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Abstract: Research in federated machine learning and privacy-enhancing technologies has spiked recently. These tech-
nologies could enable cross-company collaboration, which yields the potential of overcoming the persistent
bottleneck of insufficient training data. Despite vast research efforts and potentially large benefits, these tech-
nologies are only applied rarely in practice and for specific use cases within a single company. Among other
things, this little and specific utilization can be attributed to a small amount of libraries for a rich variety of
privacy-enhancing methods, cumbersome design of end-to-end privacy-enhancing pipelines and unwieldy cus-
tomizability to needed requirements. Hence, we identify the need for an easy-to-use privacy-enhancing tool
to support and enable cross-company machine learning, suitable for varying scenarios and easily adjustable
to the desired corresponding privacy-utility desiderata. This position paper presents the starting point for our
future work aiming at the development of the described application.

1 Problem Statement

The ever-increasing trend of data-driven decision
making, automation of traditional manufacturing and
industrial practices requires companies to collect data
and generate useful information from the collected
data. This data-driven automation can be achieved
by implementing artificial intelligence (AI) systems
which are trained to identify patterns based on the col-
lected data and then act according to some predefined
rules. These systems allow companies to design better
products, optimize processes and enhance resilience
along the digital supply chain without the need of hu-
man intervention (Ivanov et al., 2019).

However, the complexity of AI models tends to in-
crease as problems get more complicated. The com-
mon ground of training complex AI systems is the re-
quirement for large and diverse datasets. The require-
ment for large datasets mostly tends to be the bottle-
neck of these AI systems. Since a large amount of
high-quality training data is key, this can be overcome
by voluntary data sharing by data owners and multi-
institutional dataset aggregation. Hence, the need
for cross-company collaboration emerges. Data mar-
kets provide a possible approach for enabling cross-
company collaboration (Ohrimenko et al., 2019).

Representatives from business, politics, and sci-
ence have recognized the added value and poten-
tial economic benefit of said data markets and there-
fore recently supported major multi-national projects
that provide a common digital infrastructure for data-
sharing. Initiatives like International Data Spaces As-
sociation (IDSA), GAIA-X or the automotive-related
Catena-X aim to enable cross-company collaboration
in a shared environment of trust. This work takes
place in the context of the Catena-X project.

Even though data markets promote collaboration
across companies and consequently foster innovation,
these markets bear the risk of revealing sensitive busi-
ness information or even personal data. Besides, trust
and confidence in the protection of privacy and in-
tellectual property is a critical barrier in the users’
willingness to participate in collaborative information
sharing (Schomakers et al., 2020). In addition to pre-
venting privacy breaches, these systems also have to
ensure legal compliance e.g. with GDPR regulations.

It is usual practice to anonymize or pseudo-
anonymize sensitive data at the originating institu-
tion, before transmitting the data to a central location,
where it is stored, analyzed and used for model train-
ing (Sheller et al., 2020). However as seen in the infa-
mous Netflix prize (Narayanan and Shmatikov, 2008),



using only anonymization has proven to be insuffi-
cient against re-identification attacks. Consequently,
a multitude of privacy-enhancing techniques (PETs)
recently emerged from this problem, each with a vary-
ing scope and for differing privacy concerns. For an
extensive overview of PETs in IoT data markets we
refer the reader to the work of (Garrido et al., 2021).

Moreover, the described government funded
projects mainly deal with data exchange and less with
collective data processing. A widely used collabora-
tive data processing framework is federated learning,
in which a machine learning model is jointly trained
among participants. Each data owner receives a copy
of the machine learning model from the model owner
and trains it locally. After local training, the result-
ing update gradients are shared with the model owner,
which then updates the centralized model through the
accumulated gradients (Konečný et al., 2015; Hard
et al., 2018). By this, sensitive data never leaves
the users’ device. However, further privacy risks like
model stealing or reverse-engineering of training data
arise when applying federated learning (Gonçalves
et al., 2021). Hence, we need further precautions and
techniques to enhance privacy of sensitive data in fed-
erated machine learning processes.

There has been large research and investment in
powerful privacy-enhancing measures. Even though
there is a lot of theoretical work, there seems to be
little practical application. When applied, PETs are
only utilized for specific scenarios and with no gen-
eral, generic adaption. The factor, that PETs are un-
wieldy for non-experts is the reason for this observa-
tion (Renaud et al., 2014; Gerber et al., 2019). Most
methods lack a reusable library or the required com-
bination of anonymization and secure computation
(Garrido et al., 2021). Therefore, multiple approaches
have to be reasonably combined when data of multi-
institutional sources have to be processed. Designing
such an end-to-end privacy-enhancing architecture is
cumbersome, especially for non-experts.

