321\", \"name\": \"Kick-off-App\",
          ])
                                                                                         \"owner\": \"Nico\", \"description\": \"bla\", \"short_name\": \"serviceAZ12\", \"type\": \"service\"}") //Include protocol
                                                                                                  } catch(e) {
  dir("") {
                                                                                                     // if no try and catch: jenkins prints an error "no content-type" but post request succeeds
     stage("Build"){
       sh "gradle build"
                                                                                              }//stage
stage("Get Jira Information"){
       //TODO
```

2.3 Open source project - Pivio

pivio Overview Query Feed	
General	Service
Awesome Microservice	Provides Expends on Internal
Simple microservice Yppe Service Yppe Service Json Link	Software Dependencies
Links ▲ 2018-08-06720.3829.1482 ≠ 2018-08-06720.3829.1482	In Use Licenses
Runtime RAM CPU Disk Host Network Zone	
٩	Actions
O Delete Document	

Pivio:

٠

- Service registry for humans
 - To have a catalogue of the available services
- Running in cloud environments
- Developed by Chief Architect of E-Post Development GmbH

Integration of discovery

- Metamodel focus on microservices
- Dynamic metamodel enabled via schemaless
- Runtime information integration

- No Continuous Delivery Integration
- No support of EA discovery

Pivio.io

- What is Pivio ? Pivio is a service registry for humans.
- Why Pivio ?
- Overview for platforms, especially for microservice environment.
- Reusability of services
- A growing number of services means also a challenge not only for developers.
- Which service runs where? What does it do? Who is responsible for that?
- Concept of pivio:

Pivio data model

Pivio needs certain mandatory fields:

- id: Unique id in pivio.
- name: The name of the artefact.
- **short_name:** A very brief name for the service.
- type: The type of this artefact. Values could be service, library or mobile_app.
- owner: Which team is responsible for this artefact.
- **description:** What does this service do?

4. Derived EAD requirements from the literature review and case study (1/3)

ID	Description	Source					
	Data Quality Requirements						
DC1	No maintenance of data. The data is not considered uptodate. The system must provide mechanisms to ensure data actuality.	[1], [2], [3], [4], [6], [7], [9], [10], [11]					
DC2	The data granularity of the integrated information sources is too granular. The system must provide mechanisms to align the granularity of data.	[1], [2], [3], [6], [7]					
DC3	Data completeness: EA information is scarce	[1], [2], [3], [6], [7]					
DC4	Data correctness: Error proned data due to manual gathering	[1], [2], [3], [6] , [7], [9], [10]					
DC5	The system must be able to provide relationship information between and within the EA layers	Case study evaluation					
	Functional System Requirements						
FR1	The system must be able to calculate the defined KPIs from runtime information	[4], [8], [11]					
ADR5	Additional KPIs calculation: TCO, MTBF, MMTR, MTTF and real time data of users on the individual applications	Case study evaluation					
FR2	Integration of different information sources	[4], [8], [11]					
FR3	EA Tool needs an public API for an integration of several information sources	[1], [3], [6], [8]					
FR4	Dynamic metamodel: Adaptable metamodel of system	[1], [2], [3], [4],[5], [6], [7], [8], [11]					

4. Derived EAD requirements from the literature review and case study (2/3)

ID	Description	Source			
Organizational Requirements					
ADR1	Business Impact Analysis of applications	Case study evaluation			
OR1	Business added value: The system must provide a added value for the business (e.g. ROI)	[1], [3], [4]			
ADR2	Data privacy compliance (GDPR compliance)	Case study evaluation			
	Integration/Data Source Requirements				
ADR6	Integration of cloud environments (PaaS and SaaS)	[4], [8], [11]			
ADR3	Automated verification of the 12 factor app	Case study evaluation			
ADR4	Automated verification of a resilience pattern	Case study evaluation			

2. Additional requirements from literature

ID	Description	Source
	Architectural Requirements	
AR1	The collection of EA data must be federated from the repositories of the data owners (departments etc.)	Fischer et al., 2007; Farwick et al., 2010
	Organizational Requirements	
OR2	An organizational process must be in place that regulates the maintenance of EA Models	Fischer et al., 2007; Moser et al., 2009; Hanschke, 2009
OR3	Each data source must have an owner	Fischer et al., 2007; Hanschke, 2009,
	Integration/Data Source Requirements	
IR1	The system must be able to detect changes in the real world enterprise architecture	Moser et al., 2009; ter Doest and Lankhorst, 2004
IR2	The system must have a machine understandable internal data structure	Tanner and Feridun, 2009
	Non-functional Requirements	
NFR1	The system must scale for large data input	Hafner and Winter, 2008
	Data Quality Requirements	
DC4	The system must provide mechanisms that allow for the automated propagation of changes	Dam et al., 2010
DC5	The system must be able to identify and resolve data identity conflicts from different sources via identity reconciliation	Fischer et al., 2007
DC6	The system must provide mechanisms that help the QA team to ensure data consistency	Hafner and Winter, 2008