Additionally, there is always a trade-off between
the degree of privacy and data utility. From a user
perspective, some use cases might demand precise
accuracy, while other scenarios prefer high data pri-
vacy over high utility. To make informed trade-off
decisions, users need to know the specifics about
the underlying architecture and implemented PETs.
Again, this might be cumbersome, especially for non-
experts.

Lastly, the composition of data sources, model
owners and stakeholders varies with each use case.
Each scenario also brings different data structures,
which results in the need for interchangeable machine
learning models depending on the use case.

This position paper presents the starting point for
our future work aiming to lower the hurdle for users
to practically deploy privacy-enhancing techniques to
enhance trust and accordingly support collaborative,
cross-company machine learning.

Thus we can summarize the challenges and the
goals of a possible application as follows:

• PETs are currently mainly usable by experts. The
application should enable non-experts to easily
enforce privacy-enhancing techniques.

• There is always a trade-off between utility and pri-
vacy. The application has to enable non-experts to
make informed trade-off decisions.

• The solution should be generically usable for dif-
ferent scenarios with varying model owners, data
sources and machine learning models.

After an initial technology, we seek to evaluate
and compare existing PETs and group them accord-
ing to performance indicators like the achievable
degree of privacy, addressed privacy concern, com-
putational overhead and adaptability. We also plan to
benchmark existing libraries in the process and derive
capabilities and limitations of existing technologies,
solutions and libraries. With the help of the resulting
findings, we want to construct multiple privacy-
enhancing architectures, which cover varying levels
of privacy-utility requirements. Finally, we pursue
the development of an easy-to-use privacy-enhancing
application for multi-institutional federated machine
learning, suitable for varying scenarios and easily
adjustable to the corresponding utility-privacy need.
The user should be able to integrate own machine
learning models. Since our solution mainly aims
to provide privacy on the data processing layer,
the overall application should be compatible with
trustworthy distributed data infrastructures, such as
Gaia-X, which provide additional privacy on the
storage and communication layer.

In section 2, we will give a short introduction to
the terms security, privacy, federated machine learn-
ing and the accompanying privacy concerns. This is
followed by section 3 with an overview of trustworthy
distributed data infrastructures (Gaia-X and IDSA)
and existing solutions. Here, we provide an initial as-
sessment about the advantages and limitations of the
most widely-used PETs. Afterwards, we present re-
lated work (section 4) before we finally conclude in
section 5.



2 Preliminaries

The following will introduce the terms security, pri-
vacy and the concept of federated machine learning.
Additionally, we will further debate the necessity of
privacy-enhancing techniques for cross-company data
sharing and argue that contractual protection and in-
centivation is not enough to motivate users to partici-
pate in collaborative data processing.

Security and Privacy. Even though the terms data
security and data privacy are mostly used interchange-
ably, it is important to differentiate both concepts as
well as define their interrelation. For this, we adapt
the definition as given by Jain et al. (2016):

Data security is specified as the practice of de-
fending the confidentiality, integrity and availability
of data. Security aims to prevent data compromise
through the use of technology, processes and training.

Data privacy, on the other hand, is concerned with
the control over the collection and usage of personal
information. To preserve data privacy, an individual
should have the capability to stop personal informa-
tion from becoming known to unauthorized or unde-
sired people. The focus lies on the use and gover-
nance of individual data.

”While security is fundamental for protecting
data, it’s not sufficient for addressing privacy.” (Jain
et al., 2016).

Federated Machine Learning. For collaborative
data processing, we will rely on federated machine
learning as the main framework, which works as fol-
lows (Konečný et al., 2015):

1. The model owner provides a centralized machine
learning model.

2. Each participant downloads the current model and
trains it on local data.

3. Each participant summarizes the changes as a
small focused update, which then is sent back to
the model owner.

4. The updates are aggregated, merged through an
averaging scheme and then used to update the cen-
tral model.

5. Repeat the process.

Since the data stays on the users’ device, this pro-
cess yields a strong privacy and security benefit. The
model also resides on the device, which makes real-
time prediction possible, even without internet con-
nection. However, federated learning only preserves
privacy to a certain degree, communication could be-
come a potential bottleneck and the framework may

need to anticipate low levels of participation as well as
statistical and systems heterogeneity (Li et al., 2020).