2.1 Research methodology

Screenshots

Pivio overview

Detailed View (1/7)

General	Runtime
Masterarbeitssoftware-frontend Description Masterarbeitssoftware-frontend MIC	Instances 1/1 RAM 142.7M of 1G CPU 0.4% Disk 142.2M of 1G Host cloudfoundry Running costs \$ 0.03 per hour
Shortname (MIC) Type software	Metrics monitoring (Agent)
Business specific O Domain IT O Subdomain IT-1 O Product Product6 Image: Owner ncorpan	URL masterarbeitssoftware-frontend.cfapps.io Prometheus metrics masterarbeitssoftware-frontend.cfapps.io/prometheus Recoorse time 11567679958
Changes ★ vor 2 Wochen vor 2 Wochen	HTTP Calls 13586
	Services Service name Masterarbeitssoftware-backend
Github https://github.com/Nicocovi/Microservice2	Software Dependencies
 Jenkins http://131.159.30.173:8081/job/Masterarbeitssoftware-frontend CF-link masterarbeitssoftware-frontend.cfapps.io Iteraplan null 	Buildpacks
Additional Information	 client-certificate-mapper=1.8.0_RELEASE container-security-provider=1.16.0_RELEASE java-main java-opts java-security jvmkill-agent=1.16.0_RELEASE open-jd

Detailed View (2/7)

Jira Monitoring	
Jira Issues Total Issues 5 Open Issues 3	Jira progress
Components in Jira-Project Component1 Backend Component2 Frontend	To Do

Detailed View (3/7)

Commit activity
55 -
50 - 45 - 40 - 35 -
25 - 20 - 15 -
5 – 0 – – – – – – – – – – – – – – – – – –

Detailed View (4/7)

Detailed View (5/6)

e twelve-factor methodology		Architecture belt	
I. Codebase	Yes	No architecture belt for this application	
II. Dependencies	Yes		
III. Configuration	Yes	Resilience	
IV. Backing services	Yes	• I. AZD Cloud	
• V. Build, release, run	Yes	• II. Redundancy	
VI. Processes	Yes	III. Zero Downtime deployment	
• VII. Port binding	No	• IV. Retry	
VIII. Concurrency	Not implemented	• V. Isolation	
IX. Disposability	Not implemented	• VI. Caching	
• X. Dev/prod parity	Νο	VII. Fallback	
XI. Logs	Yes	VIII. Loose Coupling	Not implemen
XII. Admin processes	Not implemented		

Detailed View (6/7)

Detailed View (7/7)

TUΠ

Visualizations View (1/3)

Visualizations View (3/3)

Monitoring KPIs

- Cloud clustering as additional visualization
- Backlog-items KPI: How many items are missing. Application portfolio purposes
- Status of applications: running, stopped or crashed.
- Number of deployments per time unit: Which applications change frequently?
- Traffic KPI: Decommission purposes
- Traffic heatmaps: Which applications are important. Relevant for planification and costs. Ratio costs maintenance and costs
- LOC: Maintenance vs Complexity (related to maintenance costs)
- Additional KPIs

3.1 Solution (1/2) - Concept

PPM: Project Portfolio Management, CD: Continuous Delivery, CI: Continuous Integration, EA: Enterprise Architecture, EAD: Enterprise Architecture Documentation, optional*

1. Derivation for EAM

Challenges of current EA documentation

- No single automated EA documentation standard
- Many documenting approaches exist, mostly manual data collection
- Helps to manage information complexity due to higher number of applications in different environments
- Increases support fast changing environments (multi environments) and technologies

Consequences

- High error rate documenting and collecting EA information
- Time consuming collection of information
- Expensive tasks maintaining and gathering information of the EA

Improved EAM use cases can be derived from an automated EA documentation process

4. Evaluation (4/4) - Prototype

ПП

Challenges:

- Web-browser does not support ECMAScript 6
- Database component was not supported (MongoDB and ElasticSearch6)
- Server component adaptation for MySQL database component
- No fully EA cloud discovery possible due to access rights
- Not expected results:
- Changes were not considered relevant
- Software dependencies section: Management of software frameworks

ID	Requirement
AR1	Business Impact Analysis of applications
AR2	Data privacy compliance (GDPR compliance)
AR3	Automated verification of the 12 factor app
AR4	Automated verification of a resilience pattern
AR5	Additional KPIs: TCO, MTBF, MMTR, MTTF and real time data of users on the individual applications
AR4 AR5	Automated verification of a resilience pattern Additional KPIs: TCO, MTBF, MMTR, MTTF and real time data of users of the individual applications

Prototype can be extended by many requirements for further automated verifications

2.5 Derived EAD requirements and challenges from the literature review

_

ID	Requirement	Sources		ID	Data challenge	Sources	
RL1	Integration of different information sources	[1],[2],[3],[4],[5][6],[7],[8],[9], [10],[11]		DC1	Data granularity: Data too granular for EA	[1], [2], [3], [6], [7	
RL2	Dynamic metamodel: Adaptable metamodel of EA tools	[1],[2],[3],[4],[5][6],[7],[8],[11]		DC2	DC2	Data actuality: Data is not	[1], [2], [3], [4], [6
RL3	Business added value: Several stake	[1], [3], [4]			maintained, therefore no uptodate	[7], [9], [10], [11]	
				DC3	Data completeness: EA [1	[1], [2], [3], [6], [7	
RL4	EA Tool support: EA Tool needs an public API for RL1	[1], [3], [6], [8]			information is scarce	[.], [_], [.], [.], [.], [.	
RL5	Integration of cloud environments (PaaS and SaaS)	[4], [8], [11]		DC4	Data correctness: Error proned	[1], [2], [3], [6] , [⁻	
RL6	Integration of runtime KPIs and monitoring information e.g.Prometheus	[4], [8], [11]				uala uue lo manual galhening	[9], [10]

Future automated EAD solutions should cover the above mentioned requirements and challenges