Importance of Privacy. As already stated, PETs in-
troduce more computational overhead and reduce the
data utility to a certain extent. So the question re-
mains, if adding further PETs on top of federated ma-
chine learning is really necessary to support partici-
pation in collaborative data processing systems or if
legal restrictions and (financial) incentives might suf-
fice. A series of three studies from Schomakers et al.
(2020) have shown, that the relevant barriers regard-
ing data sharing are privacy concerns with the pro-
tection of sensitive data as the most essential condi-
tion. The level of anonymity is important for all user
groups, which even outweighs monetary benefits for
users with high privacy concerns (Schomakers et al.,
2020). We assume that competing companies belong
to the group of users with higher privacy concerns
which therefore prioritize data security. Further stud-
ies confirm that secure data sharing is the most impor-
tant factor in fostering sharing-centered collaboration
(Panahifar et al., 2018; Woldaregay et al., 2020).

Studying the usage pattern of PETs,
Coopamootoo (2020) found that non-technology
methods and technologies which are integrated into
services, therefore easily usable, are the most utilized
PETs. Methods which are cumbersome to apply are
less likely to be used (Coopamootoo, 2020). If and
how this observation fits with industrial practice has
to be determined. But we argue, that these obser-
vation also applies to industrial machine learning
practices which results in a need for generically
and easily usable privacy-enhancing framework for
collaborative data processing.

3 Existing Approaches

In this section, we will present an initial technology
overview for privacy-enhancing data processing, in-
cluding a first discussion about their respective ben-
efits, limitations and assessment of utility for our
project. We group the methods into technologies
based on anonymization and cryptography.

3.1 Anonymization Approaches

In contrast to cryptography-based techniques,
anonymization does not try to hide data from unau-
thorized parties, but to help prevent identification
or re-identification by protecting direct identifiers,
quasi-identifiers and sensitive attributes (Majeed and



Lee, 2020). Most anonymization techniques funda-
mentally rely on non-perturbative and perturbative
masking based on statistics, probability theory and
heuristics. Several approaches have been proposed in
the past (Salas and Domingo-Ferrer, 2018):

Differential Privacy. Strictly speaking, Differen-
tial Privacy (DP) (Dwork, 2006) is not a method,
but a mathematically provable promise of privacy in
a dataset. More specifically, DP guarantees that an
algorithm M is (ε,δ)-differentially private if for any
neighboring datasets D and D ′ differing on at most
one element (neighboring datasets) and any set of pos-
sible ouputs S ∈ Range(M ):

Pr[M (D) ∈ S]≤ eε×Pr[M (D ′) ∈ S]+δ (1)

with ε as the likeliness of finding individuals and δ

as the possibility, by which outputs differ for different
datasets. Hence through differential privacy, an ad-
versary will essentially get the same inference about
any individual’s private information, which makes
the outputs ”differentially” indistinguishable (Wood
et al., 2018). This promise is mostly achieved by
adding noise randomly sampled from a probability
density function.

Differential Privacy is widely applicable (Hassan
et al., 2020) and has also been presented to obfus-
cate the resulting update gradients of training deep
neural networks. This extension to traditional neu-
ral networks is one possibility to counteract reverse-
engineering of training data (Abadi et al., 2016).
Adding noise to data or to update gradients lowers the
degree of information and therefore the utility. How-
ever, the amount of noise can be easily customized,
which shifts the privacy-utility trade-off. Due to the
easy adaptability and broad applicability, we expect
DP to be a valuable technique for our project.

K-Anonymity. As the name suggests, a dataset pro-
vides k-anonymity (Sweeney, 2002) if the identify-
ing information of each individual is indistinguish-
able from at least k-1 other individuals. This can be
realized by clustering a set of sensitive attribute val-
ues into equivalence classes of size k. A higher value
for k represents higher anonymity and consequently
a lower probability of correctly linking sensitive at-
tributes to an associated individual. However, finding
an optimal value for k with minimum information loss
is a NP-hard problem (Meyerson and Williams, 2004;
Liang and Samavi, 2020) and k-anonymity is not
secure against homogeneity attacks or background
knowledge attacks (Maheshwarkar et al., 2011).

Thus, multiple extensions have with further pri-
vacy requirements have been proposed. For instance,

l-diversity (Machanavajjhala et al., 2007) proposed to
have least l-different values in sensitive attributes or
t-closeness (Li et al., 2007) with the additional prop-
erty that the distance t between the distribution of sen-
sitive values within each class is less than or equal to
the overall dataset distribution of the attribute. Even
though, we also identified less prominent approaches
like β-likeness (Cao and Karras, 2012), δ-presence
(Nergiz et al., 2007) or δ-disclosure privacy (Brick-
ell and Shmatikov, 2008), we initially focus on k-
anonymity, l-diversity and t-closeness.

The clustering of sensitive attribute values into k
equivalence classes can be done by replacing a value
with less specific but semantically consistent value
(generalization), by removing selected data points
(suppression) or by changing data to something else,
which can be reverted back with the help of the origi-
nal data (distortion).

These methods are mainly used to obfuscate the
input and output and therefore enhance privacy of the
input data and computational output. Of course, this
small list of privacy-preserving anonymization tech-
niques is far from complete. We refer to the study of
Majeed and Lee (2020) for a more detailed overview.

3.2 Cryptographic Approaches

In contrast to anonymization, cryptography-based ap-
proaches hide sensitive data from unauthorised access
by converting sensitive information (plaintext) into
unintelligible form (ciphertext). Naturally, a multi-
tude of cryptography-based methods have been pro-
posed not only to transfer data, but also for secure
data processing:

Homomorphic Encryption. Homomorphic En-
cryption (HE) is an encryption scheme, which al-
lows the computation of encrypted data, where the
output can be decrypted using the corresponding se-
cret key (Ogburn et al., 2013). Homomorphic en-
cryption schemes can be classified into fully homo-
morphic encryption (FHE), where both - addition
and multiplication - is supported and partially ho-
momorphic encrpytion (PHE), where only one oper-
ation is possible. Any schema in-between is classi-
fied as somewhat homomorphic encryption (Kogos
et al., 2017). Most recently, a FHE extension for
deep learning has been proposed, which achieved
nearly identical results compared to training on non-
encrypted data. Evaluated on the CIFAR-10 dataset
(Krizhevsky, 2012), the model performed extremely
well with a high security level and classification ac-
curacy. The proposed model is still limited by com-
putational overhead and the runtime, which is about 4



hours to infer a single image (Lee et al., 2021). Con-
sequently, this technology is still impractical to use,
but might be promising after further research.

Oblivious RAM. An oblivious Random Access
Memory (ORAM) (Goldreich, 1987) aims to prevent
leakage of sensitive information, which can be in-
ferred by the behavior of the user rather than data con-
tent itself. More specifically, ORAMs conceal the ac-
cess pattern to a remote storage by continuously shuf-
fling and re-encrypting data as it is accessed, while
preserving the input-output behavior of the original
data. The access to the physical storage location can
be observed, but the ORAM algorithm obfuscates the
access pattern such that one can not infer the true (log-
ical) access pattern from the observation. By this, an
adversary can not obtain nontrivial information about
the execution of a program or the nature of the data,
which usually can be leaked even though data val-
ues are all encrypted. As an extension to the origi-
nal concept, PathORAM (Stefanov et al., 2018) with
enhanced significantly less bandwidth cost.

Although ORAMs do not specifically enhance pri-
vacy in the data processing layer, we still need to con-
sider the possibility, that the communication and data
access patterns might indirectly leak sensitive infor-
mation.

Secure Multi-Party Computation (SMPC) is a
protocol, which enables multiple parties to perform
and evaluate computations without revealing any of
the private data held by each party, without the ne-
cessity of a trusted third party. Several peers per-
form a shared computation without sharing it amongst
themselves. Given M participants and N comput-
ing parties, each SMPC protocol follows three steps
(Torkzadehmahani et al., 2020):

1. Each participant shares separate and different se-
crets to each of the N computing parties according
to a selected secret sharing method.

2. Each computing party computes intermediate re-
sults and shares the results with the other comput-
ing parties.

3. Each computing party aggregates the results from
all computing parties and computes a global re-
sult, which is then sent back to all participants.

Whereby additive secret sharing (Vaidya and
Clifton, 2003) and shamir secret sharing (Shamir,
1979) are the most prominent secret sharing schemes.

In contrast to traditional cryptography, SMPC
only conceals partial information about the data while
performing computation with the data and usually

entail multiple rounds of interactive communica-
tion, which leads to a sensitivity to network latency.
Since machine learning frameworks can be integrated
(Knott et al., 2021) and because these SMPC proto-
cols target the problem of keeping the input private
and of ensuring correctness, SMPC might be a valu-
able technique for our project.

Zero Knowledge Proofs. Generally, Zero Knowl-
edge Proofs (ZKP) protocols allows one party (ver-
ifier) to verify the authenticity of a given compu-
tation conducted by another party (prover), without
having any knowledge about the prover, the com-
putation or the underlying data (Feige and Shamir,
1990). ZKPs can be distinguished into interactive
ZKPs where a sequential message exchange is re-
quired and non-interactive ZKPs with no sequential
message exchange.

These concepts can also be used to prove the re-
sults, correctness, consistency and achieved accuracy
of each participants’ locally trained model without
leaking any information about the data (Zhang et al.,
2020; Liu et al., 2021). ZKPs appear to be an efficient
solution to address authentication problems and to
confirm given predictions without compromising data
utility and accuracy of the machine learning model it-
self.

Naturally, this list is also far from complete. We
refer to the study of (Kaaniche et al., 2020) for a more
comprehensive overview.

3.3 Trusted Execution Environments

Moreover, we want to present trusted execution envi-
ronments (TEE), which is a combination of hardware
and software components and allow users to define
secure areas of memory (enclaves) that enhance con-
fidentiality, as well as the data and computation in-
tegrity. These processing environments are isolated
and thus impede other programs outside the enclave
to act on the data (Sabt et al., 2015). These environ-
ments should be secure against sophisticated attacks
like probing external memories, measuring execution
time and against attacks aiming to retrieve crypto-
graphic key material (Shepherd et al., 2016). Physical
access to the hardware is the only way of compromis-
ing TEEs. One has to bypass remote attestation and
the sealed storage by manipulating the system to pro-
vide false certifications (Colman et al., 2019).

However, there is no standardization and most
open-source proposals lack maturity. Hardware and a
trusted third party might be needed, which introduces
a single point of failure (Shepherd et al., 2016; Busch
et al., 2020) and reduces the usefulness for our in-



tentions. Proprietary solutions like the Intel Software
Guard Extension (SGX) (Anati et al., 2013), where
Intel is the trusted third party and therefore single
point of failure have been mostly used due to the lack
of maturity of open-source protocols (Garrido et al.,
2021). As a fallback, TEEs could help enable secure
centralized machine learning, in case it turns out that
a federated learning approach is not feasible.

4 Related Work

From recommender systems for videos (Duan et al.,
2020), payments in smart finance (Liu et al., 2020) to
predicting the energy demand of electric vehicle net-
works (Saputra et al., 2019), federated learning has
found its way into a broad range of industrial do-
mains (Zhou et al., 2021). However, little work has
been focused on federated learning across companies,
which introduces further privacy concerns and there-
fore privacy requirements compared to industrial ap-
plications within a single company.

Most work on multi-institutional machine learn-
ing has been made in medical research (Sheller et al.,
2020; Sarma et al., 2021; Guo et al., 2021). Notably,
Kaissis et al. (2021) recently presented PriMIA, an
end-to-end privacy-preserving deep learning frame-
work for medical imaging on multi-institutional data.
Combining federated learning, secure multi-party
computation and differential privacy, the authors have
been able to prevent model inversion attacks with
comparable accuracy and reasonably longer (1.5-2.91
times longer) inference time (Kaissis et al., 2021).

In the context of industrial IoT, some authors pro-
posed blockchain-based federated learning systems
for data sharing in industrial IoT (Lu et al., 2020;
Mohr et al., 2021). Although all these inspiring ap-
proaches are promising, they focus on specific use
cases with certain privacy concerns. Hence, we iden-
tify a lack of a generally usable privacy-preserving
framework for collaborative processing of industrial
data.

5 Conclusion

We observe a reluctance of participating in collabo-
rative, cross-company machine learning due to high
privacy concerns. Since wary users value data pri-
vacy and data security over monetary benefits and
contractual agreements, we argue that the barriers to
multi-institutional machine learning persist due to un-
intuitive usability of privacy-enhancing technologies,

small amount of available libraries and the momen-
tarily inevitable need for expert knowledge to adjust
these technologies to the desired needs given by each
use case.

Hence, this position paper represents the starting
point for our future work aiming towards a frame-
work, which enables non-experts to easily apply de-
sired privacy-enhancing technologies for collabora-
tive data processing in trustworthy distributed data in-
frastructures.

As a first step towards this application, we pre-
sented an initial technology overview with a first dis-
cussion about the practicality and usability of the cor-
responding methods. Naturally, this list is far from
complete and the approaches have yet to be thor-
oughly evaluated. The results of this evaluation will
provide the necessary basis for the application archi-
tecture and integration concept into distributed data
infrastructures.
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